
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

INSTITUTO DE FÍSICA
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Resumo

Método lattice-Boltzmann para fluidos semi-clássicos

e sua aplicação para hidrodinâmica de elétrons

Rodrigo Carlos Viana Coelho

Orientador: Mauro M. Doria

Coorientador: Hans J. Herrmann

Resumo da Tese de Doutorado apresentada ao Programa de Pós-Graduação
em F́ısica do Instituto de F́ısica da Universidade Federal do Rio de Janeiro -
UFRJ, como parte dos requisitos necessários à obtenção do t́ıtulo de Doutor
em Ciências (F́ısica).

Experimentos recentes apontaram que os portadores de carga em grafeno podem apre-

sentar comportamento hidrodinâmico para uma ampla gama de temperaturas e densidades

de portadores. Isto é devido à sua fraca interação elétron-fônon e às novas tecnologias

para produzir amostras ultra-limpas, o que permite que o espalhamento entre elétrons

domine sobre outros espalhamentos. Além disso, o comportamento hidrodinâmico pode

ser observado em muitos outros materiais novos incluindo o paládio-cobalto metálico 2D,

isolantes topológicos e semimetais de Weyl. Para investigar esses fenômenos, a equação

de Navier-Stokes é resolvida, analiticamente ou numericamente, em geometrias simples e

para fluxos estacionários. Neste contexto, o método lattice-Boltzmann (LBM) surge como

um método computacional eficiente para simular fluxos de fluido eletrônico em geometrias

complexas sem necessidade de malhas sofisticadas e ele permite também investigar esta-

dos transitórios do fluxo. O LBM teve um enorme sucesso para simular fluidos clássicos

devido às suas muitas vantagens em relação a outros métodos de fluidodinâmica computa-

cional como a fácil implementação dos algoŕıtimos e sua fácil paralelização em placas de
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v́ıdeo. Nós ilustramos aqui o uso do LBM para fluidos clássicos ao investigar propriedades

fluidodinâmicas de meios porosos, o que é uma aplicação comum do LBM na ind́ıstria de

óleo e gás.

Nesta tese, desenvolvemos LBMs para fluidos semiclásicos e aplicamos-os para simular

elétrons em metais e em grafeno. Os polinômios de Hermite fornecem a base matemática

para os LBMs clássicos porque sua função de peso é muito semelhante à distribuição

Maxwell-Boltzmann. No entanto, esses polinômios não são adequados para expandir as

distribuições de Bose-Einstein e Fermi-Dirac, que são usadas em nossos modelos semi-

clásicos. Para resolver este problema, desenvolvemos um novo conjunto de polinômios

que nos permitem escolher pesos apropriados para nossa expansão. Assim, os LBMs de-

senvolvidos nesta tese são capazes de tratar fluidos de bósons e férmions longe do regime

clássico. Como uma aplicação, nós constrúımos e testamos um LBM para elétrons em

metais e o usamos para recuperar a lei de Ohm forçando o fluido eletrônico a passar por

obstáculos alocados aleatoriamente de forma análoga a um meio poroso clássico, o que

ilustra a aplicabilidade do novo método para geometrias complexas. Além disso, também

constrúımos um LBM semiclásico para part́ıculas ultra-relativ́ısticas, que é o primeiro a re-

cuperar a dissipação completa de um fluido relativ́ıstico. Este modelo é usado para calcu-

lar numericamente, com alta precisão, a viscosidade cinemática e a condutividade térmica

para part́ıculas ultra-relativ́ısticas em duas dimensões, o que deve servir para futuras com-

parações com cálculos anaĺıticos. Para incluir as propriedades pseudo-relativ́ısticas dos

elétrons no grafeno, como a relação de dispersão linear, utilizamos o nosso novo LBM rel-

ativ́ıstico para investigar a instabilidade fluidodinâmica de Kelvin-Helmholtz no fluido de

Dirac de portadores de carga em grafeno. Propomos uma experiência baseada no fluxo de

elétrons através de um obstáculo micrométrico para observar e detectar essa instabilidade.

Esta aplicação em particular ilustra o uso de LBM para investigar estados transientes do

fluxo de elétrons.
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Abstract

Lattice Boltzmann method for semiclassical fluids

and its application for electron hydrodynamics

Rodrigo Carlos Viana Coelho

Advisor: Mauro M. Doria

Co-advisor: Hans J. Herrmann

Abstract da Tese de Doutorado apresentada ao Programa de Pós-Graduação
em F́ısica do Instituto de F́ısica da Universidade Federal do Rio de Janeiro -
UFRJ, como parte dos requisitos necessários à obtenção do t́ıtulo de Doutor
em Ciências (F́ısica).

Recent experiments have pointed out that the charge carriers in graphene can exhibit

hydrodynamic behavior for a wide range of temperatures and carriers densities. This is

due to its weak electron-phonon interaction and to the new technologies to produce ultra-

clean samples, which allows the electron-electron scattering to dominates over the other

scatterings. Furthermore, hydrodynamic behavior might be observable in many other

novel materials including the 2D metal palladium cobaltate, topological insulators, and

Weyl semimetals. To investigate these phenomena, the Navier-Stokes equation have been

solved, analytically and numerically, in very simple geometries and for steady state flows.

In this context, the lattice Boltzmann method (LBM) arises as an efficient computational

method to simulate flows of electronic fluid in complex geometries without the need of

sophisticated meshes and also to investigate transient states of the flow. The LBM have

had an enormous success to simulate classical fluids due to its many advantages over other

computational fluid dynamic methods as the easy implementation and parallelization. We
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illustrate here the use of the LBM for classical fluids by investigating the fluid dynamic

properties of porous media, which is a common application of LBM in the oil industry.

In this thesis, we develop LBMs for semiclassical fluids and apply them to simulate

electrons in metals and in graphene. The Hermite polynomials provides the mathematical

basis for the classical LBMs because its weight function is very similar to the Maxwell-

Boltzmann distribution. Nevertheless, these polynomials are not suitable to expand the

Bose-Einstein and the Fermi-Dirac distributions, which are used in our semiclassical mod-

els. To solve this problem, we develop a new set of polynomials that allow us to choose

appropriate weights for our expansion. Thereby, the LBMs developed in this thesis are

able to treat fluids of bosons and fermions far from the classical regime. As an appli-

cation, we build and test a LBM for electrons in metals and use it recover the Ohm’s

law by forcing the electronic fluid to pass through randomly placed obstacles analogous

to a porous medium, which illustrate the applicability of the new method for complex

geometries. Besides that, we also construct a semiclassical LBM for ultra-relativistic par-

ticles, which is the first one to recover the full dissipation of a relativistic fluid. This

model is used to calculate numerically, with high precision, the kinematic viscosity and

the thermal conductivity for ultra-relativistic particles in two dimensions, which should

serve for future comparisons with analytical calculations. In order to include the pseudo-

relativistic properties of electrons in graphene, as the linear dispersion relation, we use

our new relativistic LBM to investigate the fluid dynamic instability of Kelvin-Helmholtz

on the Dirac fluid of charge carriers in graphene. We propose an experiment based on the

flow of electrons through a micro-scale obstacle to observe an detect this instability. This

application illustrates the use of LBM to investigate transient states of the electron flow.

Keywords: Lattice Boltzmann method, semiclassical fluids, electron hydrodynamics,

computational fluid dynamics.
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Chapter 1

Introduction

In this chapter, we briefly review the main concepts related to this thesis and

explain our motivations based on the state of the art of this field. First, we review the

literature about semiclassical fluids and the possibility of modeling them using the lattice

Boltzmann method (LBM). Then, we describe some recent experiments which were able

to detect the hydrodynamic effects of electrons in graphene. Next, we use the classical

LBM (standard) as an example to explain how the method works and we comment about

the relativistic models. Finally, we conclude and make a summary of the next chapters.

1.1 Semiclassical fluids

In 1900, Paul Drude explained the transport properties of electrons in materials by

treating them like particles in a rarefied gas whose microscopic velocities satisfy the

Maxwell-Boltzmann (MB) equilibrium distribution function (EDF) [7,65]. However, elec-

trons are fermions whose microscopic velocities are distributed according to the Fermi-

Dirac (FD) distribution instead of the MB one. Indeed, in 1927, Arnold Sommerfeld

showed that even at room temperature the quantum mechanical properties of the elec-

tron gas are relevant. The gas is essentially governed by their zero temperature properties,

where they are piled in energy according to the Pauli exclusion principle. Only the elec-

trons with the highest energy (Fermi energy) are available for conduction. Thus, the
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conduction electrons move with the Fermi speed instead of the thermal microscopic ve-

locity. Interestingly, the Boltzmann equation with the Bhatnagar-Gross-Krook (BGK)

collision operator provides the standard framework to understand the Drude-Sommerfeld

model that describes the electrons in metals [65]. In the 1930’s E. A. Uheling and G. E.

Uhlenbeck [149] were the first ones to generalize the Boltzmann equation to account for

particles obeying either Bose-Einstein (BE) and FD statistics.

In the 1950’s Bhatnagar, Gross and Krook proposed to describe collisions among

particles in the Boltzmann equation through relaxation of the distribution function to an

EDF within a typical time τ . This collision term became fundamental for the development

of computationally efficient algorithms to solve the Boltzmann equation. Nevertheless,

only in the 1980’s this goal was fully reached by the development of the LBM, which

numerical solution of the Boltzmann-BGK equation relies on a discretization of space

and time. The ability to simulate flows in complex geometries had been finally reached

and, since then, it has been extensively used to tackle many problems of classical fluid

dynamics ranging from biology to material science [82]. It features an elegant solution

for the quadrature problem, by means of the D-dimensional Hermite polynomials, which

is the exact calculation of an integral in a discrete lattice. The expanded EDF in terms

of the ratio between the macroscopic velocity and a reference velocity (Mach velocity)

still respects the conservation laws of hydrodynamics [85] in the time evolution process.

However the proposal of such a LBM for semiclassical fluids remained as an open problem,

although the existing interest to solve the Boltzmann equation in arbitrary geometries and

in presence of granular non-conducting grains (defects or impurities).

The Hermite polynomials are well fitted to describe classical particles, that is, those

obeying the MB statistics, since they are orthonormal under the Hermite weight func-

tion which is essentially the MB EDF. Previous attempts [30, 34, 67, 130, 157] to build a

semiclassical LBM were based on the expansion of the BE-FD distributions in Hermite

polynomials, but they were limited to a nearly classical regime since the weight function of
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the Hermite polynomials differs greatly from the BE-FD distributions on the semiclassical

or quantum regimes (low temperatures and high densities). Recently, Coelho, Ilha and

Doria have proposed a semiclassical LBM to reach this goal, based on new D-dimensional

polynomials [31] (Chap. 4). The point of view of Ref. [31] is that a new polynomial set

must be used for semiclassical fluids where the weight function is similar or equal to the

EDF.

The three fundamental EDFs of statistical mechanics are the MB for classical distin-

guishable particles, the FD for fermions and the BE for bosons, the last two ones are

indistinguishable semiclassical particles. The quantum statistics takes into account that

particles have an intrinsic wavelength, which if larger than their average separation, makes

them overlap and turn them indistinguishable from each other. Oppositely in case of low

densities the BE-FD statistics reduce to the MB statistics where particles are distinguish-

able since this overlap is sufficently small to be neglected. However for a large range of

density and temperature quantum effects are still present and for this reason the BE-FD

statistics are known as semiclassical statistics whereas MB is a classical statistics.

1.2 Electron hydrodynamics in graphene

Graphene [22, 111, 112] has caught a lot of attention due to its excellent electrical,

mechanical and thermal properties, which open many possibilities for technological ap-

plications. Close to the charge neutrality point, the charge carriers in graphene show a

relativistic dispersion relation making them behave effectively as a Dirac fluid of massless

quasi-particles moving with the Fermi speed (vF ∼ 106 m/s), with a very low viscosity-

entropy ratio [106] and very high thermal conductivity [8]. It also shows an extremely

high electrical mobility, reaching saturation velocities above 3 × 105 m/s for low carrier

densities even at room temperature [41].

Recently there has been a great interest in the hydrodynamic regime of charge carri-

ers in conductors [5, 110]. To achieve this regime, the electron-electron scattering must
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Figure 1.1: (Left) Comparison between viscous and ohmic flow of electron in graphene
calculated from Navier-Stokes equation. The colors represents the electrical potential
in arbitrary units and the streamlines and the arrows indicates the electrical current.
In the viscous flow, we see the formation of the whirlpools, which explain the negative
nonlocal resistance. (Right) Voltage at a distance x from the contacts (see the inset)
for different resistivity-to-viscosity ratios (ρ/η). The arrows indicate where the voltage
changes its sign, which provides a way to measure the ratio ρ/η in experiments. Reprint
from Ref. [86].

dominate over the electron-impurities and the electron-phonon scattering, which is dif-

ficult to obtain for most metals and semi-conductors. Before graphene, one of the few

observations of such hydrodynamic effects in solids was an analogue of Poiseuille flow in

two-dimensional high mobility wires of (Al,Ga)As heterostructures [38] theoretically pre-

dicted by Gurzhi [58]. Recent experiments have shown that electrons in graphene exhibit

hydrodynamic behavior for a wide range of temperatures and carrier densities [9], due

to weak electron-phonon scattering [142] and to new technologies to produce ultra-clean

samples [133]. Remarkably, the formation of whirlpools (vortices) in graphene was pre-

dicted and subsequently observed [9,86,119,145] providing unambiguous detection of the

viscous regime (See Figs. 1.1 and 1.2). Those whirlpools are able to explain the observed

negative resistance close to contacts. Another evidence for the hydrodynamic regime in

graphene was found for electrons passing through a constriction Refs. [57, 83]. In this

experiment, the measured electrical mobility exceeds the maximum limit predicted for

the ballistic regime, but can be explained by the hydrodynamic model. In addition, a
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signature of the Dirac fluid was pointed out in Ref. [36] by the observation of a breakdown

of the Wiedemann-Franz law close to the charge neutrality point.

Figure 1.2: Experimental detection of viscous flow of electrons in doped graphene. Cal-
culated steady-state current injected through a narrow slit for A) a inviscid fluid and
B) for a viscous fluid. C) Optical micrography of the device with single layer graphene
used in the experiments. D and E) Longitudinal conductivity σxx and vicinity resistance
Rv = Vv/I as a function of the carrier density n for three different temperatures. Reprint
from Ref. [9].

The Boltzmann equation [23, 81] is widely used to derive hydrodynamic equations

for graphene, since the macroscopic collective behavior of charge carriers, not always

recovered by standard hydrodynamics, can be calculated from first principles [20, 46,

53, 105, 108–110, 123]. In Ref. [20], the generalized Navier-Stokes for electronic flow in

graphene is derived with a procedure similar to the Chapman-Enskog expansion [26].

Interestingly, the resulting hydrodynamic equations are not Lorentz or Galilean invariant

due to nonlinear terms, which are specially relevant in the high velocity regime. The

Boltzmann equation is not valid at the quantum critical point where charge density and

temperature are equal to zero. Nevertheless in experiments performed at finite carrier

density, controlled by an external gate voltage, the Boltzmann equation is expected to

give reliable results [22].
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1.3 The lattice Boltzmann method

1.3.1 Classical LBM

The LBM [82,136] is a computational fluid dynamics technique based on the space-time

discretization of the Boltzmann equation that has been successfully applied to simulate

classical, semi-classical [30, 31, 157], quantum [115, 116, 135] and relativistic fluids. It has

many advantages over other numerical methods as the facility to simulate flows through

complex geometries and the easy implementation and parallelization of computational

codes. Here we describe the basics about the standard LBM (classical fluids), which was

used in Chap. 2 to simulate flows in porous media. Due to its simplicity, it serves as

an introduction to understand the more sophisticated LBM’s developed in this thesis for

non-relativistic and relativistic semiclassical fluids.

The Boltzmann equation [80] in its finite-difference form, is given by

f(x + ξ∆t, ξ +
F

m
∆t, t+ ∆t)− f(x, ξ, t) = ∆t

(
∂f

∂t

)
coll

, (1.1)

where x is the position, ξ is the microscopic velocity, t is the time, F is the external force

and m is mass of the particles. Expanding (1.1) up to first order in ∆t, we obtain the

Boltzmann equation in its continuous form,

∂f

∂t
+
∂f

∂xi
ξi +

∂f

∂ξi
F i =

(
∂f

∂t

)
coll

. (1.2)

The above equation gives the time evolution of the distribution function, f(x, ξ, t), by

knowing the collision operator, (∂f/∂t)coll, which includes all information about atomic

aspects of scattering process of the particles in the gas. The BGK collision term [14],(
∂f

∂t

)
coll

= −f(x, ξ, t)− f eq(x, ξ, t)

τ
,

is the simplest and commonly used in LBM. It assumes that the non-equilibrium function

f(x, ξ, t) tends to the EDF f eq(x, ξ, t) with a characteristic time τ , called “relaxation

time”. To illustrate this, note that when the external force is zero and the fields are
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homogeneous, the integration of Boltzmann-BGK equation in its continuous form becomes

f = f eq + (f init − f eq)e−t/τ , where f init is the distribution function at t = 0. Despite its

simplicity, the BGK collision term leads to the correct equations of mass and momentum

conservation (Navier-Stokes equations) [101]. As a consequence of using a single relaxation

time, the macroscopic moments, i.e., density and velocity, change at the same rate. The

choice of relaxation time in the simulation has an impact on fluid flow, since the kinematic

viscosity depends on τ [101]. In LBM the position and velocity spaces are discretized [121]

as illustrated in Figure 1.3. The time step ∆t, used in (1.1), is the time for a particle

to move from its site to one of the first neighbors sites and this time step, together with

the lattice parameter (a) form a system of unities called lattice units [101], which can be

converted for any other system of units.

x

y

x

y

1

2

3

4

56

7 8

0

Continum phase space Discrete phase space

a
a

Figure 1.3: Discretization of position and velocity spaces using the D2V9 lattice (two
dimensions and nine velocity vectors). Reprint from Ref. [33]

We conveniently write the discrete Boltzmann equation (1.1) in two steps,

fauxα (x, t+ ∆t) = fα(x, t)− 1

τ
[fα(x, t)− f eqα (x, t)], (1.3)

fα(x+ ξα∆t, t+ ∆t) = fauxα (x, t+ ∆t) (1.4)

by introducing a auxiliary distribution function fauxα (x, t). These two steps can be in-

terpreted as collision and streaming of fictitious particles, respectively. In the standard

LBM, the EDF is given by the MB distribution expanded up to second order in Hermite



8

Polynomials:

f eqα = ρwα

[
1 +

(ξα · u)

c2
s

− u2

2c2
s

+
(ξα · u)2

2c4
s

]
. (1.5)

The discrete weights wα are calculated through the Gauss-Hermite quadrature [1]. For

the D2V9 lattice, they are w0 = 4/9 for α = 0, ws = 1/9 for α = 1, 2, 3, 4 and wl = 1/36

for α = 5, 6, 7, 8, while cs = 1/
√

3 is the sound speed.

Figure 1.4: Streaming step for the D2V9 lattice. Reprint from Ref. [40]

The basic algorithm can be summarized as follows (see Fig. 1.5):

a) Initial conditions: The macroscopic variables ρ, u are initialized to given values in

f eqα (x, t).

b) Collision: The Eq.(1.3) describes how the distribution function changes at each node,

as if it had undergone a collision.

c) Streaming: The Eq.(1.4) gives the evolution of the distribution function for a time

step ∆t, as if it had undergone a propagation. So, in the streaming step we move the

direction-specific function fα to the nearest neighbor lattice nodes, as shown in figure 1.4

for the D2V9 lattice.

d) Macroscopic quantities: Using the weights of the lattice we can calculate the

moments of the distribution function

ρ =
∑
α

fα, u =
1

ρ

∑
α

ξαfα. (1.6)



9

e) EDF: Once in power of these three moments, we go introduce them in the EDF of

Eq.(1.5)

f) Repeat from b to e for each step time until you want (for instance, until the steady

state is reached).

The steps from b to e can be cyclically permuted. The boundary conditions can be

implemented together with the streaming step just by replacing the distributions at the

obstacles surface by the ones given by the specific boundary condition. See Fig. 1.5 for

an illustration of the bounce-back boundary condition, which is very used in LBM. The

bounce-back condition implies that the velocity at the obstacle’s surface is zero. It is very

easy to be implemented and automatized computationally, allowing us to simulate flows

in arbitrarily complex geometries such as porous media [33].

Initial conditions

Equilibrium
function

Collision

Streaming

Macroscopic
quantities

Time: t  + Δt

Time: t 

Figure 1.5: (Left) Basic cycle of LBM. (Right) Bounce-back boundary condition.

1.3.2 Relativistic LBM

In 2010, the first relativistic lattice Boltzmann method (RLBM) was proposed by

Mendoza et. al. [96] and subsequently improved in numerical stability [63]. The theoret-
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ical background for the RLBM and the extension to ultra-relativistic gases was done by

Romatschke et. al. [125], where the authors used a model with interpolated streaming

since the velocity vectors disposed along a sphere do not match with the square lat-

tice. In Ref. [99], an improved dissipation model based on a third order expansion of

the Maxwell-Jüttner (MJ) distribution was proposed, which does not recover the dissipa-

tion completely because a fifth order expansion is required. This model relies on a new

Gaussian quadrature with exact streaming on a square lattice, recovering one of the main

advantages of LBM, but costing a loss of resolution. Very recently, a new RLBM, also

based on a third order expansion of the MJ distribution, can implement exact streaming

on a square lattice without loosing spatial resolution allowing also to treat the regime of

massive particles [49]. Meanwhile, other RLBMs with exact streaming have been used for

graphene, where the grid points are disposed on a hexagonal lattice [47, 113] such as in

the molecular structure of graphene. Nevertheless, for these quadratures, the polynomial

expansion of the EDF is limited to second order, which might be enough for practical pur-

poses, but gives a poor description if the velocities and/or the temperature fluctuations

are moderately high, as shown in chapter 5. In 2017, Coelho et. al. [32, 35] proposed the

first model based on a fifth order expansion of the FD distribution and used it to study

the Kelvin-Helmholtz instability on graphene (Chaps. 5 and 6). Since this is a viscous

fluid dynamical effect, a fully dissipative method is desirable to achieve better accuracy

of the results.

The relativistic version of LBM [49, 96] has been extensively used in the literature to

simulate the Dirac fluid in graphene [47,52,97,98,113]. This approach naturally includes

the linear dispersion relation and the relativistic equation of states by treating the quasi-

particles in graphene as ultra-relativistic particles, analogously to models for the Quark-

Gluon plasma [63,64,99,125,140], which is a truly relativistic fluid. The speed of light in

this approach is played by the Fermi speed and a low macroscopic velocity regime is always

adopted, making the relativistic corrections disappear. The relativistic formalism is used
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for convenience since, the hydrodynamic equations effectively solved by these models are

the standard ones [85].

1.4 Outline of the thesis

The semiclassical version of the LBM developed in this thesis can be used to model

many fluids made of bosons or fermions. It is specially useful for the study of electron

hydrodynamics, which is a renewed research area due to recent experiments showing

hydrodynamic behavior of electrons in graphene. The LBM for electrons allows us to

describe non-steady-states of the flow such as fluid dynamic instabilities and flows in

arbitrarily complex geometries.

This thesis is organized as follows. In Chap. 2, we demonstrate the use of the classical

LBM to study fluid dynamic properties of porous media. We calculate the permeability of

a fluid passing through artificial samples of porous media and relate it with the geometri-

cal properties of the samples, as the porosity, the tortuosity and the specific surface area.

In Chap. 3, we orthogonalize the generalized polynomials, used in the semiclassical LBM,

up to fourth order. It is also shown that they recover the well known Chebyshev, Hermite

and Legendre polynomials when their respective weight functions are introduced in the

coefficients equations. In Chap. 4, we establish the theoretical basis for the new semiclas-

sical LBM’s. We expand the BE-FD EDFs up to fourth order, study the forcing term and

calculate the quadratures for simulations in one, two and three dimensions. Besides, we

construct and study a simple model for electron in metals, which is validated by means

of three numerical tests: the Riemann problem, the Poiseuille flow and the Ohm’s law.

In Chap. 5, we build the relativistic LBM with full dissipation. This is possible thanks

to the expansion up to fifth order of the distribution functions in relativistic polynomials,

which are inspired by the generalized polynomials of Chap. 3. We validate the new model

using the Riemann problem. We also measure numerically the kinematic viscosity and

the thermal conductivity, which are calculated by the first time for relativistic fluids in
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two dimensions. Interestingly, they are not the ones predicted by the Grad’s method.

