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The two-sided limit shadowing property

Bernardo Melo de Carvalho

Advisor: Alexander Eduardo Arbieto Mendoza

In this thesis we study in detail the two-sided limit shadowing property in the theory of dy-

namical systems. We discuss some of its consequences and its role in the hyperbolic theory. This

property is among the strongest known pseudo-orbit tracing properties. It implies shadowing, av-

erage shadowing, asymptotic average shadowing and even the specification property. It is present

in the transitive Anosov scenario and characterizes two important conjectures in the hyperbolic

theory. We present a new approach to these conjectures. In the appendix we exhibit a joint-work

with A. Arbieto, W. Cordeiro and D. Obata named “On bi-Lyapunov stable homoclinic classes”.

iii



A propriedade sombreamento no limite para os dois lados

Bernardo Melo de Carvalho

Orientador: Alexander Eduardo Arbieto Mendoza

Nessa tese estudamos em detalhe a propriedade sombreamento no limite para os dois lados na

teoria de sistemas dinâmicos. Discutimos algumas de suas consequências e o seu papel na teo-

ria hiperbólica. Ela está entre as noções mais fortes dentre as propriedades de sombreamento,

implicando sombreamento, sombreamento em média, sombreamento em média assintótico e até a

propriedade de especificação. Ela está presente nos difeomorfismos de Anosov transitivos e car-

acteriza duas conjecturas importantes na teoria hiperbólica. Introduzimos novas ideias de como

resolver essas conjecturas. No apêndice exibimos um trabalho em conjunto com A. Arbieto, W.

Cordeiro e D. Obata chamado “On bi-Lyapunov stable homoclinic classes”.
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Chapter 1

Introduction

The theory of shadowing has been intensively developed in recent years. It is of extreme importance

in the qualitative study of dynamical systems. Apart of the now standard shadowing property

various variants of this concept were proposed. These new properties arise from modifications

of the notion of pseudo-orbit together with different definitions of shadowing points. The main

property we consider in this text is called two-sided limit shadowing.

Definition 1. We say that a bi-lateral sequence (xk)k∈Z of points from a metric space (X, d) is a

two-sided limit pseudo-orbit for a homeomorphism f : X → X if it satisfies

d(f(xk), xk+1)→ 0, |k| → ∞.

A sequence (xk)k∈Z ⊂ X is two-sided limit shadowed if there exists y ∈ X satisfying

d(fk(y), xk)→ 0, |k| → ∞.

In this situation we also say that y two-sided limit shadows (xk)k∈Z with respect to f . Finally,

we say that f has the two-sided limit shadowing property if every two-sided limit pseudo-orbit is

two-sided limit shadowed.

following: if we apply a numerical method that approximate f with ‘improving accuracy’ so

that one step errors tend to zero as time goes to infinity then the numerically obtained orbits tend

to real ones.

In this thesis we analyze some consequences of the two-sided limit shadowing property and

relate it to well known open problems in hyperbolic theory. The main theorems here belong to a

series of three papers about this property ([15], [16] and [17]). In this text, however, we do not

follow the chronological order of these works, neither display the papers as they appear in the

journals. We make some adjustments to the original works, we change the structure of the papers

and add some interesting properties and questions that clarify the results. Although the proofs are

essentially the same.
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We begin with a natural discussion about the difference of the two-sided limit shadowing prop-

erty and the one-sided version of limit shadowing, that we will call the limit shadowing property.

It was introduced by T. Eirola, O. Nevanlinna and S. Pilyugin in [19] and is also studied in [48]

and [49].

Definition 2. By N we denote the set of positive integers and N0 = N∪{0}. We say that (xk)k∈N0

is a limit pseudo-orbit (for f) if it satisfies

d(f(xk), xk+1)→ 0, k →∞.

A sequence {xk}k∈N0 is limit-shadowed if there exists y ∈ X such that

d(fk(y), xk)→ 0, k →∞.

We say that f has the limit shadowing property if every limit pseudo-orbit is limit-shadowed.

One of our goals is to understand the differences between these two properties: the limit shad-

owing and the two-sided limit shadowing. We prove the latter is among the strongest known notions

of pseudo-orbit tracing properties.

Theorem 1 ([17]). If a homeomorphism on a compact metric space has the two-sided limit shad-

owing property then it has shadowing, average shadowing, asymptotic average shadowing, it is

topologically mixing and has the specification property.

Precise definitions are given in Chapter 2. The relation between the two-sided limit shadowing

property and hyperbolicity is one of our main interests and will be explored in detail along the

text. We rewrite two important conjectures on Anosov diffeomorphisms in terms of the two-sided

limit shadowing property.

According to conjectures of S. Smale [56] the following three classes of diffeomorphisms are

expected to be the same:

• Anosov diffeomorphisms,

• transitive Anosov diffeomorphisms,1

• product Anosov diffeomorphisms.2

We write these classes in terms of the two-sided limit shadowing property.

1We say that a homeomorphism f on a metric space X is transitive if given any pair (U, V ) of nonempty

open subsets of X there exists N ∈ N such that fN (U) ∩ V 6= ∅.
2An Anosov diffeomorphism is a product Anosov diffeomorphism when each stable leaf and each unstable

leaf on the universal covering intersect in a single point (see Chapter 4 for precise definitions).
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Theorem 2 ([15],[16]). An Anosov diffeomorphism on a compact and connected manifold is tran-

sitive if and only if it has the two-sided limit shadowing property. Furthermore, an Anosov diffeo-

morphism is a product Anosov diffeomorphism if and only if any lift to the universal covering has

the unique two-sided limit shadowing property3.

So the following three classes of diffeomorphisms are expected to be the same:

• Anosov diffeomorphisms,

• Anosov diffeomorphisms with the two-sided limit shadowing property,

• Anosov diffeomorphisms with the unique two-sided limit shadowing property on the universal

covering.

We note that Smale’s conjecture is proved for codimension one Anosov diffeomorphisms4 (see

[21] and [46]). Hence the following is a corollary of Theorem 2.

Corollary 1. Codimension one Anosov diffeomorphisms have the two-sided limit shadowing prop-

erty and any lift to the universal covering has the unique two-sided limit shadowing property.

Theorem 2 says to us that the shadowing theory might play an important role in these conjec-

tures. So we use some ideas contained in the proof of the Shadowing Lemma of [49] and introduce

some new techniques: for any two-sided limit pseudo-orbit (xk)k∈Z in the universal covering we dis-

cuss two maps F and G from a suitable Banach space to itself such that fixed points of these maps

are related with points that two-sided limit shadows (xk)k∈Z. Precisely, the following is proved:

Theorem 3 ([16]). There exists a bijection between the set of points that two-sided limit shadows

(xk)k∈Z and the set of fixed points of the maps F and G.

These maps, and also the Banach space, are defined at the end of Chapter 4. In Chapter 5

we turn our attention to the two-sided limit shadowing property outside the Anosov scenario. Our

main result in this setting says that the two-sided limit shadowing property is very uncommon in

the set of all diffeomorphisms:

Theorem 4 ([15]). There exists a residual subset5 of the set of all diffeomorphisms on a compact

manifold such that every diffeomorphism in this residual that is not a transitive Anosov diffeomor-

phism does not admit the two-sided limit shadowing property.

3We say that a homeomorphism has the unique two-sided limit shadowing property when every two-sided

limit pseudo-orbit is two-sided limit shadowed by a single point.
4We say that an Anosov diffeomorphism is a codimension one Anosov diffeomorphism if the dimension

of either the stable direction or the unstable direction equals to one.
5We say that a subset of a topological space X is a residual subset if it contains a countable intersection

of open and dense subsets of X.
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In the Appendix we exhibit a joint work with A. Arbieto, W. Cordeiro and D. Obata named

Bi-Lyapunov stable homoclinic classes. We discuss the hyperbolicity of homoclinic classes satisfying

some of the shadowing properties discussed in the text. In this case we display the paper exactly

as it is published in [9].
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Chapter 2

Consequences of two-sided limit

shadowing

In this Chapter we obtain many consequences of the two-sided limit shadowing property and prove

Theorem 1.

2.1 Negative limit shadowing

We begin with a discussion about the limit shadowing property for the inverse map. From now on

(X, d) denotes a metric space (not necessarily compact) and f : X → X denotes a homeomorphism.

The limit shadowing property for f−1 means the following: for every sequence (xk)k∈N0 ⊂ X

satisfying

d(f−1(xk), xk+1)→ 0, k →∞

there exists z ∈ X satisfying

d(f−k(z), xk)→ 0, k →∞.

During the text we will need the following property: for every sequence (xk)k∈−N0 ⊂ X (−N0

denotes the set of non-positive integers) satisfying

d(f−1(xk), xk−1)→ 0, k → −∞

there exists z ∈ X satisfying

d(fk(z), xk)→ 0, k → −∞.

Definition 3. This property will be called negative limit shadowing and the sequence (xk)k∈−N0

will be called a negative limit pseudo-orbit for f . We will say that z limit shadows (xk)k∈−N0 in

the past and that (xk)k∈−N0 is limit shadowed in the past by z.

Proposition 1. A homeomorphism f on a metric space X has the negative limit shadowing property

if and only if f−1 has the limit shadowing property.
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Proof. Suppose first that f has the negative limit shadowing property and consider (xk)k∈N0 a limit

pseudo-orbit for f−1. For each k ∈ −N0 let yk = x−k. The sequence (yk)k∈−N0 is a negative limit

pseudo-orbit for f since

d(f−1(yk), yk−1) = d(f−1(x−k), x−k+1)→ 0, k → −∞.

Then there exists z ∈ X satisfying

d(fk(z), yk)→ 0, k → −∞

which implies

d(f−k(z), xk)→ 0, k →∞.

It follows that (xk)k∈N0 is limit shadowed for f−1 and that f−1 has the limit shadowing property.

Now suppose that f−1 has the limit shadowing property and consider (xk)k∈−N0 a negative limit

pseudo-orbit for f . For each k ∈ N0 let yk = x−k. The sequence (yk)k∈N0 is a limit pseudo-orbit

for f−1 since

d(f−1(yk), yk+1) = d(f−1(x−k), x−k−1)→ 0, k →∞.

Then there exists z ∈ X satisfying

d(f−k(z), yk)→ 0, k →∞

which implies

d(fk(z), xk)→ 0, k → −∞.

It follows that (xk)k∈−N0 is limit shadowed in the past and that f has the negative limit shadowing

property.

We will use this fact during the text without referring to it. When we say that f−1 has the limit

shadowing property we will usually use the fact that f has the negative limit shadowing property.

Question 1. Is the limit shadowing property equivalent to the negative limit shadowing property?

2.2 Simple two-sided limit shadowing with a gap

Toward proving Theorem 1 we try to exhibit all arguments in the most general way, so we find it

convenient to generalize the two-sided limit shadowing property and introduce two different notions:

the simple two-sided limit shadowing property and the two-sided limit shadowing property with a

gap.

Definition 4. For x, y ∈ X we consider the sequence (xk)k∈Z defined by

xk =

fk(y), k ≥ 0;

fk(x), k < 0.

7



This sequence consists of the past orbit of x and the future orbit of y. Sequences of this type

will be called simple two-sided limit pseudo-orbits. We say that f has the simple two-sided limit

shadowing property when every simple two-sided limit pseudo-orbit is two-sided limit shadowed.

It is obvious that the two-sided limit shadowing property implies the simple two-sided limit

shadowing property. The converse is false as we will see in Corollary 6. Now we prove the following

equivalence:

Lemma 1. A homeomorphism on a metric space has the two-sided limit shadowing property if and

only if it has the limit shadowing property, the negative limit shadowing property and the simple

two-sided limit shadowing property.

Proof. It is obvious that the two-sided limit shadowing property implies the limit shadowing prop-

erty, the negative limit shadowing property and the simple two-sided limit shadowing property. It

suffices to prove the converse statement. Let (xk)k∈Z be a two-sided limit pseudo-orbit for f . The

limit shadowing property and the negative limit shadowing property assure the existence of points

z1, z2 ∈ X satisfying

d(fk(z1), xk)→ 0, k → −∞ and d(fk(z2), xk)→ 0, k →∞.

Thus the sequence

yk =

fk(z2), k ≥ 0

fk(z1), k < 0

is a simple two-sided limit pseudo-orbit. The simple two-sided limit shadowing property assures

the existence of a point z ∈ X that two-sided limit shadows (yk)k∈Z. This point also two-sided

limit shadows (xk)k∈Z.

Corollary 2. If a homeomorphism has the limit shadowing and the negative limit shadowing prop-

erties then it has the two-sided limit shadowing property if and only if it has the simple two-sided

limit shadowing property.

Now we define the two-sided limit shadowing property with a gap.

Definition 5. We say that a sequence (xk)k∈Z is two-sided limit shadowed with gap K ∈ Z for f

if there exists a point y ∈ X satisfying

d(fk(y), xk)→ 0, k → −∞,

d(fK+k(y), xk)→ 0, k →∞.

For N ∈ N0 we say that f has the two-sided limit shadowing property with gap N if every two-sided

limit pseudo-orbit of f is two sided limit shadowed with gap K ∈ Z, where |K| ≤ N . We also say

that f has the two-sided limit shadowing property with a gap if such an N ∈ N exists.
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It is obvious that the two-sided limit shadowing property with gap 0 is equivalent to the two-

sided limit shadowing property. It is also obvious that the two-sided limit shadowing property

implies two-sided limit shadowing with a gap. The converse is false as the next example shows.

Example. Consider the set X = {a, b} endowed with the discrete metric

d(x, y) =

1, x 6= y;

0, x = y.

Define f : X → X by f(a) = b and f(b) = a. This map is a homeomorphism of X which does not

have the simple two-sided limit shadowing property. Indeed, the sequence

xk =

fk(b), k ≥ 0;

fk(a), k < 0

is a simple two-sided limit pseudo-orbit that cannot be two-sided limit shadowed. We note that f

has the two-sided limit shadowing property with gap 1. By properties of the discrete metric we have

that for each limit pseudo-orbit (xk)k∈N ⊂ X there exists N ∈ N such that (xk)k≥N is the future

orbit of xN . So for each two-sided limit pseudo-orbit (xk)k∈Z there exist N1, N2 ∈ N such that

(xk)k≤−N2 is the past orbit of x−N2 and (xk)k≥N1 is the future orbit of xN1. We can choose N1 and

N2 such that xN1 = x−N2 = a. It follows that if N1 + N2 = 0 mod 2 then either a or b two-sided

limit shadows (xk)k∈Z. Otherwise, (if N1 + N2 = 1 mod 2) neither a, nor b, can two-sided limit

shadows (xk)k∈Z, but it is easy to check that one of them two-sided limit shadows (xk)k∈Z with gap

1.

Remark 1. We note that this example has the limit shadowing property and the negative limit

shadowing property but do not have the two-sided limit shadowing property, nor the simple two-

sided limit shadowing property.

Definition 6. Let I ⊂ Z be a nonempty set of consecutive integers. We say that a sequence

(xk)k∈I ⊂ X is a δ-pseudo-orbit (for f) if it satisfies

d(f(xk), xk+1) < δ, for all k such that k, k + 1 ∈ I.

We call a pseudo-orbit finite (positive, negative, two-sided) if I is finite (I = N0, I = −N0, I = Z,

respectively). A sequence (xk)k∈I ⊂ X is ε-shadowed (with respect to f) if there exists y ∈ X

satisfying

d(fk(y), xk) < ε, for all k ∈ I.

From now on we omit references to f when it is clear from the context which f we have in mind.

We say that f has the shadowing property if for every ε > 0 there exists δ > 0 such that every

two-sided δ-pseudo-orbit is ε-shadowed.

When X is a compact metric space and f is a continuous map then one may replace two-sided

by one-sided or by finite in the definition of the shadowing property without altering the notion

(we leave the details to the reader). Excellent references for the shadowing property are Pilyugin’s

book [49] and Aoki and Hiraide’s monograph [7]. The main result of this section is the following.
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Theorem 5 ([17]). If a homeomorphism on a compact metric space has the two-sided limit shad-

owing property with a gap then it is transitive and has the shadowing property.

Before proving this theorem we state one definition and some results.

Definition 7. For N ∈ N0 we say that a homeomorphism has the simple two-sided limit shadowing

property with gap N when every simple two-sided limit pseudo-orbit is two-sided limit shadowed

with gap K ∈ Z where |K| ≤ N .

