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Abstract

Due to its high sensitivity to environmental changes, phytoplankton is

considered a great biological indicator for the analysis of large-scale seasonal

events and the evaluation of processes associated with natural and

anthropogenic eutrophication. In this context, the present work utilizes OLCI

Sentinel-3 RED-NIR bands for the parametrization of chlorophyll-a algorithms

that could support phytoplankton bloom monitoring and water quality

assessment at Guanabara Bay, a particularly important estuarine environment

located in the state of Rio de Janeiro, Brazil. The RED-NIR channels were

processed using the ACOLITE atmospheric correction method which is indicated

for the study of turbid waters. Six algorithms showed a high level of correlation

with the in situ chlorophyll-a data (R2 between 0.72 and 0.84) and the ratio

Rrs709/Rrs674 was demonstrated to be a good proxy for phytoplankton

distribution on a distinctive summer bloom situation. The results point to the

sensitivity of Guanabara Bay’s ecosystem to seasonal variability and indicate

the suitability and importance of applying Sentinel-3 data on a continuous

phytoplankton monitoring program.

Keywords: Remote sensing, Ecosystem health, Guanabara Bay, OLCI

Sentinel-3, Chlorophyll-a.
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1. Introduction

Remote sensing techniques find applications in several areas of

geosciences, leading to numerous advantages such as the possibility of

studying the dynamics of the different components of the biosphere by

obtaining data frequently (Rustamov et al., 2018). In marine sciences,

many works have employed orbital sensors to investigate the optical

properties of water, with results being used for the study of primary

production and applied to water quality monitoring (Yang et al., 2022).

These investigations are of great social/ecological value and can provide

information for coastal resources management (Klemas et al., 2011).

The observed spectral properties of a water target are influenced by

all optically active constituents (OACs) found in the upper layers of the

water column (Figure 1). This feature represents a challenge for the

remote sensing study of marine coastal ecosystems because in these

environments the non-biogenic OACs (colored dissolved organic matter

and inorganic particulate matter) significantly influence water’s reflectance

profiles (Kirk, 1994; O’Reilly et al., 1998). These constituents absorb a

significant fraction of the electromagnetic radiation on the blue range and

in coastal waters they generally do not show a good correlation with

phytoplankton variation (Gitelson et al., 2007). For this reason, many of

the “blue and green based” satellite algorithms for chlorophyll-a retrieval

(that are generally suited for oceanic waters) commonly fail to generate

good representations of the phytoplankton biomass distribution in coastal

areas such as embayments and estuaries (Ha et al., 2017).

Consequently, many authors have applied the strategy of developing

algorithms based on the red (RED) and near infrared (NIR) channels

(Koponen et al., 2006; Gurlin et al. 2011; Pirasteh et al., 2020). This

range of the spectrum represents chlorophyll fluorescence (that is a

function of chlorophyll concentration and phytoplankton

taxonomy/physiological state), chlorophyll second absorption maximum

7



and also particulate backscattering properties, whereas the observed

contribution of the spectral signatures of OACs that are not derived from

phytoplankton is significantly reduced (Gitelson, 1992; Mollaee, 2018;

IOCCG, 2021). Secondly, although uncertainties from atmospheric

correction methods may still represent a source of error for all types of

chlorophyll algorithms, the interference of the atmosphere on the signal of

the RED band is considerably smaller compared to that observed in the

blue-green range (Wang et al., 2012).

Therefore, many formulations and indexes derived from RED-NIR

bands (such as the Normalized Difference Chlorophyll Index - NDCI) have

been utilized for estimating phytoplankton biomass in complex waters

(Gower et al., 2008; Mishra and Mishra, 2012), while atmospheric

correction methods like ACOLITE (which was specifically developed for

water applications) have shown improved results in deriving surface

reflectance data for RED and RED-edge bands during phytoplankton

blooms (Vanhellemont and Ruddick, 2021).

Figure 1: Electromagnetic radiation absorption spectrum of total particulates (upper, thick
solid curve) and its components arising from tripton (lower, thin solid curve) and
phytoplankton (dashed curve), in a near-shore coastal water sample. An exponential
decay can be observed on the lower solid curve while increasing wavelength, which
indicates a smaller contribution of tripton on water’s spectral properties in the RED-NIR
range. Source: Ruddick et al. (2001).
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Within today’s available orbital sensors, the Ocean and Land Color

Instrument (OLCI) from the Sentinel-3 program represents one of the best

alternatives for phytoplankton biomass estimates because it features 4

channels on the RED-NIR region, which were specially designed to support

chlorophyll-a retrievals (EUMETSAT, 2018). Furthermore, the good spatial

(300 m) and temporal resolution (approx. 2 days) of Sentinel 3 satellites

(S3A and S3B) also reinforce their suitability for water quality and marine

ecological studies, including the monitoring of inland waters (Rodrigues et

al., 2022) and the investigation of regions with high dynamic variability

(Liu et al., 2021).