They will serve as a reference for future analytic calculations with the Chapman-Enskog

method, which give the correct transport coefficients in three dimensions. In addition,

we analyze the differences between models based on EDFs expanded from second to fifth

orders. In Chap. 6, we use the relativistic LBM to simulate the Dirac fluid in graphene

and we investigate the fluid dynamic instability of Kelvin-Helmholtz. An experiment is

proposed to observe it through the electrical current and the electrical potential difference.

In Chap. 7, we summarize the main results and conclude.
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Chapter 2

Fluid dynamics in porous media

In this chapter we show the application of Sailfish to the study of fluid dynamics

in porous media. Sailfish is an open-source software based on the lattice-Boltzmann

method. This application of computational fluid dynamics is of particular interest to the

oil and gas industry and the subject could be a starting point of a research project for an

undergraduate or graduate student in physics or engineering. We built artificial samples of

porous media with different porosities and used Sailfish to simulate the fluid flow through

them in order to calculate their permeability and tortuosity. We also present a simple

way to obtain the specific superficial area of porous media using Python libraries. To

contextualize these concepts, we analyze the applicability of Kozeny–Carman equation,

which is a well-known permeability-porosity relation, to our artificial samples.

2.1 Introduction

A porous medium is characterized by containing pores, i.e. void space, in its interior.

These pores can be all connected, as in a sand pack, or not, as in Styrofoam. If the goal

is to study the fluid flow in porous media, only those with connected pores must be con-

sidered. The understanding of fluid dynamic properties of porous media is particularly

relevant to the oil and gas industry, since oil is found in underground porous rocks (reser-
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voirs). It is crucial to estimate the permeability of a rock reservoir to hydrocarbons in

order to assist decision-making and oil recovery strategies. Permeability can be measured

experimentally or calculated as a function of other porous rock properties such as poros-

ity, tortuosity and specific surface area. The most popular empirical relationship used to

calculate the permeability from those quantities is the Kozeny–Carman equation [21,78],

but there are many other formulas for more specific purposes [71,156].

In this context, computational fluid dynamics (CFD) plays an important role and the

LBM has many advantages over other methods making it a good choice to address systems

with complex geometries. LBM was first derived in 1988 by McNamara and Zanetti [94]

and, since then, it has emerged as an alternative powerful method for solving CFD prob-

lems. It was very successful in simulating complex flows, such as fluids with immiscible

components, interfacial problems and flows in complex geometries (e.g., in porous me-

dia). In recent years, LBM has been extended even to semiclassical [30] and relativistic

fluids [96]. The advantage over other methods lies in the simplicity of its dynamics, easy

handling of complex geometries and, especially, its flexibility for implementation in par-

allel computing. Sailfish [66] is an open-source LBM/CFD solver that comes with many

examples ready to use. It has a simple Python interface, which is relatively simple to

learn and is already optimized for graphic processing units (GPUs). Its advantages make

it an appropriate choice for the study of flow in porous media, even for beginners in this

subject.

Python as a programming language is often deemed unsuitable for high-end HPC

applications for its relatively low performance when compared to compiled languages such

as Fortran and C/C++. But with the advent of libraries like PyCUDA and PyOpenCL [73],

one can offload the computationally-intensive calculations to the GPU while keeping the

user-friendly Python interface. Performance in LBM is usually measured in terms of lattice

updates per second (LUPS). CPU-only LBM codes typically achieve 107 LUPS in desktop

computers and 108 LUPS in HPC clusters [39,51,59,92]. GPU-enabled LBM codes, on the
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other hand, typically achieve 108 ∼ 109 LUPS on a single GPU [59,66,143], for a fraction

of the space and energy required by a cluster. This considerable gain in performance

permits the concurrent computation and visualization of results at a reasonable frame-

rate for on-the-fly simulations. Although current laptop CPUs are still limited to 4 or 8

cores, it has become commonplace to find mobile GPUs with hundreds or thousands of

cores, which represents a substantial increase in computing power without compromising

portability. This enables the use of GPU-equipped portable computers for classroom live

demonstrations of virtual CFD experiments.

In this chapter we propose a simple and efficient way to study fluid dynamics in

porous media by using Sailfish. We show how to calculate the most important fluid

dynamics properties of porous media, in order to analyze the applicability of Kozeny–

Carman equation to samples of porous media we built artificially. These samples were

generated by placing obstacles in random positions allowing them to overlap, which is

more realistic than some other models in literature. For instance, many authors adopt a

porous medium made of identical spheres placed in a regular lattice [71,117] or used a two-

dimensional porous media composed by identical squares placed in random positions [75,

76]. We also present an original and simple method to measure the specific surface area

(SSA) from a digital rock tomography based on Python image-processing libraries.

This chapter is organized as follows. In Sec. 2.2 an introduction to Sailfish is presented.

In Sec. 2.3.1 the algorithm used to build artificial samples is explained. In Sec. 2.3.2 we

demonstrate how the permeability was calculated using the output from simulation. In

Sec. 2.3.3 we apply the Kozeny–Carman equation to our samples and calculate its Kozeny’s

constant. In Sec. 2.3.4 our method to calculate the SSA is presented and tested for a simple

case and, in Sec. 2.3.5, a simple way to calculate the tortuosity from the output data is

shown. Finally, in Sec. 2.4 a discussion about the results and our concluding remarks are

provided.
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2.2 Sailfish

This section contains a brief introduction to Sailfish [66], the software we used to sim-

ulate fluid flow in our artificially-created porous media. We do not intend to provide a

tutorial, for a very detailed one can be found at the developer’s website 1, where you can

download and follow the instructions to start using it. Sailfish requires no actual instal-

lation step, since the code is written in an interpreted programming language: Python.

The required packages are all enumerated in Sailfish’s website. A graphics card or GPU

is also needed to run the calculations.

The main advantages of Sailfish are its ease of use and high performance. It comes

with many strategic examples that can be run and easily adapted to the needs of the

user. As all routines and examples are written in Python, they are easy to read and

write – as compared to compiled languages like Fortran and C/C++ – without compro-

mising the computational performance, for all the time-consuming calculations run in the

massively-parallel GPU. Sailfish offers a high-level programming interface with several

built-in functionalities, so that the user only needs to provide simple instructions like

the boundary and initial conditions, physical parameters of the fluid and select the LBM

relaxation dynamics. Programming general-purpose GPUs is usually a difficult task, but

Sailfish hides this complexity away and makes all parallelization behind the scenes [66].

Simulations in Sailfish can be made interactive which, combined to its high performance,

makes it a powerful tool to illustrate hydrodynamic principles in the classroom in real-

time. While a simulation is running in visualization mode, one can add new (solid)

obstacles by freehand drawing them with a cursor.

1Download Sailfish and see the tutorial at http://sailfish.us.edu.pl

http://sailfish.us.edu.pl
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2.3 Fluid flow in porous media

The most relevant quantities related to fluid dynamics in porous media are porosity,

tortuosity, surface area and permeability. In this section we define these concepts and

relate them using the Kozeny–Carman equation.

We start with the porosity, that is defined as the fraction φ = Vpores/Vtotal of the

total volume that is occupied by connected pores. Media with non-connected pores, as in

Styrofoam, do not allow flow and, therefore, need not be considered for our purposes. In

case the medium has both connected and non-connected pores, the volume occupied by

the latter must be disregarded.

f(x)

x

�

Le�

dL

Figure 2.1: Example of a fluid streamline for tortuosity calculations.

Tortuosity [28, 129] is a geometrical figure-of-merit that indicates how much the fluid

flow streamlines deviate from straight paths. It is defined as the ratio between the total

length along the streamline and its effective length (the length of the straight line con-

necting final and initial positions), as depicted in Figure 2.1. Note that τ ≥ 1. If the

streamline is given by a function f(x), as exemplified in Figure 2.1, the tortuosity can be

calculated as

τ =

∫
dL

Leff

=

∫ Leff
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)2
dx

Leff

. (2.1)
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The internal area of obstacles in contact with the fluid greatly influences the fluid dy-

namics. Ultimately, the SSA (or “surface-to-volume ratio”) is responsible for the strength

of surface interaction effects. This figure-of-merit is defined as s = Aobs/Vobs, where Aobs

is the surface area of obstacles and Vobs is their total volume.

In general, permeability is the quantity of greatest interest in the study of flow through

porous media. It quantifies how easily a specific fluid passes through the media, i.e, the

inverse of a “flow resistance”. In its simplest formulation, it depends only on the geometry

of the medium and the viscosity of the fluid, µ, and can be calculated using Darcy’s

law [37,151],

κij =
µ〈ui〉
dP
dxj

, (2.2)

where dP
dxj

is the pressure gradient along direction xj and 〈ui〉 is the average velocity of

the fluid in the direction xi. Note that, in general, permeability is a 3× 3 tensor, but in

practical cases we are usually interested only in the diagonal components {κxx, κyy, κzz}.

The SI unit for permeability is m2, however, the “darcy” (1 darcy = 10−12m2) is the most

used.

The four concepts presented previously are related by the Kozeny–Carman equation

κ =
1

Cs2

φ3

(1− φ)2
, (2.3)

where C is an empirical and dimensionless constant, known as Kozeny’s constant, that

depends only on the geometry of the media. In this model, the porous medium is assumed

to be equivalent to a conduit, in which the pore space is reproduced by an array of

cylindrical channels. The fluid flow inside these channels is described by the Hagen–

Poiseuille equation [151]. Consider, for instance, a medium composed of identical spheres

with diameter d, equally distributed in a bed packed [70]. In this case, the SSA is

s = Asphere/Vsphere = 6/d. So (2.3) becomes

κ =
d2

36C

φ3

(1− φ)2
. (2.4)
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Note that the dimensionality is entirely contained within d2, which agrees with the fact

that the dimension of κ is length-squared. The Kozeny–Carman is not the only existing

permeability-porosity relationship [156], but it works fairly well for granular beds as in

our case.

2.3.1 Artificial porous media

In this section we describe the algorithm we developed to build artificial samples.

An object-oriented implementation example for such algorithm, written in Python, is

available as a Supplementary Material. Our intention was to produce a more realistic

porous medium than the usual bed packed, but with more controllable parameters than

the real samples digitized from rock tomography. In this way, we can, for instance, relate

the geometry of the obstacles to permeability.

The input parameters for the algorithm are: the length of obstacles, the length of

the sample and the target porosity. The obstacle’s shape is determined by the equation

of a ellipsoid with radii {rx, ry, rz} centered at (xc, yc, zc). The samples are rectangular

parallelepipeds, for which three lengths {Lx, Ly, Lz} are required as inputs. The last input

is the target porosity (φt), that is the desired porosity for the sample within a tolerance

ε.

Given these input parameters, the algorithm builds a sample by placing obstacles in

random positions, one at a time. After creating an obstacle, the algorithm checks if the

target porosity has been reached. If not, another obstacle is added. The algorithm stops

when |φ− φt| ≤ ε, as depicted in Figure 2.2.

Inputs:
d, L, ϕ

T

Place an 
obstacle at x

c

| –ϕ ϕ
T
| < � ? Done!

no

yes

Figure 2.2: Flowchart of the algorithm used to generate artificial porous media samples.

For our simulations, we used samples with 2083 nodes, spherical obstacles with di-
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ameters between d = 12 and d = 30 and porosities in the range 0.2 ≤ φ ≤ 0.4. The

number of nodes (∼ 9 × 106) was limited by the available GPU memory. In Figure 2.3,

we show some slices of artificial samples generated by our algorithm side-by-side with

slices of real digitized rock tomography samples for comparison. The agreement is good

for highly homogeneous rocks such as sand packs and most sandstones, but our algorithm

may not be as suitable for more inhomogeneous rocks such as carbonates and shales, for

they exhibit porosity at multiple scales. These artificial samples have the same obstacle

diameter (d = 20) but different porosities: 0.2, 0.3 and 0.4. Since the spheres are allowed

to overlap, they form more complex structures that are very close to those observed in

real porous media. This leads to more realistic simulations of fluid flow.

Figure 2.3: Comparison between slices of our artificial samples and of real rocks taken
from the literature [6]. The artificial media were built using spherical obstacles with
diameter of 20 nodes and with target porosity as indicated in each figure.
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2.3.2 Permeability

The two main methods for inducing fluid flow in a porous medium using Sailfish are: by

setting a pressure difference across the sample or a body force acting on every fluid node.

Although the pressure method is closer to what is done in experiments, we observed that

the steady-state flow is reached much faster with the force method. This happens because

all points of the fluid feel the driving force at the same time when using the force method,

instead of by propagation of shock waves as in the pressure method. In order to detect

when the steady-state is achieved in our simulations, we calculate ||unew| − |uold|| /|unew|

at every time step for every point of the fluid and, when the maximum value of this

quantity is less than a given threshold, the simulation stops. We found 5 × 10−7 to be

sufficient for our purposes.

The permeability is calculated using Darcy’s law but, as it assumes a pressure gradient

instead of a body force, we modify it using the relation dP
dxj
dxj = Fj/Aj, where Fj is the

body force along direction xj and Aj is the cross-sectional area of the fluid at the boundary

where the pressure is applied. The cross-sectional area of the fluid is φ times the total

area. Therefore, given a force density f = fxi, Darcy’s law becomes

κ =
µvxφ

fx
, (2.5)

which is the equation used to calculate permeability.

Since permeability, porosity and viscosity are not velocity-dependent, we expect the

applied force fx and the mean velocity vx = 〈ux〉 to be proportional to each other in

the steady state. We tested this by taking an artificial sample with porosity φ = 0.3,

obstacles with diameters d = 16 nodes and using it as input for fluid flow simulations

with different driving forces. The fluid had viscosity µ = 0.01 in lattice units. The result

is shown is Figure 2.4. We fit the data points with the function vx = αfx, obtaining

the proportionality constant α = (26.67 ± 0.02) in lattice units. Using (2.5), we can

determine the permeability of the sample to be κ = (8.001±0.006)×10−2 in lattice units.
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Figure 2.4: Proportionality between the mean velocity and the applied force for a given
artificial sample with φ = 0.30 and d = 16.

2.3.3 The Kozeny–Carman equation

We calculated the permeability using (2.5) and estimated the Kozeny’s constant of the

artificial porous media samples created using the method described in Section 2.3.1. In

order to determine the individual contributions from porosity and obstacle dimension to

the permeability, we built 210 samples with 2083 nodes: 10 obstacle diameters d ∈ [12, 30]

and 21 porosities φ ∈ [0.2, 0.4], for each diameter. The fluid viscosity was 0.01 and the

external force, fx = 10−5. The results are shown in Figure 2.5. One sees that permeability

increases with porosity for a given obstacle diameter. Analogously, for a given porosity,

permeability also increases with obstacle diameter. Next, we investigate the suitability of

the Kozeny–Carman equation to describe our data.

Equation (2.4) tells us that permeability is proportional to d2 or, in other words, that

there is a scale-law involving obstacle dimensions and permeability. In order to turn

permeability into a scale-free non-dimensional quantity, we calculate κ/d2, and confirm

that all points fall (despite fluctuations) within the same curve (see Figure 2.5). We fit
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the function

κ

d2
=

1

36C

φ3

(1− φ)2
(2.6)

to the data points, with C (Kozeny’s constant) as the free parameter. Its value was

determined to be C = 3.18 ± 0.02. As the fit uncertainty represents less than 1% of the

main value, we consider (2.6) to be in good agreement with our simulated data points.

For simplicity, some approximations were made while fitting (2.6) to the data points.

The obstacle diameter d is taken as the theoretical diameter but the effective one might

be slightly different due to the “digital” nature of the spheres, i.e., being composed of

cubic pixels (see Figure 2.6). Also, we used the SSA of non-overlapping spheres, s = 6/d,

although we allow the spheres to overlap. In the next sections we present an analysis of

the impact of such approximations.

Despite those simplifications, the value we obtained for Kozeny’s constant is consistent

with previously published values in the literature [104]. For instance, C = 5 for a bed

packed of non-overlapping spheres [156] and, typically, between 2.2 and 8.9 for a fibrous

media [158].
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Figure 2.5: Permeability dependence on porosity and obstacle diameter. (Left) Perme-
ability as a function of porosity for several obstacle diameters. (Right) Non-dimensional
permeability as a function of porosity for several obstacle diameters. The curve fit is given
by (2.6) with C = 3.18± 0.02.
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2.3.4 Specific superficial area

With the increasing popularization of Digital Rock Physics [3, 4], some recent works

proposed new techniques to calculate the SSA [6, 68], but they are still quite complex

and indirect. Measuring the SSA of porous rocks experimentally is a hard task [88] but

it is important to understand the rock’s properties [138]. We propose a methodology

to calculate the SSA using widely-available Python libraries for image-processing. The

advantage of our method is that it provides a visual interpretation of what is being

calculated, making it simple enough to be understood and applied by beginners.

To calculate the SSA of a digital rock sample, we use the binary erosion method

of the SciPy library 2. This operation erodes the image by removing a layer of pixels at

the rock/pore boundary. When the eroded image is subtracted from the original, what

remains are the pixels at the surface, which allows us to calculate the SSA using its basic

definition. A Python implementation example is provided in the Supplementary Material

section.

The first application of this method is a simple problem with analytical solution that

consists in calculating the SSA of a single sphere for different radii. In Figure 2.6, we see

the results for radii ranging from 5 to 70 compared to the analytical solution, s = 3/R.

We see that the data follows the same behavior of the analytical curve, but with a small

discrepancy that decreases as the radius increases. For instance, the relative difference

between measured and analytical SSA for R = 5 is 28% and for R = 70 it decreases

to 18%. This difference is due to a limitation in the spatial resolution that all digital

images are subjected to. In Figure 2.6 we see three slices of spheres with different radii.

The sphere with R = 5 is far from a spheroidal shape, while that with R = 70 is much

closer. The better the spatial resolution, the more accurate is the proposed methodology.

However, since the available GPU memory is limited, we cannot use arbitrarily large

sample sizes to achieve higher resolutions.

2See http://www.scipy-lectures.org/advanced/image_processing/

http://www.scipy-lectures.org/advanced/image_processing/
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Figure 2.6: Specific surface area calculated according to the method in Sec. 2.3.4. (Top)
Specific surface area for a single sphere as a function of radius, compared to the analytical
expression. The inset shows a slice of a sphere with R = 70 and its surface area in red.
(Bottom) Slices at the equator of digital spheres with different radii. The larger the radii,
the closer the figure gets to a spherical shape.

After this simple, but revealing, example we calculated the SSA for our porous media

samples. Figure 2.7 shows the surface of the obstacles, that is, the outermost layer isolated

using the erosion operation. We clearly see the contour of the overlapped spheres and some

partially filled circles, due to the finite resolution issue. In Figure 2.7 we show the SSA

obtained as a result of our method for 21 samples with d = 20 and different porosities. The

SSA clearly depends on porosity, which was not considered in our previous calculation of

the Kozeny’s constant. This dependence occurs due to obstacles being able to overlap [76],

which changes their shape to non-spherical. If the spheres were isolated from each other,

as in a close-packed structure, the SSA would be s = 3/R as for a single sphere.
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Figure 2.7: Specific surface are for porous media built using d = 20 nodes as obstacle
diameter. (Left) A slice showing the SSA of an artificial porous media sample with φ = 0.3.
(Right) Specific surface area as a function of porosity for a given obstacle diameter.

2.3.5 Tortuosity

In general, it is difficult to calculate tortuosity using its basic definition, (2.1), for one

would have to know exactly the central streamline. However, if one knows the velocity

field, there is an easier way to perform this calculation. It has been shown [75] that (2.1)

is equivalent to

τ =
〈|u|〉
〈uj〉

, (2.7)

where |u| is the magnitude of local velocity, uj is the component of local velocity along

the direction of flow xj and 〈·〉 represents the average over the entire system volume. This

method has been extensively tested [93] and its results agree with theoretical predictions.

For instance, for the trivial case of flow in a straight channel, |u| = uj for every point

in the fluid, which gives τ = 1. This is the same result predicted by (2.1) since all

streamlines are straight in this case [93]. If the streamlines in a particular flow are not

straight, |u| ≥ uj for each point and τ > 1 as in (2.1).

The tortuosity was calculated using the aforementioned method for samples with d =
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20, as in Figure 2.8. We found a linear relationship between τ and φ in this range of

porosities, despite all the noise, similar to previous reports in the literature [75, 76]. We

adjusted a linear function to the data points and obtained τ(φ) = 1.79− 1.08φ.
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Figure 2.8: Relationship between tortuosity and porosity for samples with obstacle diam-
eter d = 20.

2.4 Conclusion

This present chapter had two goals: (i) constructing an algorithm to build artifi-

cial porous media samples and (ii) presenting how the main properties of porous media

are calculated using the output from LBM simulations. The first goal was addressed in

Sec. 2.3.1. Identical spheroidal obstacles were placed in random positions (allowing over-

lap), creating structures similar to those observed in real rock samples, as exemplified in

Figure 2.3.1.

To achieve the second goal, we developed the following analysis. In Sec. 2.3.2 we

calculated the permeability of a particular sample using Darcy’s law and verified that

the drift velocity is linear to the external force. In Sec. 2.3.3 we investigated whether

the Kozeny–Carman equation applies to the permeability-porosity relationship of our

samples, obtaining a good agreement as seen in Figure 2.5. Although we allowed obstacles
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to overlap in our artificial samples, destroying their otherwise spherical shape, Figure 2.5

shows that permeability still depends on the obstacle diameter, which allowed us to use a

scale-law leading to Figure 2.5. In Sec. 2.3.4, we developed our technique for calculating

the specific surface area in digital samples, tested it on a single sphere for different radii

and obtained good agreement to the analytic solution for big radii. In Sec. 2.3.5 we

presented a simple method to calculate tortuosity from the velocity field of the fluid.

Sailfish is a powerful LBM solver with many features that are out of the scope of this

chapter. More complex flows can be simulated in porous media using Sailfish, such as

multiphase [62] and turbulent flows [124]. One can also use Sailfish and the techniques

described here to perform fluid dynamics studies inside fractures, which is another inter-

esting subject for the oil and gas industry. The relationship between SSA and porosity in

porous media is yet another interesting subject for future works [76].
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Chapter 3

Generalized polynomials

In this chapter, we propose a set of orthonormal polynomials under a general weight

in D-dimensional Euclidean space. They are symmetric tensors and the well known D-

dimensional Hermite polynomials are shown to be a particular case of the present ones

for the case of a gaussian weight. We explicitly determine the parameters of the first five

polynomials (N from 0 to 4) and conjecture that the parameters can be obtained in any

Nth order because of the remarkable match found between the orthonormality condition

and the symmetrical tensors in the D-dimensional Euclidean space. In this way, we obtain

generalizations of the Legendre and of the Chebyshev polynomials in D dimensions that

reduce to the respective well-known orthonormal polynomials in D=1 dimensions. We also

obtain new orthonormal D-dimensional polynomials under weights of interest to Physics,

such as the Fermi-Dirac, Bose-Einstein, Graphene equilibrium distribution functions and

the Yukawa potential.

3.1 Introduction

The theory of orthonormal polynomials is a branch of Mathematics and Physics [27,

56,132,139] that started in the nineteenth century and is still unfolding. It has provided

the key ingredients to understand the Hilbert space in Quantum Mechanics, and also

properties of Statistical Mechanics and Electromagnetism. Charles Hermite was the first
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to introduce tensorial properties to the D-dimensional orthonormal polynomials but he

has only considered the gaussian weight. They reduce to the well-known previously found

one-dimensional Hermite polynomials (D=1). The properties of the D-dimensional Her-

mite polynomials have been investigated under several aspects, such as the obtainment

of recurrence formulas [11]. The remarkably rich tensorial structure of the D-dimensional

Euclidean space is the key element that allows for the existence of D-dimensional poly-

nomials orthonormal under an arbitrary weight satisfying general properties. This rich

tensorial structure is not present in D=1 since there is no Kronecker’s delta function. How-

ever for higher (D > 1) dimensions many tensors can be built as products and sums of the

Kronecker’s delta function. Harold Grad was the first one to notice the general proper-

ties of the D-dimensional tensors built from the Kronecker’s delta function [54]. However

he never extended his study to derive the D-dimensional polynomials orthonormal un-

der a general weight. We carry on this task left by him and obtain these D-dimensional

orthonormal polynomials.

Here we give the general form of the new D-dimensional tensorial polynomials and

determine the parameters of the first five polynomials (N=0 to 4) by explicitly orthonor-

malizing them. The D-dimensional Hermite polynomials are retrieved as the particular

case of the gaussian weight. We obtain D-dimensional generalizations of the Legendre and

Chebyshev of first and second kind polynomials. By taking (D=1) the well-known one-

dimensional Legendre and Chebyshev of first and second kind polynomials are retrieved.