It is obvious that the two-sided limit shadowing property with a gap implies the simple two-

sided limit shadowing property with a gap. Now we prove that the simple two-sided limit shadowing

property with a gap implies chain-transitivity. Recall that f is chain-transitive if for every δ > 0

and every pair of points (x, y) in X ×X there is a finite δ-pseudo-orbit (zk)
n
k=0 such that z0 = x

and zn = y.

Lemma 2. If a homeomorphism on a compact metric space has the simple two-sided limit shad-

owing property with a gap then it is chain-transitive.

Proof. For each x, y ∈ X and any δ > 0 we want to find a δ-pseudo-orbit starting at x and ending

at y. Consider the omega-limit set of x and the alpha-limit set of y, denoted by ω(x) and α(y),

respectively. Since X is compact we can choose z1 ∈ ω(x) and z2 ∈ α(y). The hypothesis assures

the existence of an integer K and a point z which two-sided limit shadows with gap K the sequence

xk =

fk(z2), k ≥ 0;

fk(z1), k < 0.

Thus there exists M > K such that

d(f−M (z), f−M (z1)) <
δ

2
and d(fM (z), fM−K(z2)) <

δ

2
.

Since ω(x) and α(y) are compact and invariant subsets of X it follows that f−M (z1) ∈ ω(x) and

fM−K(z2) ∈ α(y). Thus we can choose positive integers M1 and M2 such that

d(fM1(x), f−M (z1)) <
δ

2
and d(f−M2(y), fM−K(z2)) <

δ

2
.

Therefore

d(fM1(x), f−M (z)) < δ and d(f−M2(y), fM (z)) < δ.

Now consider the following sequence

yn =


fn(x), for n = 0, . . . ,M1 − 1,

fn−M1(f−M (z)), for n = M1, . . . ,M1 + 2M − 1,

fn−(M1+2M)(f−M2(y)), for n = M1 + 2M, . . . ,M1 + 2M +M2.

10



Elements of this sequence are ordered as follows:

x, f(x), . . . , fM1−1(x), f−M (z), f−M+1(z), . . . , fM−1(z), f−M2(y), . . . , y.

It is clear that (yn)M1+2M+M2
n=0 is a finite δ-pseudo-orbit connecting x to y. Since this can be done

for any δ > 0 we conclude the proof.

In [35] it is proved that shadowing follows from chain-transitivity and the limit shadowing

property. Following [35] we present a simple proof of this fact for completeness.

Theorem 6 ([35, Theorem 7.3]). If a continuous map on a compact metric space is chain-transitive

and has the limit shadowing property then it has the shadowing property.

Proof. Aiming for a contradiction, suppose that f does not have the shadowing property. Hence

there is ε > 0 such that for any n > 0 there is a finite 1
n -pseudo-orbit αn which cannot be ε-

shadowed by any point in X. Using chain transitivity, for every n there exists a 1
n -pseudo-orbit

βn such that the concatenated sequence αnβnαn+1 forms a finite 1
n -pseudo-orbit. Then the infinite

concatenation

α1β1α2β2α3β3 . . .

is a limit pseudo-orbit denoted by (xk)
∞
k=0. By the limit shadowing property, it is limit shadowed by

some point z ∈ X. Hence, starting at some index N > 0, the point fN (z) also ε-shadows the limit

pseudo orbit (xk)
∞
k=N . But this means that there is a finite pseudo-orbit αn which is ε-shadowed

by some point of the form fk(z), which is a contradiction.

The proof of the next two lemmas are easy exercises, hence we omit them.

Lemma 3. If a continuous map on a metric space is chain-transitive and has the shadowing

property then it is transitive.

Lemma 4. If a homeomorphism f has the two-sided limit shadowing property with a gap then f

and f−1 have the limit shadowing property.

Proof of Theorem 5: Assuming that f has the two-sided limit shadowing property with a gap then

Lemma 4 assures f has the limit shadowing property and Lemma 2 assures f is chain-transitive.

Thus Theorem 6 assures f has the shadowing property and Lemma 3 assures f is transitive.

2.3 Two-sided limit shadowing and specification

Before proving Theorem 1 we recall some definitions and results.

Definition 8. A map f is topologically mixing if for every pair (U, V ) of nonempty open subsets

of X there exists N ∈ N such that fk(U) ∩ V 6= ∅ for all k ≥ N .

11



Definition 9. Let τ = {I1, . . . , Im} be a finite collection of disjoint finite subsets of consecutive

integers, Ij = [aj , bj ] ∩ Z for some aj , bj ∈ Z, with

a1 ≤ b1 < a2 ≤ b2 < . . . < am ≤ bm.

Let a map P :
⋃m
j=1 Ij → X be such that for each I ∈ τ and t1, t2 ∈ I we have

f t2−t1(P (t1)) = P (t2).

We call a pair (τ, P ) a specification. We say that the specification S = (τ, P ) is L-spaced if

aj+1 ≥ bj + L for all j ∈ {1, . . . ,m− 1}. Moreover, S is ε-shadowed by y ∈ X for f if

d(fk(y), P (k)) < ε for every k ∈
m⋃
j=1

Ij .

We say that a homeomorphism f : X → X has the specification property if for every ε > 0 there

exists L ∈ N such that every L-spaced specification is ε-shadowed. We say that f has the periodic

specification property if for every ε > 0 there exists L ∈ N such that every L-spaced specification

is ε-shadowed by a periodic point y such that f bm+L(y) = y.

It is well known that mixing is a necessary condition for specification. We prove this fact for

completeness.

Lemma 5. If a homeomorphism on a compact metric space has the specification property, then it

is topologically mixing.

Proof. For each pair (U, V ) of non-empty open subsets of X choose points x ∈ U and y ∈ V and

consider ε > 0 such that the ε-neighborhood of x is contained in U and the ε-neighborhood of

y is contained in V . The specification property assures the existence of a number L ∈ N such

that every L-spaced specification is ε-shadowed. Thus for each n ≥ L consider the specification

(τn, Pn) defined by τn = {{0}, {n}}, Pn(0) = x and Pn(n) = y. Then there exists zn ∈ X such that

d(x, zn) < ε and d(y, fn(zn)) < ε. In particular zn ∈ U and fn(zn) ∈ V . Since this holds for all

n ≥ L it follows that f is topologically mixing.

The specification property can be obtained by mixing and shadowing as follows.

Lemma 6 ([18]). If a homeomorphism on a compact metric space is topologically mixing and has

the shadowing property then it has the specification property.

Proof. Consider an arbitrary ε > 0 and choose δ > 0 such that every δ-pseudo-orbit is ε-shadowed.

Let U = {U1, . . . , Um} be a finite cover of X by open balls of radius δ. Since f is topologically

mixing, for each pair (Ui, Uj) ∈ U × U there exists an integer Li,j > 0 such that fk(Ui) ∩ Uj 6= ∅
for each k ≥ Li,j . Let L be greater than all the numbers Li,j , with i, j ∈ {1, . . . ,m} and let

({I1, . . . , In};P ) be an L-spaced specification, where for each j ∈ {1, . . . , n}, Ij = [aj , bj ] ∩ Z.
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For every y ∈ X we fix U(y) ∈ U such that y ∈ U(y). Since aj+1 − bj ≥ L it follows that there

exists yj ∈ U(P (bj)) such that faj+1−bj (yj) ∈ U(P (aj+1)). Thus the sequence (xk)
bn
k=a1

defined by

xk =


P (k), aj ≤ k < bj , j ∈ {1, . . . , n}

fk−bj (yj), bj ≤ k < aj+1, j ∈ {1, . . . , n− 1}

P (bn)), k = bn

is a finite δ-pseudo-orbit of f . The shadowing property assures the existence of a point z ∈ X

that ε-shadows (xk)
bn
k=a1

. It is easy to see that z also ε-shadows the specification ({I1, . . . , In};P ).

Hence f has the specification property.

The following result is a corollary of Lemmas 5 and 6.

Corollary 3. If a homeomorphism has the shadowing property then it is topologically mixing if

and only if it has the specification property.

The following property was introduced by M. L. Blank in [11] and further explored by Y. Zhang

in [59].

Definition 10. We say that a sequence {xk}k∈N0 ⊂ X is a δ-average-pseudo-orbit if there is an

integer N = N(δ) ∈ N such that for every n ≥ N and i ≥ 0 the following holds

1

n

n−1∑
k=0

d(f(xk+i)), xk+i+1) < δ.

We say that {xk}k∈N0 is ε-shadowed in average if there exists y ∈ X satisfying

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(y), xi) < ε.

We say that f has the average shadowing property if for every ε > 0 there exists δ > 0 such that

every δ-average-pseudo-orbit is ε-shadowed in average.

The following property was introduced by R. Gu and S. Y. Xia in [27].

Definition 11. We say that a sequence {xk}k∈N0 ⊂ X is an asymptotic average-pseudo-orbit if it

satisfies

1

n

n−1∑
i=0

d(f(xi)), xi+1)→ 0, n→∞.

We say that {xk}k∈N0 is asymptotically shadowed in average if there exists y ∈ X satisfying

1

n

n−1∑
i=0

d(f i(y), xi)→ 0, n→∞.

We say that f has the asymptotic average shadowing property if every asymptotic-average-pseudo-

orbit is asymptotically shadowed in average.
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The following Theorem is proved in [35] and plays an important role in the proof of Theorem

1.

Theorem 7 ([35]). If f is a homeomorphism on a compact metric space with the shadowing property

then the following conditions are equivalent:

1. f is totally transitive, i.e., fn is transitive for every n ∈ N;

2. f is topologically mixing;

3. f has the average shadowing property;

4. f has the asymptotic average shadowing property;

5. f has the specification property.

The equivalence of (2) and (5) was proved in Corollary 3. We will not prove the equivalences

of the average shadowing and asymptotic average shadowing properties and send the reader to the

original work. We prove the equivalence between (1) and (2) in the following lemma.

Lemma 7 ([36]). If a homeomorphism f has the shadowing property then it is totally transitive if

and only if it is topologically mixing.

Proof. We first note that any topologically mixing homeomorphism is totally transitive. It is easily

checked that every topologically mixing homeomorphism is transitive and that if f is topologically

mixing then fn is topologically mixing for every n ∈ N. The converse only holds under the

assumption of the shadowing property.

We claim that for any three non-empty open sets U1, U2, V ⊂ X there exists a number K ∈ N
such that

fK(U1) ∩ V 6= ∅ and fK(U2) ∩ V 6= ∅.

Indeed, since f is transitive there exists L ∈ N such that fL(U1) ∩ V 6= ∅. Set

W = U1 ∩ f−L(V )

and consider any point u ∈ W . Let ε > 0 be such that the ball centered at u and radius 3ε,

B(u, 3ε), is contained in W and choose 0 < δ < ε such that every δ-pseudo-orbit is ε-shadowed.

The transitivity of f assures the existence of a point x ∈ B(u, δ) and a number N ∈ N such that

fN (x) ∈ B(u, δ). Thus the sequence (xk)k∈Z defined by

xk = fk mod N (x), k ∈ Z

is a periodic δ-pseudo-orbit for f . Hence there exists z ∈ X that ε-shadows it. In particular, the

fN -orbit of z is contained in B(u, 2ε). Therefore the ω-limit set ω(z, fN ) of z for fN is contained

14



in B(u, 3ε) ⊂W . Note that fN (ω(z, fN )) = ω(z, fN ), so we proved the existence of a periodic set1

A = ω(z, fN ) ⊂W . It follows that

f jN (W ) ∩W 6= ∅, j ∈ Z,

and (by definition of W ) that

fL+jN (U1) ∩ V 6= ∅, j ∈ Z.

Since f is totally transitive the map fN is transitive. So there exists J ∈ N such that fJN (U2) ∩
f−L(V ) 6= ∅. Hence

fL+JN (U1) ∩ V 6= ∅ and fL+JN (U2) ∩ V 6= ∅

and the claim is proved.

Using the claim one can prove that for any finite family of open subsets U1, . . . , Un, V ⊂ X

there exists a number K ∈ N such that

fK(Ui) ∩ V 6= ∅, i ∈ {1, . . . , n}.

For more details see Proposition II.3 in [23]. Now we use this fact to prove that f is topologically

mixing. For any pair of non-empty open subsets U, V ⊂ X we consider points u ∈ U , v ∈ V and

any number ε > 0 such that B(u, ε) ⊂ U and B(v, ε) ⊂ V . The shadowing property assures the

existence of 0 < δ < ε such that every δ-pseudo-orbit is ε-shadowed. We consider a periodic set

A = fN (A) ⊂ B(u, δ2), as previously, so that for any a ∈ A the sequence xk = fk mod N (a), k ∈ Z
is a periodic δ-pseudo-orbit.

For any i ∈ {0, . . . , N − 1} let Ui = B(xi, δ) and use the fact above to the neighborhoods

U0, . . . , UN−1, B(v, ε) to obtain a number K ∈ N such that

fK(Ui) ∩B(v, ε) 6= ∅, i ∈ {0, . . . , N − 1}.

So for each i ∈ {0, . . . , N − 1} there exist a point zi ∈ B(x, δ2) such that f i+K(zi) ∈ B(v, ε). Thus

for each l ≥ K we write l = K + nN + r, where n ≥ 0 and 0 ≤ r ≤ N − 1, and consider the finite

δ-pseudo-orbit (yk)
l
k=0 defined by

yk =

xk, 0 ≤ k ≤ nN − 1

fk−nN (zr), nN ≤ k ≤ l.

The point z ∈ X that ε-shadows it belongs to U and satisfies f l(z) ∈ V . Since this argument can

be done for any pair U, V of non-empty open subsets of X this proves that f is topologically mixing

and finishes the proof.

We proved (Theorem 5) that the two-sided limit shadowing property implies shadowing and

transitivity, so Theorem 7 reduces the proof of Theorem 1 to the following lemma:

1A periodic set is a set A ⊂ X satisfying fK(A) = A for some K ∈ N.
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Lemma 8. If a homeomorphism f : X → X has the two-sided limit shadowing property, then fn

also has the two-sided limit shadowing property for every n ∈ Z \ {0}.

Indeed, the two-sided limit shadowing property implies transitivity so this lemma implies f is

totally transitive. Since it also implies shadowing, Theorem 7 concludes the proof.

Proof of Lemma 8: Let n ∈ Z \ {0} and (xk)k∈Z be a two-sided limit pseudo-orbit for fn. The

sequence (yk)k∈Z defined by

yk =

xk, if k = in, i ∈ Z

fk−in(xin), if in < k < (i+ 1)n, i ∈ Z

is a two-sided limit pseudo-orbit for f . Hence it is two-sided limit shadowed by a point z ∈ X.

Therefore the sequence (xk)k∈Z is two-sided limit shadowed by the fn-orbit of z.

Remark 2. As a consequence of Theorem 1 we know that any homeomorphism with the two-sided

limit shadowing property has all features of systems with the specification property, and these are

numerous (see Chapter 21 of [18] for details). For example by Proposition 21.6 in [18] we obtain that

it has positive topological entropy. We note that this also implies that there are no homeomorphisms

with the two-sided limit shadowing property on the unit interval or the unit circle since there are

no homeomorphism with positive topological entropy on them (see [58] Lemmas 7.14 and 7.14.1).

Remark 3. In Example 2.2 we exhibit a homeomorphism f admitting the two-sided limit shadowing

property with gap 1 but without the two-sided limit shadowing property. Since f2 is the identity

map on X = {a, b} it is obvious that it does not admit the two-sided limit shadowing property with

any gap, so Lemma 8 does not hold if we exchange the two-sided limit shadowing property for the

two-sided limit shadowing with a gap.

The last results of this section generalize Lemma 7 when X is a path connected metric space

or X is a compact connected metric space.

Proposition 2. If a homeomorphism on a path connected metric space (not necessarily compact)

has the shadowing property then it is transitive if and only if it is topologically mixing.

Proof. It is enough to prove that f is totally transitive. Since it has the shadowing property it is

enough to prove that f is totally chain-transitive, that is, fn is chain-transitive for every n ∈ N.

If f is a transitive homeomorphism then, in particular, the non-wandering set2 Ω(f) equals to the

whole space X. It is an interesting exercise to prove that Ω(fn) = X for every n ∈ N (one can also

see [44] Proposition 3.3). The proposition follows from the following fact: if g is a homeomorphism

on a path connected metric space X such that Ω(g) = X then g is chain-transitive3.