Contrasting the numerous benefits that remote sensing analyzes

bring for the comprehension of biochemical dynamics of aquatic

environments, the number of scientific publications that have employed

satellite sensors for the study of marine regions along Brazil’s coastline is

still very limited (Giannini et al., 2013; Silva and Garcia, 2021). In

Guanabara Bay (a socially and economically important estuarine

ecosystem located in the state of Rio de Janeiro, Brazil), many papers

have focused on the classical methodology to investigate water quality

indexes and phytoplankton taxonomy (Villac and Tenenbaum, 2010;

Santos, 2015), whereas just a few have utilized remote sensing

techniques for chlorophyll-a estimates (Oliveira et al., 2016; Tran et al.,

2023) or water mass classification (Soares et al., 2017). Therefore, the

potential of remote sensing analysis for estimating phytoplankton biomass

in Guanabara Bay remains relatively unexplored.

Aforesaid, supported by a dataset of chlorophyll-a concentrations

obtained in Guanabara Bay, this study has applied ACOLITE-derived

surface reflectance data from OLCI/Sentinel-3 RED and NIR bands for the

parametrization of empirical chlorophyll-a algorithms. This class of

algorithms has the advantage of simplicity over analytical and

semi-analytical models because they do not require quantitative
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information about water's intrinsic optical properties (i.e total absorption

and backscattering coefficients) whilst they can still accomplish

significantly better results than the commonly available satellite built-in

chlorophyll-a products (Mollaee, 2018). Although a challenge for coastal

waters, the obtention of more accurate remote sensing chlorophyll-a

estimates provides the opportunity to generate more realistic biomass

distribution maps and also to develop a satellite chlorophyll-a time series,

which can be used for environmental monitoring and climatological

evaluation respectively. The generated algorithms' statistical metrics were

therefore evaluated and compared, while a March 2022 phytoplankton

bloom event was investigated. The influence of the sea surface

temperature (SST) on the phytoplankton distribution in Guanabara Bay

has been briefly discussed.

2. Methods

2.1. Study area

Guanabara Bay is an estuarine environment located on the

southeastern coast of Brazil, centered at 22°50' S and 43°10' W, with a

total area of approximately 384 km² and depths ranging from a few

meters to up to 40 m (Figure 2) (Kjerfve et al., 1997). On its

surroundings there are 15 municipalities, including the city of Rio de

Janeiro, which has a population of around 6.2 million inhabitants,

according to the 2022 IBGE (Brazilian Institute of Geography and

Statistics) census (IBGE, 2023). The bay’s drainage basin has an area of

approximately 4080 km2 and is composed of 55 rivers that, together,

contribute with an annual average water discharge of about 200 m3/s

(SEA/UEPSAM, 2016).

Located in a region with a humid tropical climate, Guanabara Bay is
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classified as a positive estuary with a circulation regime dominated by

tidal influence (primarily semidiurnal regime) and, to a lesser extent, by

density gradients (Sampaio, 2003). The local circulation is also influenced

by cold fronts generally associated with winds with speeds often greater

than 10 m/s, and by coastal trapped waves which affect the sub inertial

circulation next to the bay’s exit and on the adjacent continental shelf

(Kjerfve et al., 1997; Pita, 2019).

Due to problems associated with the implementation of industrial

activities and disorderly urban growth in its vicinity, it has been possible

to observe a considerable intensification of the eutrophication

phenomenon on Guanabara Bay’s waters (specially on its western

section) (Mayr et al., 1989; Hatherly, 2013; Cruz, 2016). This problem is

a direct result of the aggravation of anthropogenic pollution (marine and

terrigenous) and can be perceived by a noticeable reduction of the bay's

water quality indicators (Lima, 2006). This scenario represents a threat

to Guanabara Bay’s ecosystem and, along with a higher probability of

peaks on the Biochemical Oxygen Demand (BOD) (which is associated

with several reported “fish kill” events), the increase of heavy metals’

discharge such as lead and chromium from industrial effluents is also a

factor of concern (Lima, 2006; SEA/UEPSAM, 2016).

Lastly, it is also important to mention that Guanabara Bay and all its

adjacent regions are characterized by the existence of different social

actors with often divergent interests, a fact that becomes especially

critical when is considered that around 6 thousand families depend on

fishing activity in Guanabara Bay as a source of income for their

subsistence (Fistarol et al., 2015).
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Figure 2: Guanabara Bay and the main rivers that compose its drainage basin. The
bathymetry is shown as blue-scaled shades. The approximate position of the sampling
points, station A (-22.8253, -43,2216) and station B (-22.8767, -43.1578), are shown
as a yellow and a red star, respectively. Source: Andrade (2018). Adapted by Fries et al.
(2018).

2.2. In-situ chlorophyll-a data

The set of in-situ chlorophyll-a data used to parameterize the

algorithms consists of 19 concentration values obtained by the analysis of

water samples collected in two specific points (stations A and B, Figure 2)

in Guanabara Bay between the years of 2017 and 2018. These 19 values

were selected from a dataset with 244 values and refer to sampling dates

with Sentinel-3 cloud-free imagery match-ups. All sampling campaigns

and chlorophyll analysis were carried out by the Laboratory of Marine

Phytoplankton (Department of Marine Biology, Institute of Biology,

Federal University of Rio de Janeiro) coordinated by Prof. Dr. Paulo Sérgio
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Salomon, and the analysis results were kindly provided for this study.