We construct new D-dimensional tensorial polynomials of interest for Physics, which are

orthonormal under the BE, the FD and also the Graphene EDFs. They are of direct

interest for the search of solutions of the Boltzmann equation describing semi-classical

fluids [30, 31]. In such cases the corresponding D-dimensional Euclidean space is that of

the microscopic velocity. As a last example we construct the D-dimensional polynomials

for the Yukawa weight, which are useful in position space to derive the concept of an

orthonormal multipole series expansion.
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The D-dimensional Hermite polynomials have been applied in Quantum Optics [74]

and Statistical Mechanics [33,55,81,121]. In the latter case they offer fundamental aid to

solve the Boltzmann equation for classical particles. Indeed it was H. Grad who first used

the D-dimensional Hermite polynomials to describe the microscopic velocity space of the

Boltzmann equation [54, 55, 81]. The Boltzmann equation aims a statistical description

of an ensemble of particles and so describes the motion of a set of particles at a scale

between the microscopic and the macroscopic levels. While the microscopic level has

a deterministic description of motion, since Newton’s law is applied to the individual

particles, at the macroscopic level the only laws available are those of conservation of

mass and momentum for many particles. For fluids and gases the macroscopic level

corresponds to the continuity and to the Navier-Stokes equation, respectively, and it can

be shown that both follow from the Boltzmann equation [30, 81, 121]. A few decades

ago the study of the Boltzmann equation experienced a revival because of a new method

developed to solve it on a lattice version of position space. Because of its simplicity

this method revolutionized the way to numerically tackle problems in fluid dynamics. It

became known as the LBM [82, 136] and uses the D-dimensional Hermite polynomials

to span the distribution function, which essentially gives the number of particles in a

point in phase space. The Gauss-Hermite quadrature is also used in this method to

perform integration in the D-dimensional space. Thus D-dimensional polynomials are

useful to understand the physical properties of many systems. In particular D=2 Laguerre

polynomials [154] were developed to study Quantum Optics [74, 153]. Recently it was

found that to render the LBM applicable to semi-classical fluids the weight that render

the D-dimensional polynomials must be the EDF itself [31]. Therefore the gaussian weight

is not appropriate because it is associated to the MB EDF whereas for semi-classical

fluids the particles obey the BE or the FD EDFs [31]. Therefore there is a need to

go beyond the D-dimensional Hermite polynomials in case of many problems treated by

Boltzmann theory, such as for electrons in metals [31], the Kelvin-Helmholtz instability
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on graphene [32] and for relativistic fluids [35,96].

This chapter is organized as follows. In section 3.2 we propose the general form of the

D-dimensional tensorial polynomials and explicitly write the first five ones. In section 3.3

the rich tensorial properties of D-dimensional space. The explicit construction of the first

five (N=0 to 4) orthonormal polynomials is carried in section 3.4, which means that all

their coefficients are obtained as functions of some integrals over the weight (IN). Next

we apply this general theory to specific weights in section 3.5. The known D-dimensional

Hermite polynomials are derived from the present ones and also new D-dimensional gen-

eralizations of the Legendre and Chebyshev polynomials of the first and second kinds

are proposed here. The projection of such polynomials to D=1 dimensions does give

the well-known Hermite in subsection 3.5.1, Legendre (subsection 3.5.2) and Chebyshev

(subsections 3.5.3 and 3.5.4) which are projected to D=1 dimension (subsection 3.5.5).

Next we consider D-dimensional polynomials orthonormal under new weights, such as

FD (subsection 3.5.6), BE (subsection 3.5.7), graphene (subsection 3.5.8) and Yukawa

potential (subsection 3.5.9). We reach conclusions in section 3.6. Some useful tensorial

identities are discussed in appendix A.

3.2 General D-dimensional Polynomials

Consider the D-dimensional Euclidean space endowed with a weight function ω(ξ)

where the vector ξ ≡ (ξ1, ξ2, · · · , ξD) is defined. We claim here the existence of a set of

orthonormal polynomials Pi1···iN (ξ) in this space.∫
dDξ ω(ξ)Pi1···iN (ξ)Pj1···jM (ξ) = δNMδi1···iN |j1···jM . (3.1)

The polynomials Pi1···iN (ξ) are expressed in terms of the vector components ξi and of δij.

The Nth order polynomial is symmetrical in the indices i1 · · · iN , and its parity is (−1)N .

Pi1···iN (−ξi1 , . . . ,−ξik , . . . ,−ξiN ) = (−1)NPi1···iN (ξi1 , . . . , ξik , . . . ξiN ) (3.2)
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The following tensors, defined by Harold Grad [54], are expressed as sums of products of

the Kronecker’s delta function, (δij = 1 for i = j and 0 for i 6= j).

δi1···iN |j1···jN ≡ δi1j1 · · · δiN jN + permutations of i’s, (3.3)

and,

δi1···iN j1···jN ≡ δi1j1 · · · δiN jN + all permutations. (3.4)

The knowledge of the number of terms in such tensors is useful and discussed in more

details in section 3.3. The first five (N=0 to 4) polynomials are given by,

P0(ξ) = c0, (3.5)

Pi1(ξ) = c1 ξi1 , (3.6)

Pi1i2(ξ) = c2 ξi1ξi2 + f2(ξ) δi1i2 ,where f2(ξ) ≡ c̄2ξ
2 + c′2, (3.7)

Pi1i2i3(ξ) = c3 ξi1ξi2ξi3 + f3(ξ)
(
ξi1δi2i3 + ξi2δi1i3 + ξi3δi1i2

)
,

where f3(ξ) ≡ c̄3ξ
2 + c′3, (3.8)

Pi1i2i3i4(ξ) = c4 ξi1ξi2ξi3ξi4 + f4(ξ)
(
ξi1ξi2δi3i4 + ξi1ξi3δi2i4 + ξi1ξi4δi2i3

+ξi2ξi3δi1i4 + ξi2ξi4δi1i3 + ξi3ξi4δi1i2
)

+ g4(ξ) δi1i2i3i4 ,

where f4(ξ) ≡
(
c̄4ξ

2 + c′4
)
, and g4(ξ) ≡

(
d̄4ξ

4 + d′4ξ
2 + d4

)
. (3.9)

Therefore the Nth order polynomial is the sum of all possible symmetric tensors built

from products of ξi and of δij times coefficients which are themselves polynomials in ξ2 to

maximum allowed power. This proposal yields a unique expression for the Nth order poly-

nomial. There is a deep tensorial structure behind the orthonormal condition of Eq.(3.1).

Notice that the first five polynomials sum to a total of 14 coefficients to be determined

(1 for N=0, 1 for N=1, 3 for N=2, 3 for N=3 and 6 for N=4). The orthonormality condi-

tion of Eq.(3.1) produces exactly the 14 equations needed to determine these coefficients.

This remarkable matching between the orthonormality condition and the D-dimensional
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Euclidean space symmetry group makes us conjecture that the present method of deter-

mining the coefficients can be extended to the Nth order.

We define integrals IN which are central to the present study. They are assumed to

exist and to have well defined properties.

IN δi1···iN ≡
∫
dDξ ω(ξ) ξi1 · · · ξiN (3.10)

Hereafter the weight function is assumed to only depend on the modulus of the vector:

ω(ξ) = ω(ξ), ξ ≡ |ξ|. By symmetry it holds that I2N+1 = 0 since the integral vanishes.

Using the spherical integration volume,
∫
dDξ ω(ξ) = DπD/2/Γ(D/2 + 1)

∫
dξ ξD−1ω(ξ),

the I2N integrals become,

I2N =
π
D
2

2N−1Γ
(
N + D

2

) ∫ ξmax

0

dξ ω(ξ) ξ2N+D−1. (3.11)

In case that ξmax =∞ the weight function must have the property ω(ξ)→ 0 for ξ →∞

faster than any power of ξ. Next we shall explicitly prove the orthonormality of the first

five polynomials.

3.3 D-dimensional tensors based on the Kronecker’s

delta

The orthonormality condition of Eq.(3.1) shows a rich tensorial structure in D dimen-

sions revealed by the following two important tensors, δi1···iN |j1···jN and δi1···iN j1···jN , defined

in Eqs.(3.3) and (3.4), respectively. The former is associated with the orthonormality con-

dition while the latter is the totally symmetric tensor introduced in the definition of the

functions IN given by Eq.(3.10). Both tensors are expressed as sums over several terms

each one expressed as a product of Kronecker’s delta functions. We determine the number

of terms in these two tensors. The tensor δi1···iN |j1···jN has N! terms since this tensor is a

sum over all possible permutations of the i’s under a fixed set of j’s. The tensor δi1···iN j1···jN
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has (2N-1)!/2N−1(N-1)!=(2N-1)(2N-3)(2N-5)...1 terms according to the arguments below.

Firstly notice that the tensor δi1···iN j1···jN has more terms than δi1···iN |j1···jN and here we

seek to find these remaining tensors.

δi1···iN j1···jN = δi1···iN |j1···jN + other tensors (3.12)

Next we determine the remaining “other tensors” in case N=0 to 4 and determine the

number of components of the above tensor by induction. For this we introduce a short

notation that only distinguishes indices i from j indices. In this notation the previous

expression becomes equal to,

δii···i···jj···j = δii···i|jj···j + other tensors. (3.13)

For N=1 we have that,

δij = δi|j, (3.14)

and we express this identity with respect to the number of terms simply as 1 = 1. For N=2

notice that, δi1i2j1j2 = δi1j1δi2j2 + δi1j2δi2j1 + δi1i2δj1j2 . Since δi1i2|j1j2 = δi1j1δi2j2 + δi1j2δi2j1

the above relation becomes, δi1i2j1j2 = δi1i2|j1j2 +δi1i2δj1j2 . Therefore it holds that δi1i2j1j2 =

δi1i2|j1j2 + δi1i2δj1j2 . While δi1i2j1j2 contains 3 components, δi1i2|j1j2 has only 2, such that

it holds for this decomposition that 3 = 2 ⊕ 1. In the short notation the above relation

becomes,

δii|jj = δijδij (3.15)

δiijj = δijδij + δiiδjj. (3.16)

The tensors δijδij and δiiδjj contain 2 and 1 components, respectively. Thus the short

notation gives that δii···i|jj···j ≡ δijδij · · · δij where the products of δij takes into account

all possible permutations. The tensor δii···ijj···j cannot be expressed similarly because not

all combinations of δij’s are included. Therefore the need to decompose it into δii···i|jj···j
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plus other tensors. For N=3 according to the short tensorial notation,

δiiijjj = δijδijδij + δiiδjjδij. (3.17)

To determine the number of components of this tensor, notice that for δi1i2i3j1j2j3 once a

pair is chosen, say δi1j1 , the previous N=2 is retrieved concerning the number of compo-

nents. Since there are 5 ways to construct this first pair, the total number of components

is 5 times 3, that is, 15 terms. The tensor δijδijδij has 3! components, thus to know

the number of terms in the tensor δiiδijδjj we use the following argument. There are 3

components in δii, namely, δi1i2 , δi1i3 and δi2i3 and similarly, 3 components in δjj. Once

fixed δii, and δjj the tensor δij has only one possible component left. Therefore δiiδijδjj

has a total of 3 times 1 times 3, that is 9 components, and the tensorial decomposition is

expressed as 15 = 6⊕ 9.

Finally for N=4 the i and j short tensorial notation gives that,

δiiiijjjj = δijδijδijδij + δiiδjjδijδij + δiiδiiδjjδjj (3.18)

The same reasoning of the previous cases is used here, namely, once a pair is fixed, say

δi1j1 , the number of terms of the remaining indices is provided by the previous N=3 case.

There are 7 ways to construct this first pair, thus the total number of terms is 7 times

15, that is, 105 terms. The tensor δijδijδijδij has 4! terms, The tensor δiiδjjδijδij has 6

possible terms for δii, δi1i2 , δi1i3 , δi1i4 , δi2i3 , δi2i4 and δi3i4 , and the same applies for δjj.

Thus only 2 choices are left for δijδij, once the indices of δii and δjj are fixed. Hence the

total number of terms is 6 times 6 times 2, namely, 72 terms. For the tensor δiiδiiδjjδjj

the pairs δiiδii have only three terms each and so is for δjjδjj, such that the total is 3

times 3, namely, 9 terms. The tensorial decomposition is expressed as 105 = 24⊕ 72⊕ 9.
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3.4 Orthonormalization of polynomials to order N=4

The coefficients of the polynomials are determined here in terms of the integrals IN .

This is done for the first five polynomials by explicitly computing their inner products.

We refer to Eq.(3.1) by the short notation,

(
P(M),P(N)

)
≡
∫
dDξ ω(ξ)P(M)(ξ)P(N)(ξ),

used here for M,N = 0, · · · 4. The Nth order polynomial is shortly referred as P(N)

such that the polynomials of Eqs.(3.5), (3.6), (3.7), (3.8), (3.9) are called P(0), P(1), P(2),

P(3) and P(4), respectively. The inner product between polynomials with distinct parity

vanishes,
(
P(even),P(odd)

)
= 0. Thus the only relevant orthonormality relations are among

polynomials with the same parity (odd with odd and even with even).

The number of equations given by orthonormalization conditions must be equal to

the number of free coefficients. Indeed this is the case, according to Eqs.(3.5), (3.6),

(3.7), (3.8), (3.9). The total number of coefficients is 14 (cK for K = 0, 1, 2, 3, 4, c′K for

K = 2, 3, 4, c̄K for K = 2, 3, 4, d4, d′4 and d̄4). Remarkably 14 equations arise from the 9

orthonormalization conditions
(
P(M),P(N)

)
, as seen below.

•
(
P(0),P(0)

)

The normalization of the N=0 polynomial is,

c2
0

∫
dDξω(ξ) = 1, (3.19)

which gives that,

c0 = ± 1√
I0

, (3.20)

where Eq. (3.5) and the definition of I0 in Eq.(3.10) have been used.
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•
(
P(1),P(1)

)

c2
1

∫
dDξ ω(ξ)ξi1ξj1 = δi1j1 (3.21)

The definition of I2 in Eq.(3.10) is invoked to obtain that,

c1 = ± 1√
I2

. (3.22)

The N=0 and N=1 polynomials are naturally orthogonal because they have distinct parity

and to make them orthonormal is enough to normalize them which has been done above by

determining the coefficients c0 and c1. The polynomial P(2) has three coefficients, accord-

ing to Eq.(3.7), and so, three equations are needed to determine them. These equations

must arise from the tensorial structure of the D dimensional space.

•
(
P(0),P(2)

)

This conditions is equivalent to c0

(
1,P(2)

)
= 0 since P(0) is a constant.

c0

∫
dDξω(ξ) [c2 ξi1ξi2 + f2(ξ) δi1i2 ] = 0. (3.23)

Using the tensorial formulas of appendix A and Eq.(3.10), it follows that,

I2c2 +DI2c̄2 + I0c
′
2 = 0. (3.24)

•
(
P(2),P(2)

)

Remarkably the normalization of the N=2 polynomial leads to multiple equations, in
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this case the following two equations.∫
dDξω(ξ) [c2 ξi1ξi2 + f2(ξ) δi1i2 ] [c2 ξj1ξj2 + f2(ξ) δj1j2 ] = δi1j1δi2j2 + δi1j2δi2j1 . (3.25)

This is because while the orthonormalization is associated to the tensor δi1j1δi2j2 +δi1j2δi2j1

the integration over ξi1ξi2ξj1ξj2 leads to the tensor δi1j1δi2j2 + δi1j2δi2j1 + δi1i2δj1j2 . This

difference is responsible for the onset of more than one condition. Using the tensorial

formulas of appendix A, one obtains that:

c2
2I4

(
δi1j1δi2j2 + δi1j2δi2j1 + δi1i2δj1j2

)
+
[
2(D + 2)I4c2c̄2 + 2I2c2c

′
2 + c̄2

2D(D + 2)I4

+2DI2c̄2c
′
2 + c′22 I0

]
δi1i2δj1j2 = δi1j1δi2j2 + δi1j2δi2j1 . (3.26)

The independence of the two tensors leads to two independent equations, given by,

c2
2I4 = 1, c2

2I4 + 2(D + 2)I4c2c̄2 + 2I2c2c
′
2 + c̄2

2D(D + 2)I4 + 2DI2c̄2c
′
2 + c′22 I0 = 0.(3.27)

The three equations are promptly solved and the coefficients c2, c̄2 and c′2 are determined

below.

c2 = ± 1√
I4

. (3.28)

Using Eq.(3.23) to write c′2, we have

c′2 = −I2

I0

c2 −D
I2

I0

c̄2. (3.29)

Substituting c′1 in Eq.(3.27),

c̄2
2

[
D(D + 2)I4 −D2 I

2
2

I0

]
+ c̄2c2

[
2(D + 2)I4 − 2D

I2
2

I0

]
+ c2

2

(
I4 −

I2
2

I0

)
= 0, (3.30)

which is a equation for c̄2. The solutions, are:

c̄2 =
c2

D
(−1 + ∆2), where ∆2 ≡ ±

√
2

(D + 2)−DJ2

, J2 ≡
I2

2

I0I4

(3.31)

The coefficient c̄2 must be a real number, and this is the case provided that (D+2)−DJ2 ≥

0. From Eq.(3.23), we calculate c′2, to obtain that,

c′2 = −c2
I2

I0

∆2. (3.32)
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The orthogonalization of the first three polynomials has been concluded here. We pro-

ceed to the next order (N=3), and because of the increasing difficulty introduce a short

notation for tensors, which is discussed in section 3.3. The N=3 polynomial has three co-

efficients, similarly to the N=2 case, and so, three equations are needed to determine them.

•
(
P(1),P(3)

)

c1

∫
dDξω(ξ) ξi1

[
c3 ξj1ξj2ξj3 + f3(ξ)

(
ξj1δj2j3 + ξj2δj1j3 + ξj3δj1j2

)]
= 0. (3.33)

The integrals are calculated with the help of the tensorial formulas of appendix A, such

that the above expression becomes [c3I4 + c̄3I4(D + 2) + c′3I2] δijjj = 0. The tensor δijjj

is short for δi1j1j2j3 , according to the notation of section 3.3. Thus we obtain that,

c3I4 + c̄3I4(D + 2) + c′3I2 = 0. (3.34)

•
(
P(3),P(3)

)

This normalization condition gives the two other equations necessary to calculate the

coefficients. ∫
dDξω(ξ)

[
c3 ξi1ξi2ξi3 + f3(ξ)

(
ξi1δi2i3 + ξi2δi1i3 + ξi3δi1i2

)][
c3 ξj1ξj2ξj3

+f3(ξ)
(
ξj1δj2j3 + ξj2δj1j3 + ξj3δj1j2

)]
= δi1i2i3|j1j2j3 (3.35)

We stress the difference between the tensors δiiijjj and δiii|jjj as the reason for multiple

equations from a single normalization condition. Using the short notation of section 3.3

the integral over the six vector components becomes,
∫
dDξω(ξ) ξiξiξiξjξjξj = I6δiiijjj,
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where all permutations of i’s and j’s are taken into account. From the other side in

this short notation, δiii|jjj = δijδijδij, as explained in section 3.3, and, as shown there,

δiiijjj = δijδijδij+δiiδijδjj. Thus the above integrals are computed with the aid of appendix

A. Using this notation, Eq.(3.35) becomes,

c2
3I6

(
δijδijδij + δiiδijδjj

)
+
[
2I6(D + 4)c3c̄3 + 2I4c3c

′
3 + I2c

′
3

2
+ 2I4(D + 2)c̄3c

′
3

+I6(D + 2)(D + 4)c̄2
3

]
δiiδijδjj = δijδijδij, (3.36)

which gives two equations:

c2
3I6 = 1 and, c2

3I6 + 2I6(D + 4)c3c̄3 + 2I4c3c
′
3 + I2c

′
3

2
+ 2I4(D + 2)c̄3c

′
3

+I6(D + 2)(D + 4)c̄2
3 = 0. (3.37)

The solution of the first equation is,

c3 = ± 1√
I6

. (3.38)

Eq.(3.34) is used to eliminate c′3 from Eq.(3.37),

c̄2
3(D + 2)

[(
I6 −

I2
4

I2

)
(D + 2) + 2I6

]
+ 2

[(
I6 −

I2
4

I2

)
(D + 2) + 2I6

]
c3c̄3

+

(
I6 −

I2
4

I2

)
c2

3 = 0. (3.39)

This equation can be solved for c̄3.

c̄3 =
c3

D + 2
(−1 + ∆4), (3.40)

and c′3 is calculated by Eq.(3.34):

c′3 = −I4

I2

∆4c3 where ∆4 = ±

√
2

(D + 4)− J4(D + 2)
, J4 =

I2
4

I6I2

. (3.41)

The N=4 polynomial of Eq.(3.9) sets a new level of difficulty as six equations must be

obtained to calculate the six coefficients.
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•
(
P(0),P(4)

)

The orthonormalization with the N=0 polynomial means that c0

(
1,P(4)

)
=0.

c0

∫
dDξω(ξ)

[
c4 ξj1ξj2ξj3ξj4 + f4(ξ)

(
ξj1ξj2δj3j4 + ξj1ξj3δj2j4 + ξj1ξj4δj2j3

+ξj2ξj3δj1j4 + ξj2ξj4δj1j3 + ξj3ξj4δj1j2
)

+ g4(ξ) δj1j2j3ij4
]

= 0 (3.42)

A single equation results from this integral since it can only be proportional to the tensor

δiiii.

c4I4 + 2
[
c′4I2 + c̄4I4(D + 2)

]
+ d4I0 + d′4I2D + d̄4I4(D + 2)D = 0.

•
(
P(2),P(4)

)

The integration of the N=2 with the N=4 polynomial gives that,

∫
dDξω(ξ)

[
c2 ξi1ξi2 + f2(ξ) δi1i2

][
c4 ξj1ξj2ξj3ξj4 + f4(ξ)

(
ξj1ξj2δj3j4 + ξj1ξj3δj2j4

+ξj1ξj4δj2j3 + ξj2ξj3δj1j4 + ξj2ξj4δj1j3 + ξj3ξj4δj1j2
)

+ g4(ξ) δj1j2j3j4
]

= 0. (3.43)

The sixth order tensorial integral,
∫
dDξω(ξ)ξiξiξjξjξjξj = I6δiijjjj has 15 terms. This

tensor can be decomposed as δiijjjj = δiiδjjjj + δijδijjj, namely, as a sum of two other

tensors, which have 3 and 12 terms, respectively. This decomposition can be formally

expressed as 15 = 3⊕12, as discussed in section 3.3. We notice the presence of the tensor

δi1i2j1j2δj3j4 + δi1i2j1j3δj2j4 + δi1i2j1j4δj2j3 + δi1i2j2j3δj1j4 + δi1i2j2j4δj1j3 + δi1i2j3j4δj1j2 , which

has 18 terms, and is equal to 2δjjjjδii + δiiijδij (2 times 3 plus 12). Therefore Eq.(3.43)
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becomes,

c4c2I6

(
δiiδjjjj + δijδijjj

)
+ c4

[
c′2I4 + c̄2I6(D + 4)

]
δiiδjjjj + c2

[
c′4I4 + c̄4I6(D + 4)

]
(
2δiiδjjjj + δijδijjj

)
+ 2
[
c′4c
′
2I2 +

(
c̄4c
′
2 + c′4c̄2

)
I4(D + 2) + c̄4c̄2I6(D + 4)(D + 2)

]
δiiδjjjj

+c2

[
d4I2 + d′4I4(D + 2) + I6d̄4(D + 4)(D + 2)

]
δiiδjjjj +

[
d4c
′
2I0 +

(
d4c̄2 + d′4c

′
2

)
I2D

+
(
d′4c̄2 + d̄4c

′
2

)
I4(D + 2)D + d̄4c̄2I6(D + 4)(D + 2)D

]
δiiδjjjj = 0. (3.44)

This lead to two equations, one proportional to δijδijjj,

c4I6 + [c′4I4 + c̄4I6(D + 4)] = 0, (3.45)

and the other proportional to δiiδjjjj,

c4c2I6 + c4

[
c′2I4 + c̄2I6(D + 4)

]
+ 2c2

[
c′4I4 + c̄4I6(D + 4)

]
+ 2
[
c′4c
′
2I2

+
(
c̄4c
′
2 + c′4c̄2

)
I4(D + 2) + c̄4c̄2I6(D + 4)(D + 2)

]
+ c2

[
d4I2 + d′4I4(D + 2)

+d̄4I6(D + 4)(D + 2)
]

+
[
d4c
′
2I0 +

(
d4c̄2 + d′4c

′
2

)
I2D +

(
d′4c̄2 + d̄4c

′
2

)
I4(D

+2)D + d̄4c̄2I6(D + 4)(D + 2)D
]

= 0, (3.46)

respectively.