2A point p ∈ M is said to be non-wandering if it satisfies: for each neighborhood U of p there exists

n ∈ N such that fn(U) ∩ U 6= ∅. The set of all non-wandering points is called the non-wandering set and is

usually denoted by Ω(f).
3I learned this fact in a lecture of my friend Davi Obata at IMPA
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To prove this, let x, y ∈ X and consider a curve γ : [0, 1] → X such that γ(0) = g(x) and

γ(1) = y. The fact that all points of this curve are non-wandering points allows us to create finite

ε-pseudo-orbits connecting x to y for every ε > 0. Indeed, consider a partition 0 = t0 < t1 < · · · <
tn−1 < tn = 1 of [0, 1] such that

d(γ(ti), γ(ti+1)) <
ε

3
, i ∈ {0, . . . , n− 1}

and choose points yi ∈ B(γ(ti),
ε
3) and numbers ki ∈ N such that gki(yi) ∈ B(γ(ti),

ε
3). If we let

N0 = 0 and Ni =
∑i

j=0 kj for i ∈ {1, . . . , n− 1} then the sequence (xk)
Nn−1

k=0 defined by

xk =


x, k = 0

gk−1(y0), 1 ≤ k ≤ k0

gk−Ni(yi), Ni ≤ k < Ni+1, i ∈ {1, . . . , n− 1}
y, k = Nn−1

is a finite ε-pseudo-orbit connecting x to y. This proves the fact and also the proposition.

Proposition 3. If a homeomorphism on a compact and connected metric space has the shadowing

property then it is transitive if and only if it is topologically mixing.

Proof. By Proposition 7 it is enough to prove that f is totally transitive. If f is a transitive

homeomorphism in a compact metric space such that fn is not transitive, n > 1, then f ad-

mits a periodic decomposition of length n, which means that there exist disjoint compact subsets

W0, . . . ,Wn−1 ⊂ X such that X =
⋃n
i=1Wi, f(Wi) = Wi+1 mod n for every i ∈ {0, . . . , n − 1}, and

fn restricted to each Wi is topologically mixing. Since X is connected it follows that n = 1, which

is a contradiction. This proves that f is totally transitive and finishes the proof.

In view of all results of this section the following question seems natural:

Question 2. Does every homeomorphism with shadowing and specification properties have the

two-sided limit shadowing property? And the limit shadowing property?

We think the answer for this question is no because the two-sided limit shadowing property has

some connections with expansiveness as we will see in the next chapter.
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Chapter 3

Two-sided limit shadowing and

expansiveness

In this chapter we characterize the two-sided limit shadowing property and the two-sided limit

shadowing property with a gap for expansive homeomorphisms. In this case the two-sided limit

shadowing property with a gap is equivalent to shadowing and transitivity, while the two-sided

limit shadowing property is equivalent to shadowing and topological mixing. At the end we ex-

hibit some systems with the two-sided limit shadowing property outside the class of expansive

homeomorphisms.

3.1 Two-sided limit shadowing for expansive homeo-

morphisms

We begin with the definition of an expansive homeomorphism.

Definition 12. A homeomorphism f : X → X is expansive if there exists a number c > 0 such

that if x, y ∈ X satisfy d(fn(x), fn(y)) ≤ c for every n ∈ Z then x = y.

This property says that two different orbits move away from each other, either in the future

or in the past. It was extensively studied and is still the center of many researches. We refer the

reader to [7] which contains some important results about this class of systems. Our first result

answers Question 2 assuming f is expansive.

Proposition 4 ([15]). Every expansive homeomorphism with the shadowing and specification prop-

erties has the two-sided limit shadowing property.

Before proving this proposition we state some definitions and results.
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Definition 13. We define the stable set of y ∈ X as the set of points that limit shadows the future

orbit of y

W s(y) = {x ∈ X; d(fk(x), fk(y))→ 0, if k →∞}.

We define the unstable set of y as the set of points that limit shadows in the past the past orbit of

y

W u(y) = {x ∈ X; d(f−k(x), f−k(y))→ 0, if k →∞}.

Remark 4. It is obvious that if y ∈W s(x) then x ∈W s(y) and the ω-limit sets of x and y are the

same. Also, if z ∈W u(x) then x ∈W u(z) and the α-limit sets of x and z are the same.

Definition 14. For some number ε > 0 we define the ε-stable set of y ∈ X as the set of points

that ε-shadows the future orbit of y

W s
ε (y) = {x ∈ X; d(fk(x), fk(y)) < ε for every k ∈ N}.

We define the ε-unstable set of y as the set of points that ε-shadows the past orbit of y

W u
ε (y) = {x ∈ X; d(f−k(x), f−k(y)) < ε for every k ∈ N}.

An important fact about expansive homeomorphisms is that there exists a number ε > 0 such

that for every y ∈ X the following inclusions hold (see Lemma 1 in [42])

W s
ε (y) ⊂W s(y) and W u

ε (y) ⊂W u(y).

This says that if the future orbits (or past orbits) of two points in X remain ε-close then they must

be asymptotically close. We use this fact to prove the first lemma of this chapter following the

proof of Theorem 2.1 in [19].

Lemma 9. Every expansive homeomorphism with the shadowing property has both limit shadowing

and negative limit shadowing properties.

Proof. We begin fixing the number ε > 0 such that for every y ∈ X the following inclusions hold

W s
ε (y) ⊂W s(y) and W u

ε (y) ⊂W u(y).

For each j ∈ N the shadowing property assures the existence of a number δj > 0 such that every

δj-pseudo-orbit is ε
j+1 -shadowed. Let (xk)k∈N0 be a limit pseudo-orbit. For each j ∈ N choose

kj ∈ N such that for each k ≥ kj the following holds

d(f(xk), xk+1) < δj .

The shadowing property assures the existence of points yj ∈ X such that for each k ≥ kj we have

d(fk(yj), xk) <
ε

j + 1
.
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We claim that (xk)k∈N0 is limit shadowed by y1. Indeed for each j ∈ N and each k ≥ kj the

following inequality holds

d(fk(y1), fk(yj)) ≤ d(fk(y1), xk) + d(xk, f
k(yj))

<
ε

2
+

ε

j + 1
< ε.

Or equivalently, fkj (y1) ∈W s
ε (fkj (yj)). By the choice of ε we obtain

d(fk(y1), fk(yj))→ 0, k →∞

for all j ∈ N. This implies that

d(fk(y1), xk)→ 0, k →∞

and proves the claim. Hence every limit pseudo-orbit is limit shadowed and f has the limit shadow-

ing property. To prove the negative limit shadowing property one just have to note that the inverse

map f−1 is expansive and has the shadowing property and apply the previous argument to prove

that f−1 has the limit shadowing property, which is equivalent to the negative limit shadowing

property (Proposition 1).

Corollary 4. A chain-transitive and expansive homeomorphism has the shadowing property if and

only if it has the limit shadowing property.

Proof. If it has the shadowing property Lemma 9 assures it has the limit shadowing property. We

already proved that the limit shadowing property implies shadowing in the chain-transitive scenario

(see Theorem 6).

The following corollary answers Question 1 affirmatively in the chain-transitive expansive sce-

nario.

Corollary 5. A chain-transitive expansive homeomorphism has the limit shadowing property if and

only if it has the negative limit shadowing property.

Proof. We proved in Corollary 4 that under these hypothesis the limit shadowing property is

equivalent to the shadowing property. Therefore, Lemma 9 implies the negative limit shadowing

property. It is easy to see that f−1 is a chain-transitive and expansive homeomorphism, so Corollary

4 assures it has the shadowing property. This implies f has the shadowing property and Lemma 9

assures f has the limit shadowing property.

Now we are ready to prove Proposition 4.

Proof of Proposition 4: Let {xk}k∈Z be a two-sided limit pseudo-orbit. Since f has the limit

shadowing and negative limit shadowing properties (Lemma 9) there exists points p1, p2 ∈ X

satisfying

d(fk(p1), xk)→ 0, k → −∞
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and

d(fk(p2), xk)→ 0, k →∞.

Since f has the shadowing property and the specification property, there exist δ > 0 and L ∈ N
such that every δ-pseudo-orbit is ε-shadowed and every L-spaced specification is δ-shadowed, where

ε is chosen as above. Choose N ∈ N such that 2N ≥ L and that for every k ≥ N the following

holds

d(f−k(p1), x−k) < δ and d(fk(p2), xk) < δ.

Let I1 = {−N}, I2 = {N}, P (−N) = f−N (p1) and P (N) = fN (p2). Since ({I1, I2};P ) is a

L-spaced specification there exists a point z ∈ X satisfying

d(f−N (z), f−N (p1)) = d(f−N (z), P (−N)) < δ

and

d(fN (z), fN (p2)) = d(fN (z), P (N)) < δ.

This implies that the sequence (yk)k∈Z defined by

yk =


fk(p1), k < −N

fk(z), −N ≤ k ≤ N

fk(p2), k > N

is a δ-pseudo orbit. Hence there exists a point z̃ ∈ X that ε-shadows it. In particular,

d(fk(z̃), fk(p1)) < ε, k ≤ −N

and

d(fk(z̃), fk(p2)) < ε, k ≥ N.

By the choice of ε we obtain

d(fk(z̃), fk(p1))→ 0, k → −∞

and

d(fk(z̃), fk(p2))→ 0, k →∞.

Since p1 limit-shadows in the past (xk)k∈−N0 and p2 limit-shadows (xk)k∈N0 it follows that z̃ two-

sided limit shadows (xk)k∈Z. Therefore f has the two-sided limit shadowing property.

In the transitive (mixing) scenario we obtain a more precise characterization.

Theorem 8 ([17]). If f is a transitive and expansive homeomorphism on a compact metric space

then the following are equivalent:

1. f has the shadowing property

2. f has the limit shadowing property
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3. f has the two-sided limit shadowing property with a gap.

If, in addition, f is topologically mixing then these properties are equivalent to the two-sided limit

shadowing property.

Proof. It was proved in Lemma 9 that (1) implies (2) and in Theorem 5 that (3) implies (1). It

only remains to prove that (2) implies (3) to obtain the first equivalences. We know that the limit

shadowing property implies shadowing in the transitive scenario (see Theorem 6). Thus it remains

to prove that shadowing and transitivity implies two-sided limit shadowing with a gap for expansive

homeomorphisms. It follows from the Spectral Decomposition Theorem ([7, Theorem 3.1.11]) for

topologically Anosov maps that there exists an integer N such that X can be written as a disjoint

union, X = B0 ∪ . . . ∪BN−1 of non-empty closed sets satisfying

f(Bi) = B(i+1) mod N for i = 0, . . . , N − 1,

and such that fN |Bi : Bi → Bi is topologically mixing (hence has the specification property by

Lemma 6) for each i. Note that this happens because f is transitive, so it has only one chain-

recurrent class. We claim that f has the two-sided limit shadowing property with gap N − 1. Let

(xk)k∈Z be a two-sided limit pseudo-orbit for f . It is easy to see that there exists positive integers

L1, L2 ∈ N such that

xL1+n ∈ Bn mod N and x−L2−n ∈ B(−n) mod N for each n ≥ 0.

Let K = (L1 + L2) mod N . Take any n0 ∈ N such that (−L2) mod N +Nn0 ≥ L1. It follows that

fK(x(−L2) mod N+Nn) ∈ B0 for n > n0.

Let p1, . . . , pn0 be any points in B0. Then the sequence (yk)k∈Z defined by

yk =


x(−L2 mod N)+Nk, for k ≤ 0,

pk, for 1 ≤ k ≤ n0,

fK(x(−L2) mod N+Nk) for k > n0,

is a two-sided limit pseudo-orbit for fN contained in B0. By Proposition 4 fN restricted to B0

has the two-sided limit shadowing property, since fN |B0 has both shadowing and specification.

Therefore (yk)k∈Z is two-sided limit shadowed for fN by a point z ∈ B0. It implies that f−K(z)

limit shadows for fN the limit pseudo-orbit (f−K(yk))
∞
k=0 (this is a limit pseudo-orbit with respect

to fN ). For k > n0 we have x(−L2) mod N+Nk = f−K(yk). Hence the sequence (xk)k∈Z is two-sided

limit shadowed for f with gap K by the point z ∈ X since uniform continuity of f and two-sided

limit shadowing property for fN clearly imply

d(fk(z), xk)→ 0, k → −∞,

d(f−K+k(z), xk)→ 0 k →∞.

In the topologically mixing case the shadowing property implies the specification property (Lemma

6), so Proposition 4 together with Theorem 1 shows that the shadowing property is equivalent to

the two-sided limit shadowing property. This concludes the proof.
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In particular, the following holds.

Theorem 9 ([17]). Let f be an expansive homeomorphism on a compact metric space. Then

1. f is transitive and has the shadowing property if and only if f has the two-sided limit shad-

owing property with a gap;

2. f is topologically mixing and has the shadowing property if and only if f has the two-sided

limit shadowing property.

When X is connected, the Spectral Decomposition Theorem says that f is transitive if and only

if it is topologically mixing. Hence we have the following corollary.

Theorem 10 ([17]). If f is an expansive homeomorphism on a compact and connected metric space

then the following are equivalent:

1. f is transitive and has the shadowing property;

2. f is topologically mixing and has the shadowing property;

3. f has the two-sided limit shadowing property with a gap;

4. f has the two-sided limit shadowing property.

For any compact metric space (X, d) we consider XZ the product of countable many copies of

X with the Tichonov (product) topology. Points in XZ are sequences (xk)k∈Z whose all coordinates

belong to X. We define a map σ : XZ → XZ by

σ((xk)k∈Z) = (xk+1)k∈Z.

This map is called the shift map. It is easily seen that σ is a homeomorphism on the compact

space XZ. A special case of this construction is the full r-shift Ωr = XZ, where r ∈ N and

X = Λr = {0, 1, . . . , r − 1} is equipped with discrete metric.

Definition 15. Any σ-invariant and closed subset of Ωr is called a shift space. A shift space

Z ⊂ Ωr is a subshift of finite type if there exists N ∈ N and a subset L of
∏N
i=0 Λr such that

x = (xn)n∈Z ∈ Z if and only if xjxj+1 . . . xj+N ∈ L for every j ∈ Z.

We obtain a variant of Walters theorem from [57] (see also [7, Theorem 2.3.18]) which charac-

terizes shifts of finite type as the shift spaces with shadowing. Using this theorem and Theorem 9

we obtain characterizations of transitive and topologically mixing shifts of finite type in terms of

two-sided limit shadowing properties.

Theorem 11 ([17]). Let X be a shift space. Then
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1. X is a transitive shift of finite type if and only if σ : X → X has the two-sided limit shadowing

property with a gap;

2. X is topologically mixing shift of finite type if and only if σ : X → X has the two-sided limit

shadowing property.

We are finally ready to exhibit a homeomorphism with the simple two-sided limit shadowing

property that does not have the two-sided limit shadowing property. The following proposition

plays an important role in this direction.

Proposition 5. If a homeomorphism on a compact metric space is expansive and has the specifi-

cation property then it has the simple two-sided limit shadowing property.

Proof. Let (xk)k∈Z be a simple two-sided limit pseudo-orbit. It is the past orbit of a point x ∈ X
and the future orbit of a point y ∈ X. Let ε > 0 be such that W s

ε (y) ⊂W s(y) and W u
ε (x) ⊂W u(x).

Choose L ∈ N such that every L-spaced specification is ε
2 -shadowed. For each k ≥ L we consider

I1
k = [−k, 0], I2

k = [L, k] and P : I1
k ∪ I2

k → X defined by

P (n) =

{
fn(x), n ∈ I1

k ,

fn(y), n ∈ I2
k .

Thus for each k ≥ L the triple (I1
k , I

2
k , P ) is a L-spaced specification and hence there exists a point

zk ∈ X that ε
2 -shadows it. Note that zk ∈ B(x, ε2) for every k ≥ L and that there is a point

z ∈ B(x, ε) that is the limit of some subsequence of (zk)k≥L. We will prove that z two-sided limit

shadows (xk)k∈Z. Indeed, for each k ∈ N we can choose nk ≥ max{k, L} such that

d(fn(z), fn(znk)) <
ε

2
, −k ≤ n ≤ 0.

Thus for every k ≥ 0 we have

d(f−k(z), x−k) ≤ d(f−k(z), f−k(znk)) + d(f−k(znk), x−k)

<
ε

2
+
ε

2
= ε.

By the choice of ε we obtain

d(fk(z), xk)→ 0, k → −∞.

Also, for k ≥ L we obtain d(fk(z), xk) < ε, which implies

d(fk(z), xk)→ 0, k →∞.

Therefore z two-sided limit shadows (xk)k∈Z and the proposition is proved.