Water samples were collected in duplicates, kept hidden from the light

and filtered in the laboratory on the same day (using Whatman GF/F (47

mm) filters). For pigment extraction, GF/F filters were dipped in a

centrifuge tube containing 5.4 ml of 100% acetone and left in the dark at

4 °C for a 12 hours extraction. Following extraction, the tubes were

centrifuged for 5 min at 3500 rpm. The analysis procedure used to

determine the concentration of chlorophyll-a on the samples was based

on the spectrofluorimetric method and is fully described in Tenório et al.

(2005).

2.3. Satellite data processing and fundamentals of

remote sensing

Based on the sampling dates (exact match) of the in-situ chlorophyll

data, a total of fifteen cloud free Sentinel-3A OLCI level-11 Full Resolution

images were obtained from EUMETSAT (European Organization for the

Exploitation of Meteorological Satellites) Data Centre

(https://www.eumetsat.int/eumetsat-data-centre). All scenes were

atmospherically corrected using the ACOLITE atmospheric correction

method (Vanhellemont and Ruddick, 2016) which is based on the dark

spectrum fitting (DSF) algorithm (Vanhellemont, 2019). This method was

originally developed to process LANDSAT and Sentinel-2 images (with

focus on the study of turbid coastal waters) and it was further adapted to

process Sentinel-3 data (Vanhellemont and Ruddick, 2021). The procedure

converts Top of the Atmosphere (TOA) radiance to remote sensing

reflectance (Rrs) for sixteen OLCI’s bands (ranging from 0.4 to 1.02 µm)

and it was chosen over the baseline (Bright Pixel Atmospheric Correction -

BPAC) and the alternative (Case 2 Regional Coast Color - C2RCC)

1 Level 1 data consists of georeferenced, quality controlled and pixel classified
data (land, water, coastline, etc) of radiometrically calibrated TOA radiance.
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Sentinel-3 atmospheric correction methods (EUMETSAT, 2018). The reason

for this selection was the negative reflectance values that often result from

the use of BPAC for the remote sensing study of complex waters (Moses et

al., 2009a) and the well reported2 underestimates of red and red-edge

reflectances associated with the application of C2RCC (Moses et al.,

2009b). For each of the fifteen scenes, after the ACOLITE processing was

complete, the software Sentinel Application Platform (SNAP) was used to

extract the Rrs values from the pixels corresponding to the sampling points

(Stations A and B).

Equation 1 shows the relationship between Rrs and two inherent

optical properties (IOPs) namely, total absorption (a(λ) and backscattering

coefficients (bb(λ)):

(1)

The observed model is a semi analytic approximation derived from the

radiative energy transfer equation and У (gamma) is dependent on the

geometry of the light field emerging from water (Gordon et al., 1988;

Gitelson et al., 2007). For the remote sensing analysis, the importance of

the spatial resolution parameter is evidenced by the fact that both a(λ)

and bb(λ) can be decomposed in terms of the contributions of the

individual OACs present on water (ie. chlorophyll, CDOM and tripton) plus

the contribution of water itself. Water’s absorption and backscattering

coefficients are not expected to vary significantly in space but those

related to OACs can vary greatly because of different type/size of

inorganic particulate matter and also possible biological and physiological

variations on the phytoplankton community (Gitelson et al., 2007; IOCCG,

2 This issue, as reported by Binding et al. (2011) is a special problem on the
investigation of phytoplankton blooms and is associated with the non representation of
chlorophyll-a fluorescence features.

14



2021). Another determinant parameter for the remote sensing study is the

choice of which bands will be applied associated with the spectral

resolution of these specific bands. As previously mentioned (Section 1) the

different OACs have distinct spectral signatures which is the result of a

varying absorption/backscattering behavior considering the different

wavelengths. CDOM for example strongly absorbs radiation on the blue

region whilst inorganic particulate matter and phytoplankton can

significantly influence water’s backscattering on the NIR region (Zeng and

Binding, 2019). Therefore the success of the utilization of Rrs with the

purpose of evaluating one specific OAC by means of a empirical

relationship depends, among other factors, on the minimization of the

impact that other OACs may have on Rrs and on an adequate spatial

resolution that will minimize errors associated with the spatial variability of

the target OAC.

2.4. Sentinel-3 bands and formulations

The algorithms for chlorophyll-a retrieval were parameterized based

on four different OLCI/Sentinel-3 bands. The main characteristics of these

bands and their specification (which are related with features that are

present in chlorophyll-a absorption spectra) are shown in Table 1. The

formulations applied to develop the algorithms are shown in Table 2.

Expressions (d), (f) and (h) are the normalized versions of the simple

band ratios presented in expressions (c), (e) and (g), respectively. From

Table 2 it’s noted, for example, that the formulation Rrs709/Rrs681 can be

interpreted as the ratio between the Chlorophyll fluorescence peak and the

signal relative to chlorophyll fluorescence baseline.
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Table 1: Characteristics of the OLCI/Sentinel-3 bands used in the chlorophyll-a
algorithms. Source:EUMETSAT (2018).