•
(
P(4),P(4)

)

The normalization of the N=4 polynomial is given by,∫
dDξω(ξ)

[
c4 ξi1ξi2ξi3ξi4 + f4(ξ)

(
ξi1ξi2δi3i4 + ξi1ξi3δi2i4 + ξi1ξi4δi2i3 + ξi2ξi3δi1i4

+ξi2ξi4δi1i3 + ξi3ξi4δi1i2
)

+ g4(ξ) δi1i2i3i4
][
c4 ξj1ξj2ξj3ξj4 + f4(ξ)

(
ξj1ξj2δj3j4 + ξj1ξj3δj2j4

+ξj1ξj4δj2j3 + ξj2ξj3δj1j4 + ξj2ξj4δj1j3 + ξj3ξj4δj1j2
)

+ g4(ξ) δj1j2j3j4
]

= δi1i2i3i4|j1j2j3j4 .

(3.47)

Here we extensively use the short notation of section 3.3, where δiiii|jjjj = δijδijδijδij.

There is the integral
∫
dDξω(ξ) ξiξiξiξiξjξjξjξj = I8δiiiijjjj. It holds that δiiii|jjjj =
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δijδijδijδij + δiiδjjδijδij + δiiδiiδjjδjj. There are 105 terms in δiiiijjjj, 24 in δijδijδijδij,

72 in δiiδjjδijδij, and 9 in δiiδiiδjjδjj. We computed each of the integrals individually and

identify them by the following notation that uses the product of their coefficients c4, f4

and g4. For instance the first one is∫
dDξω(ξ) c2

4[· · · ] = I8c
2
4(δijδijδijδij + δiiδjjδijδij + δiiδiiδjjδjj) (3.48)

The second term is,∫
dDξω(ξ) c4f4[· · · ] = 2[c′4I6 + c̄4I8(D + 6)]c4(δiiδjjδijδij + 2δiiδiiδjjδjj), (3.49)

where we have used that δiiiijjδjj = δiiδjjδijδij + 2δiiδiiδjjδjj.∫
dDξω(ξ) c4g4[· · · ] = 2[d4I4 + d′4I6(D + 4) + d̄4I8(D + 6)(D + 4)]c4(δiiδiiδjjδjj),(3.50)

∫
dDξω(ξ) f4g4[· · · ] = 4[c′4d4I2 + (c′4d

′
4 + c̄4d4)I4(D + 2) + (c̄4d

′
4

+c′4d̄4)I6(D + 4)(D + 2) + c̄4d̄4I8(D + 6)(D + 4)(D + 2)](δiiδiiδjjδjj) (3.51)

∫
dDξω(ξ) f 2

4 [· · · ] = [c′4
2
I4 + 2c′4c̄4I6(D + 4)

+c̄2
4I8(D + 6)(D + 4)](4δiiδiiδjjδjj + δiiδjjδijδij) (3.52)

∫
dDξω(ξ) g2

4[· · · ] = [d4
2I0 + 2d4d

′
4I2D + (d′4

2
+ 2d4d̄4)I4(D + 2)D

+2d′4d̄4I6(D + 4)(D + 2)D + d̄2
4I8(D + 6)(D + 4)(D + 2)D](δiiδiiδjjδjj) (3.53)

Next these integrals are introduced into Eq.(3.47) to obtain that,

I8(δijδijδijδij + δiiδjjδijδij + δiiδiiδjjδjj)c
2
4 + 2[c′4I6 + c̄4I8(D + 6)]c4(2δiiδiiδjjδjj

+δiiδjjδijδij) + 2[d4I4 + d′4I6(D + 4) + d̄4I8(D + 6)(D + 4)]δiiδiiδjjδjj + 4[c′4d4I2

+(c′4d
′
4 + c̄4d4)I4(D + 2) + (c̄4d

′
4 + c′4d̄4)I6(D + 4)(D + 2) + c̄4d̄4I8(D + 6)(D + 4)

·(D + 2)]δiiδiiδjjδjj + [c′24 I4 + 2c′4c̄4I6(D + 4) + c̄2
4I8(D + 6)(D + 4)](4δiiδiiδjjδjj

+δiiδjjδijδij) + [d2
4I0 + 2d4d

′
4I2D + (d′24 + 2d4d̄4)I4(D + 2)D + 2d′4d̄4I6(D + 4)

·(D + 2)D + d̄2
4I8(D + 6)(D + 4)(D + 2)D]δiiδiiδjjδjj = δijδijδijδij. (3.54)
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The three remaining equations are the coefficients of the three independent tensors in the

above equation.

I8c
2
4 = 1, (3.55)

I8c
2
4 + 2[c′4I6 + c̄4I8(D + 6)]c4 + [c′24 I4 + 2c′4c̄4I6(D + 4) + c̄2

4I8(D + 6)(D + 4)] = 0,

(3.56)

I8c
2
4 + 4c4[c′4I6 + c̄4I8(D + 6)] + 2c4[d4I4 + d′4I6(D + 4) + d̄4I8(D + 6)(D + 4)]

+4[c′4d4I2 + (c′4d
′
4 + c̄4d4)I4(D + 2) + (c̄4d

′
4 + c′4d̄4)I6(D + 4)(D + 2)

+c̄4d̄4I8(D + 6)(D + 4)(D + 2)] + 4[c′24 I4 + 2c′4c̄4I6(D + 4) + c̄2
4I8(D + 6)

·(D + 4)] + [d2
4I0 + 2d4d

′
4I2D + (d′24 + 2d4d̄4)I4(D + 2)D + 2d′4d̄4I6(D + 4)

·(D + 2)D + d̄2
4I8(D + 6)(D + 4)(D + 2)D] = 0. (3.57)

The six equations given by the Eqs.(3.43), (3.45), (3.46), (3.55), (3.56) and (3.57) can

be solved to obtain the six coefficients. Nevertheless notice that coefficients c4, c̄4 and c′4

are determined from a sub set of equations, namely, Eqs.(3.45), (3.55), and (3.56). From

them it follows that,

c4 = ± 1√
I8

, and, (3.58)

c̄2
4(D + 4)

[
I8(D + 6)− I2

6

I4

(D + 4)
]

+ 2
[
I8((D + 6)

−I
2
6

I4

(D + 4) +
]
c4c̄4 +

(
I8 −

I2
6

I4

)
c2

4 = 0. (3.59)

Hence one obtains that,

c̄4 = c4
(−1 + ∆6)

D + 4
, and (3.60)

c′4 = −I6

I4

∆6c4. (3.61)

The remaining coefficients are given by,

d̄4 =
δ2

δ4D(D + 2)
d4 +

c4[D − 2(D + 2)∆6]

D(D + 2)(D + 4)
, (3.62)
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d′4 = −d4

D

(
I0

I2

+
I4

I2

δ2

δ4

)
+

2I6∆6c4

I4D
, (3.63)

and,

d4 = ±

√
8δ2

4I4

δ2

1√
δ2δ6(D + 4)− δ2

4D
, (3.64)

where

∆6 = ±

√
2

(D + 6)− J6(D + 4)
, J6 =

I2
6

I8I4

, (3.65)

δ2 = I0I4(D + 2)− I2
2D, (3.66)

δ4 = I2I6(D + 4)− I2
4 (D + 2), (3.67)

δ6 = I4I8(D + 6)− I2
6 (D + 4). (3.68)

Notice that δ2K = 2I2K+2I2K−2/∆
2
2K .

Hence we have determined all the coefficients in Eqs.(3.20), (3.22), (3.28), (3.29),

(3.31), (3.38), (3.40), (3.41), (3.58), (3.60), (3.61), (3.62), (3.63), and (3.64). Some of

the coefficients can be summarized in simple formulas for all polynomials, using a general

notation:

cK =
1√
I2K

, for K = 0, 1, 2, 3, 4,

c′K = −cK
I2K−2

I2K−4

∆2K−2, for K = 2, 3, 4,

c̄K = cK
(−1 + ∆2K−2)

D + 2K − 4
, for K = 2, 3, 4,

∆2K =

√
2(

D + 2K
)
− J2K

(
D + 2K − 2

)
J2K =

I2
2K

I2K+2I2K−2

Notice that we have chosen the positive solutions for the square roots, but the negative

ones would also lead to orthogonal polynomials. We have completed the orthonormaliza-

tion of the first five polynomials (N=0,1,2,3,4). The procedure can be applied for higher

polynomials, although it becomes increasingly laborious.
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3.5 D-dimensional polynomials for specific weights

In this section we obtain the D-dimensional polynomials for some specific weights and

from them retrieve some well known D=1 polynomials. We also obtain the IN functions

associated to some new weights.

3.5.1 D-dimensional Hermite polynomials

We show that the D-dimensional Hermite polynomials are straightforwardly retrieved

from the above polynomials for the gaussian weight,

ω(ξ) =
1

(2π)D/2
e−

ξ2

2 , and ξmax =∞. (3.69)

To obtain the integrals I2N of Eq.(3.11), we note that,∫ ∞
0

dξ ω(ξ) ξ2N+D−1 =
2N−1

π
D
2

Γ
(
N +

D

2

)
. (3.70)

Then it follows from Eq.(3.70) that,

I2N = 1. (3.71)

In this limit cK = 1, c̄K = 0 c′K = −1, d4 = 1, d̄4 = 0 and d′4 = 0, and the polynomials of

Eqs.(3.5), (3.6), (3.7), (3.8), (3.9) become,

P0(ξ) = 1, (3.72)

Pi1(ξ) = ξi1 , (3.73)

Pi1i2(ξ) = ξi1ξi2 − δi1i2 (3.74)

Pi1i2i3(ξ) = ξi1ξi2ξi3 −
(
ξi1δi2i3 + ξi2δi1i3 + ξi3δi1i2

)
(3.75)

and,

Pi1i2i3i4(ξ) = ξi1ξi2ξi3ξi4 −
(
ξi1ξi2δi3i4 + ξi1ξi3δi2i4

+ξi1ξi4δi2i3 + ξi2ξi3δi1i4 + ξi2ξi4δi1i3 + ξi3ξi4δi1i2
)

+ δi1i2i3i4 (3.76)
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We notice that the tensorial basis that spans the new generalized polynomials contains the

basis that spans the Hermite polynomials but not vice-versa. The D-dimensional Hermite

polynomials Pi1···iN are symmetric tensors in the indices i1 · · · iN spanned over the basis

formed by the tensors,

Ti1···iN ≡ ξi1 · ξi2 · · · ξiP · δiP+1,iP+2
· δiP+3,iP+4

· · · δiN−1,iN .

This basis is not large enough to span the new generalized polynomials, Pi1···iN , which

demand a larger basis formed by the tensors

Ti1···iN ≡ F
(
ξ
)
ξi1 · ξi2 · · · ξiP · δiP+1,iP+2

· δiP+3,iP+4
· · · δiN−1,iN ,

whose scalar functions F
(
ξ
)

are polynomials in powers of the vector modulus, 1, ξ2, ξ4,

...,ξ2k.

3.5.2 D-dimensional Legendre polynomials

We define D-dimensional Legendre polynomials satisfying the general orthonormal

relation of Eq.(3.1) with ξmax = 1 and the following weight:

ω(ξ) = 1, and ξmax = 1. (3.77)

From this it follows that,

I2N =
πD/2

2N−1Γ(N +D/2)

∫ 1

0

dξξ2N+D−1 =
21−NπD/2

(D + 2N)Γ
[
D+2N

2

] , (3.78)

Using the expressions corresponding coefficients up to fourth order

cN =
1√

2−NπD/2

Γ[1+D
2

+N]

, (3.79)

c̄2 =
−2 +

√
2(2 +D)

D

√
πD/2

Γ[3+D
2 ]

, c̄3 =
−2
√

2 + 2
√

4 +D

(2 +D)

√
πD/2

Γ[4+D
2 ]

, c̄4 =
−4 + 2

√
2(6 +D)

(4 +D)

√
πD/2

Γ[5+D
2 ]

, (3.80)
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c′2 = −
√√√√ 2

(2 +D) πD/2

Γ[3+D
2 ]

, c′3 = −
√√√√ 4

(4 +D) πD/2

Γ[4+D
2 ]

, c′4 = −
√√√√ 8

(6 +D) πD/2

Γ[5+D
2 ]

, (3.81)

d4 =

√√√√√√√
16(6+D)π3D/2

(4+D)Γ[3+D
2 ]Γ[4+D

2 ]
2

π2D

(
(2+D)(96+D(8+D)(24+D(8+D)))

(8+D)Γ[3+D
2 ]

4 − 2(4+D)(4+D(8+D))

Γ[2+D
2 ]

3
Γ[5+D

2 ]

) , (3.82)

d′4 =

(
2D(6 +D)3/2Γ

[
1 + D

2

]
Γ
[
3 + D

2

]2 − 8
√

6 +DΓ
[
3 + D

2

]3)
d4

D(4 +D)
√

6 +D
(
−(6 +D)Γ

[
2 + D

2

]3
+ 2Γ

[
1 + D

2

]
Γ
[
3 + D

2

]2)

+

(
8
√

2Γ[3+D
2 ]

3

D+2
− 4
√

2Γ
[
2 + D

2

]2
Γ
[
4 + D

2

])
c4

D(4 +D)
√

6 +D
(
−(6 +D)Γ

[
2 + D

2

]3
+ 2Γ

[
1 + D

2

]
Γ
[
3 + D

2

]2) , (3.83)

d̄4 =
c4

(
D − 2

√
2(6 +D)−D

√
2(6 +D)

)
+ (4 +D)2(6 +D)d4

D(2 +D)(4 +D)
. (3.84)

These coefficients provides orthogonal polynomials for any dimension and, as we will see

in subsection 3.5.5, they give the well known D=1 Legendre polynomials for the particular

case with D = 1.

3.5.3 D-dimensional Chebyshev polynomials of first kind

Following the same procedure used for the Legendre polynomials, we define the D-

dimensional Chebyshev polynomials of first kind with the weight ω(ξ) below and inte-

grated under a sphere of radius ξmax,

ω(ξ) =
1

1− ξ2
, and ξmax = 1, (3.85)

with the corresponding integral

I2N =
πD/2

2N−1Γ(N +D/2)

∫ 1

0

dξ
1

1− ξ2
ξ2N+D−1 =

2−Nπ
1+D

2

Γ
[

1
2
(1 +D + 2N)

] , (3.86)
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and coefficients up to fourth order

cN =
1√

2−Nπ
1+D

2

Γ[ 1+D
2

+N]

, (3.87)

c̄2 =
2
(
−1 +

√
1 +D

)
D

√
π

1+D
2

Γ[ 5+D
2 ]

, c̄3 =
2
√

2
(
−1 +

√
3 +D

)
(2 +D)

√
π

1+D
2

Γ[ 7+D
2 ]

, c̄4 =
4
(
−1 +

√
5 +D

)
(4 +D)

√
π

1+D
2

Γ[ 9+D
2 ]

, (3.88)

c′2 = − 2√
(1+D)π

1+D
2

Γ[ 5+D
2 ]

, c′3 = − 2
√

2√
(3+D)π

1+D
2

Γ[ 7+D
2 ]

, c′4 = − 4√
(5+D)π

1+D
2

Γ[ 9+D
2 ]

(3.89)

d4 =

8

√
π

3(1+D)
2

(3+D)(5+D)2Γ[ 5+D
2 ]

3√
π2+2D

(
−D(2+D)2

Γ[ 5+D
2 ]

4 + (4+D)(7+D)(4+D(7+D)(8+D(7+D)))

4(3+D)Γ[ 3+D
2 ]

2
Γ[ 9+D

2 ]
2

) , (3.90)

d′4 =
2
(
c4

√
5 +D − d4(3 +D)(5 +D)

)
Γ
[

3+D
2

]
Γ
[

5+D
2

]2
D(4 +D)(5 +D)Γ

[
5+D

2

]3 − 2D(2 +D)Γ
[

3+D
2

]
Γ
[

7+D
2

]2 , (3.91)

d̄4 =
1

4(2 +D)

(
4c4

(
D − 4

√
5 +D − 2D

√
5 +D

)
D(4 +D)

+
8d4(5 +D)Γ

[
5+D

2

]2
D(4 +D)Γ

[
5+D

2

]2 −D(2 +D)Γ
[

3+D
2

]
Γ
[

7+D
2

]) . (3.92)

The polynomials with the coefficients above are orthogonal for any dimensions and, as

we will see in subsection 3.5.5 for D = 1 they give the well known D=1 Chebyshev

polynomials of first kind.

3.5.4 D-dimensional Chebyshev polynomials of second kind

For the D-dimensional Chebyshev polynomials of second kind, we define the following

weight function and maximum radius

ω(ξ) =
√

1− ξ2, and ξmax = 1 (3.93)
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which give the integral and coefficients below

I2N =
πD/2

2N−1Γ(N +D/2)

∫ 1

0

dξ
√

1− ξ2ξ2N+D−1 =
2−1−Nπ

1+D
2

Γ
[

1
2
(3 +D + 2N)

] , (3.94)

cN =
1√

2−1−Nπ
1+D

2

Γ[ 3+D
2

+N]

, (3.95)

c̄2 =
2
√

2
(
−3 +

√
3(3 +D)

)
3D

√
π

1+D
2

Γ[ 7+D
2 ]

, c̄3 =
−4 + 4

√
5 +D/

√
3

(2 +D)

√
π

1+D
2

Γ[ 9+D
2 ]

, c̄4 =
4
√

2
(
−3 +

√
3(7 +D)

)
3(4 +D)

√
π

1+D
2

Γ[ 11+D
2 ]

,

(3.96)

c′2 = −
√√√√ 8

3(3+D)π
1+D

2

Γ[ 7+D
2 ]

, c′3 = −
√√√√ 16

3(5+D)π
1+D

2

Γ[ 9+D
2 ]

, c′4 = −
√√√√ 32

3(7+D)π
1+D

2

Γ[ 11+D
2 ]

(3.97)

d4 =

4

√
3(7+D)π

3(1+D)
2

(5+D)Γ[ 9+D
2 ]

3√
π2+2D

(
−D(2+D)2

Γ[ 7+D
2 ]

4 + (4+D)(9+D)(36+D(1+D)(8+D)(9+D))

4(5+D)Γ[ 5+D
2 ]

2
Γ[ 11+D

2 ]
2

) (3.98)

d′4 =
2
(
c4

√
3(7 +D)− 3d4(5 +D)(7 +D)

)
Γ
[

5+D
2

]
Γ
[

7+D
2

]2
D(4 +D)(7 +D)Γ

[
7+D

2

]3 − 2D(2 +D)Γ
[

5+D
2

]
Γ
[

9+D
2

]2 (3.99)

d̄4 =
1

4(2 +D)

−4c4

(
4
√

3(7 +D) +D
(
−3 + 2

√
3(7 +D)

))
3D(4 +D)

+
24d4(7 +D)Γ

[
7+D

2

]2
D(4 +D)Γ

[
7+D

2

]2 −D(2 +D)Γ
[

5+D
2

]
Γ
[

9+D
2

]) (3.100)

The corresponding polynomials are orthogonal for any dimension and, as we will see in

subsection 3.5.5, give the well known D=1 Chebyshev polynomials of second kind.



52

3.5.5 Projection of Hermite, Legendre and Chebyshev polyno-
mials into D=1 dimension

To obtain the projection of such polynomials in D=1 dimension, it suffices to drop

the index of the vector, ξi1 → ξ, and to take that δi1i2 → 1 since there is only one index,

and so, i1 = i2 = 1. Thus the tensors based on the Kronecker’s delta function have each

of its terms equal to one, for instance, δi1j1 · · · δiN jN = 1, and so, δi1···iN |j1···jN = N ! and

δi1···iN j1···jN = (2N−1)!/[2N−1(N−1)!], according to section 3.3. Hence the orthonormality

condition of Eq.(3.1) becomes,∫
dDξ ω(ξ)PN(ξ)PM(ξ) = N !δNM (3.101)

Notice that this is not the standard normalization employed in the definition of most of

D=1 orthonormal polynomials.

Hermite polynomials

The Hermite polynomials obtained via dimensional reduction from Eqs.(3.72), (3.73),

(3.74), (3.75) and (3.76) are given by,

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) = ξ2 − 1, P3(ξ) = ξ3 − 3ξ, and, P4(ξ) = ξ4 − 6ξ2 + 3.
(3.102)

The known D=1 Hermite polynomials, defined with the normalization of probability the-

ory [56], satisfy the following orthonormality condition,∫ ∞
−∞

Hem(x)Hen(x) e−
x2

2 dx =
√

2πn!δnm.

The first five ones are He0(x) = 1, He1(x) = x, He2(x) = x2 − 1, He3(x) = x3 − 3x, and

He4(x) = x4 − 6x2 + 3 and they coincide exactly with the present polynomials.

Legendre polynomials

It follows by taking D = 1 that,

P0(ξ) =
1√
2
, P1(ξ) =

3

2
ξ, P2(ξ) =

√
5

2
(3ξ2 − 1), (3.103)
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P3(ξ) =

√
21

2
(5ξ2 − 3), and P4(ξ) =

3
√

3

4
(35ξ4 − 30ξ2 + 3). (3.104)

The Legendre polynomials [56] satisfy the following orthonormality condition,∫ 1

−1

Pm(x)Pn(x) dx =
2

2n+ 1
δnm.

The first five ones are P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, P3(x) = (5x3 − 3x)/2,

and P4(x) = (35x4 − 30x2 + 3)/8. Thus apart from the normalization they coincide with

the present polynomials.

Chebyshev polynomials of the first kind

P0(ξ) =
1√
π
, P1(ξ) =

√
2

π
ξ, P2(ξ) =

2√
π

(2ξ2 − 1), (3.105)

P3(ξ) = 2

√
3

π
(4ξ3 − 3ξ), and P4(ξ) = 4

√
3

π

(
8ξ4 − 8ξ2 + 1

)
. (3.106)

The Chebyshev polynomials of the first kind [56] satisfy the following orthonormality

condition, ∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=


0 n 6= m

π n = m = 0
π
2

n = m 6= 0

.

The first five ones are T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, and

T4(x) = 8x4 − 8x2 + 1. Thus apart from the normalization they coincide with the present

polynomials.

Chebyshev polynomials of the second kind

P0(ξ) =

√
2

π
, P1(ξ) = 2

√
2πξ, P2(ξ) =

2√
π

(4ξ2 − 1), (3.107)
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P3(ξ) = 8

√
3

π
(2ξ3 − ξ), and, P4(ξ) = 4

√
3

π

(
16ξ4 − 12ξ2 + 1

)
. (3.108)

The Chebyshev polynomials of the second kind [56] satisfy the following orthonormality

condition, ∫ 1

−1

Un(x)Um(x)
dx√

1− x2
=

{
0 n 6= m
π
2

n = m
.

The first five ones are U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x, and

U4(x) = 16x4 − 12x2 + 1. Thus apart from the normalization they coincide with the

present polynomials.

3.5.6 D-dimensional Fermi-Dirac polynomials

We seek the set of polynomials orthonormal under the weight defined by the FD

statistical occupation number for u = 0.

ω(ξ) =
1

z−1e−
ξ2

2θ + 1
and ξmax =∞. (3.109)

The parameter z ≡ eµ/θ is called the fugacity, where µ is the chemical potential and θ is

the temperature using the so-called reduced units (m = kB = c = ~ = 1). For the FD

weight it holds that,

I2N = (2π)D/2θνgν (z) , ν ≡ N +D/2, and gν(z) ≡
∫ ∞

0

dx
xν−1

z−1ex + 1
. (3.110)

It is interesting to consider special limits where the integral gν(z) can be explicitly cal-

culated and the I2N obtained. One of such limits is when the quantum FD statistics

becomes the classical MB statistics. This is the small fugacity limit,

gν(z) = Γ(ν)
(
z − z2

2ν
+
z3

3ν
+ · · ·

)
. (3.111)

The other interesting limit is the so-called Sommerfeld limit [118], used for the treatment

of electrons in metals where the chemical potential (Fermi energy) is much larger than

the room temperature. In this limit µ/θ = ln z >> 1, such that the terms of high order
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in (θ/µ)2k can be disregarded.

gν(z) =
Γ(ν)

Γ(ν + 1)
(ln z)ν

{
1 + ν(ν − 1)

π2

6

1

(ln z)2

+ν(ν − 1)(ν − 2)(ν − 3)
7π4

360

1

(ln z)4
+ · · ·

}
(3.112)

3.5.7 D-dimensional Bose-Einstein polynomials

Similarly to the previous case, we seek the set of polynomials orthonormal under a

weight which is the BE statistical occupation number.