As a corollary we obtain the desired result.
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Corollary 6. If a two-sided shift has the specification property but is not a shift of finite type then it

has the simple two-sided limit shadowing property and does not have the two-sided limit shadowing

property.

Proof. Last proposition assures it has the simple two-sided limit shadowing property and Walter’s

Theorem assures it does not have the shadowing property, since it is not a shift of finite type.

Theorem 1 assures it does not have the two-sided limit shadowing property.

3.2 Non-expansive homeomorphisms with two-sided limit

shadowing

In this section we prove two results which will allow us to provide examples of homeomorphisms

with the two-sided limit shadowing property

1. which are non-expansive;

2. without the periodic specification property.

The first result is the following.

Theorem 12 ([17]). For every compact metric space X the shift map σ : XZ → XZ has the two-

sided limit shadowing property.

Proof. As two-sided limit shadowing property does not depend on the choice of metric for the

space we can pick any equivalent metric for XZ. We equip XZ with the metric D defined for

x = (xj)j∈Z, y = (yj)j∈Z ∈ XZ by

D(x, y) = sup
j∈Z

d(xj , yj)

2|j|
,

where d is any metric for X such that diamX ≤ 1. Let {x(n)}n∈Z be any two-sided limit pseudo-

orbit for σ. It follows that for every p ≥ 1 there is Np such that D(σ(x(m)), x(m+1)) ≤ 2−p−1 for all

|m| ≥ Np. It implies that for m as before and for each j ∈ Z we have

1

2p+1
≥ D(σ(x(m)), x(m+1)) ≥ 1

2|j|
d(x

(m)
j+1, x

(m+1)
j ). (3.1)

Define a point x ∈ XZ by xj = x
(j)
0 for j ∈ Z, in other words

x = (. . . , x
(−1)
0 , x

(0)
0 , x

(1)
0 . . .)

We claim that x two-sided limit shadows {x(n)}n∈Z. To see this, note first that

σm(x)k = x
(m+k)
0 for all k,m ∈ Z.
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On the other hand

D(σm(x), x(m)) = sup
j∈Z

1

2|j|
d(σm(x)j , x

(m)
j ) = sup

j∈Z

1

2|j|
d(x

(m+j)
0 , x

(m)
j ).

By the triangle inequality for all m ∈ Z and k positive

d(x
(m+k)
0 , x

(m)
k ) ≤

k−1∑
j=0

d(x
(m+k−j)
j , x

(m+k−j−1)
j+1 ) =

= d(x
(m+k)
0 , x

(m+k−1)
1 ) + d(x

(m+k−1)
1 , x

(m+k−2)
2 ) + . . .+ d(x

(m+1)
k−1 , x

(m)
k ).

Similarly, for k negative

d(x
(m+k)
0 , x

(m)
k ) ≤

|k|−1∑
j=0

d(x
(m+k+j)
−j , x

(m+k+j+1)
−j−1 ) =

= d(x
(m+k)
0 , x

(m+k+1)
−1 ) + d(x

(m+k+1)
−1 , x

(m+k+2)
−2 ) + . . .+ d(x

(m−1)
k+1 , x

(m)
k ).

If m > Np, k > 0 and 0 ≤ j < k, then we may apply (3.1) and obtain

d(x
(m+k−j)
j , x

(m+k−j−1)
j+1 ) ≤ 2|j|

2p+1
.

In particular,
k−1∑
j=0

d(x
(m+k−j)
j , x

(m+k−j−1)
j+1 ) ≤ 1 + 2 + . . .+ 2k−1

2p+1
≤ 2k

2p+1

If m < −Np, k < 0 and 0 ≤ j ≤ |k| − 1, then we may apply (3.1) and obtain

d(x
(m+k+j)
−j , x

(m+k+j+1)
−j−1 ) ≤ 2j+1

2p+1
.

In particular,
|k|−1∑
j=0

d(x
(m+k+j)
−j , x

(m+k+j+1)
−j−1 ) ≤ 2 + 22 + . . .+ 2|k|

2p+1
≤ 2|k|

2p
.

Hence D(σm(x), x(m)) ≤ 2−p for |m| ≥ Np, and the proof is finished.

It follows from the above theorem and Theorem 1 that for every compact metric space X the

shift map σ : XZ → XZ has specification and shadowing. It is also easy to see that if X is the unit

interval [0, 1] then the shift map σ : [0, 1]Z → [0, 1]Z is not expansive. In general, if the topological

dimension of X is positive, then no homeomorphism of XZ can be expansive by [7, Theorem 2.3.13]

(this is a corollary to a theorem of Mañe [42] (see also [7, Theorem 2.2.40]), which states that

if f : X → X is an expansive homeomorphism of a compact metric space, then the topological

dimension of X is finite). Hence we obtain the following:

Corollary 7 ([17]). There exists a non-expansive homeomorphism on a compact metric space with

the two-sided limit shadowing property.
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The other result that allow us to construct examples of non-expansive homeomorphisms with

the two-sided limit shadowing property is the following.

Theorem 13 ([17]). Assume that for each n ∈ N we have a compact metric space Xn and a

homeomorphism fn : Xn → Xn with the two-sided limit shadowing property. Let X =
∏
n∈NXn be

the product metric space and F : X → X be the homeomorphism given by

F (x1, x2, x3, . . .) = (f1(x1), f2(x2), f3(x3), . . .).

Then F has the two-sided limit shadowing property.

Proof. We equip X with the metric D defined for x = (xn)n∈N, y = (yn)n∈N ∈ X by

D(x, y) = sup
n∈N

dn(xn, yn)

2n
,

where dn is any metric for Xn such that the diameter of Xn with respect to dn fulfills diamXn ≤ 1.

It is then easy to see that if (x(j))j∈Z is a two-sided limit pseudo-orbit for F , then for each n ∈ N
the sequence (x

(j)
n )j∈Z is a two-sided limit pseudo-orbit for fn. Let yn be a point which two-sided

limit shadows (x
(j)
n )j∈Z with respect to fn. It is again easy to see that (y1, y2, y3, . . .) two-sided

limit shadows (x(j))j∈Z for F .

As the last result of this chapter we prove the following corollary.

Corollary 8 ([17]). There exists a homeomorphism with the two-sided limit shadowing property

but without the periodic specification property.

Let p and q be relatively prime integers and set r = p + q − 1. Define a shift of finite type

X(p,q) ⊂ Ωr by specifying

L = {01, 12, . . . , (p− 2)(p− 1), (p− 1)0, 0p, p(p+ 1), . . . , (p+ q − 2)(p+ q − 1), (p+ q − 1)0}.

In other words, X(p,q) consists of sequences of vertices visited during a bi-infinite walk on the

directed graph with two loops: one of length p with vertices labelled 0, . . . , p− 1 and one of length

q with vertices labelled 0, p, p+ 1, . . . , p+ q − 2. See figure ?? for an example.

Since the graph is connected and has two cycles with relatively prime lengths it presents a

topologically mixing shift of finite type (for details see [40]). Moreover, this shift of finite type

does not have any periodic point with primary period smaller than min{p, q}. Let (pj)
∞
j=1 be a

strictly increasing sequence of prime numbers. Let Xn = X(pn,pn+1) for n ∈ N, and σn be a shift

transformation on Ωpn+pn+1−1 restricted to Xn. This family fulfills the assumptions of Theorem

13 so the product system has the two-sided limit shadowing property. It is easy to see that the

product system F = σ1 × σ2 × . . . on X =
∏∞
n=1Xn also has the specification property, but this

specification property is not periodic, since there are no periodic points for F in X.

We note that examples constructed in this section are not defined on manifolds. So the following

question is natural:
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Question 3. What is the relation between the two-sided limit shadowing property and expansiveness

for homeomorphisms defined on manifolds?

Actually, we think the following is true:

Conjecture 1. Any homeomorphism on the torus Tn with the two-sided limit shadowing property

is expansive.
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Chapter 4

Anosov diffeomorphisms and the

two-sided limit shadowing property

All results above allowed us to obtain characterizations of two well known conjectures on Anosov

diffeomorphisms in terms of the two-sided limit shadowing property. We also give some ideas on

how to solve these conjectures.

4.1 Anosov diffeomorphisms

An Anosov diffeomorphism on a smooth manifold M is a smooth diffeomorphism f : M → M

satisfying:

1. for every x ∈ M there is a splitting TxM = Es(x) ⊕ Eu(x) which is invariant under the

derivative map Df(x) : TxM → Tf(x)M , that is,

Df(x)(Es(x)) = Es(f(x)) and Df(x)(Eu(x)) = Eu(f(x)).

We call Es(x) the stable space of x and Eu(x) is called the unstable space of x.

2. there exist a Riemannian metric on M and a constant 0 < λ < 1 such that

|Dfk(x)(v)|fk(x) ≤ λk|v|x and |Df−k(x)(w)|f−k(x) ≤ λk|w|x

for all v ∈ Es(x), w ∈ Eu(x), k ∈ Z and x ∈M , where |.|x denotes the norm in TxM induced

by the Riemannian metric. This metric is said to be adapted to f .

Such systems have been intensely studied since the works of Anosov [6] and Smale [56] in the

sixties. They introduced several examples of Anosov diffeomorphisms and stated some questions

about them that has been not answered yet (to my best knowledge). The central problem on
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this theory is to understand all examples of Anosov diffeomorphisms (up to topological conju-

gacy). Smale conjectured that every Anosov diffeomorphism must be topologically conjugated to

an Anosov automorphism on an infra-nilmanifold. The following properties are expected to be true:

If f : M →M is an Anosov diffeomorphism then

1. M is an infra-nilmanifold and the universal covering is the Euclidean space Rn,

2. the lift of f to Rn is topologically conjugated to a hyperbolic matrix,

3. the stable and unstable foliations are on global product structure,

4. f admits a fixed point,

5. if M is compact and connected then f is transitive.

We recall some definitions. We denote by M a closed and connected smooth n-dimensional

manifold, by M̃ its universal covering and by π : M̃ → M the covering projection. Consider a

Riemannian metric 〈., .〉 in M and the distance d induced by this metric. We can lift this metric

to a Riemannian metric in M̃ (which we also denote by 〈., .〉) as follows: for x ∈ π−1(x0) and

v, w ∈ TxM̃ we define

〈v, w〉x = 〈Dπ(x)(v), Dπ(x)(w)〉x0 ,

where 〈., .〉x0 is the inner product in Tx0M . We also denote by d the distance in M̃ induced by the

lifted metric. By definition the covering map π is a local isometry. Hence there exists ε0 > 0 such

that for each x ∈ M̃ , π maps the ε0-neighborhood of x isometrically onto the ε0-neighborhood of

π(x).

For an Anosov diffeomorphism f0 : M → M we consider f : M̃ → M̃ any lift of f0 to the

universal covering. Since π is a local diffeomorphism, the derivative map Dπ(x) : TxM̃ → Tx0M

is a linear isomorphism. So the splitting Tx0M = Es(x0) ⊕ Eu(x0) can be lifted to a splitting

TxM̃ = Es(x)⊕Eu(x) that is invariant by Df(x). If the adapted metric is lifted then it is easy to

check that f is an Anosov diffeomorphism and that the lifted metric is adapted to f .

The stable set W s(x0) and the unstable set W u(x0) of an Anosov diffeomorphism are leaves

of two respective foliations which we call stable foliation and unstable foliation. We denote by

W̃ s(x0) and by W̃ u(x0) the lift of the stable and unstable leaves, respectively, to the universal

covering. Actually, W̃ s(x0) (W̃ u(x0)) is the stable (unstable) set of x with respect to the lifted

Anosov diffeomorphism.

Definition 16. The stable and the unstable foliations are on global product structure if for every

x, y ∈ M the leaves W̃ s(x) and W̃ u(y) intersect in exactly one point in the universal covering. If

this is the case, we say that f0 is a product Anosov diffeomorphism.

Product Anosov diffeomorphisms are transitive but the converse of this statement is not known.
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Remark 5. An Anosov diffeomorphism is a product Anosov diffeomorphism if and only if its lift

to the universal covering has the unique simple two-sided limit shadowing property. More generally,

an Anosov diffeomorphism satisfies W u(x)∩W s(y) 6= ∅ for every x, y ∈M if and only if it has the

simple two-sided limit shadowing property.

It is known that Anosov diffeomorphisms have the shadowing property and are expansive (see

[53]). Also, on a connected and compact manifold transitive Anosov diffeomorphisms are topologi-

cally mixing and thus have the specification property (Lemma 6). So transitive Anosov diffeomor-

phisms satisfy all hypotheses of Proposition 4 and we obtain the following:

Theorem 14 ([15]). Transitive Anosov diffeomorphisms on a compact and connected manifold

have the two-sided limit shadowing property.

This together with Theorem 1 proves the first assertion of Theorem 2.

4.2 Limit shadowing on the universal covering

In [31] (and also in [34]) it is proved that a homeomorphism f : M →M has the shadowing property

if and only if any lift of f to the universal covering also has it. We prove this also holds for the

limit shadowing property.

Lemma 10. If f : M → M is a homeomorphism and f̃ : M̃ → M̃ is any lift of f to the universal

covering then f̃ has the limit shadowing property if and only if f also has it.

Proof. Suppose that f̃ has the limit shadowing property and consider (xk)k∈N ⊂M a limit pseudo-

orbit for f . Choose N ∈ N such that

d(f(xk), xk+1) < ε0, k ≥ N,

where ε0 was defined at the beginning of last section. Note that from the definition of ε0 we have

ε0 < min{d(x̃, ỹ);x ∈M, x̃, ỹ ∈ π−1(x), x̃ 6= ỹ}.

Thus for each choice of yN ∈ π−1(xN ) there exists a unique limit pseudo-orbit (yk)k≥N of f̃ such

that yk ∈ π−1(xk) and d(f̃(yk), yk+1) < ε0 for every k ≥ N . Since f̃ has limit shadowing there

exists z ∈ M̃ that limit shadows (yk)k≥N . Therefore π(f̃−N (z)) limit shadows (xk)k∈N. Since this

holds for every limit pseudo-orbit it follows that f has the limit shadowing property.

Now suppose that f has the limit shadowing property and consider (xk)k∈N ⊂ M̃ a limit pseudo-

orbit for f̃ . The sequence (π(xk))k∈N ⊂M is a limit pseudo-orbit for f and thus it is limit shadowed

by z ∈M . Choose K ∈ N such that

d(fk(z), π(xk)) < ε0, k ≥ K.
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There is a unique point z̃ ∈ π−1(fK(z)) such that d(z̃, xK) < ε0. It is easy to check then that

f̃−K(z̃) limit shadows (xk)k∈N. Since this holds for every limit pseudo-orbit it follows that f̃ has

the limit shadowing property.

We obtain Theorem 2 as a consequence of previous lemma and Lemma 1. Actually, a slightly

different version of Lemma 1.

Lemma 11. A homeomorphism on a metric space has the unique two-sided limit shadowing prop-

erty if and only if f has the limit shadowing property, the negative limit shadowing property and

the unique simple two-sided limit shadowing property.

Proof of Theorem 2: It only remains to prove second assertion. As observed above any Anosov

diffeomorphism has the shadowing property and is expansive. Lemma 9 assures it has the limit

shadowing property. The inverse is also an Anosov diffeomorphism and also has the limit shadowing

property. By Lemma 10 any lift has limit shadowing and negative limit shadowing properties. Then

Remark 5 and Lemma 11 finish the proof.

4.3 Two-sided limit shadowing on the universal cover-

ing

This section is motivated by the following question.

Question 4. Is it true that a homeomorphism has the two-sided limit shadowing property if and

only if any lift to the universal covering also has the two-sided limit shadowing property?

One can easily see that the argument in Lemma 10 does not follow in the two-sided limit

shadowing case. This question is not supposed to be true in all cases, but it is when you consider

an Anosov diffeomorphism. So the following questions are natural.

Question 5. Is it true that any lift of an Anosov diffeomorphism to the universal covering has the

two-sided limit shadowing property? Is this true if we suppose that the Anosov diffeomorphism has

the two-sided limit shadowing property?

Remark 6. The first attempt to answer Question 5 would be to use Proposition 4 that proves the

two-sided limit shadowing property holds when the specification property is present. We note that

the specification property does not lift to the universal covering though, it only makes sense on the

compact scenario.