Band Central wavelength
(nm) Band width (nm) Specification

Spatial
resolution
(m)

Oa08 665 660-670
Red, 2º chlorophyll
absorption maximum

300

Oa09 673.75 670-677.5 For improved
fluorescence retrieval

Oa10 681.25 677.5-685
Red edge, chlorophyll
fluorescence peak

Oa11 708.75 703.75-713.75
Red edge transition,

chlorophyll
fluorescence baseline

Table 2: Applied formulations based on OLCI/Sentinel-3 RED and NIR bands. References:
Gitelson et al. (2007), Gurlin et al. (2011), Mishra and Mishra (2012) and Lins et al.
(2017).

Formulation

Rrs681/Rrs665 (a) Rrs709/Rrs674 (e)

Rrs674/Rrs665 (b) (Rrs709-Rrs674)/(Rrs709+Rrs674) (f)

Rrs709/Rrs665 (c) Rrs709/Rrs681 (g)

(Rrs709-Rrs665)/(Rrs709+Rrs665)3 (d) (Rrs709-Rrs681)/(Rrs709+Rrs681) (h)

3 NDCI. Mishra and Mishra (2012)
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2.5. Statistical analysis and investigation of a
phytoplankton bloom event

In this study, the algorithms were statistically evaluated by the

application of three different metrics: Coefficient of determination (R2),

mean absolute error (MAE, Eq. (2)) and root mean square error (RMSE,

Eq. (3)). MAE and RMS were calculated as follows4:

MAE: (2)

RMSE: (3)

Based on the statistical results, SNAP 8.0 and QGis 3.30.2 softwares

were utilized to create images of a specific bloom event that occurred in

Guanabara Bay in the summer of 2022. This event is here represented by

four cloud-free Sentinel-3A OLCI level-1 Full Resolution scenes which were

downloaded and processed in a similar way as described in Section 2.2. To

uphold the discussion and to outline the relationship between Sea Surface

Temperature (SST) and the occurrence of blooms in Guanabara Bay, a one

year screen of the in-situ chlorophyll-a time series was compared to SST

data derived from the NASA MODIS program (Vermote et al., 2015).

4 N is the number of values; xf,i is the value obtained from the regression line and
x0,i is the in-situ value.
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3. Results and discussion

3.1. In-situ chlorophyll-a data variability

The temporal variability considering the complete chlorophyll-a

in-situ dataset (244 concentration values) and a screening of the

2017-2018 period is presented in Figure 3. The summary statistics

considering the entire chlorophyll concentration data can be assessed in

Table 3 while the descriptive statistics of the in-situ chlorophyll subset

used to parametrize the algorithms is shown in Table 4.

Table 3: Summary statistics of the complete chlorophyll-a in-situ dataset. Dry season
corresponds to the period from May to October whereas the rainy season corresponds
from November to April.

Seasonality Station No. of
values

Min.
(µg /L)

Max.
(µg /L)

Mean
(µg /L)

Std
(µg /L)

Frequency
> 100µg /L

Dry season

A 54 13.77 183.61 75.02 49.74 17

B 75 1.16 158.44 22.42 24.21 1

A+B 129 1.16 183.61 44.44 45.19 18

Rainy
season

A 44 10.11 398.42 94.46 82.39 17

B 71 2.63 266.49 44.31 41.70 6

A+B 115 2.63 398.42 63.50 65.02 23

Table 4: Summary statistics of the chlorophyll-a in-situ data used to develop the
algorithms.

Station No. of
values

Min.
(µg /L)

Max.
(µg /L)

Mean
(µg /L)

Std
(µg /L)

A 8 48.01 177.93 116.94 42.27

B 11 8.35 144.62 42.24 39.38

A+B 19 8.35 177.93 73.69 54.70
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Figure 3: Temporal variability of in-situ chlorophyll-a concentrations at the two sampling
stations in Guanabara Bay considering: a) The whole dataset; b) The data obtained
between 2017-2018 (yellow markers indicate the dates with satellite match up). Data
provided by the Laboratory of Marine Phytoplankton (Department of Marine Biology,
Institute of Biology, Federal University of Rio de Janeiro).
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On average, chlorophyll-a concentrations are higher at Station A

than those observed at Station B (Tables 3 and 4; Fig. 3). This can be

interpreted considering the combined result of the oceanic influence

(which is greater at Station B) and the terrigenous influence (which is

more pronounced at Station A). The mean chlorophyll concentration and

the standard deviation (STD) are higher in the rainy season for both

stations, with STD being noticeably higher at Station A (which indicates a

more accentuated chlorophyll variability on this point - Table 3). The

observed summary statistics of the in-situ chlorophyll-a subset used for

algorithm development (Table 4) shows that even though it was only

possible to obtain Sentinel-3 match-up for 7.8% of the data (19 of 244

concentration values) the mean and also the variation amplitude of this

values are quite representative of the complete dataset (Table 4 vs Table

3).

The statistical results presented in this section highlight the seasonal

variability of chlorophyll-a (and therefore of phytoplankton) in Guanabara

Bay and are in good agreement with previous studies (Table 5). Oliveira et

al., 2016 for exemple, found that the chlorophyll-a standard deviation

values were higher on the rainy season (in comparison to that of the dry

season) considering five different sectors of the bay. Their results and the

results of Santos, 2015 also show that the chlorophyll-a variability is lower

on the sections of the bay that have more oceanic influence (bay’s

entrance and central channel).