ω(ξ) =
1

z−1e−
ξ2

2θ − 1
, and ξmax =∞. (3.113)

It holds that,

I2N = (2π)D/2θνhν (z) , α ≡ N +D/2, andhν(z) ≡
∫ ∞

0

dx
xν−1

z−1ex − 1
(3.114)

The are also special limits here, the first being when the quantum BE statistics becomes

the classical MB one. This is the small fugacity limit,

hν(z) = Γ(ν)
(
z +

z2

2ν
+
z3

3ν
+ · · ·

)
. (3.115)

Notice that in leading order in z, the FD and the BE polynomials become identical as they

reduce to the MB polynomials at finite temperature. In fact at this limit these polynomials

are just scaled versions of the D-dimensional Hermite polynomials. The other interesting

limit is that of negative vanishing fugacity near to the onset of the BE condensate. For

this we write α ≡ −µ/θ, α→ 0. Thus for z ≡ e−α, one obtains that,

hν(z) =
Γ(1− ν)

α1−ν +
∞∑
i=0

(−1)i

i!
ζ(ν − i)αi, (3.116)

where ζ(s) is the Riemann zeta function, which is defined for Re(s) > 1. Thus for ν

integer, the above expression must be replaced by,

hm(z) =
(−1)m−1

(m− 1)!

(m−1∑
i=1

1

i
− lnα

)
αm−1 +

∞∑
i = 0

i 6= m− 1

(−1)i

i!
ζ(m− i)αi. (3.117)
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3.5.8 D-dimensional Graphene polynomials

Graphene is a two-dimensional sheet of carbon atoms arranged in an hexagonal lattice

where electrons move with a relativistic dispersion relation. To deal with this situation we

seek a set of polynomials orthonormal under a weight which the following FD statistical

occupation number for u = 0 [113].

ω(ξ) =
1

z−1e
|ξ|
θ + 1

, and ξmax =∞. (3.118)

It holds that,

I2N = 2D+Nπ
1
2

(−1+D)θD+2NΓ

[
1 +D

2
+N

]
gD+2N(z) (3.119)

(3.120)

The limit of low doping in graphene corresponds to µ → 0 or, equivalently, z → 1. The

doping of graphene can be chemically adjusted for instance.

I2N = 2−N
(
−2 + 2D+2n

)
π

1
2

(−1+D)θD+2NΓ

[
1 +D

2
+ n

]
ζ[D + 2N ] (3.121)

+2−N
(
−4 + 2D+2N

)
π

1
2

(−1+D)θD+2NΓ

[
1 +D

2
+N

]
ζ[−1 +D + 2N ](z − 1)

+2−1−Nπ
1
2

(−1+D)θD+2NΓ

[
1 +D

2
+N

] ((
−8 + 2D+2N

)
ζ[−2 +D + 2N ]

−
(
−4 + 2D+2N

)
ζ[−1 +D + 2N ]

)
(z − 1)2 +O[z − 1]3

3.5.9 D-dimensional Yukawa polynomials

As an extra example (not applied to our models), consider the Yukawa potential of

nuclear interactions that contains the parameter µ that renders it short ranged. Assume

the Yukawa potential as a weight to obtain orthonormal polynomials.

ω(ξ) =
e−µξ

ξ
and ξmax =∞. (3.122)

To determine the coefficients that enter the polynomials, it is enough to have the integrals,

I2N =
πD/2

2N−1

Γ(2N +D − 1)

Γ(N + D
2

)

1

µ2N+D−3
. (3.123)
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3.6 Conclusion

We propose here D-dimensional symmetric tensor polynomials orthonormal under a

general weight. We show that the number of coefficients of the first five ones (N=0 to 4)

matches exactly the number of equations that stem from their orthonormalization, which

allows for their obtainment as functions of the integrals IN ’s. In Statistical Mechanics it

is well-known that the D-dimensional Hermite polynomials are a key element to solve the

Boltzmann equation for classical particles, which satisfy the MB statistics [33,81,121]. The

present generalized polynomials are applicable to semi-classical fluids where the particles

obey the BE and FD statistics [30, 31]. The proposed generalized polynomials allows

for the definition of orthonormal multipoles as shown in case of the Yukawa potential.

We foresee many other applications because the proposed polynomials take into account

the expanded function as the weight that render them orthonormal in the D-dimensional

space.



58

Chapter 4

Lattice Boltzmann method for
semiclassical fluids

In this chapter, we determine properties of the LBM for semiclassical fluids, which

is based on the Boltzmann equation and on an equilibrium distribution function given

either by the Bose-Einstein or the Fermi-Dirac distributions. New D-dimensional poly-

nomials, developed in Chap. 3, are used and we find that the weight that renders the

polynomials orthonormal has to be approximately equal, or equal, to the equilibrium dis-

tribution function itself for an efficient numerical implementation of the LBM. In light

of the new polynomials we discuss the convergence of the series expansion of the equilib-

rium distribution function and the obtainment of the hydrodynamic equations. A discrete

quadrature is proposed and some discrete lattices in one, two and three dimensions as-

sociated to weight functions other than the Hermite weight are obtained. We derive the

forcing term for the LBM, given by the Lorentz force, which depends on the microscopic

velocity, since the bosonic and fermionic particles can be charged. Motivated by the re-

cent experimental observations of the hydrodynamic regime of electrons in graphene, we

build an isothermal LBM for electrons in metals in two and three dimensions. This model

is validated by means of the Riemann problem and of the Poiseuille flow. As expected

for electron in metals, the Ohm’s law is recovered for a system analogous to a porous

medium.
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4.1 Introduction

The Boltzmann equation [81] with a BGK collision term together with the MB EDF

has found widespread use to describe the flow of classical particles. This is because it

allows for an efficient numerical implementation, which is well fitted to perform simu-

lations in complex geometries such as in porous media [31]. This is the LBM [82, 136],

based on a discretization of the phase space. The EDF is expanded in powers of the

macroscopic velocity, under the assumption of a low Mach number, and yet, the hydro-

dynamical equations remain fully satisfied. This remarkable property follows from an

underlying mathematical structure provided by the D-dimensional Hermite polynomials.

In this chapter, we generalize the present framework to the semiclassical fluids whose

constituents are either bosons or fermions.

Recently there has been a renewed interest in the study of the hydrodynamic regime

for charge carriers in conductors [24,89,103,110]. Experiments have shown that electrons

in graphene exhibit hydrodynamic behavior for a wide range of temperatures and carrier

densities [9], due to its weak electron-phonon scattering [142] and to the new technologies

to produce ultra-clean samples [133]. One of the clear signals of its hydrodynamical

regime is the onset of whirlpools (vortices) that has been predicted and subsequently

observed [9, 86, 119, 145]. The Dirac fluid of electron has been simulated by a relativistic

LBM many times [32, 47, 52, 97, 99, 113] in order to unveil new properties of graphene.

These authors expand the FD distribution in orthogonal polynomials, similarly as done

here, but using a fully relativistic formalism for massless particles (see Ref. [32]). In

this chapter we seek a general non-relativistic formalism for semiclassical fluids based

on D-dimensional orthonormal polynomials. The Hermite polynomials are well fitted

to describe classical particles, that is, those obeying the MB statistics, since they are

orthonormal under the Hermite weight function which is essentially the MB EDF. Previous

attempts [30,67,130,157] to build a semiclassical LBM were based on the expansion of the
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BE-FD distributions in Hermite polynomials, but they were limited to a nearly classical

regime since the weight function of the Hermite polynomials differs greatly from the

BE-FD distributions on the semiclassical or quantum regimes (low temperatures and/or

high densities). The point of view here is that a new polynomial set must be used

for semiclassical fluids where the weight function is similar or equal to the EDF. We

propose the general formalism to describe the flow of semiclassical particles based on

a new set of D-dimensional polynomials that generalize the well-known D-dimensional

Hermite polynomials (see Chap. 3). We obtain the expansion of the EDF under a general

weight such that the cases of BE-FD EDFs can be immediately treated by the present

formalism.

The description of electrons in metals with Boltzmann equation meets the following

parameters [7]. The microscopic velocity of electrons is the Fermi speed, vF ∼ 106

m/s and the typical relaxation time is τ ∼ 10−14 s. This renders a kinematic viscosity

ν ≈ v2
F τ/3 ∼ 10−3 m2/s. The macroscopic velocity u is very low and can be computed

by assuming that ume/τ = eE, where me and e are the electron’s mass and charge

respectively. For a typical home appliance battery, the voltage is V = 1.5 Volts per L = 1

m, which gives an electric field of E = V/L = 1.5 Volts/m and so, u ∼ 3×10−3 m/s. The

typical electronic density is ρ ∼ 10−2 Kg/m3. and the shear viscosity is η = ρν ∼ 10−5

Kg/(ms). Thus one can get an estimative for the Reynolds number associated to a system

of size L, Re = uL/ν ∼ 3L where L is expressed in meters. Therefore electrons in metals

behave similarly to Glycerin.

This chapter is organized as follows. In Sec. 6.2.2 we review the expansion of a

EDF in terms of orthogonal polynomials (see Sec. 3.4). We also discuss the special

case of a weight function equal to the EDF itself. In Sec. 4.3 the EDF is expanded up

to fourth order in the set of new generalized polynomials orthonormal under a general

weight. In Sec. 4.4 the EDF is expanded in polynomials orthonormal for the special

case that the weight is equal to the EDF itself, ω(ξ) = f eq(ξ). In Subsec. 4.4.1 we
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directly derive the EDF to order N=2 without using the orthonormal polynomials just

to confirm the rightness of our ideas. In Sec. 4.5, we derive the macroscopic equations

for semiclassical fluids (i.e., mass, momentum and energy conservation equations) in the

context of the generalized polynomials. A discussion is made about the minimum order

that the EDF should be expanded in order to recover each macroscopic equation. In

Sec. 4.6, we calculate the forcing term for a second order expansion of the semiclassical

EDF and verify that it satisfies the moment constraints up to second order. In Sec. 4.7,

we obtain the quadratures and calculate the discrete weights of the D1V 3, D2V 9, and

D3V 15 lattices (more quadratures can be found in B). They are calculated for a generic

weight function similarly to the polynomials. In Sec. 4.8, we develop our LBM for electrons

in metals in two (2D) and three (3D) dimensions and perform three numerical tests: the

Riemann problem, the Poiseuille flow and the Ohm’s law. In Sec. 4.9, we summarize our

main results and conclude.

4.2 Expansion of the equilibrium distribution func-

tion

The EDF f (eq)(ξ) is a central quantity in the Boltzmann-BGK framework since the

non-equilibrium distribution function f relaxes to the EDF, f eq, within time τ , according

to,

∂f

∂t
+ ξ ·∇xf + a ·∇ξf = −f − f

eq

τ
. (4.1)

where ξ and a are the microscopic velocity and acceleration, the latter defined by the ex-

ternal applied force. From this equation one obtains the hydrodynamical quantities under

the Chapman-Enskog assumption, which says that expectation values over the microscopic

velocity, ξ, can be computed either from the non-equilibrium distribution function, f(ξ),

or from the equilibrium one, f (eq)(ξ). In this case the first three macroscopic moments



62

are given by,

ρ ≡
∫
dDξf (eq)(ξ − u), (4.2)

ρu ≡
∫
dDξf (eq)(ξ − u)ξ, (4.3)

ρθ̄δi1i2 ≡
∫
dDξf (eq)(ξ − u)(ξ − u)i1(ξ − u)i2 . (4.4)

They correspond to the mass density ρ, the macroscopic velocity u, and the temperature

related quantity θ̄, which gives a measure of the energy density ε = Dθ̄/2 (for the classical

case, it is the temperature itself: θ̄ = θ). Therefore the use of f(ξ − u) instead of

f (eq)(ξ − u) renders the same values at any position and time for ρ, u, and θ̄ according

to the Chapman-Enskog assumption. We also define for later purposes the quantity g

associate to the fourth order expectation value,

ρθ̄2g δi1i2i3i4 ≡
∫
dDξf (eq)(ξ − u)(ξ − u)i1(ξ − u)i2(ξ − u)i3(ξ − u)i4 , (4.5)

which is a function of the same parameters that define ρ and θ̄. Notice that the definition

of the macroscopic velocity u is just the statement that at the local center of mass there

is no net motion. ∫
dDξf (eq)(ξ − u)(ξ − u) = 0

The D-dimensional Euclidean space is endowed with the following tensors, defined by

Harold Grad [54], that can be expressed as sums of products of the Kronecker’s delta

function (δij = 1 for i = j and 0 for i 6= j),

δi1···iN |j1···jN ≡ δi1j1 · · · δiN jN + permutations of i’s, (4.6)

δi1···iN j1···jN ≡ δi1j1 · · · δiN jN + all permutations. (4.7)

Properties of the above tensors, such as their number of terms, is discussed in more details

Ref. [42].
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Using the Chapman-Enskog expansion [26, 81], the macroscopic equations and the

transport coefficients for a fluid governed by a given EDF f eq can be calculated from the

discrete Boltzmann equation,

f(x+ ξ∆t, ξ + a∆t, t+ ∆t)− f(x, ξ, t) = −∆t
f − f eq

τ
, (4.8)

where ∆t is the step time. The continuous form of this equation is obtained by expanding

in powers of ∆t and the first order term is the continuous Boltzmann equation, given

Eq.(4.1).

We are interested in expanding the EDF in a polynomial power series in D-dimensional

space, as such,

f (eq)(ξ − u) = ω(ξ)
K∑
N=0

1

N !
Ai1 i2···iN (u)Pi1 i2···iN (ξ). (4.9)

Ai1 i2···iN are the projections of the EDF on the polynomials and Pi1···iN (ξ) are the poly-

nomials themselves, which are orthonormal under a generic weight function ω(ξ). This

weight function is assumed to only depend on the modulus of the microscopic velocity

ξ ≡ (ξ1, ξ2, · · · , ξD): ω(ξ) = ω(ξ), ξ ≡ |ξ|, and to have the property that ω(ξ) → 0 for

ξ →∞ faster than any power of ξ.

Remarkably only a few terms in the above series expansion must be included to guar-

antee mass, momentum and energy conservation. The Chapman-Enskog analysis shows

that in order to obtain the hydrodynamic equations of continuity and the Navier-Stokes

equation the above series expansion can be cutoff at K=3 and to include the equation

of energy conservation one must include only one more term, namely, go to order K=4.

More details about the obtainment of the macroscopic equations can be found in Sec. 4.5.

However the above cutoff procedure does not guarantee convergence of the cutoff series

expansion to the orginal EDF. Hence it remains another very important requirement to
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be fullfilled which is of convergence to the underlying physics. This is expected under

the assumption that the macroscopic velocity is much smaller than the microscopic one,

u � ξ. The point that we stress here is that clearly this convergence is intimately con-

nected to the choice of the weight function ω(ξ), that must be close enough to f (eq)(ξ)

such that the remaining multiplying series is just a small correction to it and so, only a

few terms would be enough to describe the corrections in ξ.

The three EDFs explicitly depend on the microscopic velocity, ξ, and implicitly on

the position, x, through the local macroscopic parameters, such as the density ρ(x),

the chemical potential µ(x), the fugacity z(x) the macroscopic velocity u(x), and the

temperature θ(x). The FD (+) and the BE (−) EDFs are given by

f
(eq)
FD/BE(ξ) =

1

z−1 exp
(
ξ2/2θ

)
± 1

, z = exp (µ/θ) (4.10)

and the MB is,

f
(eq)
MB(ξ) =

ρ0

(2πθ)D/2
exp

(
−ξ2/2θ

)
(4.11)

where ρ0 is a dimensionless density. All variables are defined dimensionless (m = kB =

c = ~ = e = 1) by means of appropriate temperature and velocity scales. We observe

the remarkable property of the series expansion in terms of the new polynomials, which

is to have the macroscopic velocity expressed always as a ratio to a reference velocity of

the problem, not necessarily the thermal velocity. For instance, notice that, in case of

electron’s in metals, Mach’s number diverges at T = 0 and cannot even be considered as a

reference velocity. Indeed in this case the scale is set by the Fermi speed, vF and, since the

microscopic velocity U is very low in metals, for typical electric fields, u/vF ∼ 0.4× 10−6,

according to previously given values. Hence the new polynomials in case of electrons in

metals render the series expansion of the EDF at T = 0 to be automatically in powers of

the ratio u/vF instead, as shown in Ref. [31].
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The convergence problem is better understood in the limit of a vanishing macroscopic

velocity at Eq.(4.9), which gives that,

f (eq)(ξ) = ω(ξ)
K∑
N=0

1

N !
Ai1 i2···iN (0)Pi1 i2···iN (ξ). (4.12)

f (eq)(ξ) for the MB EDF is a gaussian and so the choice of ω(ξ) equal to the Hermite

weight function,

ω(ξ) =
1

(2π)D/2
exp

(
−ξ

2

2

)
, (4.13)

is a good choice which implies the presence of the D-dimensional Hermite polynomials.

However the Hermite weight is very different from the FD or MB EDFs rendering the need

of many terms in the series expansion that multiplies ω(ξ). A striking example of such

difficulty is provided by the FD EDF very near to zero temperature (θ ≈ 0) which becomes

equal to a Heaviside step function (f
(eq)
FD ≈ 1 for ξ2/2 ≤ µ and f

(eq)
FD ≈ 0 for ξ2/2 ≥ µ).

Expressing the Heaviside function as the product of a gaussian times a series expansion

implies that the latter must contain many terms. Hence this zero limit provides evidence

of the inadequacy of the Hermite weight to describe electrons in metals for instance, since

those behave at room temperature very similarly to the zero temperature limit [7]. Hence

we reach the conclusion that for indistinguishable particles, namely BE or FD particles,

the weight function must be chosen accordingly in order to reach convergence in the

expanded EDF with a few terms. In this chapter we study separately two similar but

distinguishable situations, namely, of the weight similar to the EDF itself, ω(ξ) ≈ f (eq)(ξ)

and of the weight exactly equal to the EDF, ω(ξ) = f (eq)(ξ). In order to treat these two

cases we firstly obtain the D-dimensional polynomials orthonormal under a general weight

ω(ξ).
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4.3 Expansion in polynomials orthonormal under a

general weight

In this section, we consider the series expansion in polynomials orthonormal under

a general weight ω(ξ). Although we are ultimately interested in the situation that the

weight is similar to the EDF itself, ω(ξ) ≈ f (eq)(ξ), because this makes convergence faster,

we do no take this assumption here. For the special case that ω(ξ) = f eq(ξ) some extra

properties can be derived and this is done in the next section. The projections Ai1 i2···iN

are obtained from the general orthonormal relation of Eq.(3.1),

Ai1 i2···iN (u) =

∫
dDξ′ f (eq)(ξ′ − u)Pi1 i2···iN (ξ′).

There is a completeness relation for these generalized tensorial polynomials, which is

obtained from the above expression and Eq.(4.9):

f (eq)(ξ − u) = ω(ξ) ·
∞∑
N=0

1

N !

∫
dDξ′ f (eq)(ξ′ − u)Pi1 i2···iN (ξ′)Pi1 i2···iN (ξ),

since f(ξ − u) =
∫
dDξ′ δD(ξ′ − ξ)f(ξ′ − u). The completeness relation is given by,

ω(ξ)
∞∑
N=0

1

N !
Pi1 i2···iN (ξ′)Pi1 i2···iN (ξ) = δD(ξ′ − ξ),

In terms of the relative (or peculiar) velocity η = ξ − u the quantities ρ, θ̄ and g

become,

ρ ≡
∫
dDηf (eq)(η), (4.14)

ρθ̄δi1i2 ≡
∫
dDηf (eq)(η)ηi1ηi2 , (4.15)

ρθ̄2g δi1i2i3i4 ≡
∫
dDηf (eq)(η)ηi1ηi2ηi3ηi4 . (4.16)

For the case of the FD-BE EDF these quantities can be expressed in terms of the integrals

defined as

gν(z) =
1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1 exp(x)± 1
, (4.17)
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which are functions of the fugacity z. One obtains that,

ρ(z, θ) = (2πθ)
D
2 gD

2
(z), (4.18)

θ̄(z, θ) = θ
gD

2
+1(z)

gD
2

(z)
, (4.19)

g(z) =
gD

2
(z)gD

2
+2(z)(

gD
2

+1(z)
)2 . (4.20)

Recall that the EDF is solely a function of the modulus of the relative velocity, namely,

f eq(η), η = |η|. Below the first five projections of the EDF are calculated by noticing

that by taking that dDξ = dDη the limits of integration do not change since the integrand

vanishes exponentially at infinity.

• Zeroth order – Since P0(ξ) = c0, one obtains that

A0 =

∫
dDηf (eq)(η)P0(ξ) = c0ρ (4.21)

• First order – Since Pi1(ξ) = Pi1(η) + c1ui1 , there are two terms to consider for the

projection,

Ai1 =

∫
dDηf (eq)(η)Pi1(ξ),

The first term gives no contribution because the integration of an odd function vanishes.

Hence only the second term contributes and gives that,

Ai1 = c1ui1

∫
dDηf (eq)(η) = ρc1ui1 . (4.22)

• Second order – In the projection,

Ai1i2 =

∫
dDηf (eq)(η)Pi1i2(ξ),

we introduce the expanded polynomial,

Pi1i2(ξ) = Pi1i2(η) +
c2

c1

[ui1Pi2(η) + ui2Pi1(η)] + 2
c̄2

c1

ui3Pi3(η)δi1i2 + c2ui1ui2 + c̄2u
2δi1i2 .



68

The odd terms vanish and so,

Ai1i2 = ρ
[
(c2θ̄ + c′2)δi1i2 + c2ui1ui2 + c̄2(Dθ̄ + u2)δi1i2

]
(4.23)

• Third order – Similarly, the projection,

Ai1i2i3 =

∫
dDηf (eq)(η)Pi1i2i3(ξ)

is calculated using the expanded polynomial.

Pi1i2i3(ξ) = Pi1i2i3(η) + c3ui1ηi2ηi3 + c3ui3ηi1ηi2 + c3ui1ui3ηi2 + c3ui2ηi1ηi3 + c3ui2ui3ηi1

+ c3ui2ui3ui1 + c3ui2ui1ηi3 + (c̄3η
2 + c′3)(ui1δi2i3 + ui2δi1i3 + ui3δi1i2) + c̄3u

2(ηi1δi2i3

+ ηi2δi1i3 + ηi3δi1i2 + ui1δi2i3 + ui2δi1i3 + ui3δi1i2) + 2c̄3ui4ηi4(ηi1δi2i3 + ηi2δi1i3

+ ηi3δi1i2 + ui1δi2i3 + ui2δi1i3 + ui3δi1i2)

Using Eq.(4.16) we get that,

Ai1i2i3 = ρ
[(
c3θ̄ + c̄3θ̄(D + 2) + c′3 + c̄3u

2
)
(ui1δi2i3 + ui3δi1i2 + ui2δi1i3) + c3ui1ui2ui3

]
.

(4.24)

• Fourth order – The last projection obtained here is,

Ai1i2i3i4 =

∫
dDηf (eq)(η)Pi1i2i3i4(ξ)

The expansion of the N=4 polynomial in the variable ξ = η+u renders a complex expres-

sion and for this reason we write below only its even terms, the only ones to contribute

to the projection.

Pi1i2i3i4(ξ) = c4(ηi1ηi2ηi3ηi4 + ηi1ηi2ui3ui4 + ηi1ηi3ui2ui4 + ηi1ηi4ui2ui3 + ηi2ηi3ui1ui4

+ ηi2ηi4ui1ui3 + ηi3ηi4ui1ui2 + ui1ui2ui3ui4) + (c′4 + c̄4η
2 + c̄4u

2)[(ηi1ηi2 + ui1ui2)δi3i4

+ (ηi1ηi3 + ui1ui3)δi2i4 + (ηi1ηi4 + ui1ui4)δi2i3 + (ηi3ηi4 + ui3ui4)δi1i2 + (ηi2ηi4 + ui2ui4)δi1i3

+ (ηi2ηi3 + ui2ui3)δi1i4 ] + 2c̄4(η · u)[(ηi1ui2 + ηi2ui1)δi3i4 + (ηi1ui3 + ηi3ui1)δi2i4 + (ηi1ui4

+ ηi4ui1)δi2i3 + (ηi3ui4 + ηi4ui3)δi1i2 + (ηi2ui4 + ηi4ui2)δi1i3 + (ηi2ui3 + ηi3ui2)δi1i4 ] + [d4

+ d′4(η2 + u2) + d̄4(η4 + 2η2u2 + 4(η · u)2) + u4](δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3)

+ odd terms in η.
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we have finally the fourth order projection:

Ai1i2i3i4 = ρ
{
δi1i2i3i4

[
c4θ̄

2g + 2(c′4 + c̄4u
2)θ̄ + 2c̄4θ̄

2g(D + 2) + d4 + d′4(Dθ̄ + u2)

+ d̄4[θ̄2gD(D + 2) + 2u2θ̄D + 4u2θ̄ + u4]
]

+ (δi1i2ui3ui4 + δi1i3ui2ui4 + δi1i4ui2ui3

+ δi2i3ui1ui4 + δi2i4ui1ui3 + δi3i4ui1ui2)(c4θ̄ + c′4 + c̄4u
2 + c̄4θ̄D + 4c̄4θ̄) + c4ui1ui2ui3ui4

}
.