On this section we exhibit some ideas that we hope will answer Question 5. We prove Theorem

3. From now on the two-sided limit pseudo-orbit (xk)k∈Z on the universal covering is fixed. We

32



denote by C the set of all bilateral sequences v̄ = (vk)k∈Z where vk ∈ TxkM̃ for each k ∈ Z. Let B

denote the subset of C consisting of bounded sequences, i.e., sequences (vk)k∈Z ∈ C that satisfy

sup
k∈Z
|vk|xk <∞,

where |.|xk is the norm in TxkM̃ induced by the lifted metric. The map ||.|| : B → R+ defined by

||v̄|| = sup
k∈Z
|vk|xk

is a norm in B that makes (B; ||.||) a Banach space. We consider the subspace C0 of B as the space

of sequences (vk)k∈Z ∈ B that satisfy

|vk|xk → 0, |k| → ∞.

It is easy to see that C0 is a closed subspace of B with respect to the norm defined above, so it is

also a Banach space. We define a map F : C0 → C0 as follows: for each sequence v̄ = (vk)k∈Z ∈ C0

we define F (v̄) as the sequence

F (v̄)k = exp−1
xk
◦f ◦ expxk−1

(vk−1), k ∈ Z,

where expx denotes the exponential map of M̃ in the point x.

Remark 7. If we suppose that the ambient manifold has non-positive sectional curvature then

the lifted metric has no conjugated points and the exponential map expx : TxM̃ → M̃ is a global

diffeomorphism for every x ∈ M̃ . In this case F is well defined. This puts a restriction on the

ambient manifold but it seems to be no problem to us since it is expected that the universal covering

of a manifold supporting an Anosov diffeomorphism is the Euclidean space.

Lemma 12. If v̄ ∈ C0 then F (v̄) ∈ C0.

Proof. A standard compactness argument (which we omit here) proves that f is uniformly con-

tinuous on M̃ . Thus for each ε > 0 we can choose 0 < δ < ε
2 such that d(x, y) < δ implies

d(f(x), f(y)) < ε
2 . Since v̄ ∈ C0 and (xk)k∈Z is a two-sided limit pseudo-orbit of f we can choose

K ∈ N such that for |k| ≥ K we have

|vk|xk < δ and d(f(xk), xk+1) < δ.

Thus for |k| > K we have

d(expxk−1
(vk−1), xk−1) = |vk−1|xk−1

< δ

which imply

|F (v̄)k|xk = | exp−1
xk
◦f ◦ expxk−1

(vk−1)|xk
= d(f(expxk−1

(vk−1)), xk)

≤ d(f(expxk−1
(vk−1)), f(xk−1)) + d(f(xk−1), xk)

<
ε

2
+
ε

2
= ε.

This is enough to prove that F (v̄) ∈ C0.
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Theorem 15 ([16]). There exists a bijection between the set of fixed points of F and the set of

points that two-sided limit shadows (xk)k∈Z.

Proof. For a two-sided limit pseudo-orbit (xk)k∈Z of f suppose that v̄ is a fixed point of F . Then

the sequence (expxk(vk))k∈Z is an orbit that two-sided limit shadows (xk)k∈Z. Indeed, for each

k ∈ Z we have

vk = F (v̄)k = exp−1
xk
◦f ◦ expxk−1

(vk−1),

which implies

expxk(vk) = f ◦ expxk−1
(vk−1).

By induction we obtain

expxk(vk) = fk(expx0(v0)), k ∈ Z.

Therefore,

d(fk(expx0(v0)), xk) = d(expxk(vk), xk) = |vk|xk → 0, |k| → ∞,

that is, expx0(v0) two-sided limit shadows (xk)k∈Z.

Now suppose that z two-sided limit shadows (xk)k∈Z. For each k ∈ Z let

vk = exp−1
xk

(fk(z)).

We have v̄ = (vk)k∈Z ∈ C0 since

|vk|xk = d(expxk(vk), xk) = d(fk(z), xk)→ 0, |k| → ∞.

Moreover, for each k ∈ Z

F (v̄)k = exp−1
xk
◦f ◦ expxk−1

(vk−1) = exp−1
xk

(fk(z)) = vk,

which proves v̄ is a fixed point of F . These arguments construct the desired bijection.

Remark 8. It is important to note that the Banach space C0 and also the map F depend on the

two-sided limit pseudo-orbit (xk)k∈Z.

Remark 9. The map F can be defined for any homeomorphism f0 : M →M , any lift f : M̃ → M̃

and any two-sided limit pseudo-orbit (xk)k∈Z of f in M̃ . It is not expected that F admit fixed points

in all cases though but it is when f0 is an Anosov diffeomorphism.

Now we use the hyperbolic structure of an Anosov diffeomorphism to define a new map G in

C0 with more structure than F but with the same fixed points. For each k ∈ Z consider a linear

isomorphism Ik : Tf(xk−1)M̃ → TxkM̃ satisfying

1. Ik(E
s(f(xk−1))) = Es(xk),

2. Ik(E
u(f(xk−1))) = Eu(xk),
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3. |Ik(v)|xk ≤ |v|f(xk−1).

We note Define a map T : C0 → C0 by

T (v̄)k = Ik ◦Df(xk−1)(vk−1), k ∈ Z.

Let Id denote the identity map in C0. We prove the following.

Theorem 16 ([16]). The map Id− T is a bounded linear isomorphism of C0 with bounded inverse

(Id− T )−1.

Using this theorem we can define the map G : C0 → C0 by

G(v̄) = (Id− T )−1 ◦ (F − T )(v̄).

By definition F and G have the same fixed points in C0, so Theorem 15 is enough to prove Theorem

3.

The map (Id−T )−1 will be defined in the proof of Theorem 16. The map F−T is the following:

(F − T )(v̄)k = exp−1
xk
◦f ◦ expxk−1

(vk−1)− Ik ◦Df(xk−1)(vk−1), k ∈ Z.

We do not know how to obtain fixed points for this map in the general case but we do when f is

linear or when the numbers d(f(xk), xk+1) are sufficiently small. In the first case G is a constant

map and in the second case G is a contraction in an invariant small neighborhood of 0̄ in C0 (see

[49]). We hope some fixed point theorem applies in the general case.

Since the two-sided limit shadowing property is equivalent to the simple two-sided limit shad-

owing property in the Anosov case (Lemma 1) it is no restriction to suppose (xk)k∈Z is a simple

two-sided limit pseudo-orbit. In this case we may choose Ik as the identity map for k 6= 0. If we

consider a curve γ : [0, 1] → M̃ such that γ(0) = x0 and γ(1) = f(x−1) then for each t ∈ [0, 1] we

can consider the simple two-sided limit pseudo-orbit (xtk)k∈Z defined as the past orbit of γ(t) and

the future orbit of x0. This induces one-parameter families of Banach spaces (Ct0)t∈[0,1] and maps

(Gt)t∈[0,1] where Ct0 and Gt were defined above with respect to (xk)
t
k∈Z.

When M has zero sectional curvature the uniqueness of space forms says that the universal

covering is the Euclidean space Rn and the lifted metric is the Euclidean metric. In this case, the

Banach space C0 does not depend on the two-sided limit pseudo-orbit. Thus the family (Gt)t∈[0,1]

is a one-parameter family of maps defined on the same space C0. For t = 0 the sequence (x0
k)k∈Z is

the orbit of x0 and 0̄ is a fixed point of G0. We think some fixed point continuation theorem applies

and the fixed point of G0 can be carried through (Gt)t∈[0,1] for a fixed point of G1. More precisely,

we would like to obtain a curve Γ: [0, 1] → C0 such that Γ(0) = 0̄ and Γ(t) is a fixed point of Gt

for each t ∈ [0, 1].

In J. Franks PhD thesis [21] there is a similar discussion about product Anosov diffeomorphisms:

it might happen (though it is not expected) that there exists some t0 ∈ (0, 1) such that for s < t0
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there exists an intersection between W u(γ(s)) and W s(x0) but for s ≥ t0 there is not. In this case

the intersections W u(γ(s))∩W s(x0) go to infinity in Rn when s converges to t0 to the left. In our

setting this means the set

K = {v̄ ∈ C0; v̄ = Gt(v̄) for some t ∈ [0, 1]}

is unbounded in C0. The problem is to determine if this set is bounded or not. If we could prove

that K is bounded then it would follow that there exists a finite number of points in W u(x)∩W s(y),

which is a weaker form of product structure.

Remark 10. The only fixed points continuations theorems we know are for completely continuous

maps on Banach spaces. These maps satisfy that the image of every bounded set is compact.

Moreover, there is some hypothesis on the set of solutions that is called a priori bound hypothesis

and is usually the most difficult one to check (see [38]). This hypothesis is equivalent to the set K

defined above be bounded.

Question 6. Is the map H : C0 × [0, 1] → C0 defined by H(v̄, t) = Gt(v̄) a completely continuous

map? Is it continuous with respect to the product topology in C0 × [0, 1]?

Problem. An interesting problem is to understand how these techniques translate to the theory of

Anosov flows. Does there exist a Banach space and a map on this space such that an analogous

of Theorem 3 holds? There are some examples of Anosov flows that are not product Anosov flows

(see [10], [20]) so if we are able to obtain this map it should not admit fixed points.

Proof of Theorem 16

Now we turn our attention to the proof of Theorem 16. For each k ∈ Z we consider projections

πsk : TxkM̃ → Es(xk) and πuk : TxkM̃ → Eu(xk) parallel to Eu(xk) and Es(xk), respectively. Since

M is compact we can choose N ∈ N such that for every k ∈ Z we have

|πsk(v)|xk ≤ N |v|xk and |πuk (v)|xk ≤ N |v|xk .

For each k ∈ Z consider the map Ak : TxkM̃ → Txk+1
M̃ defined by

Ak(v) = Ik+1 ◦Df(xk)(v).

Since Ak(E
s(xk)) = Es(xk+1) for every k ∈ Z we can compose these maps to obtain

Ak−1 ◦ · · · ◦An(Es(xn)) = Es(xk), n < k.

Note also that A−1
k (Eu(xk+1)) = Eu(xk) so we analogously have

A−1
k ◦ · · · ◦A

−1
n (Eu(xn+1)) = Eu(xk), n ≥ k.
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Thus we can define a map G : C0 → C0 as follows: for each v̄ = (vk)k∈Z ∈ C0 the sequence

G(v̄) = (G(v̄)k)k∈Z is defined by

G(v̄)k = πsk(vk) +
k−1∑

n=−∞
Ak−1 ◦ · · · ◦Anπsn(vn)−

+∞∑
n=k

A−1
k ◦ · · · ◦A

−1
n ◦ πun+1(vn+1).

We will prove that G is the inverse of the map Id − T . First note that for every v ∈ Es(xk),

w ∈ Eu(xk+1) and k ∈ Z we have

|Ak(v)|xk+1
≤ λ|v|xk and |A−1

k (w)|xk ≤ λ|w|xk+1
.

Hence for every v ∈ Es(xn) and n < k we have

|Ak−1 ◦ · · · ◦An(v)|xk ≤ λ
k−n|v|xn .

Also for every w ∈ Eu(xn+1) and n ≥ k we have

|A−1
k ◦ · · · ◦A

−1
n (w)|xk ≤ λ

n−k+1|w|xn+1 .

Therefore ∣∣∣∣∣
k−1∑

n=−∞
Ak−1 ◦ · · · ◦Anπsn(vn)

∣∣∣∣∣
xk

≤
k−1∑

n=−∞
λk−n|πsn(vn)|xn

≤ N
k−1∑

n=−∞
λk−n|vn|xn

≤ N ||v̄||
k−1∑

n=−∞
λk−n

≤ N ||v̄|| λ

1− λ
and ∣∣∣∣∣

+∞∑
n=k

A−1
k ◦ · · · ◦A

−1
n ◦ πun+1(vn+1)

∣∣∣∣∣
xk

≤
+∞∑
n=k

λn−k+1|πun+1(vn+1)|xn+1

≤ N
+∞∑
n=k

λn−k+1|vn+1|xn+1

≤ N ||v̄||
+∞∑
n=k

λn−k+1

≤ N ||v̄|| λ

1− λ
.

Thus for every k ∈ Z we have

|G(v̄)k|xk ≤ N ||v̄||+N ||v̄|| λ

1− λ
+N ||v̄|| λ

1− λ
= N

(
1 + λ

1− λ

)
||v̄||.

This proves that G(v̄)k ∈ TxkM̃ for every k ∈ Z. We prove more:
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Proposition 6. If v̄ ∈ C0 then G(v̄) ∈ C0.

First we prove an auxiliary lemma:

Lemma 13. If v̄ = (vk)k∈Z ∈ C0 then
∑k−1

n=1 λ
k−n|vn|xn → 0 when k →∞.

Proof. For each ε > 0 choose K ∈ N such that |vn|xn <
ε(1−λ)

2 for every n ≥ K. For k > K we

write
k−1∑
n=1

λk−n|vn|xn =
K∑
n=1

λk−n|vn|xn +
k−1∑

n=K+1

λk−n|vn|xn .

Note that
K∑
n=1

λk−n|vn|xn = λk

(
K∑
n=1

λ−n|vn|xn

)
→ 0, k →∞.

So we can choose k ≥ K such that
K∑
n=1

λk−n|vn|xn <
ε

2
.

Moreover,

k−1∑
n=K+1

λk−n|vn|xn ≤ ε(1− λ)

2

(
k−1∑

n=K+1

λk−n

)

≤ ε(1− λ)

2

(
1

1− λ

)
=

ε

2
.

Thus for each ε > 0 there is k ∈ N such that

n−1∑
i=1

λn−i|vi|xi < ε, n ≥ k.

This finishes the proof.

Proof of Proposition 6: Let v̄ = (vk)k∈Z ∈ C0. To prove that G(v̄) ∈ C0 we need to show that

|G(v̄)k|xk → 0 when |k| → ∞. To prove this we consider separately the three terms in the expression

of G(v̄)k. The first one satisfies

|πsk(vk)|xk ≤ N |vk|xk → 0, |k| → ∞.

For the second term it is enough to prove that

k−1∑
n=−∞

λk−n|vn|xn → 0, |k| → ∞.

For k > 1 we write

k−1∑
n=−∞

λk−n|vn|xn =

0∑
n=−∞

λk−n|vn|xn +

k−1∑
n=1

λk−n|vn|xn .
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The previous lemma shows that the second sum goes to zero when k → ∞. For the first sum we

have

0∑
n=−∞

λk−n|vn|xn = λk

(
0∑

n=−∞
λ−n|vn|xn

)

≤ λk||v̄||

(
0∑

n=−∞
λ−n

)

= λk||v̄||
(

1

1− λ

)
→ 0, k →∞.

For k < 0 we argument as follows. For each ε > 0 we choose K ∈ N such that

|vn|xn <
ε(1− λ)

λ
, n ≤ −K.

Thus for k ≤ −K we have

k−1∑
n=−∞

λk−n|vn|xn ≤ ε(1− λ)

λ

(
k−1∑

n=−∞
λk−n

)

=
ε(1− λ)

λ

(
λ

1− λ

)
= ε.

This proves the desired convergence. For the third term in G(v̄)k we can use the same arguments

so we leave the details to the reader.

Lemma 14. For each v̄ ∈ C0 and each k ∈ Z the following holds:

Ak(G(v̄)k) = G(v̄)k+1 − vk+1.

Proof. For each k ∈ Z we have

Ak(G(v̄)k) = Ak ◦ πsk(vk) +

k−1∑
n=−∞

Ak ◦Ak−1 ◦ · · · ◦Anπsn(vn)− πuk+1(vk+1)

−
+∞∑

n=k+1

A−1
k+1 ◦ · · · ◦ π

u
n+1(vn+1).

To obtain the desired equality just put −πuk+1(vk+1) = πsk+1(vk+1)− vk+1 in the last one.

Proof of Theorem 16: We first prove that Id − T is surjective. Indeed, G is a right inverse for

Id− T . For every w ∈ C0 and k ∈ Z we have:

(Id− T )(G(w))k = G(w)k −Ak−1(G(w)k−1) = wk,

where the last equality is ensured by Lemma 14. To prove that Id − T is injective let v ∈ C0 be

such that (Id− T )(v) = 0, that is, T (v) = v. Then Ak−1(vk−1) = vk for every k ∈ Z. By induction

we obtain

vk = Ak−1 ◦ · · · ◦A0(v0), k > 0
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and

vk = A−1
k ◦ · · · ◦A

−1
−1(v0), k < 0.

Now note that

|vk|xk → 0, |k| → ∞,

and that this implies

πs0(v0) = πu0 (v0) = 0,

otherwise vk would converge to ∞. Therefore v0 = 0, which implies vk = 0 for every k ∈ Z and we

are done.