As mentioned in section 2.2, it is important to note that the

chlorophyll-a in-situ dataset utilized in this work has been provided by the

Laboratory of Marine Phytoplankton (Department of Marine Biology,

Institute of Biology, Federal University of Rio de Janeiro) coordinated by

Prof. Dr. Paulo Sérgio Salomon and Dr. Márcio Tenório and it has not not

been published elsewhere.
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Table 5: Previous investigations of chlorophyll-a distribution in Guanabara Bay. Source:
Santos (2015); Oliveira et al. (2016); Gregoracci et al. (2012); Paranhos et al. (2001)
and Mayr et al. (1989).
Seasonality Sections/points N Mean

(µg /L)
Min.
(µg /L)

Max.
(µg /L)

STD
(µg /L)

Reference

Full period

East sector,
entrance and central
channel

— — 4.0 28.6 —
Mayr et al.
(1989)

West sector — — 28.96 148.8 —

Urca Beach
46

13.33 0 58.24 —
Paranhos et
al. (2001)

Ramos Beach 118.2 7.26 483.5 —

Bay’s entrance — 30.84 — — 29.47
Gregoracci et
al. (2012)

Rio-Niteroi bridge — 46.29 — — 42.63

Ilha do Governador — 171.28 — — 143.96

Dry season

Bay’s entrance 22 11.43 2.0 37.0 7.83

Santos (2015)

Ilha do Governador 19 25 3.34 200 43.85

Central section 17 27.42 74.80 164 19.60

Northeast section 21 52.55 4.20 162.20 44.54

Northwest section 29 78.51 6.20 324 73.32

Rainy
season

Bay’s entrance 14 24.83 2.60 126 31.61

Ilha do Governador 14 122 4.90 279 93.51

Central section 16 85.4 1.80 213.0 69.41

Northeast section 10 76.61 17.0 195.0 60.80

Northwest section 18 86.77 8.20 211 61.59

Dry season

Bay’s entrance 76 14.8 1.4 57.0 14.4

Oliveira et al.
(2016)

Central channel 49 32.7 2.6 96.0 25.8

Ilha de Paquetá 37 39.2 6.0 142.8 30.3

Northeast section 50 71.4 11.1 371.0 70.5

West sector 100 86.1 1.7 736.4 95.2

Rainy
season

Bay’s entrance 62 29.1 1.0 188.1 33.3

Central channel 39 40.9 3.4 140.1 29.2

Ilha de Paqueta 28 86.4 6.8 559.9 118.3

Northeast section 44 66.1 14.1 829.1 120.4

West sector 85 141.6 1.4 974.0 177.9
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3.2. Model parametrization and statistical analysis

The performances of the RED-NIR chlorophyll algorithms were

overall different for each of the eight models analyzed (Figure 4, Table 6).

Considering the wide range of the applied in-situ chlorophyll-a

concentrations (8.35 to 177.93 µg /L), two models (Rrs681/Rrs665 and

Rrs674/Rrs665) did not present satisfactory performances while the other

six models exhibited good or very good linear correlations, with R2 values

varying between 0.72 and 0.84 (Table 6).

Table 6: Equations and statistical metrics of the algorithms5.

Model R2 RMSE
(µg /L)

MAE
(µg /L)

Equation

Rrs681/Rrs665 0.01 — — —

Rrs673/Rrs665 0.02 — — —

Rrs709/Rrs665 0.72 28.10 21.52 122.774*(Rrs709/Rrs665)
-89.619

NDCI 0.72 28.05 21.38 328.423*(NDCI)+37.000

Rrs709/Rrs674 0.81 23.03 18.21 152.006*(Rrs709/Rrs674)
-111.276

(Rrs709-Rrs674)/
(Rrs709+Rrs674)

0.80 23.77 18.49 369.295*(x)+44.302

Rrs709/Rrs681 0.84 21.06 18.13 198.958*(Rrs709/Rrs681)
-131.141

(Rrs709-Rrs681)/
(Rrs709+Rrs681)

0.80 23.68 20.27 395.283*(x)+73.689

5 Model bias was equal to zero for all formulations.
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Figure 4: Relationship between RED-NIR ratios and in-situ chlorophyll-a concentrations in
the models based on the following band ratios:(a)Rrs681/Rrs665, (b)Rrs674/Rrs665,
(c)Rrs709/Rrs665, (d)(Rrs709-Rrs665)/(Rrs709+Rrs665), (e)Rrs709/Rrs674,
(f)(Rrs709-Rrs674)/(Rrs709+Rrs674), (g)Rrs709/Rrs681 and (h)
(Rrs709-Rrs681)/(Rrs709+Rrs681).

23



The band ratio Rrs709/Rrs681 showed the lowest RMSE value (21.06

µg /L), possibly due to the better fit obtained by this model on the

chlorophyll-a range above 75 µg /L (Figure 4d; Table 6). Comparatively,

the band ratio Rrs709/Rrs674 and its normalized difference formulation

(Rrs709-Rrs674)/(Rrs709+Rrs674) displayed a slightly higher RMSE

(23.03 and 23.77 µg /L respectively) but a better fit for moderate

chlorophyll concentrations (Figure 4e and 4f). No significant correlation

was found when applying the ratio Rrs681/Rrs674 (R2=0.03) and the

“blue and green” ratios (Rrs560/Rrs443 and Rrs560/Rrs490 - R2 < 0.1 )

(data not shown).