(4.25)

From this we obtain the series expansion of the EDF until fourth order.

f (eq)(ξ − u) = ω(ξ)
{
A0P0 +Ai1Pi1 +

1

2
Ai1i2Pi1i2 +

1

6
Ai1i2i3Pi1i2i3 +

1

24
Ai1i2i3i4Pi1i2i3i4

}
.

(4.26)

where

A0P0 = ρc2
0, Ai1Pi1 = ρc2

1(ξ · u), Ai1i2Pi1i2 = ρ{c2(c2θ̄ + c′2)ξ2 + c2
2(ξ · u)2

+ c2c̄2(Dθ̄ + u2)ξ2 + (c̄2ξ
2 + c′2)[D(c2θ̄ + c′2) + c2u

2 + c̄2D(Dθ̄ + u2)],

Ai1i2i3Pi1i2i3 = ρ
{

3(c3θ̄ + c̄3θ̄(D + 2) + c′3 + c̄3u
2)(ξ · u)[c3ξ

2 + (c̄3ξ
2 + c′3)(D + 2)]

+ c2
3(ξ · u)3 + 3c3u

2(c̄3ξ
2 + c′3)(ξ · u)

}
, and

Ai1i2i3i4Pi1i2i3i4 = ρ
{[
c4θ̄2g + 2(c′4 + c̄4u

2)θ̄ + 2c̄4θ̄2g(D + 2) + d4 + d′4(Dθ̄ + u2)

+ d̄4[θ̄2gD(D + 2) + 2u2θ̄D + 4u2θ̄ + u4]
]
·
[
3c4ξ

4 + 6(c′4 + c̄4ξ
2)ξ2(D + 2) + 3(d4 + d′4ξ

2

+ d̄4ξ
4)D(D + 2)

]
+ [c4θ̄ + c′4 + c̄4u

2 + c̄4θ̄D + 4c̄4θ̄]
[
6c4ξ

2(ξ · u)2 + 6(c′4 + c̄4ξ
2)[ξ2u2

+ (ξ · u)2(D + 4)] + 6(d4 + d′4ξ
2 + d̄4ξ

4)(D + 2)u2
]

+ c2
4(ξ · u)4 + 6c4(c′4 + c̄4ξ

2)(ξ · u)2u2

+ 3(d4 + d′4ξ
2 + d̄4ξ

4)u4c4.

The question concerning convergence boils down to know that the u = 0 limit f (eq)(ξ)

has a reliable expression given by ω(ξ) times a polynomial of fourth order in ξ. Obviously

the minimum condition is that ω(ξ) be sufficiently close to f (eq)(ξ) otherwise it will not

be possible.

The numerical simulations of Sec. 4.8 are done with the EDF expanded to second
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order, and for this reason, we write it below.

f (eq)(ξ − u) = ρω(ξ)
{
c2

0 + c2
1(ξ · u) +

1

2
c2(c2θ̄ + c′2)ξ2 +

c2
2

2
(ξ · u)2

+
1

2
c2c̄2(Dθ̄ + u2)ξ2 +

1

2
(c̄2ξ

2 + c′2)[D(c2θ̄ + c′2) + c2u
2 +Dc̄2(Dθ̄ + u2)]

}
. (4.27)

4.4 Expansion in polynomials orthonormal for ω(ξ) =

f eq(ξ)

In this section, we consider the series expansion in polynomials orthonormal under a

weight equal to the EDF itself,

ω(ξ) ≡ f (eq)(ξ). (4.28)

All the results of the previous section still holds, nevertheless the above choice for the

weight brings special properties to the projections, such as,

∞∑
N=0

1

N !
Ai1 i2···iN (0)Pi1 i2···iN (ξ) = 1, (4.29)

from where it follows that Ai1i2...iN (0) = 0 for N ≥ 1 since A0(0)P0(ξ) = 1. This has

an important consequence for convergence, these projections are guaranteed to be small

in case of a small macroscopic velocity u � 1. It holds that Ai1i2...iN (u) ≈ ui1δi2...iN

and Ai1i2...iN (u) ≈ u2δi1i2...iN + a.ui1 i2δi3...iN , where a is a coefficient. This holds for N

odd and even, except in case of A0. Therefore the choice of Eq.(4.28) has important

consequences, specially useful in case of the semiclassical statistics, given by the FD and

BE EDFs [31]. We notice that the the macroscopic velocity u is a ratio normalized by a

velocity appropriate to the bosons or fermions not necessarily equal to Mach’s velocity.

The previously defined quantities ρ, θ̄ and g become integrals defined in Eq.(3.10),

ρ ≡
∫
dDηω(η) = I0, (4.30)

ρθ̄δi1i2 ≡
∫
dDηω(η)ηi1ηi2 = I2δi1i2 , (4.31)

ρθ̄2g δi1i2i3i4 ≡
∫
dDηω(η)ηi1ηi2ηi3ηi4 = I4δi1i2i3i4 . (4.32)
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New and interesting expressions for the projections emerge by considering that P0(η)/c0 =

1 and the fact that the weight function is equal to the EDF.

Ai1 i2···iN (u) =
1

c0

∫
dDη ω(η)P0(η)Pi1 i2···iN (η + u), (4.33)

Hence the determination of the projections is reduced to the expansion Pi1 i2···iN (η + u)

as a sum over polynomials Pi1 i2···iM (η) of equal or lower order (M ≤ N).

Pi1i2...iN (η + u) = U0(u)Pi1i2...iN (η) + . . .+ Ui1i2...iN (u)P0(η).

The coefficients Ui1i2...iN−M (u) that multiplies the polynomial Pi1i2...iM (η) are tensors built

from products of components ui and the KroneckerÂ´s delta function δi j times coefficients

which are themselves polynomials in u2 without the constant term with the exception of

U0 which is a constant itself. Indeed according to the above expression in the limit u→ 0,

it holds that U0(0) = 1 while for the higher order tensors Ui1i2...iM (0) = 0. In summary

the sought projections obtained from Eq.(4.33) become,

Ai1i2...iN (u) =
1

c0

Ui1i2...iN (u).

Then it follows that Ai1i2...iN (u = 0) = 0 for N ≥ 1, as previously stated. The obtainment

of the projections in case the weight is the EDF itself is reduced to calculate the polynomial

expansion, and we do it explicitly to order N=4.

• Zeroth order – The expansion in case of N=0 is P0(η + u) = U0P0(η), hence U0 = 1.

• First order – The expansion in case of N=1 is Pi1(η+u) = c1(ηi1+ui1) = U0(u)Pi1(η)+

Ui1(u)P0(η). Thus U0(u) = 1 and

Ui1(u) =
c1

c0

ui1 .

• Second order – Expanding the N=2 polynomial, Pi1i2(η + u) = c2(ηi1 + ui1)(ηi2 +

ui2) + [c̄2(η + u)2 + c′2]δi1i2 , gives that,

Pi1i2(η + u) = Pi1i2(η) +
c2

c1

[ui1Pi2(η) + ui2Pi1(η)] +
2c̄2

c1

ui3Pi3(η)δi1i2

+
1

c0

P0(η)
[
c2ui1ui2 + c̄2u

2δi1i2
]
.
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Therefore one obtains that,

Ui1i2(u) =
1

c0

(c2ui1ui2 + c̄2u
2δi1i2).

• Third order –Similarly the expansion of the N=3 polynomial, Pi1i2i3(η+u), contains

the N=0 polynomial plus higher order ones that are omitted for simplicity.

Pi1i2i3(η + u) =
P0(η)

c0

{[ c3c̄2Dc
′
2

c2(c2 +Dc̄2)
− c3c

′
2

c2

− c̄3Dc
′
2

(c2 +Dc̄2)
+ c′3 + c̄3u

2 +
2c̄3c̄2Dc

′
2

c2(c2 +Dc̄2)

− 2c̄3c
′
2

c2

]
ui4δi1i2i3i4 + c3ui1ui2ui3

}
+O(η)

The above equation can be simplified using the expressions of the coefficients.

Pi1i2i3(η + u) = P0(η)Ui1i2i3(u) +O(η),

Ui1i2i3(u) =
1

c0

{[I2

I0

[c3 + c̄3(D + 2)] + c̄3u
2 + c′3

]
ui4δi1i2i3i4 + c3ui1ui2ui3

}
• Fourth order – The N=4 polynomial Pi1i2i3i4(η + u) can be expanded in powers of η

and such powers rearranged as a sum over the polynomials Pi1···iM (η), M=0 to 4, must

be . Nevertheless we only seek the N=0 term and some considerations can be applied to

simplify this task. For instance, the odd terms (ηi1 , ηi1η
2, ηi1ηi2ηi3) do not contribute to

the calculation of Ai1i2i3i4 and one can take that η2 = DI2/I0 +O(η). After some algebra,

we have that:

Pi1i2i3i4(η + u) = P0(η)Ui1i2i3i4(u) +O(η),Ui1i2i3i4(u) =
1

c0

{
c4ui1ui2ui3ui4 +

[I2

I0

[c4

+ c̄4(D + 4)] + c′4 + c̄4u
2
]
(δi1i2ui3ui4 + δi1i3ui2ui4 + δi1i4ui2ui3 + δi2i3ui1ui4 + δi2i4ui1ui3+

δi3i4ui1ui2) +
[
2c̄4

I2

I0

u2 + d′4u
2 + 2D

I2

I0

d̄4u
2 + 4

I2

I0

d̄4u
2 + u4d̄4

]
δi1i2i3i4

}
.

Further simplification gives that,

Ui1i2i3i4(u) =
1

c0

{
c4ui1ui2ui3ui4 +

[I2

I0

[c4 + c̄4(D + 4)] + c′4 + c̄4u
2
]
(δi1i2ui3ui4

+ δi1i3ui2ui4 + δi1i4ui2ui3 + δi2i3ui1ui4 + δi2i4ui1ui3 + δi3i4ui1ui2) +
[
2c̄4

I2

I0

u2

+ d′4u
2 + 2D

I2

I0

d̄4u
2 + 4

I2

I0

d̄4u
2 + u4d̄4

]
δi1i2i3i4

}
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We summarize the projections below, obtained after some additional algebraic manipula-

tion. Notice that they are functions of the integrals I2N previously defined.

A0(u) = I0c0, Ai1(u) = I0c1 ui1 , Ai1i2(u) = I0

(
c2ui1ui2 + c̄2u

2 δi1i2
)
,

Ai1i2i3(u) = I0

{
c3 ui1ui2ui3 +

[
c′3
(
1− J2

)
+ c̄3u

2
](
ui1δi2i3 + ui2δi1i3 + ui3δi1i2

)}
,

Ai1i2i3i4(u) = I0

{
c4 ui1ui2ui3ui4 +

[(
1− J2J4

)
c′4 + c̄4u

2
])(

ui1ui2δi3i4 + ui1ui3δi2i4

+ ui1ui4δi2i3 + ui2ui3δi1i4 + ui2ui4δi2i3 + ui3ui4δi1i2
)

+
[(

2
I2

I0

(
c̄4 + (D + 2)d̄4

)
+ d′4

)
u2

+ d̄4u
4
]
δi1i2i3i4

}
.

Using the definitions of the coefficients, one obtains that,

A0P0 = 1, Ai1Pi1 =
I0

I2

(ξ · u)

Ai1i2Pi1i2 = I0

[ 1

I4

(ξ · u)2 − (∆2
2 − 1)

I4D
u2ξ2 − I2

I0I4

∆2
2u

2
]

Ai1i2i3Pi1i2i3 = I0(ξ · u)
[
3(1− J2)

J4

I2

(D + 2)∆2
4

− 3
J4

I4

∆2
4u

2 − 3(1− J2)
J4

I4

∆2
4ξ

2 + 3
∆2

4 − 1

I6(D + 2)
ξ2u2 +

1

I6

(ξ · u)2
]

Ai1i2i3i4Pi1i2i3i4 = I0

{
c2

4(ξ · u)4 + 6c4(c′4 + c̄4ξ
2)u2(ξ · u)2

+ 3c4u
4(d4 + d′4ξ

2 + d̄4ξ
4) + 6

[I2

I0

(c4 + c̄4(D + 4))

+ c′4 + c̄4u
2
][
c4ξ

2(ξ · u)2 + (c′4 + c̄4ξ
2)[ξ2u2

+ (ξ · u)2(D + 4)] + (d4 + d′4ξ
2 + d̄4ξ

4)u2(D + 2)
]

+ 3
[
u2 I2

I0

2(c̄4 +Dd̄4 + 2d̄4) + d′4u
2 + d̄4u

4
]
[c4ξ

4

+ 2(c′4 + c̄4ξ
2)ξ2(D + 2) + (d4 + d′4ξ

2 + d̄4ξ
4)D(D + 2)]

}

Notice that the macroscopic velocity controls the smallness of the coefficients Ai1 i2···iN ,

which to the lowest order are linear and quadratic in u for the odd and even (N > 0)

coefficients, respectively.
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4.4.1 Direct derivation of the equilibrium distribution function
to order N=2

The EDF expanded to N=2 in case that ω(ξ) ≡ f (eq)(ξ) is readily obtained from the

sum of the first three above coefficients. Here we derive this N=2 EDF assuming that it is

a sum over all possible terms until the second power in the macroscopic velocity, namely,

ξ · u, (ξ · u)2, u2, ξ2u2.

f (eq) =ω(ξ)
[
f0 + f1 ξ · u+

f2

2
(ξ · u)2 +

f3

2
u2 +

f4

2
ξ2u2

]
We find the coefficients f0, f1, f2, f3 and f4 in the EDF given below, without invoking

the orthonormal polynomials and just derive them from the given physical parameters,

namely, the density, the macroscopic velocity and the temperature (Eqs.(4.2), (4.3) and

(4.4)). Notice that only integrals up to order ξ4 are used in this derivation. Therefore the

following relations are employed in the determination of the coefficients.∫
dDξω(ξ) = I0,∫
dDξω(ξ) ξi1 = 0,∫
dDξω(ξ) ξi1 ξi2 = I2 δi1i2 ,∫
dDξω(ξ) ξi1 ξi2 ξi3 = 0,∫
dDξω(ξ) ξi1 ξi2 ξi3 ξi4 = I4 δi1i2i3i4 .

We start by imposing that Eq.(4.2) holds to find that ρ = I0f0 +(f2I2 +f3I0 +f4DI2)u2/2.

Similarly from Eq.(4.3) it follows that ρu = f1I2u. Finally from Eq.(4.4) one obtains that

ρ(ui1ui2 + θ̄δi1i2) = f0I2δi1i2 + f2I4ui1ui2 + (u2/2)δi1i2 [f2I4 + f3I2 + (D+ 2)I4f4]. Therefore

ρ = I0f0, f2I2 + f3I0 + f4DI2 = 0, ρ = f1I2, ρθ̄ = f0I2, ρ = f2I4,

f2I4 + f3I2 + f4(D + 2)I4 = 0.

Solving these equations one obtains that f0 = ρ/I0, f1 = ρ/I2, f2 = ρ/I4 and θ̄ =

I2/I0. Then one is left with the a system of equations to solve for the remaining two
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coefficients whose solution is f3 = −(ρI2/I4I0)∆2
2 and f4 = (ρ/I4)(∆2

2 − 1)/D where

∆2
2 = 2/[(D + 2)− J2D], J2 = I2

2/I4I0, as previously defined. Finally one obtains that,

f (eq) =
ρ

I0

ω(ξ)
{

1 +
I0

I2

ξ · u+
I0

I4

1

2
(ξ · u)2 +

1

2
u2
[I0

I4

(∆2
2 − 1

D

)
ξ2 − I2

I4

∆2
2

]}
(4.34)

This is equivalent to Eq.(4.27) by substitution of the polynomial coefficients for the case

ω(ξ) = f eq(ξ) and taking that ρ = I0, as given by Eq.(4.30).

4.5 Macroscopic equations

In this section, we show the macroscopic equations followed by the semiclassical fluids,

i.e., continuity, momentum conservation and energy conservation equations, and general-

ize their derivation, done in Ref. [30], for a generic EDF. We also discuss the minimum

order that the EDF should be expanded in order to fully recover each macroscopic equa-

tion though the Chapman-Enskog expansion, developed below.

4.5.1 General equations

Here we list the general moments of the EDF needed to calculate the macroscopic

equations. To recover the mass conservation (continuity equation):

∂ρ

∂t
+

∂

∂xi1
(ρui1) = 0 (4.35)

the zeroth and first order moments of the EDF are needed:

ρ =

∫
dDξf eq, ρui1 =

∫
dDξξi1f

eq (4.36)

To obtain the momentum equation, one needs to calculate the following second and third

order moments:

πi1i2 =

∫
dDξf eqξi1ξi2 , (4.37)

πi1i2i3 =

∫
dDξf eqξi1ξi2ξi3 , (4.38)
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which are subsequently introduced into the generic momentum equation:

∂

∂t
(ρui1) +

∂

∂xi2
πi1i2 −

(
τ − ∆t

2

)
∂

∂xi2

∂

∂xi3
πi1i2i3 −

(
τ − ∆t

2

)
∂

∂xi2

∂

∂t
πi1i2 = 0 (4.39)

And for energy conservation equation, the moments needed are the second, third and

fourth order ones:

φ =
1

2
dDξf eqξ2, (4.40)

φi1 =
1

2
dDξf eqξ2ξi1 , (4.41)

φi1i2 =
1

2
dDξf eqξ2ξi1ξi2 . (4.42)

which are introduced into the generic energy equation:

∂

∂t
φ+

∂

∂xi1
φi1 −

(
τ − ∆t

2

)
∂

∂xi1

∂

∂xi2
φi1i2 −

(
τ − ∆t

2

)
∂

∂xi1

∂

∂t
φi1 = 0. (4.43)

The Eqs. (4.35), (4.39) and (4.43) give the macroscopic equations after calculating the

moments above for a specific EDF and after some algebraic manipulations [30,34].

4.5.2 Macroscopic equations obtained with original function

In Ref. [30] the moments are calculated using the FD and BE EDFs expanded in

Hermite polynomials up to fourth order. We generalize here this derivation for a generic

non-expanded EDF. Using the definitions of ρ, u, θ̄ and g (Eqs. (4.2), (4.3), (4.4) and

(4.5) respectively), the moments can be straightforwardly calculated giving that:

πi1i2 = ρ
[
θ̄δi1i2 + ui1ui2

]
,

πi1i2i3 = ρ
[
θ̄(ui1δi2i3 + ui2δi1i3 + ui3δi1i2) + ui1ui2ui3

]
,

φ = ρ

(
θ̄
D

2
+ u2

)
, (4.44)

φi1 =
ρ

2
ui1
[
θ̄(D + 2) + u2

]
,

φi1i2 =
ρ

2

[
(D + 2)δi1i2 θ̄

2g + θ̄(D + 4)ui1ui2 + θ̄u2δi1i2 + u2ui1ui2

]
,
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which are the same ones found using the truncated fourth order expansion of EDF in

Hermite polynomials [30]. As we will show in the next section, terms from expansion

orders higher than the monomial order in the integrand (that is, ξi1 . . . ξiN , where N is

the monomial order) do not contribute to the moment because of the orthogonality of the

polynomials. In addition, the results above would be the same if the EDF were expanded

up to fourth order in any set of orthogonal polynomials.

Therefore, when the moments given in Eq.(4.44) are substituted into Eqs.(4.39) and

(4.43), they give the same macroscopic equations obtained in Ref. [30]. The momentum

conservation equation or semiclassical Navier-Stokes reads:

∂

∂t
(ρui1) +

∂

∂xi2
[ρ(θ̄δi1i2 + ui1ui2)]− ∂σ̄i1i2

∂xi2
= 0. (4.45)

And the energy conservation equation is given by:

∂

∂t

[ρ
2

(u2 +Dθ̄)
]

+
∂

∂xi1

[ρ
2

(
u2 + θ̄(D + 2)

)
ui1 + Q̃i1 − ui2σ̄i1i2

]
= 0, (4.46)

where

σ̄i1i2 = η̄

(
∂ui1
∂xi2

+
∂ui2
∂xi1

− 2

D
δi1i2

∂ui3
∂xi3

)
is the viscosity stress tensor and

Q̃i1 = −κ̄ ∂θ̄

∂xi1
− ∂

∂xi1

[
κ̄θ̄ (g − 1)

]
(4.47)

is the heat flux vector (note that the second term disappears for the classical case, since

g = 1). Here the shear viscosity stands for η̄ = ρθ̄
(
τ − ∆t

2

)
and the thermal conductivity

for κ̄ = D+2
2
ρθ̄
(
τ − ∆t

2

)
. When the EDF is the BE or the FD distribution, the Eq.(4.47)

can be written as a function of the physical temperature and chemical potential gradients.

In this case, the quantities θ̄ and g(z) are given by Eqs.(4.19) and (4.20) and Eq.(4.47)

becomes:

Q̃i1 = −κθ
∂θ

∂xi1
− κµ

∂µ

∂xi1
,



78

giving the following transport coefficient:

κθ = κ

(D
2

+ 2

) gD
2

+2(z)

gD
2

(z)
−
(
D

2
+ 1

)(gD
2

+1(z)

gD
2

(z)

)2
 , κµ = 0,

as obtained in Ref. [34].

4.5.3 Macroscopic equations obtained with expanded EDF

Here we analyze the minimum number of terms in the series expansion of the EDF

that must be kept to obtain the macroscopic equations. This amounts to determine K

in the series expansion defined in Sec. 6.2.2. According to Sec. 4.5.1 the moments of the

EDF, expressed by Eqs.(4.37), (4.38), (4.40), (4.41) and (4.42) must be obtained. They

are integrals of the EDF multiplied by monomials of ξ. For this reason we carry the

following general discussion about a monomial tensor of order N , formed by the product

of N velocity components. It can be written as a sum over the generalized polynomials

that ranges from order zero to order N , that is,

ξi1ξi2 . . . ξiN = C0Pi1...iN + . . .+ Ci1...iNP0,

where Ci1...iN are tensors constructed from the Kronecker’s delta function and polynomials

coefficients. Thus, a moment of order N of the expanded EDF gives:

πi1...iN =

∫
dDξf eqξi1 . . . ξiN

=

∫
dDξ

[
ρω(ξ)

K∑
M=0

1

M !
Ai1···iM (u)Pi1···iM (ξ)

][
C0Pi1...iN + . . .+ Ci1...iNP0

]
.

The importance of the orthogonality of the polynomials, Eq. (3.1), can be appreciated at

this point. The integrals of the terms in the series expansion which are of order N + 1

and above simply vanish. This means that, a moment of order N can be equally obtained

either using the full non expanded EDF or the expanded EDF to order N .

For instance, to recover the continuity equation, Eq.(4.35), we need the zero and first
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order moments (Eq.(4.36)). Using that 1 = P0/c0 and ξi1 = Pi1/c1, they become:∫
dDξ
P0

c0

f eq =
A0

c0

= ρ,

∫
dDξ
Pi1
c1

f eq =
Ai1
c1

= ρui1 .

Therefore, the first order (K = 1) expansion of the EDF is enough to recover the conti-

nuity equation and terms higher than this (K ≥ 2) do not contribute.

For the momentum conservation equation, Eq.(4.45), we need the second and third

moments (K = 3) given in Eqs.(4.37) and (4.38). The monomials that are being integrated

with the EDF can be written in terms of the polynomials as following:

ξi1ξi2 =
1

c2

Pi1i2 −
c̄2δi1i2

c2(c2 +Dc̄2)
Pi3i3 +

c′2δi1i2
c2c0

(
c̄2D

c2 +Dc̄2

− 1

)
P0,

ξi1ξi2ξi3 =
1

c3

Pi1i2i3 −
c̄3

c3[c3 + c̄3(D + 2)]
· (Pi1i4i4δi2i3 + Pi2i4i4δi1i3 + Pi3i4i4δi1i2)

− c′3
c3c1

[
c̄3(D + 2)

c3 + c̄3(D + 2)
+ 1

]
(Pi1δi2i3 + Pi2δi1i3 + Pi3δi1i2).

Thus, to recover the full momentum conservation equation we need to expand the EDF un-

til third order (K = 3) in generalized polynomials, because this is the highest polynomial

order that appear. For the calculation of πi1i2 only the zeroth and second order expansion

terms are non-zero and for πi1i2i3 only the first and third order terms are relevant.

Analogously, we find out that to recover the energy conservation equation, we need

the fourth order (K = 4) expansion, since φi1i2 in Eq.(4.42) has a fourth order monomial.