Remark 11. The map G is a linear isomorphism in C0 that is the inverse of Id−T and has norm

||G|| = sup
||v̄||=1

||G(v̄)|| = sup
||v̄||=1

sup
k∈Z
|G(v̄)k|xk ≤ N

1 + λ

1− λ
.

Remark 12. If f is a partially hyperbolic diffeomorphism then we can consider the same operator

G as defined above. The difference is that Lemma 14 does not hold as it is written. Indeed, the

following holds: for each v̄ ∈ C0 and each k ∈ Z we have

Ak(G(v̄)k) = G(v̄)k+1 − vk+1 + πck+1(vk+1),

where πck is the projection in the central direction Ec(xk) parallel to Es(xk)⊕Eu(xk). In this case

we have

(Id− T )(G(w))k = G(w)k −Ak−1(G(w)k−1) = wk − πck(wk)

and G is not the inverse of Id− T anymore.
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Chapter 5

Non-Anosov scenario

On this chapter we discuss the presence of the two-sided limit shadowing property for diffeomor-

phisms outside the class of Anosov diffeomorphisms. The first class we discuss is the class of Axiom

A diffeomorphisms.

Definition 17. We say that a diffeomorphism f on a compact and connected manifold M is Axiom

A when the non-wandering set of f is hyperbolic1 and the set of periodic points2 of f is dense in

the non-wandering set.

It is clear that Anosov diffeomorphisms are Axiom A diffeomorphisms. These systems do not

have a hyperbolic structure on the whole manifold M as the Anosov diffeomorphisms but they still

have some shadowing properties due to its relation to the stability theory (see [37], [43], [48]). It

is obvious that transitive Axiom A diffeomorphisms are Anosov diffeomorphisms, so a consequence

of Theorem 1 is the following:

Corollary 9. Axiom A diffeomorphisms that are not Anosov do not admit the two-sided limit

shadowing property.

There exist diffeomorphisms that admit the two-sided limit shadowing property outside the

class of Anosov diffeomorphisms. In [33] and [39] one can find examples of diffeomorphisms that

are not Anosov but are topologically conjugated3 to a transitive Anosov diffeomorphism. These

systems have the two-sided limit shadowing property by the following lemma:

Lemma 15. If f and h are homeomorphisms on a compact metric space X then f has the two-sided

limit shadowing property if and only if so does g = h ◦ f ◦ h−1.

1A compact f -invariant set Λ is hyperbolic when properties (1) and (2) on the definition of Anosov

diffeomorphisms hold on points of Λ.
2We recall that a point p ∈ M is periodic for f if there exists n ∈ N such that fn(p) = p. The set of all

periodic points of f is usually denoted by Per(f).
3Two maps f and g on a metric space X are topologically conjugated if there exists a homeomorphism h

on X satisfying g = h ◦ f ◦ h−1.

41



Proof. It is sufficient to prove one of the implications. We suppose f has the two-sided limit

shadowing and prove g also has it. Let (xk)k∈Z be a two-sided limit pseudo-orbit for g. We claim

that (h−1(xk))k∈Z is a two-sided limit pseudo-orbit for f . To see this fix any ε > 0 and choose

δ > 0 such that d(x, y) < δ implies d(h−1(x), h−1(y)) < ε. Choose N ∈ N such that if |k| > N then

d(g(xk), xk+1) < δ. Thus if |k| > N we have

d(f(h−1(xk)), h
−1(xk+1)) = d(h−1(g(xk)), h

−1(xk+1)) < ε.

As for each ε > 0 there exists N ∈ N satisfying above inequality we have

d(f(h−1(xk)), h
−1(xk+1))→ 0, |k| → ∞.

This proves that (h−1(xk))k∈Z is a two-sided limit pseudo-orbit for f . Since f has the two-sided

limit shadowing property there exists z ∈M satisfying

d(fk(z), h−1(xk))→ 0, |k| → ∞.

Now we prove that h(z) two-sided limit-shadows (xk)k∈Z. Fix any α > 0 and choose β > 0

such that d(x, y) < β implies d(h(x), h(y)) < α. Choose K ∈ N such that if |k| > K then

d(fk(z), h−1(xk)) < β. Thus if |k| > K then

d(gk(h(z)), xk) = d(h(fk(z)), h(h−1(xk))) < α.

As for each α > 0 there exists K ∈ N satisfying above inequality we have

d(gk(h(z)), xk)→ 0, |k| → ∞.

Since (xk)k∈Z was chosen arbitrarily it follows that g has the two-sided limit shadowing property.

This proves that the two-sided limit shadowing property is invariant under topological conju-

gacies and is present in any system that is topologically conjugated to a transitive Anosov diffeo-

morphism. Furthermore, we have the following question.

Question 7. Is it true that any diffeomorphism with the two-sided limit shadowing property must

be topologically conjugated to an Anosov diffeomorphism?

Remark 13. A similar problem was posed in Conjecture 1 for the Torus Tn, where we think

expansiveness is a necessary condition for the presence of the two-sided limit shadowing property.

Indeed, the main theorem in [31] says that any expansive homeomorphism on the Torus with the

shadowing property is topologically conjugated to an Anosov diffeomorphism. So a positive answer

for above question would give a positive answer to Conjecture 1.

We denote by Diff1(M) the set of all C1 diffeomorphisms on a compact manifold M endowed

with the usual C1 topology. The following holds.

Theorem 17. There exists a residual subset of Diff1(M) such that diffeomorphisms in this residual

that are not Anosov cannot be topologically conjugated to a transitive Anosov diffeomorphism.
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Proof. The main theorem in [8] proves the existence of a residual subset of Diff1(M) such that

diffeomorphisms in this residual that are not Axiom A cannot be expansive. If a diffeomorphism

that is topologically conjugated to a transitive Anosov diffeomorphism belongs to this residual then

it would be Axiom A, since it is expansive. Moreover, it would have the two-sided limit shadowing

property (by Theorem 14 and Lemma 15). So Corollary 9 shows it is Anosov, which contradicts

the hypothesis.

Remark 14. If Question 7 ends to be true then Theorem 17 would imply Theorem 4.

Since we do not have an answer to above question we prove Theorem 4 below. A central

property in the proof of this theorem is the star condition, that we define now properly.

Definition 18. A periodic point of f ∈ Diff1(M) is called hyperbolic if its orbit is a hyperbolic

set. We say f is a star diffeomorphism if there exists a C1 neighborhood U of f such that every

periodic point of every g ∈ U is hyperbolic.

In other words, the star condition means that the hyperbolicity of all periodic points persist

under small perturbations. In a remarkable paper [29] S. Hayashi proved that the class of star

diffeomorphisms is contained in the class of Axiom A diffeomorphisms. Our proof is based on this

fact and we will be interested in proving that the two-sided limit shadowing property implies the

star condition in some sense. If this is the case then Corollary 9 assures they must be Anosov.

We denote by T LS the set of all diffeomorphisms with the two-sided limit shadowing property.

Before proving Theorem4 we prove the following:

Theorem 18 ([15]). The C1-interior of T LS is equal to the set of transitive Anosov diffeomor-

phisms.

This shows that there are no open sets in T LS outside the set of transitive Anosov diffeomor-

phisms, or equivalently, that systems without the two-sided limit shadowing property are dense in

the complement of the set of transitive Anosov diffeomorphisms. To prove this theorem we make

some definitions and state some results.

Definition 19. The index of a hyperbolic periodic point p is the dimension of the stable space of

p and is denoted by ind(p).

We state a well known lemma in dynamics that bifurcates a non-hyperbolic periodic point into

two distinct hyperbolic periodic points with different indices. A proof can be found in [54] Lemma

2.4.

Lemma 16. If f ∈ Diff1(M) and p is a non-hyperbolic periodic point of f then for every C1

neighborhood U of f there are g ∈ U and p1, p2 ∈ Per(g) such that ind(p1) 6= ind(p2).

Definition 20. We say that a diffeomorphism f is Kupka-Smale if all periodic points of f are

hyperbolic and for all pair of periodic points p and q of f the manifolds W s(p) and W u(q) are

transversal.
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We denote by KS the set of all Kupka-Smale diffeomorphisms. It is well known that KS is a

residual subset of Diff1(M).

Definition 21. We say that two hyperbolic periodic points p and q are homoclinicaly related if the

stable manifold of the orbit4 of p and the unstable manifold of the orbit of q intersect transversally

and also the unstable manifold of the orbit of p and the stable manifold of the orbit of q intersect

transversally.

Remark 15. It is easy to see that two hyperbolic periodic points homoclinically related have the

same index.

The following is an important lemma.

Lemma 17. If f ∈ T LS ∩ KS then all periodic points of f have the same index.

Proof. For any periodic points p and q of f , the two-sided limit shadowing property assures the sets

W s(p)∩W u(q) and W u(p)∩W s(q) are non-empty. Since f ∈ KS these intersections are transversal.

Hence p and q are homoclinicaly related and have the same index (see Remark 15).

Proof of Theorem 18: Let f ∈ int(T LS) and U be a C1 neighborhood of f contained in T LS. We

claim that f is a star diffeomorphism. Suppose by contradiction that f is not star. Then there

exist g ∈ U and p a non-hyperbolic periodic point of g. Lemma 16 assures the existence of h ∈ U
and two distinct hyperbolic periodic points p, q of h with different indices. As these points are

hyperbolic and KS is dense in Diff1(M) we can perturb h to h̃ ∈ U ∩ KS that has two distinct

hyperbolic periodic points ph̃, qh̃ with different indices. This contradicts Lemma 17 and proves the

claim. Corollary 9 finishes the proof.

To prove Theorem 4 we first introduce some generic machinery.

Lemma 18. There exists an open and dense set P of Diff1(M) such that every f ∈ P satisfies: if

for any C1 neighborhood U of f some g ∈ U has two distinct hyperbolic periodic points with different

indices then f has two distinct hyperbolic periodic points with different indices.

Proof. Let A be the set of all diffeomorphisms admitting two distinct hyperbolic periodic points

with different indices. The hyperbolicity of these periodic points imply that A is open in Diff1(M).

If B = Diff1(M) \ A then B is also open in Diff1(M). Thus P = A ∪ B is open and dense in

Diff1(M).

For f ∈ P let (fn)n∈N be a sequence of diffeomorphisms converging to f in the C1 topology

such that each fn has two distinct hyperbolic periodic points with different indices. Thus fn ∈ A
for all n ∈ N and f ∈ P imply that f cannot belong to B and must belong to A. Hence f has two

distinct hyperbolic periodic points with different indices.

4The stable set of the orbit of a periodic point is, by definition, the union of the stable sets of each point

of his orbit. The same holds for the unstable set of the orbit of p.
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Proof of Theorem 4: It is enought to prove that diffeomorphisms in T LS ∩ KS ∩ P are star dif-

feomorphisms. If there exists f ∈ T LS ∩ KS ∩ P that is approximated in the C1-topology by

diffeomorphisms admitting a non-hyperbolic periodic point then Lemma 16 assures it is approxi-

mated by diffeomorphisms admitting periodic points with different indices. Since f ∈ P it follows

that f admits two periodic points with different indices, which is a contradiction with Corollary

17. Hence f is a star diffeomorphism.
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Chapter 6

Appendix

On this appendix we exhibit a joint work with A. Arbieto, W. Cordeiro and D. Obata, named

“On bi-Lyapunov stable homoclinic classes” that is published in the Bulletin of the Brazilian

Mathematical Society [9].

Introduction and Statement of the Results

One of the most important theorem on hyperbolic dynamics is the spectral decomposition theorem,

proved by Smale [56]. It says that the non-wandering set of an Axiom A diffeomorphism is a

disjoint union of transitive invariant compact sets. Actually, the proof show that these sets are

homoclinic classes of a periodic point inside them. Since then, the study of homoclinc classes for

more general dynamics attracts a lot of attention by many researches. Indeed, to decide if such

classes are hyperbolic under some dynamical hypothesis is an important problem. One of the most

famous is Palis’ conjecture, in [47], which says that a diffeomorphism far away from homoclinic

tangencies and heterodimensional cycles can be approximated by an Axiom A diffeomorphism. In

particular, if the diffeomorphism is generic, the spectral decomposition theorem, cited above, says

that its homoclinic classes are hyperbolic. We remark that this conjecture was proved in [52] for

surface diffeomorphisms.

The spectral decomposition theorem also says that the classes are isolated. So, many efforts

were done to understand isolated homoclinic classes for generic diffeomorphisms and there are many

satisfactory results about them. Actually, this leads to the study of tame diffeomorphisms, like in

[2]. Such diffeomorphisms has the property that they have only a finite number of chain recurrence

classes, and Abdenur shows that Palis’ conjecture is true in the set of tame diffeomorphisms, see

[2].

It is natural to study the complementary class, the so called wild diffeomorphisms. In particular,

to study non-isolated homoclinic classes. This is an important problem, since many rich dynamics
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can be generated from such classes with lack of hyperbolicity, see for example [13].

However, one can study an intermediary case between this scenario and the tame scenario,

looking for the dynamics of bi-Lyapunov stable homoclinic classes, as Potrie did in [50]. Actually,

Potrie showed that such classes always have a dominated splitting. The first result in this note is to

notice that under the hypothesis of homogeneity, weak eigenvalues can be ruled out using Potrie’s

argument.

Theorem A. Let f be a C1 generic diffeomorphism. If Λ is a bi-Lyapunov stable homogeneous

homoclinic class then there exists δ > 0 such that any periodic point contained in the class has no

δ-weak eigenvalue.

As an application, we will prove that such homoclinic classes are in fact hyperbolic provided

that they have some other dynamical property. These properties are well known in the theory of

dynamical systems. Indeed, shadowing and limit shadowing are important tools in stability theory

[49] and the specification property was used in the development of the thermodynamical formalism,

see [30], and also is present in the study of invariant measures, see [55].

Theorem B. Let f be a C1 generic diffeomorphism. If Λ is a bi-Lyapunov stable homoclinic

class which either has the shadowing property, or the specification property, or the limit shadowing

property, then it is hyperbolic. Furthermore, Λ is the whole manifold and f is Anosov.

In fact, these results are somewhat connected with two conjectures about homoclinic classes.

The first one was proposed in [5].

Conjecture 1. Let f be a C1 generic diffeomorphism and Λ a homoclinic class which has the

shadowing property. Then Λ is hyperbolic.

Actually, in [5] they proved this conjecture for isolated homoclinic classes. The second conjecture

was proposed in [3]:

Conjecture 2. Let f be a C1-generic diffeomorphism. If Ω(f) has nonempty interior then f is

transitive, in particular the Ω(f) = M .

As is remarked in [3], if Ω(f) has non-empty interior for some generic f then there exists a

homoclinic class with non-empty interior. So, it is sufficient to prove that for a generic diffeomor-

phism if a homoclinic class has non-empty interior then the diffeomorphism is transitive. In [3]

the conjecture is proved for isolated homoclinic classes, as well for strongly partially hyperbolic

homoclinic classes. In [51], the authors prove the conjecture in any dimension for classes which

their finest dominated splitting have one-dimensional extreme sub bundles. Potrie in [50] solved

the conjecture in dimension 3, studying bi-Lyapunov stable homoclinic classes.

A corollary of Theorem B is the following.
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Corollary C. If f is a C1 generic diffeomorphism with a homoclinic class with nonempty interior

satisfying the shadowing property then it is Anosov.

The paper is organized as follows. In section 2, we give precise definitions, including the ones

used in the introduction. We also collect some results that will be used. In section 3, we prove

theorem A. In section 4, we prove theorem B using two propositions, whose proofs will be postponed

to sections 5 and 6.

Definitions and some Tools

In this section we define precisely the objects that appear in the statements of the theorems in the

introduction and collect some results which will be needed later.

Domination and Hyperbolicity

Let K be a compact and invariant set. A linear subbundle E of the tangent bundle TKM is

uniformly contracted by f if it is Df -invariant and there exists N ≥ 1 such that for any x ∈ K and

any unit vector v ∈ Ex we have

||DfN (x)v|| < 1

2
.

If E is uniformly contracted for f−1 we say that it is uniformly expanded.

The set K is hyperbolic if TKM = E ⊕ F , where E is uniformly contracted and F is uniformly

expanded. We call E the stable bundle and F the unstable bundle. If the whole manifold M is

hyperbolic we say that f is Anosov.