A hybrid model (Figure 5) can be first analyzed by applying the

Rrs709/Rrs674 ratio for chlorophyll-a concentrations below or equal 75

µg /L and the ratio Rrs709/Rrs681 for concentrations above this limit. With

n=18 the observed linear expression ([Chl]= 246.55x + 197.18; R2=0.87)

shows a MAE and RMSE of 13.38 µg /L and 19.54 µg /L respectively, which

points to an even better performance than the associated simple models.

Another possibility of an algorithm that would utilize two band ratios for

chlorophyll-a retrieval is a switch algorithm based on the expressions

[Chl]=152.00*(Rrs709/Rrs674)-111.27 and [Chl]=198.96*(Rrs709/Rrs681)-131.14

(Table 6). This class of algorithm has been the main subject for example,

of a work published by Smith et al. (2018), where the authors develop a

model based on the selection of a blue-green or a Red-NIR model

depending on the value of the ratio Rrs708/Rrs665 . As the purpose of the

present work is a more broad evaluation of the application of Sentinel-3

Red-NIR bands in Guanabara Bay, this class of algorithms will be subject

of further studies.
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Figure 5: Relationship between RED-NIR ratio and in-situ chlorophyll-a concentrations
(hybrid model). Rrs709/Rrs674 ratio has been applied for chlorophyll-a concentrations
below or equal 75 µg /L whereas Rrs709/Rrs681 has been applied for chlorophyll-a
concentrations above this value.

The observed relationship between the in-situ chlorophyll-a and the

spectral reflectance data (Figures 4c - 4h) indicates an increase of the

ratios Rrs709/Rrs681, Rrs709/Rrs674 and Rrs709/Rrs665 as chlorophyll

concentrations rise. This behavior is associated with a variation on the

shape of the water-leaving RED-NIR reflectance profile and can be

interpreted considering the redshift of the red-edge reflectance peak

(which is associated with high chlorophyll absorption and high particulate

backscattering) (Gilerson et al., 2010; Tal et al. 2013; Lins et al. 2017). As

demonstrated by Gitelson, 1992 the red-edge reflectance peak observed

on different natural water bodies (that can be interpreted as the merged

result of chlorophyll fluorescence and a minimum on the combined

absorption profile of phytoplankton and water) can shift from

approximately 680 nm to nearly 715 nm exhibiting a correlation coefficient

of more than 0.9 with increasing chlorophyll concentration (~5 µg /L - 120

µg /L) (Gitelson, 1992). Similarly, the occurrence of the redshift has been

shown to be positively correlated with the ratio Rrs709/Rrs665, when two
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different phytoplankton species were evaluated individually (Tal et al.

2013).

Despite the overall good statistical performances that were obtained

by the RED-NIR algorithms, some of the associated uncertainties can be

discussed based on the high level of biological and physicochemical

variability of Guanabara Bay water masses (Sampaio, 2003; Lima 2006;

Santos, 2015; Andrade, 2018). According to Tao et al., 2013, the ratio of

the described red shift varies depending on two water-related optical

parameters namely the chlorophyll fluorescence quantum efficiency φ(λ)

and the chlorophyll-specific absorption coefficient a*ph(λ) (Tao et al., 2013).

These two parameters play a fundamental role in determining waters’

intrinsic optical properties (total absorption - a(λ) and backscattering -

bb(λ) coefficients) and their magnitude is highly dependent on biological

factors like the phytoplankton physiological state and taxonomic

composition (Gitelson et al. 2017; IOCCG, 2021). Therefore, it’s observed

that a change on the phytoplankton structure (which could be the result of

natural or anthropogenic stress) can have a direct impact on both φ(λ) and

a*ph(λ) and consequently on the red edge spectral profile of water-leaving

reflectance (Gitelson et al, 2007; Gilerson et al. 2010).

Besides the discussed influence of φ(λ) and a*ph(λ) the algorithms are

prone to errors related to in-situ data acquisition and also the influence

of the atmosphere/atmospheric correction method (IOCCG, 2019). A

major example of the first issue is the time lapse between satellite

overpass and water sampling, which is associated with different scenarios

considering the possible situations of the tide cycle. As an exemplification,

considering the same time interval between sampling and satellite

overpass, a spring tide can theoretically promote a higher variation on the

chlorophyll-a concentration in comparison to a neap tide whereas a flood

current would promote a different chlorophyll-a variability in relation to an

ebb current (oceanic vs continental influence). Nevertheless, performance
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results (Table 6) are similar to those obtained by different studies that

considered the application of RED and NIR bands (Table 7). Furthermore,

the moderate RMSE values observed for six of the eight chlorophyll-a

RED-NIR algorithms (21.06 µg/L to 28.10 µg/L) are indicative of their

prospectiveness for the identification and monitoring of phytoplankton

blooms in Guanabara Bay.
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Table 7: Compilation of previous works related to RED-NIR chlorophyll-a algorithms. The
observed amounts of total suspended solids in these environments are highly variable,
with observed maximum values reaching 61 g/m3 in Munduaú/Manguaba Lagoon (Lins et
al. (2017)) and 19.6 g/m3 in the Lake Woods (Binding et al. (2011)) respectively.
Publications that have used in-situ radiometric data to simulate the satellite bands are
indicated by “*”.