Hence we have shown that the macroscopic equations given in Sec. 4.5.2 stem from general

arguments and so, are equations that govern the semiclassical fluids obtained with the

original EDF since higher order terms in the series expansion do not contribute at all

although they are there. In the LBM one takes advantage of this fact by eliminating the

higher order terms. For this reason it is usual for practical purposes, to retain terms in the

series expansion of the EDF only up to second order. This simplifies the computational

models, applicable to a small Mach numbers in case of classical particles. We exploit a

similar model for the semiclassical particles.
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4.6 Forcing term

In this section we treat the presence of a forcing field in the Boltzmann-BGK equation

describing a semiclassical fluid. The forcing term in the Boltzmann equation is given by

a · ∇ξf (see Eq.(4.1)) and must satisfy the following moment constraints [90]:∫
dDξa · ∇ξf = 0 (4.48)∫
dDξξa · ∇ξf =

∫
dDξaf (4.49)∫

dDξξi1ξi2a · ∇ξf =

∫
dDξ(ξi1ai2 + ξi2ai1)f. (4.50)

The moments of the forcing term up to second order (equations above) are the same for

f and f eq according to the Chapmann-Enskog assumption. If the force does not depend

on ξ, we have the usual moments∫
dDξaf = −ρa and (4.51)∫
dDξ(ξi1ai2 + ξi2ai1)f = −ρ(ui1ai2 + ui2ai1). (4.52)

However for semiclassical fluids the particles can be charged, such as in case of electrons

in metals, a feature not commonly found in classical fluids. Therefore the Lorentz force

must be included in its full account and so, there are two types of accelerations, one due

to an electrical field aE = E, which does not depend on the microscopic velocity, and

another one, due to a magnetic field aB = ξ×B, which does depend on the microscopic

velocity. Recall that we have adopted natural units: e = me = 1.

In practice, the forcing term can be easily implemented in LBM simulations by up-

dating the macroscopic velocity in the EDF [91,137] as follows:

ut+∆t = ut + τa, (4.53)

where a is the acceleration. This approach is equivalent to the previous one up to order

O(τ 2).



81

Therefore our goal in this section is to verify that these moment constraints are re-

spected by the forcing term built with the semiclassical EDF, as similarly done in Ref. [90]

for the classical EDF. For the sake of simplicity, we verify explicitly the moment con-

straints only until second order, which means that we are considering the expanded EDF

given by Eq.(4.27). Nevertheless we recall that such relations must hold to any expansion

order. Since the EDF is a function of (ξ − u), we have that a · ∇ξf
eq = −a · ∇uf

eq.

Therefore,

− a · ∇uf
eq = −ρω(ξ)

[
c2

1ξ + c2
2(ξ · u)ξ + (2c2c̄2 +Dc̄2

2)ξ2u+ (c2c
′
2 +Dc̄2c

′
2)u
]
· a,

or, using the coefficient definitions, we can write it in terms of the integrals:

− a · ∇uf
eq = −ρω(ξ)

[ 1

I2

ξ +
1

I4

(ξ · u)ξ +
(∆2

2 − 1)

I4D
ξ2u− I2

I0I4

∆2
2u
]
· a, (4.54)

We proceed with the demonstration that Eqs. (4.48), (4.49) and (4.50) hold for the EDF

given in Eq.(4.27).

• Eq.(4.48) – Considering aE first, the Eq.(4.54) replaced in Eq.(4.48) gives:∫
dDξ(−aE · ∇uf

eq) = −
∫
dDξρω(ξ)

[ 1

I2

ξi1Ei1 +
1

I4

ξi3ui3ξi1Ei1 +
(∆2

2 − 1)

I4D
ξi3ξi3ui1Ei1

− I2

I0I4

∆2
2ui1Ei1

]
= −ρ

[ 1

I4

ui3Ei1I2δi3i1 +
(∆2

2 − 1)

I4D
ui1Ei1I2D −

I2

I4I0

∆2
2ui1Ei1I0

]
= 0,

where we have used the definitions of the integrals, Eq.(3.10), and the fact that odd powers

of ξ give null integrals. Thus, for a force that does not depend on ξ, the Eq. (4.48) is

demonstrated. Now, for a magnetic acceleration aB = ξ × B ⇒ (aB)i1 = εi1i2i3ξi2Bi3 ,

where εi1i2i3 is the Levi-Civita tensor, we have:∫
dDξ(−aB · ∇uf

eq) = −
∫
dDξω(ξ)ρ

[ 1

I2

ξi1ξi2Bi3εi1i2i3

+
1

I4

ξi4ui4ξi1ξi2Bi3εi1i2i3 +
(∆2

2 − 1)

I4D
ξi4ξi4ui1ξi2Bi3εi1i2i3 −

I2

I0I4

∆2
2ui1ξi2Bi3εi1i2i3

]
= − ρ

I2

Bi3I2δi1i2εi1i2i3 = 0
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So, Eq. (4.48) is demonstrated for the two cases.

• Eq.(4.49) – For aE:

∫
dDξξi4(−aE · ∇uf

eq) = −
∫
dDξω(ξ)ρ ·

[ 1

I2

ξi1ξi4Ei1 +
1

I4

ξi3ui3ξi1Ei1ξi4

+
(∆2

2 − 1)

I4D
ξi3ξi3ui1Ei1ξi4 −

I2

I4

∆2
2ui1Ei1ξi4

]
=

ρ

I2

Ei1I2δi1i4 = −ρ(aE)i4 .

For aB:

∫
dDξξi5(−aB · ∇uf

eq) = −
∫
dDξω(ξ)ρ ·

[ 1

I2

ξi1ξi2ξi5Bi3εi1i2i3 +
1

I4

ξi4ui4ξi1ξi2ξi5Bi3εi1i2i3

− I2

I0I4

∆2
2ui1ξi2ξi5Bi3εi1i2i3 +

(∆2
2 − 1)

I4D
ξi4ξi4ui1ξi2Bi3ξi5εi1i2i3

]
= −ρ

[ 1

I4

ui4Bi3εi1i2i3I4δi1i2i4i5 −
I2

I4

∆2
2Bi3ui1εi1i2i3 · I2δi2i5 +

(∆2
2 − 1)

I4D
ui1Bi3I4δi4i4i2i5εi1i2i3

]

but εi1i2i3δi1i2i4i5 = 0 and εi1i2i3δi4i4i2i5 = −(D + 2)εi1i3i5 , so:

∫
dDξξi5(−aB · ∇uf

eq) = ρ
[
− I2

2

I0I4

∆2
2Bi3ui1εi1i3i5 +

1

D
(∆2

2 − 1)(D + 2)ui1Bi3εi1i3i5

]
= −ρ

[
J2∆2

2 −
D + 2

D
(∆2

2 − 1)
]
(u×B)i5 = −ρ(aB)i5 ,

where we used the identity J2∆2
2 − (D + 2)/D(∆2

2 − 1) = 1 that can be shown with

the expressions for J2 and ∆2 in terms of the integrals. Thus, the Eq.(4.49), which was

equivalent to Eq.(4.51), is also verified.

• Eq.(4.50) – For aE,

∫
dDξξi5ξi6(−aE · ∇uf) = −

∫
dDξω(ξ)ρ ·

[ 1

I2

ξi1ξi5ξi6Ei1 +
1

I4

ξi3ui3ξi1Ei1ξi5ξi6

+
(∆2

2 − 1)

I4D
ξi3ξi3ui1Ei1ξi5ξi6 −

I2

I0I4

∆2
2ui1Ei1ξi5ξi6

]
= −ρ

[ 1

I4

ui3Ei1I4δi3i1i5i6

+
I4(∆2

2 − 1)

I4D
ui1Ei1δi3i3i5i6 −

I2

I0I4

∆2
2ui1Ei1I2δi6i5

]
= −ρ(ui5Ei6 + ui6Ei5)

− ρui1Ei1δi5i6
[
1 +

(∆2
2 − 1)

D
(D + 2)− J2∆2

2

]
= −ρ(ui5Ei6 + ui6Ei5),
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giving the Eq.(4.52) as expected. For aB:∫
dDξξi5ξi6(−aB · ∇uf

eq) = −
∫
dDξω(ξ)ρ ·

[ 1

I2

ξi1ξi2ξi5ξi6Bi3εi1i2i3

+
1

I4

ξi4ui4ξi1ξi2ξi5ξi6Bi3εi1i2i3 −
I2

I0I4

∆2
2ui1ξi2ξi5ξi6Bi3εi1i2i3 −

I2

I0I4

∆2
2ui1ξi2ξi5ξi6 ·Bi3εi1i2i3

+
(∆2

2 − 1)

I4D
ξi4ξi4ui1ξi2Bi3ξi5ξi6εi1i2i3

]
= −ρI4

I2

δi1i2i5i6Bi3εi1i2i3 = 0

which is the expected result since∫
dDξ(ξi5(aB)i6 + ξi6(aB)i5)f eq =

∫
dDξ(ξi5εi6i7i8ξi7Bi8 + ξi6εi5i7i8ξi7Bi8)f eq

= Bi8εi6i7i8
1

D

∫
dDξξ2f eqδi5i7 +Bi8εi5i7i8

1

D

∫
dDξξ2f eqδi6i7 = 0

Note that, for aB, the equations (4.50) and (4.52) are not equivalent.

In summary, we have shown that the constraints of Eqs. (4.48), (4.49) and (4.50) are

satisfied for a forcing term calculated explicitly with the EDF given in Eq.(4.27).

4.7 Quadrature beyond Gauss-Hermite

In this section, we extend the concept of quadrature beyond the Gauss-Hermite con-

cept [1], which means that the weight function ω(ξ) is not necessarily the gaussian function

well suited for the D-dimensional Hermite polynomials (Eq.(4.13)). Here we are interested

in the generalized polynomials applicable to the semiclassical LBM. The basic assumption

is that there is a discrete space of microscopic velocities ξα where integrals can be replaced

by sums where a discrete set of weights wα play the role of the weight function ω(ξ). The

following equations should be satisfied where IM are known before hand from Eq.(3.10):∑
α

wαξαi1ξαi2 . . . ξαiM =

∫
dDξω(ξ)ξi1ξi2 . . . ξiM , (4.55)

Hence we demand that the integral of Eq.(4.55) be equal to IMδi1i2...iM , according to

Eq.(3.10), to obtain that, ∑
α

wαξαi1ξαi2 . . . ξαiM = IMδi1i2...iM . (4.56)
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Notice that for the Gauss-Hermite quadrature IM = 1 and JM = 1 but not for a general

weight function. One of the key and well-known features of the LBM is that it takes

advantage that only a few of such conditions have to be implemented in order to reach

the conservation of mass, momentum and energy. This gives rise to the discrete lattices

where only a finite set of discrete weights wα is obtained that solve the above relations

up to a maximal M . Next we determine some of these sets to be used with the semi-

classical Boltzmann-BGK equation. We use the standard nomenclature “DdVv”, where

“d” denotes the dimension and “v” the number of lattice vectors. We have defined the

lattice vectors eα proportional to the discrete velocities ξα, such that ξα = eα/cs, where

cs is the reference speed to be found by solving the quadrature equations. By introducing

the reference speed one can choose to define one of the lattice vectors, usually the one

oriented along the positive x axis, to be equal to one. Below we see the first six quadrature

equations: ∑
α

wα = I0,∑
α

wαeαi1 = 0,∑
α

wαeαi1eαi2 = I2c
2
sδi1i2 ,∑

α

wαeαi1eαi2eαi3 = 0,∑
α

wαeαi1eαi2eαi3eαi4 = I4c
4
sδi1i2i3i4 ,∑

α

wαeαi1eαi2eαi3eαi4eαi5 = 0, (. . .).

The order M (see Eq.(4.55)) is an important characteristic of the quadrature, since it

gives the maximum moment of the weight function for which the quadrature provides

equivalence between sums and integrals. Notice that the quadrature equations with M

odd are automatically satisfied due to the symmetry among vectors eα, and so, give trivial

expressions. In table B.1 we see the order M of some quadratures. It should be noticed

that all wα and cs must be positive quantities in order to have stable simulations. Next, we
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explicitly calculate one quadrature for each dimension: D1V3, D2V9 and D3V15. More

quadratures can be found in B.

4.7.1 D1V3

The lattice vectors for this lattice are eα = −1, 0, +1 and there are two different

weight: w0 for e0 = 0 and w1 for e± = ±1. So we have three variables to be determined:

the two weights and the reference speed cs. We need to solve three quadrature equations:∑
α

wα = I0 ⇒ w0 + 2w1 = I0,∑
α

wαe
2
α = I2c

2
s ⇒ 2w1 = I2c

2
s,∑

α

wαe
4
α = 3I4c

4
s ⇒ 2w1 = 3I4c

4
s.

The solution for this system is:

cs =

√
I2

3I4

, w0 = I0

(
1− J2

3

)
, w1 =

I0J2

6
.

For the Hermite weight function, this solution becomes the standard D1V3 lattice: w0 =

2/3, w1 = 1/6 and cs = 1/
√

3. For the D1V3 lattice, M = 5, meaning that moments up

to order five in Eq.(4.55) are exactly calculated by the sums.

4.7.2 D2V9

The lattice vectors are es = [(±1, 0), (0,±1)], el = [(±1,±1)] and e0 = (0, 0), with

weights ws, wl and w0 respectively. As we have four unknowns (three weights and cs), we

need four equations, which are:

∑
α

wα = I0 ⇒ w0 + 4ws + 4wl = I0∑
α

wαeαi1eαi2 = I2c
2
sδi1i2 ⇒ 2ws + 4wl = I2c

2
s

∑
α

wαeαi1eαi2eαi3eαi4 = I4c
4
sδi1i2i3i4 ⇒

{
2ws + 4wl = 3I4c

4
s

4wl = I4c
4
s
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where the last quadrature equation split in two equations because there are two possible

choices for the indexes that give non-trivial equations: one for i1 = i2 = i3 = i4 and other

for (i1 = i2) 6= (i3 = i4). The solution is:

w0 = I0

(
1− 5J2

9

)
, ws =

I0J2

9
, wl =

I0J2

36
, cs =

√
I2

3I4

.

It gives the standard D2V9 for the Hermite weight: w0 = 4/9, ws = 1/9, wl = 1/36 and

cs = 1/
√

3.

4.7.3 D3V15

The lattice vectors are e0 = (0, 0, 0), es = [(±1, 0, 0), (0,±1, 0), (0, 0,±1)], el =

[(±1,±1,±1)] with respective weights w0, ws and wl. Quadrature equations:

∑
α

wα = I0 ⇒ w0 + 6ws + 8wl = I0∑
α

wαeαi1eαi2 = I2c
2
sδi1i2 ⇒ 2ws + 8wl = I2c

2
s

∑
α

wαeαi1eαi2eαi3eαi4 = I4c
4
sδi1i2i3i4 ⇒

{
2ws + 8wl = 3I4c

4
s

8wl = I4c
4
s

Solutions:

w0 = I0

(
1− 7J2

9

)
, ws =

I0J2

9
, wl =

I0J2

72
, cs =

√
I2

3I4

.

It gives the standard D3V15 for the Hermite weight: w0 = 2/9, ws = 1/9, wl = 1/72 and

cs = 1/
√

3

4.8 The isothermal LBM for electrons in metals

4.8.1 Model description

In this section, we build a simple and efficient model for electrons in metals in 2D and

3D dimensions and test it with the Riemann problem, the Poiseuille flow and the Ohm’s

law. The model complies with the condition ω(ξ) ≈ f eq(ξ), thus the weight is not equal to
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the EDF itself. The electrons inside the metal are governed by the FD distribution [65],

f eqFD =

{
exp

[
me(χ− v)2

2kBT
− µ′

kBT

]
+ 1

}−1

,

where χ and v are the microscopic and macroscopic velocities respectively, me is the

electron mass, kB is the Boltzmann constant, T is the temperature and µ′ is the chemical

potential. The Fermi energy can be expressed as a function of the Fermi temperature TF

and the Fermi speed vF as

EF = kBTF =
1

2
mev

2
F .

Considering the Fermi speed, vF =
√

2kBTF/me, as the reference speed for our model,

we can define non-dimensional variables:

µ ≡ µ′

kBTF
, θ ≡ T

TF
, ξ ≡ χ

vF
and u ≡ v

vF

leading to

f eqFD =

{
exp

[
(ξ − u)2

θ
− µ

θ

]
+ 1

}−1

. (4.57)

We consider in our model the physical parameters of cooper at room temperature (T = 300

K), which has Fermi temperature TCuF = 8.16 × 104K, giving θ ≈ 1/270, µ = 1 and

z = e270 [7]. We expand the FD distribution in Eq.(4.57) up to second order in generalized

polynomials, where the coefficients are calculated by orthogonalizing the polynomials with

respect to the weight function below:

ω(ξ) =
1

e−270e270ξ2 + 1
, (4.58)

which, initially, is the Eq.(4.57) for u = 0 and constant θ and µ. Hence the condition

ω(ξ) = f eq(ξ) discussed along this chapter is not being implemented here otherwise the

weights would have to be updated at each time step since the chemical potential changes

in f eq(ξ) while here ω(ξ) remains constant. The integrals IN , Eq.(3.11), are different for
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2D and 3D, which implies that the polynomial coefficients are also different for the two

cases (see Sec. 3.4). The discrete version of the second order expansion in Eq.(4.27)

becomes:

f eqα = ρwα

{
c2

0 + c2
1(ξα · u) +

1

2
c2(c2θ̄ + c′2)ξ2

α +
c2

2

2
(ξα · u)2 +

1

2
c2c̄2(Dθ̄ + u2)ξ2

α

+
1

2
(c̄2ξ

2
α + c′2) · [D(c2θ̄ + c′2) + c2u

2 +Dc̄2(Dθ̄ + u2)]
}
, (4.59)

where θ̄ have different values for 2D and 3D and ξα = eα/cs are the discrete velocities

given in Sec. 4.7. Besides having constant temperature θ = 1/270 we use another approx-

imation for the semiclassical model in order to simplify the numerical implementation,

which is θ̄ = I2/I0 = θgD
2

+1(z)/(2gD
2

(z)) = constant. For the classical LBM, θ̄ is automat-

ically constant for the isothermal case, since θ̄cl = θ. Therefore, this extra approximation

is not needed. With this approximations and using the expressions for the coefficients,

we verify the identity c2θ̄ + c′2 +Dc̄2θ̄ = 0, which leads to:

f eqα = ρwα

{
c2

0 + c2
1(ξα · u) +

c2
2

2
(ξα · u)2 +

1

2
c2c̄2u

2ξ2
α +

1

2
(c̄2ξ

2
α + c′2)(c2 +Dc̄2)u2

}
.

(4.60)

The above EDF is the one used in our numerical algorithm together added to the values

for the coefficients and θ̄ given in the next sections for D = 2 or 3 dimensions, respectively.

The quadratures are given in the next sections and the time evolution is governed by the

Boltzmann equation in its discrete form (see Eq.(4.8)) and in terms of the lattice vectors

eα.

fα(x + eα∆t, t+ ∆t)− fα(x, t) = −∆t

τ
[fα(x, t)− f eqα (x, t)],

The macroscopic quantities are calculated by:

ρ =
∑
α

wαfα, u =
1

ρ

∑
α

wαfα
eα
cs
. (4.61)

We can convert the density into the chemical potential and vice-versa by means of the

relation (see Eq.(4.2))

ρ = (πθ)D/2gD
2

(e
µ
θ ).
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For µ/θ � 1, one can use the Sommerfeld expansion to approximate the FD integral:

gν(e
µ
θ ) =

(µ/θ)ν

Γ(ν + 1)

[
1 + ν(ν − 1)

π2

6

(
θ

µ

)2

+ ν(ν − 1)(ν − 2)(ν − 3)
7π4

360

(
θ

µ

)4

+ . . .
]

(4.62)

2D model

To build our model in 2D, we first calculate the polynomial coefficients using the

weight function, Eq.(4.58), through their expressions given in Sec. 3.4.

c0 0.564189583547756286948079
c1 1.128353706923879405456370
c2 2.763766115146273701436833
c̄2 0.572262450908341120084001
c′2 -0.977116848075011682697851
θ̄ 0.250011282126658766985161

where the pseudo-temperature was calculated by θ̄ = I2/I0 = θg2(z)/(2g1(z)). The

discrete weights are also calculated using the weight function in Eq.(4.58) to calculate the

expressions in Table B.1. For a D2V9 lattice, we have:

w0 0.523716900428241365084608
ws 0.523575150632310374675607
wl 0.130893787658077593668902
cs 1.414149748226522446289974

Note that, although we are keeping the standard notation for the reference speed, cs, it

denotes the Fermi speed and not the sound speed as for the classical models.

To obtain the chemical potential from the density, we use the Sommerfeld’s expansion,

Eq.(4.62), leading to ρ = πθg1(z) ≈ πµ. This is an excellent approximation for the 2D

case with accuracy much beyond the double precision (10−16).

3D model

Following the same procedure as for the 2D model, we calculate the polynomial coef-

ficients and θ̄ = θg 5
2
(z)/(2g 3

2
(z)):
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Figure 4.1: Quadratures used in the models.

c0 0.488598377549843819982207
c1 1.092502210196163024710861
c2 2.890326124370599833053459
c̄2 0.559713196101887209686884
c′2 -0.913955004948841398767998
θ̄ 0.200013538215948856423209

The discrete weights can be seem below:

w0 0.279433800596370971795231
ws 0.325785607726861097214977
wl 0.162892803863430548607489
cs 1.527439075525116330156203

The density can be calculated as ρ = (πθ)3/2g 3
2
(e

µ
θ ), where θ = 1/270 in our problem or,

to extract the chemical potential from the density,

µ = θ log

[
g−1

3
2

(
ρ

(πθ)3/2

)]
.

Note that these relations between ρ and µ are used just to set the initial conditions and

to calculate the fields in the output. During the simulations just the density field is used.

The Sommerfeld expansion can also be used but the accuracy is not as good as for the

2D case. The approximation with Eq.(4.62) is reliable just up to 10−8, which is bellow

the double precision. For this reason, we use numerical methods [122] to calculate the FD

integral and its inverse in order to obtain better accuracy.
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4.8.2 Riemann problem

The Riemann problem (or shock tube test) is a benchmark validation for computa-

tional fluid dynamic models and it consists in analyzing the shock waves formed when a

discontinuity in the initial conditions evolves. This problem has analytical solutions for

the inviscid case [144]. We simulate the Riemann problem using the two numerical meth-

ods (2D and 3D) in a effectively one-dimensional system: LX ×LY = 3000× 2 for the 2D

model and LX ×LY ×LZ = 3000× 2× 2 for the 3D model. Initially, the density and ve-

locity fields are the same for both models: ρ = 1.0 inside the domain LX/4 < x < 3LX/4

and ρ = 0.6 outside and u = 0 everywhere. The relaxation time has the constant value

τ = 0.8. The boundary conditions are periodic for all directions. In Fig. 4.2 we see

the solutions given by our models and the analytical solutions for the classical case [144].

There is a good agreement for the densities field. For a sake of comparison, we correct the

velocities given by the classical case by multiplying then by
√
θ̄, since cs ∝

√
T and θ̄ plays

a role of an “effective temperature” for the semiclassical models. After this correction,

the velocities also matches.

1.0
0.9
0.8
0.7
0.6

ρ

ρref
2D
3D

1600 2000 2400 2800
x

0.0

0.1

0.2

0.3

u

uref

uref×√ ̄θ2D
2D̄
uref×√ ̄θ3D
3D

Figure 4.2: Solutions for the density and velocity fields in the Riemann problem obtained
with our two models (2D and 3D) and with the analytical solution for the classical case.