We say that the tangent bundle over K has a dominated splitting if TKM = E ⊕ F , where E

and F are Df -invariant subbundles and there exists N ≥ 1 such that for all x ∈ K and any unit

vectors u ∈ E and v ∈ F we have

||DfN (x)u|| < 1

2
||DfN (x)v||.

A periodic point p is called hyperbolic if its orbit is a hyperbolic set. We define the index of a

hyperbolic periodic point as the dimension of the stable bundle.

Given 0 < δ < 1, we say that p has a δ-weak eigenvalue, if Dfπ(p)(p) has an eigenvalue µ such

that (1− δ)π(p) < |µ| < (1 + δ)π(p).

Finally, a diffeomorphism is hyperbolic if its chain recurrent set is hyperbolic.
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Recurrence

We recall that a sequence {xn}bn=a is an ε-pseudo orbit of f if for every j we have d(f(xj), xj+1) < δ,

where −∞ ≤ a ≤ j < b ≤ +∞.

The chain recurrent set of a diffeomorphism f , denoted by R(f), is the set of points x ∈ M
such that for each ε > 0 exists a finite ε-pseudo orbit such that x0 = x and xk = x. The chain

recurrent set contains all the periodic points, recurrent points, and non-wandering points.

It is known that R(f) can be decomposed into a disjoint union of compact, invariant and

“non-decomposable” sets. More precisely, we define a relation ! on R(f) by x! y if for every

ε > 0 there exists an ε-pseudo orbit (xn)n=k
n=0 such that x0 = x and xk = y and another ε-pseudo

orbit (yn)n∈N such that y0 = y and yn = x. Clearly ! is an equivalence relation on R(f). The

equivalence classes are called the chain recurrent classes of f .

The homoclinic class of a hyperbolic periodic point p is the closure of the transverse intersection

of the stable and unstable manifolds of p. It can also be defined as the closure of the set of periodic

points that are homoclinically related to p. We say that two hyperbolic periodic orbits O and O′ are

homoclinically related if W s(O) t W u(O′) 6= ∅ and W u(O) t W s(O′) 6= ∅. Homoclinic classes are

transitive sets, i.e. there exist a point in the class whose orbit is dense. We say that a homoclinic

class is homogeneous if all the periodic points of this class have the same index.

An invariant and compact subset Λ ⊂M is Lyapunov stable for f if for every neighborhood U

of Λ there is another neighborhood V of Λ such that fn(V ) ⊂ U for any n ≥ 1. We say that Λ is

bi-Lyapunov stable if it is Lyapunov stable for f and for f−1.

Shadowing, specification and limit shadowing properties

In this section, we give the precise definitions of the dynamical properties that were used in the

statement of the main theorems.

We start with the shadowing property.

Definition 1. A compact invariant set Λ has the shadowing property, or simply has shadowing,

if for every ε > 0 there exists δ > 0 such that for every δ-pseudo orbit {xn}n∈Z ⊂ Λ there exists

x ∈M that ε-shadows {xn}n∈Z, that is, d(fn(x), xn) < ε ∀n ∈ Z. We say that a diffeomorphism f

has the shadowing property or is shadowable if M has the shadowing property.

Now, we turn to the specification property, see [28]. First, we recall what a specification is.

Definition 2. A specification S = (τ, P ) consists of a finite collection τ = {I1, . . . , Im} of finite

intervals Ii = [ai, bi] ⊂ Z and a map P :
⋃m
i=1 Ii → M such that for each t1, t2 ∈ I ∈ τ we

have f t2−t1(P (t1)) = P (t2). The specification S is said to be L-spaced if ai+1 ≥ bi + L for all

i ∈ {1, . . . ,m}. Moreover, a specification S is ε-shadowed by x ∈ M if d(fn(x), P (n)) < ε for all

n ∈
⋃m
i=1 Ii.
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Now, we define the specification property.

Definition 3. If Λ is a compact metric space we say that f |Λ has the specification property if for

every ε > 0 there exists M ∈ N such that every M -spaced specification such that P (ai), P (bi) ∈ Λ

is ε-shadowed by x ∈ Λ. If Λ = M we just say that f has the specification property.

Finally, we turn to the limit shadowing property.

Definition 4. We say that a diffeomorphism f has the limit shadowing property if for any sequence

(xi)i∈Z ⊂ M such that d(f(xi), xi+1) → 0 as |i| → ∞ there exists a point y ∈ M such that

d(f i(y), xi)→ 0 as |i| → ∞. The sequence (xi)i∈Z ⊂M is called a limit pseudo-orbit.

Gourmelon-Franks’ lemma

In this section, we state a Frank’s-type lemma due to Gourmelon, extending [22]. Actually, we use

the approach of Potrie in [50].

A 4-tuple A = (Σ, f, E,A) is a large period linear cocycle of dimension d bounded by K over

an infinite set Σ, or simply a cocycle, if

• Σ is a set and f : Σ→ Σ is a one-to-one map such that all points in Σ are periodic and such

that given n > 0 there are only finitely many period less than n;

• π : : E → Σ is a linear bundle of dimension d over Σ, whose fibers are endowed with a

euclidian metric ||.||. The fiber over the point x ∈ Σ will be denoted by Ex.

• A : : x ∈ Σ→ Ax ∈ GL(Ex, Ef(x)) is such that ||Ax|| ≤ K and ||A−1
x || ≤ K.

For every x ∈ Σ and 1 ≤ j ≤ d, denote by π(x) its period and define the j -th Lyapunov

exponent of A at x by

σj(x,A) : =
log |λj |
π(x)

,

where λ1, ...λd are the eigenvalues of A
π(x)
x in increasing order of modulus. We say that the cocycle

Ax has a i-strong stable manifold if

σi(x,Ax) < min{0, σi+1(x,Ax)}.

Define Γx as the set of cocycles over the orbit of x. We endow it with the following distance:

d(Ax,Bx) = sup
0≤i≤π(x),v∈E−0

{
||(Af i(x) −Bf i(x))v||

||v||
,
||(A−1

f i(x)
−B−1

f i(x)
)v||

||v||

}

We also define Γx,i = {Ax ∈ Γx;Ax has a i− strong stable manifold} and set ΓΣ as the set

of all cocyles over all of the orbits of Σ.
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We say that B is a perturbation of A if for every ε > 0 the set of points in Σ such that Bx is

not ε−close to the cocycle Ax is finite. Similarly, we say that B is a path perturbation of A if for

every ε > 0 one has that the set of points x ∈ Σ such that Bx is not a perturbation of Ax along a

path of diameter ≤ ε is finite. That is, there is a path γ : [0, 1]→ ΓΣ such that γ(0) = A, γ(1) = B,

γx : [0, 1]→ Γx are continuous paths and given ε > 0 the set of x such that γx([0, 1]) has diameter

greater than ε is finite. Now, we have the notion of a path inside de the set Γx,i and we can perturb

the cocycles along a periodic orbit.

Let g be a perturbation of f such that the cocycles Dfx and Dgx are both in Γx,i and let U be

a neighborhood of Orb(x). We say that g preserves locally the i-strong stable manifold of Orb(x)

outside U if the set of points of the i-strong stable manifold of Orb(x) outside U whose positive

iterates do not leave U once they entered it are the same for f and for g.

We have the following theorem due to Gourmelon [26]:

Theorem 1. Let f be a diffeomorphism and O be a periodic orbit of f such that DOf ∈ Γi and let

γ : [0, 1]→ Γi be a path starting at DOf . Then, given a neighborhood U of O, there is a perturbation

g of f such that DOg = γ(1), g coincides with f outside U and preserves locally the i-strong stable

manifold of f outside U . Moreover, given V a C1 neighborhood of f , there exists ε > 0 such that

if diam(γ) < ε one can choose g ∈ V

Some generic results

In this section we will list some C1 generic properties.

Let X be a topological space. We call R ⊂ X a residual subset of X if R contains an enumerable

intersection of open and dense subsets of X. We say that a property is a generic property of X

if it holds on a residual subset of X. When X is the space of diffeomorphisms Diff1(M) endowed

with the C1 topology, and R is a generic subset of it where some property holds, we say that this

property holds C1-generically. Every diffeomorphism f ∈ R is called a C1-generic diffeomorphism.

We state some C1-generic properties that will be very important for proving the results pre-

sented here:

There exists a residual subset R ⊂ Diff1(M) such that every f ∈ R satisfies:

1. f is Kupka-Smale, i.e. every periodic point is hyperbolic and their invariant manifolds inter-

sect transversally, see [45].

2. The chain recurrent class that contains a periodic point p is H(p, f), see [12].

3. If q ∈ H(p, f) then H(p, f) = H(q, f), see [14].

4. H(p, f) = W s(p)
⋂
W u(p), see [14].

5. W s(p) is Lyapunov stable for f−1 and W u(p) is Lyapunov stable for f , see [14].
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6. The application g 7→ H(p, g) is continuous in f , see [1].

7. If H(p, f) is Lyapunov stable for f then there exists U a C1 neighborhood of f such that

H(pg, g) is Lyapunov stable for every g ∈ U , see [50].

8. There exists a C1 neighborhood U and an interval of natural numbers [α, β] such that for

every g ∈ U , H(pg, g) has periodic points of every index in [α, β]. Also, every periodic point

in H(p, g) has its index in that interval, see [4].

Non-existence of weak eigenvalues

In this section we prove theorem A following ideas from [50].

Proof of theorem A. Let f be a C1 generic diffeomorphism and H(p, f) be a bi-Lyapunov stable

homogeneous homoclinic class with index α. Theorem 1.1 in [50] asserts that H(p, f) has a domi-

nated splitting E⊕F such that α : = dim(E) = ind(p). Generic properties (7) and (8) implies the

existence of a C1 neighborhood U of f such that for every g ∈ U , H(pg, g) is bi-Lyapunov stable

and every periodic point contained in H(pg, g) has the same index α.

By contradiction, let us assume that for each δ > 0 there exists a periodic point qδ homoclinically

related to p with a δ-weak eigenvalue. Let ε > 0 be given by Gourmelon’s theorem applied to the

neighborhood U . We will assume that the modulus of the weak eigenvalue of qδ is between 1 and

1 + δ and we will use the Lyapunov stability for f . The other case is similar using the Lyapunov

stability for f−1. Furthermore, we can assume that the eigenvalues of qδ are all real, using the next

lemma.

Lemma 1 (Lemma 2.3 of [25]). Let f be a C1 generic diffeomorphisms. For any hyperbolic periodic

point p of f , if for any δ > 0, f has a periodic point qδ homoclinically related to p with a δ-weak

eigenvalue, then f has a periodic point p1 homoclinically related to p with a δ-weak eigenvalue,

whose eigenvalues are all real.

Let v be the eigenvector related to the weak eigenvalue of qδ. Using the splitting Tf i(qδ)M =

[Df i(qδ)v]⊕ [Df i(qδ)v]⊥, we find a basis where:

Df(f i(qδ)) =

(
Df(f i(qδ))|[Df i(qδ)v] K1

i (f)

0 K2
i (f)

)

Define γ : [0, 1]→ Γα by

γi(t) =

(
(1− t)Df(f i(qδ))|[Df(qδ)iv] + t(1−δ

1+δ )Df(f i(qδ))|[Df i(qδ)v] K1
i (f)

0 K2
i (f)

)
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We can choose δ small enough such that diam(γi) < ε. Note that,

π(qδ)−1∏
i=0

‖
(

1− δ
1 + δ

)
Df(f i(qδ))|[Df i(qδ)v]‖ =

(
1− δ
1 + δ

)π(qδ) π(qδ)−1∏
i=0

‖Df(f i(qδ))|[Df i(qδ)v]‖

≤
(

1− δ
1 + δ

)π(qδ)

(1 + δ)π(qδ) = (1− δ)π(qδ).

Choose a point xδ ∈W s(O(p))∩W u(O(qδ)) and choose a neighbourhood U of the orbit of qδ such

that:

• It does not intersect the orbit of p

• It does not intersect the future orbit of xδ

• If the orbit of xδ enters U it stays there for all its negative iterates by f .

Applying Gourmelon’s theorem, there exists g ∈ U such that the orbit of qδ has index greater

than α and so that it preserves the α strong-stable manifold of qδ outside U . This allow us to ensure

the intersection between W u(O(pg, g)) and W s(O(qδ, g)). Now, λ-lemma applies and we have that

qδ ∈W u(O(pg, g)). As H(pg, g) is Lyapunov stable for f , we obtain that W u(O(pg, g)) ⊂ H(pg, g).

Thus qδ ∈ H(pg, g), but this contradicts the fact that H(pg, g) is homogeneous of index α.

Proof of theorem B

First of all, we remark that once that is proved that a bi-Lyapunov stable homoclinic class H(p, f)

is hyperbolic then it must be the whole manifold.

Indeed, the class must be isolated. Otherwise, it cannot have local product structure. Let ε > 0,

given by the hyperbolicity of the class, such that W s
ε (x) ∩W u

ε (y) consists of a single point for any

x sufficiently close to y in the class. Let us suppose that for some such x and y this intersection,

say q, does not belong to the class. We consider d(q,H(p, f)) > 0 the distance of the point q to

the class and define δ = d(q,H(p,f))
2 . Now, let Uδ be the δ-neighborhood of H and V the associated

neighborhood given by the definition of Lyapunov stability, i.e. fn(V ) ⊂ Uδ for every n ≥ 1. But,

this is an absurd, since q ∈W u
ε (y), there exists N > 0 such that f−N (q) ∈ V .

Now, let U be an isolated neighborhood of the class. By bi-Lyapunov stability there exists a

neighborhood V ⊂ U of the class such that the orbits of all points in V are contained in U . As

H(p, f) is the maximal invariant set in U we have that V ⊂ H(p, f). This implies that H(p, f) = V ,

in particular it is closed and open in a connected manifold, so it must be the whole manifold.

Theorem B will follows from the two propositions below.

Proposition 1. If H(p, f) is an homoclinic class for a C1-generic diffeomorphism satisfying either

the shadowing, specification or the limit shadowing property then the class is homogeneous.
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Proposition 2. Let p be a hyperbolic periodic point, and Λ = C(p, f) be the chain recurrent class

containing p. Let 0 < λ < 1 and L ≥ 1 be given. Assume Λ satisfies the following properties:

1. Λ = H(p, f) and there exists a continuous Df -invariant splitting TΛM = E⊕F with dimE =

ind(p) such that for every x ∈ Λ,

||Df(x)|E(x)||.||Df(x)|F (x)|| < λ2.

2. For any q ∈ Perh(f) ∩ Λ, if π(q) > L then ind(p) = ind(q) and

π(q)−1∏
i=0

||Df(f i(q))|E(f i(q))|| < λπ(q)

π(q)−1∏
i=0

||Df(f−i(q))|F (f−i(q))|| < λπ(q)

If f |Λ has either shadowing, or specification, or the limit shadowing property then it is hyperbolic.

We postpone the proofs of these propositions and complete the proof of theorem B. We already

have property (1) since H(p, f) has a dominated splitting [50]. Property (2) also holds for f .

Indeed, theorem A guarantees that

{Df(q), Df(f(q)), . . . , Df(fπ(q)−1(q)) : q ∼f p}

is a uniformly hyperbolic family of periodic sequences of isomorphisms of Rd, since there are no

weak eigenvalues. Hence, property (2) follows from lemma II.3 in [41]. Then, proposition 2 implies

the hyperbolicity of the class. This completes the proof.

Proof of corollary C. In [51], it is proved that if f is a C1 generic diffeomorphism then an homoclinic

class with non-empty interior is bi-Lyapunov stable. We give the argument just for the sake of

completeness.

Generic property (3) implies that the base point of the class can be chosen inside the interior

of the class. Then the local stable and unstable manifolds are contained in the interior of the class.

By invariance, the closure of stable and unstable manifolds of the point p are contained in the

class. By generic property (5) we obtain H(p, f) = W s(p) and H(p, f) = W u(p). And then generic

property (4) implies that the class is bi-Lyapunov stable.

Thus, Theorem B implies that the class is hyperbolic.

Homogeneity of the class

In this section we prove proposition 1. First, we remark that the proposition was proved in [56] in

the case that the homoclinic class has the specification property. The other cases are similar, and

we prove them just for the sake of completeness.
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In both cases we fix q be a periodic point in H(p, f) and ε > 0 be such that W i
ε(p) ⊂ W i(p)

and W i
ε(q) ⊂W i(q), for i = s, u.