Study area Sensor Formulation Chl range (µg /L) N R2 Reference

Johor Strait
(Singapore)

— R672/R695 0.5 - 139.4 102 0.68 Gin et al. (2001)

Chesapeake Bay MERIS* (1/R665-1/Rrs709) x
Rrs754

9.0 – 77.4 44 0.75 Gitelson et al.
(2007)

Lake Thai __ R719/R667 < 200 28 0.87 Jiao et al. (2007)

Azov Sea MERIS Rrs709/Rrs665 0.63 – 65.51 18 0.97 Moses et al.
(2009b)

Lake Woods MERIS MCI 6 1.90 - 70.50 17 0.72 Binding et al.
(2011)

Freemont Lakes MERIS* Rrs709/Rrs665 3.97 -100.00 89 0.95 Gurlin et al.
(2011)

Mundaú/ Manguaba
Lagoon OLCI*

R709/R681 0.97 - 117.54 72 0.71 Lins et al. (2017)

Funil Reservoir OLCI* 294,49(NDCI)2+
119,51(NDCI) +19,688

2.33 - 306.03 29 0.98 Watanabe et al.
(2018)

East coast of India OLCI MCI 0.50 – 18.00 30 0.84 Shaik et al.
(2021)

6 MCI (Maximum Chlorophyll Index) formulation relates to the height of the
reflectance peak at 709 nm (Binding et al, 2013).
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3.3. Phytoplankton bloom case study

The analysis of four ACOLITE derived Sentinel-3 images of

Guanabara Bay from March 2022 (Figure 6) revealed a variation in water

color that is indicative of a change in phytoplankton bloom structure and

abundance (Reguera et al., 2008; Ahmad et al., 2009; Zhou et al., 2021).

Figure 6: Sentinel-3 RGB images of a summer phytoplankton bloom event in Guanabara Bay. (a)
March 5, 2022; (b) March 9, 2022; ( c) March 17, 2022; (d) March 24, 2022

The observed bloom was coincident with maximum temperature

records reported in Rio de Janeiro in this period, whereby all day

maximums were above 30°C (reaching 38,7 °C and 38,6 °C on March, 1

and March, 6 respectively) and no rain precipitation was observed within a

29



period of 15 days (from February, 22 to March 8), which ranks March,

2022 as the hottest month of march in Rio de Janeiro considering the last

eleven years (INMET, 2022). The bloom event is therefore proposed to be

associated with the influence exerted by sea surface temperature (SST) on

the dynamics and frequency of phytoplankton blooms on inland waters

and also on coastal and oceanic environments (Dai et al., 2023). Such

association is hereby supported by the noticeable connection between

higher MODIS SST values and a more pronounced variability of the

chlorophyll-a concentration in Guanabara Bay (Figure 7).

Figure 7: Comparison of the chlorophyll-a variation on Station B (orange line) between
May 2017 and May 2018 and MODIS SST time series of a central point (-22.86, -43.16)
of Guanabara Bay on the same period (blue line). Modis SST data was utilized because
in-situ SST data from the SiMCosta program ( RJ-3 and RJ-4 buoys - Franz et al.
(2021)), was not available for this period.

This scenario suggests that the influence exerted by increased air

temperature associated with low wind speeds (possibly driving water

column stratification) may be determinant for the dynamics of

phytoplankton blooms in Guanabara Bay and this relationship could,

especially in the summer, synergize with the eutrophication problem
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causing changes in phytoplankton community structure (Figure 6) and

peaks in phytoplankton biomass (Figure 7) that could be potentially

harmful to the ecosystem balance and to human health (Fries et al. 2019;

Rumyantseva et al., 2019).

Given the good statistical performance obtained by the simple band

ratio Rrs709/Rrs674 (Section 3.1 - Figure 4e) and its observed tighter fit

on the “low” to moderate chlorophyll range (where the relative errors on

the chlorophyll estimates could be more impacting), this formulation was

applied to represent the phytoplankton distribution patterns of March 17,

2022 (Figure 6c) and March 24 2022 (Figure 6d).

It is observed (Figure 8) that irrespective of the water color change

that took place between March 17, 2022 and March 24, 2022 (which

indicates a variation on the phytoplankton structure), a consistent

qualitative correlation between the ratio Rrs709/Rrs674 and the areas

more affected by the bloom is found for both scenes (i.e higher values of

the ratio are associated with the areas on Figures 6c and 6d where green

or red color are more intense). This result aggregates with the statistical

results presented in Section 3.2 (Figure 4e), and is another indicator that

the band ratio Rrs709/Rrs674 is representative of chlorophyll-a

distribution and it could be utilized for water quality monitoring in

Guanabara Bay.
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Figure 8: False color images obtained by the application of the Rrs709/Rrs674 ratio
during phytoplankton blooms in Guanabara Bay on (a) March 17th, 2022 and (b) March
24th, 2022. Color gradients represent lower Rrs709/Rrs674 values in blue and higher
Rrs709/Rrs674 in red.