Shadowing

If H(p, f) has the shadowing property, we proceed as follows. There exists δ > 0 such that every

δ-pseudo orbit is ε
2 shadowed. Let x ∈ W u(p) ∩W s(p) be such that d(x, q) < δ and choose N ∈ N

such that d(f−N (x), p) < δ. We define a sequence (xn)n∈N such that:

• xn = fn(p) for all n ≤ 0

• xn = fn(f−N (x)) for all n ∈ {0, . . . , N}

• xn = fn(f−N−1(q)) for all n ≥ N + 1

This is a δ-pseudo orbit. Hence, there is z ∈ M that ε
2 -shadows (xn)n∈N. In particular, z ∈

W u
ε (p) ⊂W u(p) and fN (z) ∈W s

ε (q) ⊂W s(q). Thus z ∈W s(q)
⋂
W u(p).

By [14], we have H(p, f) = H(q, f), so using a similar argument we obtain a point z′ ∈
W s(p)

⋂
W u(q). By Kupka-Smale’s theorem, these intersections are transversal. This implies that

p and q are homoclinically related and therefore have the same index.

Limit Shadowing

If the class has the limit shadowing property, consider p and q as before. Since they are in the

same chain recurrent class, there exists a pseudo orbit {y0, y1, . . . , yk} ⊂ H(p, f) such that x0 = p

and xk = q. Consider the sequence (xn)n∈N defined by

• xn = fn(p) for all n ≤ 0

• xn = yn for all n ∈ {0, 1, . . . , k}

• xn = fn(f−k(q)) for all n ≥ K + 1

Clearly it is a limit pseudo orbit contained in H(p, f). Then there exists a point w ∈ M such

that d(f i(w), xi)→ 0 if |i| → ∞. A similar argument as before shows that w ∈W u(p)
⋂
W s(q).

Again, by [14] we can argument similarly and obtain a point w′ ∈ W s(p)
⋂
W u(q). Thus by

Kupka-Smale’s theorem these intersections are transversal and then p and q are homoclinically

related.
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Proof of Proposition 2

To prove this proposition we only need to prove that the subbundle E is contracting, the argument

used to prove that F is expanding is the same. We remark that proposition 2 was proved in [24] if

the class has the shadowing property. In the other cases we need to prove the following technical

lemma, after that the proof goes as in [24]. In order to not complicate the notation, we will use

Df |E(x) to denote Df(x)|E(x).

Lemma 2. Let Λ = C(p, f) satisfying all hypothesis of Proposition 2. Assume E is not contracting,

then for any λ < η < η′ < 1 and any neighborhood U of Λ there exists a ∈ U with Orb(a) ⊂ U such

that

lim inf
n→∞

n−1∑
j=0

log(||Df |E(fj(a))||) < η < lim sup
n→∞

n−1∑
j=0

log(||Df |E(fj(a))||) < η′

Indeed, as we will see below, in section 6, if E is not contracting, the orbit given by this lemma

will have some segments that can be shadowed, creating periodic orbits that will contradict the

item (2) of proposition 2.

Specification Property

In this section we prove lemma 2 when f |Λ has the specification property:

Suppose E is not uniformly contracted, then there exists b ∈ Λ such that

n−1∏
j=0

||Df |E(fj(b))|| ≥ 1 for all n ≥ 1.

Let

α : = min

{
1

6
log η − 1

3
log η′,

1

4
(log η − log λ)

}
.

Fix ε small enough such that if d(x, y) < ε, then

| log(||Df |E(x)||)− log(||Df |E(y)||) |< α.

For this ε choose L ∈ N from the specification property. Let

K : = max{log(||Df(x)||;x ∈M)}.

Let Q ⊂ Λ be a hyperbolic periodic orbit with π(Q) > L. We will construct, by induction, a

sequence of L-specifications by combining O(b) with Q. Fix q ∈ Q.

By hypothesis (2) of proposition 2, we can choose n1 ∈ N such that

1

n1π(q) + L

n1π(q)−1∑
j=0

log ||Df |E(fj(q))||+ L logK

 <
1

2
(log(λ) + log(η)).
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Define e1 = n1π(q) + L and

G1 =

n1π(q)−1∑
j=0

log ||Df |E(fj(q))||+ L logK.

Then the above inequality tells that

1

e1
G1 <

1

2
(log(λ) + log(η)).

By the choice of b we can choose l1 ∈ N such that

1

l1

l1−1∑
j=0

log ||Df |E(fj(b))‖ ≥
1

2
(log η′ + log η)

and if we define f1 = e1 + L+ l1 = n1π(q) + 2L+ l1 and

B1 = G1 + L logK +

l1∑
j=0

log ||Df |E(fj(b))||

then
1

f1
B1 ≥

1

3
(log η + log η′).

Define

I1 = {0, . . . , n1π(q)} and I ′1 = {n1π(q) + L, . . . , n1π(q) + L+ l1}.

If we set P (n) = fn(q) for all n ∈ I1 and P (n) = f−n1π(q)−L+n(b) for all n ∈ I ′1, we get a

L-spaced specification (I1, I
′
1;P ).

Suppose we have defined n1, . . . , nk, l1, . . . , lk and I1, I
′
1, . . . , Ik, I

′
k satisfying the following.

For every 1 ≤ m ≤ k, we set Nm : =
∑m

j=1 nj , Lm : =
∑m

j=1 lj ,

Gm =
m∑
i=1

niπ(q)−1∑
j=0

log ||Df |E(fj(q))||+ 2(m− 1)L logK +
m−1∑
i=1

li∑
j=0

log ||Df |E(fj(b))||,

Bm = Gm + L logK +

lm∑
j=0

log ‖Df |E(fj(b)‖

=
m∑
i=1

niπ(q)−1∑
j=0

log ||Df |E(fj(q))||+ 2mL logK +

m∑
i=1

li∑
j=0

log ||Df |E(fj(b))||,

em : = Nmπ(q) + (2m− 1)L+ Lm−1 and fm : = em + L+ lm = Nmπ(q) + (2m)L+ Lm
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Then, we require that
1

em
Gm <

1

2
(log(λ) + log(η)),

1

fm
Bm ≥

1

3
(log(η) + log(η′)),

and that (I1, I
′
1, . . . , Im, I

′
m;P ) is a L-spaced specification.

Hypothesis (2) of proposition 2 allow us again to choose nk+1 ∈ N large enough such that

1

nk+1π(q) + L

nk+1π(q)−1∑
j=0

log ‖Df |E(fj(q))‖ < log λ and

1

fk + nk+1π(q) + L
(Bk + L logK) is sufficiently small.

We set ek+1 = fk + nk+1π(q) + L and

Gk+1 : = Bk + L logK +

nk+1π(q)−1∑
j=0

log ‖Df |E(fj(q))‖.

Thus,
1

ek+1
Gk+1 <

1

2
(log λ+ log η).

The choice of b allow us to choose lk+1 ∈ N such that:

1

ek+1 + lk+1 + L

lk+1−1∑
j=0

log ‖Df |E(fj(b))‖ ≥
1

2
(log η + log η′) and

1

ek+1 + lk+1 + L
(Gk+1 + L logK) is sufficiently small

We set, fk+1 = ek+1 + lk+1 + L and

Bk+1 = Gk+1 + L logK +

lk+1∑
j=0

‖Df |E(fj(b))‖.

Thus,
1

fk+1
Bk+1 ≥

1

3
(log(η) + log(η′))

We define

Ik+1 = {0, . . . , nk+1π(q)} and I ′k+1 = {nk+1π(q) + L, . . . , nk+1π(q) + L+ lk+1}.

If we set P (n) = fn(q) for all n ∈ Ik+1 and P (n) = f−nk+1π(q)−L+n(b) for all n ∈ I ′k+1, then

(I1, I
′
1, . . . , Ik+1, I

′
k+1;P ) is a L-spaced specification.
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By induction, we define sequences (nk)k∈N, (lk)k∈N of natural numbers and (I1, I
′
1, . . . , Ik, I

′
k;P )k∈N

of L-spaced specifications.

The specification property ensures the existence of a sequence (xk)k∈N ⊂ Λ such that xk ε-

shadows the specification (I1, I
′
1, . . . , Ik, I

′
k;P ) for all k ∈ N.

The choice of ε implies that each point xk satisfies the following.

For each 1 ≤ m ≤ k, if we define

GSm =

em−1∑
j=0

log ||Df |E(fj(xk))‖

=
m∑
i=1

∑
j∈Ii

log ‖Df |E(fj(xk))‖+
m−1∑
i=1

∑
j∈I′i

log ‖Df |E(fj(xk))‖+ (2m− 1)L logK

Then

GSm <

 m∑
i=1

∑
j∈Ii

log ‖Df |E(P (j))‖+

m−1∑
i=1

∑
j∈I′i

log ‖Df |E(P (j))‖+ (2m− 1)L logK

+

+ emα = Gm + emα

and
1

em
GSm <

1

em
Gm + α <

3

4
log η +

1

4
log λ,

And if we define

BSm : =

fm−1∑
j=0

log ||Df |E(fj(xk))||

=
m∑
i=1

∑
j∈Ii

log ‖Df |E(fj(xk))‖+
m∑
i=1

∑
j∈I′i

log ‖Df |E(fj(xk))‖+ 2mL logK

then,

BSm ≥

 m∑
i=1

∑
j∈Ii

log ‖Df |E(P (j))‖+
m∑
i=1

∑
j∈I′i

log ‖Df |E(P (j))‖+ 2mL logK

−
− fmα = Bm − fmα

and
1

fm
BSm ≥

1

fm
Bm − α ≥

2

3
log η′ +

1

6
log η

By compactness, we may assume, by taking a subsequence if necessary, that (xk)k∈N converges

to a point a ∈ Λ. We claim that the point a satisfies the lemma. Indeed, for each N ∈ N, we can
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take n ∈ N larger enough such that the segments of orbit {a, . . . , fN (a)} and {xn, . . . , fN (xn)} are

ε-close for the Hausdorff distance.

By the choice of ε we can argue similarly as above to prove that the point a satisfies:

1

N

N−1∑
j=0

log ||Df |E(fj(a))||

 < log(η), if N ∈ [ek, fk) for some k ∈ N

1

N

N−1∑
j=0

log ||Df |E(fj(a))||

 ≥ log(η′), if N ∈ [fk, ek+1) for some k ∈ N

And this happens for all N ∈ N. Thus we can conclude that the orbit of a satisfies the lemma.

The limit shadowing case

We prove 2 when f |Λ has the limit shadowing property:

If E is not uniformly contracted we can choose b as in the specification case and ε > 0 small

enough such that if d(x, y) < ε, then

| log(||Df |E(x)||)− log(||Df |E(y)||) |< min

{
1

3
(log η − log η′),

1

2
(log η − log λ)

}
.

Now, we create a limit pseudo orbit as follows.

First we consider a sequence of periodic orbits (Qn) ⊂ Λ such that Qn is 1
n -dense in Λ. We can

suppose that π(Qn) > L for all n ∈ N. We then consider a point q1 ∈ Q1 such that d(q1, b) < 1.

Define x−j = f−j(q1) for all j ≥ 0.

Let n1 = 1. Define e′1 = n1π(q1) and

G′1 =

n1π(q1)−1∑
j=0

log ||Df |E(xj)||

Then
1

e′1
G′1 <

1

2
(log λ+ log η).

Define xj = f j(q1) for j = 1, . . . , n1π(q1)− 1.

Choose l1 ∈ N such that

1

l1

l1−1∑
j=0

log ‖Df |E(fj(b))‖ ≥
1

2
(log η + log η′)
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and if f ′1 = e′1 + l1 and

B′1 =

n1π(q1)−1∑
j=0

log ||Df |E(xj)||+
l1−1∑
j=0

log ‖Df |E(fj(b))‖,

then
1

f ′1
B′1 ≥

1

3
(log(η) + log(η′))

Define xj = f j(f−n1π(q1)(b)) for j = n1π(q1), . . . , n1π(q1) + l1 − 1.

Suppose we have defined q1, . . . , qk, n1, . . . , nk, l1, . . . , lk and (xj)
Nk+Lk
j=−∞ satisfying the following.

For every 1 ≤ m ≤ k, d(qm, (b)) <
1
m . We define Nm : =

∑m
j=1 njπ(qj), Lm : =

∑m
j=1 lj ,

G′m =
m∑
i=0

niπ(qi)−1∑
j=0

log ||Df |E(fj(qj))||+
m−1∑
i=0

li−1∑
j=0

log ||Df |E(fj(b))‖,

B′m =
m∑
i=0

niπ(qi)−1∑
j=0

log ||Df |E(fj(qj))||+
m∑
i=0

li−1∑
j=0

log ||Df |E(fj(b))‖,

e′m = Nm + Lm−1 and f ′m = Nm + Lm.

We require that
1

e′m
G′m <

1

2
(log λ+ log η)

and that
1

f ′m
B′m ≥

1

3
(log η + log η′)

Also define

xj =

f j(f−Nm−1−Lm−1(qm)) if j ∈ [f ′m−1; e′m)

f j(f−Nm−Lm−1(b)) if j ∈ [e′m; f ′m)
.

Let qk+1 ∈ Qk+1 such that d(qk+1, b)) <
1

k+1 .

Hypothesis (2) allows us to choose nk+1 ∈ N such that:

1

nk+1π(qk+1)

nk+1π(q)−1∑
j=0

log ‖Df |E(fj(qk+1))‖ < log λ and

1

f ′k + nk+1π(qk+1)

 m∑
i=0

li−1∑
j=0

log ||Df |E(fj(b))‖

 is sufficiently small.
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If we define

G′k+1 =

k+1∑
i=0

niπ(qi)−1∑
j=0

log ||Df |E(fj(qj))||+
k∑
i=0

li−1∑
j=0

log ||Df |E(fj(b))‖

then
1

e′k+1

G′k+1 <
1

2
(log λ+ log η)

The choice of b allow us to choose lk+1 ∈ N such that:

1

e′k+1 + lk+1

lk+1−1∑
j=0

log ‖Df |E(fj(b))‖ ≥
1

2
(log η + log η′) and

1

e′k+1 + lk+1
G′k+1 is sufficiently small.

If we define f ′k+1 = e′k+1 + lk+1 and

B′k+1 =

k+1∑
i=0

niπ(qi)−1∑
j=0

log ||Df |E(fj(qj))||+
k+1∑
i=0

li−1∑
j=0

log ||Df |E(fj(b))‖,

then
1

f ′k+1

B′k+1 ≥
1

3
(log η + log η′)

Thus, by induction we define sequences (nk)k∈N, (lk)k∈N of natural numbers, (qk)k∈N, qk ∈ Qk,

and (xj)j∈Z ⊂ Λ satisfying the above inequalities.

By the choice of (qk)k∈N, (xj)j∈Z is a limit pseudo orbit contained in Λ that satisfies the

following.

For each k ≥ 1,

1

e′k

e′k−1∑
i=0

log ||Df |E(xi)|| <
1

2
(log λ+ log η),

1

f ′k

f ′k−1∑
i=0

log ||Df |E(xi)|| ≥
1

3
(log η + log η′)

Since f has the limit shadowing property, there exists a point y ∈M such that d(f i(y), xi)→ 0

when |i| → ∞. Then, there exists n ∈ N such that d(f i(y), xi) < ε for all i ≥ n. By the choice of

ε, we can argue similarly to the specification case and obtain that the point a = fn(y) satisfies the

lemma. �
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End of the proof of Proposition 2

Using Proposition 2.3 and lemma 3.7 in [24] if we suppose that the bundle E does not contract, we

can obtain periodic orbits (qk)k∈N arbitrarily close to Λ such that their stable and unstable manifold

have an uniform size, that is, there exists ε > 0 such thatW cs
ε (qk) ⊂W s(qk) andW cu

ε (qk) ⊂W u(qk),

where W cs denotes the local foliation tangent to the subbundle E of the dominated splitting E⊕F
over the homoclinic class (the same for W cu), see [32]. Moreover, we have:

n−1∏
i=0

||Df |E(f i(qk))|| < η′n for any n ≥ 1

n−1∏
i=0

||Df−1|F (f−i(qk))|| ≥
(
λ2

η

)n
for any n ≥ 1.

This implies that if k is large enough, all qi, i ≥ k, are homoclinically related, that is H(qi, f) =

H(qj , f) for any i,j ≥ k. By taking a subsequence, we may assume that (qk)k∈N converge to a point

z ∈ H(p, f). Therefore, qi ∈ H(p, f) for any i ≥ k. But this contradicts property (2) of Proposition

2. Hence we obtain that the bundle E must contract uniformly. We can make the same argument

for the bundle F and obtain hyperbolicity of the class. This completes the proof of Proposition 2.
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