The equation [Chl]=152.006*(Rrs709/Rrs674)-111.276 obtained by

the best-fit curve analysis (Figure 4e - Table 6) was then applied on the

March 24 2022 scene to generate a chlorophyll-a distribution map (Figure

9).
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Figure 9: Chlorophyll-a distribution in Guanabara Bay for the March 24th, 2022 scene as
an output of the Rrs709/Rrs674 model.

The chlorophyll-a distribution image indicates concentration values

of 80 - 120 µg/L in the central channel and up to 280 µg/L in the areas

with more constrained water circulation (with intense gradients being

noted on the western section). This behavior is diagnostic of a generalized

bloom situation that is coherent with the variation amplitude of chlorophyll

concentration considering the in-situ dataset (Table 3) and also the results

found on previous publications (Table 5). The notable gradients and the

more frequent and intense colors of green and red in the region located
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towards the bay’s interior (Figure 9) corroborates with the fact that this

area is more influenced by river discharge and therefore is more prone to

parameter variability (due to its non uniform hydrodynamic

characteristics) and biomass peaks (given a higher concentration of

nutrients). Also, the western section where the color palette (Figure 9)

indicates a greater frequency of chlorophyll-a values above 100 µg/L is

known as the more critical region of the bay in terms of water quality

(Paranhos et al., 2001; Lima, 2006). Taken together, these results

emphasize the applicability of the formulation Rrs709/Rrs674 for

phytoplankton bloom identification and indicate that the linear expression

derived from this ratio (Figure 4e - Table 6) is able to provide a rational

chlorophyll-a distribution map of the study region.

The lack of representation of chlorophyll-a patterns in the region

outside Guanabara Bay (i.e features that can be seen on the RGB images

that are not adequately represented in the RED-NIR profiles - Figure 8

neither on the chlorophyll distribution map - Figure 9) is possibly the

result of the absorption/attenuation of the chlorophyll fluorescence signal

by water (which is reasonable considering the lower phytoplankton

abundance in this region and presumably the more disperse state of the

cells that in this case would be located predominantly below the surface)

and suggest the joint interpretation of RGB and RED-NIR proxy images for

a more integrated phytoplankton bloom monitoring that contemplates the

Guanabara Bay’s interior and the adjacent areas, including the regions

near Barra da Tijuca (approx -23.05, -43.42) and Itaipuaçu (approx

-23.00, -42.90). This type of monitoring could provide short and long term

information about changes in water quality and ecological status given the

connection and fast response of phytoplankton to eutrophication (Coutinho

et al., 2012; Hatherly, 2013) and extreme weather events as heat waves

(Huang et al., 2018) and rainfalls (Yang et al., 2016; Jovanovic et al.,

2017).
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The implementation of a satellite based monitoring program in

Guanabara Bay can be considered both important and challenging given

the ecological and touristic importance of this region associated with the

optical complexity of its waters. With approximately 384 km² of superficial

area the bay shows a high degree of biological and physico-chemical

variation and also areas with different levels of dynamics in respect of

water circulation/tidal action which could promote different aggregation

states of the phytoplankton cells. Nevertheless, the results obtained here

shows the suitability of Sentinel-3 Red-NIR bands for chlorophyll-a

retrieval and phytoplankton bloom monitoring in Guanabara Bay, which

encourages further studies and prospects the near-future implementation

of the Sentinel-3 program for a highly desirable integrated coastal

resource management program in the state of Rio de Janeiro.

4. Conclusion and perspectives

The results shown in this work demonstrate the good statistical

performance of six different Sentinel-3 RED-NIR algorithms for the

analysis of phytoplankton biomass distribution in Guanabara Bay. The

applied methodology outlined the distinct and somehow complementary

responses obtained by two formulations: Rrs709/Rrs681 and

Rrs709/Rrs674. This suggests that in the future, parallelly to the

acquisition of additional in-situ chlorophyll-a data that should be used on

a validation/cross validation process (serving as a measure of the models

prediction ability) a switch algorithm shall be investigated (Smith et al.,

2018; Lange et al., 2020).

Furthermore, it was observed that the Rrs709/Rrs674 ratio provided

a concise representation of a complex bloom event in Guanabara Bay,
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which reinforces the suitability of the ACOLITE atmospheric correction

method for the study of complex waters (Vanhellemont and Ruddick,

2021) and indicates that this ratio could be used as a proxy for monitoring

phytoplankton blooms in regions where in-situ chlorophyll data may be

absent.

The results obtained by the RED-NIR bands support and incentivizes

the utilization of Sentinel-3 data to develop a integrated ecological

monitoring platform focusing in Guanabara Bay, where ideally remote

sensing information, hydrometeorological data and also results derived

from water quality stations located along the bay’s drainage basins should

be evaluated jointly and associated with actions that promote

environmental education and social development to the local community.

Lastly, further efforts should be made to develop a chlorophyll-a

time series that could trace the relationship between Guanabara Bay’s

phytoplankton biomass distribution and seasonal trends like monthly

precipitation and heat waves, which are frequently intrinsically associated

with the large scale phenomena El Niño and La Niña (Racaut et al., 2017;

Zhong et al., 2022).
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