The classical solution for the velocity is corrected by
√
θ̄ in order to compare with the

semiclassical results.
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4.8.3 Poiseuille flow

We simulate the viscous fluid of electrons in metals passing through a channel of

constant cross section (parallel plates) and analyze the velocity profile for the steady

state. Assuming an incompressible fluid submitted to an external force with acceleration

a = ai in the x direction, the Navier-Stokes equation for semiclassical fluids, Eq.(4.45),

has the following solution for the stationary state:

ux(y) =
ρa

2η̄
(y2 − yLy). (4.63)

Thus, we use this equation to calculate the numerical shear viscosity η̄ of our models, which

is needed to convert to physical units. The system size for the 2D model is LX × LY =

256× 256 with periodic boundary conditions in the x direction and bounce-back in the y

direction and for the 3D model is LX×LY ×LZ = 256×256×1 with periodic boundaries

in the x and z directions and bounce back in the y direction. An external electrical field of

magnitude E = 10−8 in lattice units is is implemented as in Eq.(4.53) (a = E in natural

units). Initially, we set µ = 1.0 and u = 0 everywhere for the two models. Note that

the initial densities are different because we set equal µ. In Fig. 4.3 we see the velocity

profiles for five different relaxation times after 106 time steps. A curve fit using Eq.(4.63)

is made in the points given by the simulation, which provides the shear viscosity. As

we can see in Fig. 4.3, η̄ the relation below is followed with good agreement by the two

models:

η̄ =
1

3

(
τ − ∆t

2

)
. (4.64)

4.8.4 Ohm’s law

When an electrical current passes through an ohmic material (e.g, metals) they offer a

resistance produced by the collisions between the electrons and a background of impurities
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Figure 4.3: Velocity profiles for the Poiseuille flow obtained with the two models for five
different relaxation times and the viscosity measurement for the two models.

and defects on the crystal lattice [65]. The relation between the current I and the applied

electrical potential difference V is linear: V = RI, where R is the resistance. Here we

model the electrical resistance with randomly placed obstacles through which the electrons

flow. For the 2D sample with system size LX × LY = 512 × 256, we sort 64 circles of

radius 3 forming a porous medium with porosity φ2D = 0.986 while for the 3D sample,

with system size LX × LY × LZ = 128 × 128 × 128, we sort 450 spheres of radius 3

forming a medium with porosity φ3D = 0.974 (see Fig. 4.4). The relaxation time is set

τ = 0.9. Initially, µ = 1.0 and u = 0 in the whole domain for the two models. We set

periodic boundary conditions in the x direction, slip-free conditions in the y direction
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(also in the z direction for the 3D model) and bounce-back conditions on the obstacle’s

surface. To measure the convergence with time, we calculate the relative error as the

spatial average of ||unew| − |uold||/|unew| considering all fluid point with non-zero unew

and we stop the simulations when the error is smaller than 10−7. In Fig. 4.5 we see that

the average speed in the x direction (considering all fluid points) have a linear relation

with external electrical field E. This relation straightforwardly leads to the Ohm’s law

(V = RI ⇒ I = LX
R
E) since the current can be written as I2D = ρLY φ〈ux〉 for 2D and

I3D = ρLYLZφ〈ux〉 for 3D (the densities are essentially constant in the whole domain for

the steady state: ρ2D = 3.142 and ρ3D = 4.189).

2D

0.0000

0.0012

0.0024

3D

0.0000

0.0008

0.0016

Figure 4.4: Steady state of the velocity field for the electrons passing through randomly
placed obstacles to obtain the Ohm’s law. The black objects are the obstacles, the colors
represent the magnitude of the velocity field and the streamlines show its directions. The
entire sample used in the 2D model is shown on the top while a cross section at z = LZ/2
of the 3D sample can bee seem on the bottom. The electrical filed used was E = 10−7 in
lattice units.

4.9 Conclusion

The two main goals of the present chapter are the construction of the theoretical basis

of the semiclassical LBM and the test of an isothermal LBM that simulates electrons in
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Figure 4.5: Linear relation between the average velocity in the x direction and the external
electrical field. This linear relation leads to the Ohm’s law.

metals in the hydrodynamic regime.

We have obtained an expansion of the EDF up to fourth order in generalized D-

dimensional polynomials, orthonormal under a generic weight. The Hermite polynomials

are just a particular case of these generalized polynomials where the weight is given by

the gaussian function. The choice of a weight function close to the EDF renders con-

vergence attainable within a few terms in the truncated expansion. We extend here the

concept of quadrature to the generic weight function of the polynomials thus beyond the

Gauss-Hermite quadrature which is restricted to the Gauss-Hermite weight. In this way

we generalize the standard lattices used in the LBM of classical fluids to the semiclassical

ones. The macroscopic equations for semiclassical fluids are obtained here through the

Chapman-Enskog expansion. The notorious advantageous feature of the LBM is that

the mass, momentum and energy conservation equations stem from a Chapman-Enskog

expansion where the distribution function is expanded only up to first, third and fourth

order [30] in the orthonormal polynomials, respectively. This renders the same results as

obtained using the non-expanded distribution function. We show here that the forcing

term for the semiclassical distribution satisfies the moment constraints up to second or-

der even for the Lorentz force, which depends on the microscopic velocity in case of the
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magnetic force.

An isothermal LBM for electrons in metals for two and three dimensions was de-

veloped using a weight near to the FD EDF. It is based on the expansion of the FD

distribution up to second order in generalized polynomials and uses the new D2V9 and

D3V19 quadratures. We validate our model with the Riemann problem by comparing the

density and velocity profiles of the shock waves with the analytical solution for the clas-

sical inviscid case. We also perform the Poiseuille flow, obtaining the expected parabolic

profiles for the velocity. Lastly, we retrieved the Ohm’s law by forcing the electrons to pass

through a medium with randomly placed impurities (obstacles) analogously as a classical

porous medium. We verified a linear relation between the applied external electrical field

and the average velocity of the fluid in the steady state flow which leads to the Ohm’s law.
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Chapter 5

Relativistic lattice Boltzmann
method for semiclassical fluids

In this chapter, we develop and characterize the fully dissipative Lattice Boltzmann

method for ultra-relativistic fluids in two dimensions using three equilibrium distribution

functions: Maxwell-Jüttner, Fermi-Dirac and Bose-Einstein. Our results stem from the

expansion of these distribution functions up to fifth order in relativistic polynomials.

We also obtain new Gaussian quadratures for square lattices that preserve the spatial

resolution. Our models are validated with the Riemann problem and the limitations of

lower order expansions to calculate higher order moments are shown. The kinematic

viscosity and the thermal conductivity are numerically obtained using the Taylor-Green

vortex and the Fourier flow respectively and these transport coefficients are compared with

the theoretical prediction from Grad’s theory. In order to compare different expansion

orders, we analyze the temperature and heat flux fields on the time evolution of a hot

spot.

5.1 Introduction

Relativistic fluid dynamics and kinetic theory [23] for relativistic gases play an impor-

tant role in the study of many physical systems, ranging from the big scale of cosmology

and astrophysics [12,29,131] to the microscopic scale of particle physics [77] and condensed
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matter physics [106]. Since the discovery of the flow of the quark-gluon plasma formed

during ultra-relativistic nuclear collisions [2], several models based on relativistic fluid dy-

namics have appeared to describe the experimental results [19,63,140]. Two-dimensional

models have been used to describe galaxy formation [69], cosmological models [79] and

quark-gluon plasma [114,126], but they have gained special importance after the discovery

of graphene [111,112] and Dirac materials [150], in which the charge carriers, governed by

the FD distribution, behave effectively as massless ultra-relativistic quasi-particles mov-

ing at Fermi speed. Relativistic models based on BE statistics have also applicability to

explain fluid dynamics effects, as the collective behavior of the matter formed shortly after

nuclear collisions [16], gravitational analogy with BE condensates [43] and even attempts

to explain dark matter [18].

The LBM [136] is a numerical technique based on the Boltzmann equation and on the

Gaussian quadrature, which have been successfully applied to model classical fluids [33,82],

governed by the MB distribution, and also to semi-classical [30, 31, 157] and relativistic

fluids. In 2010, the first RLBM was proposed by Mendoza et. al. [96] and subsequently

improved in numerical stability [63]. The theoretical background for the RLBM and

the extension to ultra-relativistic gases was done by Romatschke et. al. [125], where the

authors used a model with interpolated streaming since the velocity vectors disposed along

a sphere do not match with the square lattice. In Ref. [99], an improved dissipation model

based on a third order expansion of the MJ distribution was proposed, which does not

recover the dissipation completely because a fifth order expansion is required. This model

relies on a new Gaussian quadrature with exact streaming on a square lattice, recovering

one of the main advantages of LBM, but costing a loss of resolution. Very recently, a new

RLBM, also based on a third order expansion of the MJ distribution, can implement exact

streaming on a square lattice without loosing spatial resolution allowing also to treat the

regime of massive particles [49]. Meanwhile, other RLBMs with exact streaming have

been used for graphene, where the grid points are disposed on a hexagonal lattice [47,113]
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such as in the molecular structure of graphene. Nevertheless, for these quadratures, the

polynomial expansion of the EDF is limited to second order, which might be enough for

practical purposes, but gives a poor description if the velocities and/or the temperature

fluctuations are moderately high, as shown here. In Ref. [32], the first model based on

a fifth order expansion of the FD distribution was used to study the Kelvin-Helmholtz

instability on graphene. Since this is a viscous fluid dynamical effect, a fully dissipative

method is desirable to achieve better accuracy of the results.

The Grad [54] and Chapman-Enskog [26] (CE) methods are the most common ones to

calculate, from the Boltzmann equation, the transport coefficients and the hydrodynamic

equations, i.e, the Navier-Stokes equation and the Fourier law. Both methods give the

same results in the non-relativistic case [81]. For relativistic fluids, these two methods

give the same conservation equations, but different transport coefficients [23], which is

still a controversial topic nowadays [13]. Other methods have been proposed to obtain

the transport coefficients in relativistic fluids, as the renormalization group method, which

gives the same results obtained with the CE method [72, 147, 148]. Numerical methods

based on a bottom-up construction are important tools to gain insight about the correct

form of the transport coefficients and recent simulations with three dimensional relativis-

tic methods have consistently confirmed the prediction of the CE method [13, 45, 48].

Surprisingly, few have calculated the transport coefficients in two dimensions, despite the

increasing importance that the two-dimensional relativistic systems have gained during

the last years. In Ref. [100] the Grad method was done in two dimensions, obtaining the

correspondent bulk and shear viscosities and the thermal conductivity, which have been

used to calculate the relaxation time in RLBM simulations [99, 102, 113]. However, in

Ref. [47], the shear viscosity and the thermal conductivity, numerically measured using

a RLBM for graphene, disagree with the ones obtained with Grad’s expansion. Further-

more, the bulk viscosity was also calculated in Ref. [79] for a two-dimensional relativistic

gas, but they did not investigate the other transport coefficients. So far, the CE method
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for relativistic gases in two dimensions has never been used to derive the full set of trans-

port coefficients, remaining this an important open task to achieve a better understanding

of the two-dimensional relativistic gases.

In this chapter, we build two-dimensional RLBMs with full dissipation using the MJ

and BE distributions and compare them with the model for the FD distribution described

in Ref. [32]. To do so, we expand the EDFs up to fifth order and develop new Gaussian

quadratures able to calculate tensors up to fifth order and that preserve the spatial reso-

lution. To test and characterize our models, we perform four numerical simulations. The

models are validated using the Riemann problem though the comparison of the results

with a reference model (Ref. [99]). At this point, we calculate tensors from second to

fifth order and show that different expansion orders give different results. We numerically

measure, with high precision, the kinematic viscosity, with the Taylor-Green vortex, and

the thermal conductivity, through Fourier flow and compare the results with the reference

model. As will be shown, these measurements do not agree with the coefficients obtained

with Grad’s expansion, but they agree with previous measurements using RLBM [32,47].

In addition, we simulate the hot-spot relaxation in order to observe the differences between

different expansion orders for the temperature and heat flux fields.

This chapter is organized as follows. In Secs. 5.2.1 and 5.2.2 we review the relativistic

Boltzmann equation and the relativistic orthogonal polynomials. In Sec. 5.2.3, we de-

scribe the expansion of the three distribution functions (MJ, FD and BE) in orthogonal

polynomials, with more details given in the Appendix C, and in Sec. 5.2.4 we calculate

the Gaussian quadratures. The full EDF expansion of the distribution functions as well

as the quadratures with high precision can be found in the Supplemental Material1 (see

also in the Appendix D the explicit expansion for the FD distribution). In Sec. 5.3 we

describe and show the results for the four numerical tests used to validate and characterize

1Download the Supplemental Material together with the source files at arXiv: https://arxiv.org/

e-print/1709.09073

https://arxiv.org/e-print/1709.09073
https://arxiv.org/e-print/1709.09073
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the models. In Sec. 5.4 we summarize the main results and conclude.

5.2 Model description

5.2.1 Relativistic Boltzmann Equation

The temporal evolution in our model is given by the relativistic Boltzmann equa-

tion [23] with the Anderson-Witting collision operator, which assumes a single relaxation

time for the problem, τ , and allows us to treat massless ultra-relativistic particles:

p̄µ∂µf = − p̄µU
µ

c2τ
(f − f eq), (5.1)

where c is the speed of light. Repeated indexes represent a sum (Einstein’s notation).

For two-dimensional systems, the greek indexes range from 0 to 2 (0 is the temporal

component) while the latin indexes range from 1 to 2. The relativistic (2+1)-momentum

stands for p̄µ = (E/c, p̄), the (2+1)-velocity for Uµ = γ(u)(c,u) and the space-time

coordinates for xµ = (ct,x), where γ(u) = 1/
√

1− u2/c2 is the Lorentz factor. Note that

Eq. (5.1) becomes the non-relativistic Boltzmann equation in the classical limit, u/c� 1.

The EDF, f eq, can be either FD, MJ or BE distributions, as described in section 5.2.3.

In the ultra-relativistic limit, i.e., when the kinetic energy is much larger than the rest

mass energy, p̄µp̄µ = (p̄0)2 − p̄2 = 0 ⇒ p̄0 = |p̄|, and Eq. (5.1) becomes

∂f

∂t
+ v · ∇f = −γ(1− v · u)

(f − f eq)
τ

, (5.2)

where v = p̂ = p̄/|p̄| is the microscopic velocity with norm c, and we adopt from now on

natural units: c = kB = ~ = 1. In the numerical algorithm, the discrete form of Eq.(5.2)

is used:

fα(t+ δt, r + vαδt)− fα(t, r) = −γ(1− vα · u)
δt(fα − f eqα )

τ
, (5.3)

where δt is the time step of the simulations. Because all particles move at (or nearly) the

speed of light, the microscopic velocity is always unitary in natural units, vα = p̄α/|p̄α| =
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1, what must be considered in the Gaussian quadrature calculation, as done in section

5.2.4.

5.2.2 Relativistic Polynomials

In the LBM, the EDF is expanded in orthogonal polynomials up to a finite order N in

order to use the Gaussian quadrature [1] for the exact equivalence between the sums and

integrals. In this procedure, the information contained in the terms of order above N is

lost. Thus, to have a faster convergence in the expansion and, therefore, minimize the loss

of accuracy due to the truncation, the weight function used in the orthogonalization of

the polynomials should be close to the EDF. With this purpose, we calculate relativistic

generalized polynomials following the procedure developed in Ref. [31] for non-relativistic

polynomials. The polynomials below allow us to find orthogonal polynomials for generic

weight functions, ω(p).

P = A1, P i1 = B1p
i1 , P 0 = C1p

0 + C2

P i1i2 = D1p
i1pi2 + [D2(p0)2 +D3p

0 +D4]δi1i2 , P i10 = [E1p
0 + E2]pi1 ,

P i1i2i3 = F1p
i1pi2pi3 + [F2(p0)2 + F3p

0 + F4] · [pi1δi2i3 + pi2δi1i3 + pi3δi1i2 ],

P i1i20 = [G1p
0 +G2]pi1pi2 + δi1i2 [G3(p0)3 +G4(p0)2 +G5p

0 +G6]

P i1i2i3i4 = H1p
i1pi2pi3pi4 + [H2(p0)2 +H3p

0 +H4] · [pi1pi2δi3i4 + pi1pi3δi2i4 + pi1pi4δi2i3

+ pi2pi3δi1i4 + pi2pi4δi1i3 + pi3pi4δi1i2 ] + [H5(p0)4 +H6(p0)3 +H7(p0)2 +H8p
0 +H9]δi1i2i3i4

P i1i2i30 = [I1p
0 + I2]pi1pi2pi3 + [I3(p0)3 + I4(p0)2 + I5p

0 + I6][pi1δi2i3 + pi2δi1i3 + pi3δi1i2 ]

P i1i2i3i4i5 = J1p
i1pi2pi3pi4pi5 + [J2(p0)2 + J3p

0 + J4] · [pi3pi4pi5δi1i2 + pi2pi4pi5δi1i3 + pi2pi3pi5δi1i4

+ pi2pi3pi4δi1i5 + pi1pi4pi5δi2i3 + pi1pi3pi5δi2i4 + pi1pi3pi4δi2i5 + pi1pi2pi5δi3i4 + pi1pi2pi4δi3i5

+ pi1pi2pi3δi4i5 ] + [J5(p0)4 + J6(p0)3 + J7(p0)2 + J8p+ J9][pi1δi2i3i4i5 + pi2δi1i3i4i5 + pi3δi1i2i4i5

+ pi4δi1i2i3i5 + pi5δi1i2i3i4 ]
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P i1i2i3i40 = [K1p
0 +K2]pi1pi2pi3pi4 + [K3(p0)3 +K4(p0)2 +K5p

0 +K6][pi3pi4δi1i2 + pi2pi4δi1i3

+ pi2pi3δi1i4 + pi1pi4δi2i3 + pi1pi3δi2i4 + pi1pi2δi3i4 ] + [K7(p0)5 +K8(p0)4 +K9(p0)3 +K10(p0)2

+K11p
0 +K12]δi1i2i3i4 .

For each order N of the polynomials, there are two groups of components: P i1...iN and

P i1...iN−10. This structure assures that all possible monomials are considered for a generic

spatial dimension D. The coefficients (A’s, B’s, C’s, . . .) are calculated through the

orthonormality relations:∫
dDp

p0
ω(p)P i1...iNP j1...jM = δNMδ

i1...iN |j1...jN ,∫
dDp

p0
ω(p)P i1...iN0P j1...jM0 = δNMδ

i1...iN |j1...jN ,∫
dDp

p0
ω(p)P i1...iN0P j1...jM = 0. (5.4)

Here, the normalization factor is the same as for the Hermite polynomials in D-dimensions [30,

42], where we define δi1···iN |j1···jN ≡ δi1j1 · · · δiN jN + all permutations of j’s and δij is the

Kronecker’s delta. The weight functions used to build the models in this chapter will be

discussed in the next section (Eqs. (5.7), (5.8) and (5.9)) and the polynomial coefficients

can be found in the Supplemental Material.

5.2.3 Expansion

In this section, we describe the fifth order expansion in relativistic polynomials of the

MJ, BE and FD using a different set of polynomials for each distribution. Lets write the

three EDFs in a general form:

f eq =
A

z−1 exp
(
p̄αUα

kBT

)
+ ξ

(5.5)

where A is a normalization factor, z = e
µ̄

kBT is the fugacity, µ̄ is the chemical potential

and ξ distinguishes the EDFs: ξ = 0 for MJ (also z = 1), ξ = 1 for FD and ξ = −1 for BE.

To expand the EDFs, we introduce non-dimensional quantities: θ = T/T0, p = p̄/T0 and
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µ = µ̄/T0, where T0 is the reference temperature, e.g, the initial one. Thus, considering

the ultra-relativistic regime, Eq. (5.5) becomes

f eq =
A

z−1 exp [p0γ(1− v · u)/θ] + ξ
. (5.6)

As discussed in the previous section, the weight function must be close to the EDF. The

expansion is done around U = 0 (small Mach numbers) and around θ = 1, leading to

the general weight function ω(p) = A/[z−1
r exp(p) + ξ]. The reference fugacity zr is a

constant parameter with numerical value close to the physical one. Therefore, for the MJ

distribution the weight function reads

ω(p) =
1

2π
e−p. (5.7)

For the FD distribution, we use z = 1, which is appropriate, for instance, to model the

Dirac fluid on graphene close to the charge neutrality point (µ = 0) [32,47]. So the weight

function becomes

ω(p) =
1

ep + 1
. (5.8)

The weight function for the BE distribution is chosen to describe a system close to the

BE condensation (ideally, z = 1). Because some integrals diverge for zr = 1, we set

zr ≡ zc = 1− ε, where ε = 10−7 denotes a small number compared to unity, leading to

ω(p) =
1

z−1
c ep − 1

. (5.9)

The general expansion up to fifth order is given by

f eq = ω(ξ)

[
5∑

N=0

1

N !
Ai1...iNP i1...iN +

4∑
M=0

1

M !
Ai1...iM0P i1...iM0

]
, (5.10)

where Aµ1 µ2···µN are the projections of the EDF on the polynomials:

Aµ1 µ2···µN =

∫
d2p

p0
f eqP µ1 µ2···µN . (5.11)
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More details about the calculation of the integrals used for the expansion can be found in

the Appendix C and the explicit expansion can be found in the Supplemental Material. It

was used in Ref. [32] for FD distribution, but can be straightforwardly generalized to MJ

and BE if one changes the polynomial coefficients and the FD integral by the generalized

EDF integral defined as:

gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1dx

z−1ex + ξ
, (5.12)

with ξ defined as in Eq.(5.5). Note that for MJ, ξ = 0 and gν(1) = 1 for any ν. In Fig. 5.1,

we see the comparison between the original (non-expanded) EDFs and the expanded ones

around the origin of the expansion (θ = 1 and u = 0). The distributions are multiplied

by a normalization factor A =
(∫

d2p/p0 f eq
)−1

. The second order expansion is the first

to deviate from the original EDF when it moves away from θ = 1 and u = 0, followed

by the third, fourth and fifth order expansions respectively. We can clearly see that the

fifth order expansion gives more accurate results for higher temperature deviations and

higher velocities when compared to the previous orders. For instance, considering the MJ

distribution at β = 0.6, the second order expansion gives a relative error when compared

with the original EDF of 18.5% while the fifth order gives only 1.8%. At the extremes of

Fig. 5.1 (θ = 0 and 2 and β = 0.8) we see large deviations for all expansion orders, but

one should not expect high accuracy for parameters very far from the expansion origin.

Therefore, the models based on the fifth order expansion are more reliable and can be

used as a reference to test other simpler models and also to simulate flows with high Mach

numbers and temperature deviations. In Sec. 5.3.4, we will analyze the different results

in numerical simulations based on expansions from second to fifth order.

5.2.4 Gaussian Quadrature

The Gaussian quadrature [1] offers an efficient way to calculate integrals in LBM, used

to obtain the macroscopic quantities (e.g, density, macroscopic velocity and temperature),
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Figure 5.1: Comparison between the original and expanded MJ, FD and BE distributions
around the expansion origin: θ = 1 and u = 0. The momentum vector is the same for all
distributions: p = (1.0, 0.0). For FD, z = 1 and for BE, z = 1− 10−7. On the left side,
the distributions are shown as functions of the relative temperature, θ = T/T0 (where T
and T0 are the physical and the reference temperature respectively) with u = 0. On the
right side, the EDFs are shown for different velocities, u/c = (β, 0.0), with θ = 1.

by transforming them into sums. In general, the method provides an approximation for

the integrals, but it can be exact if the integrated function is expanded in orthogonal

polynomials up to a maximum order determined by the quadrature. Here, we calculate

quadratures that allow us to calculate tensors up to fifth order (M = 5),

T µ1...µM =

∫
d2p

p0
f eqpµ1 . . . pµM =

Q∑
i=1

f eqi p
µ1

i . . . pµMi .
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Figure 5.2: Velocity vectors for the d2v72 quadrature.

Since we have a fifth order expansion for our EDFs, we need to find the discrete weights

and momentum vectors that satisfy the quadrature equations,∫
d2p

p0
ω(p)pµ1 . . . pµN =

Q∑
i=1

wip
µ1

i . . . pµNi , (5.13)

for N = 0, 1, . . . , 10 and for all combinations of indexes (µ = 0, 1, 2). The weight function,

ω(p), used to calculate the quadrature and the polynomials must be the same for each

model (Eqs. (5.7), (5.8), (5.9)). As a consequence of the quadrature theorem, we can

find the momentum vectors for our quadrature (with N = 10) by calculating the roots of

the sixth order polynomial, which can be separated in angular and radial parts. For the

angular part, there are two orthogonal polynomials,

L
(1)
6 (φ) = cos(6φ), L

(2)
6 (φ) = sin(2φ)[2 cos(4φ) + 1],

which give the same set of solutions, but rotated by π/12. The roots of L
(2)
6 (φ) = 0, are

φn = nπ/6 for n = 0, . . . , 11, which are the directions of the momentum vectors (see Fig.

5.2). The sixth order polynomial for the radial part,

R6(p) = p6 + ap5 + bp4 + cp3 + dp2 + ep+ f,
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is calculated by Gram-Schmidt procedure, where the coefficients, a, . . . , f , are different for

each weight function. The solutions of R6(p) = 0 give six momentum vectors, which are

the same for each of the 12 directions obtained with the angular polynomial. To calculate

the discrete weights, we apply Eq.(5.13). The solutions for MJ, using Eq.(5.7), are

p1 = 0.222847 w1 = 3.824706× 10−2

p2 = 1.188932 w2 = 3.475007× 10−2

p3 = 2.992736 w3 = 9.447782× 10−3

p4 = 5.775144 w4 = 8.665998× 10−4

p5 = 9.837467 w5 = 2.175143× 10−5

p6 = 15.982874 w6 = 7.487899× 10−8,

for BE, using Eq.(5.9),

p1 = 0.015771 w1 = 7.785968

p2 = 0.811549 w2 = 5.510286× 10−1

p3 = 2.617676 w3 = 9.444240× 10−2

p4 = 5.428098 w4 = 7.784734× 10−3

p5 = 9.503366 w5 = 1.911972× 10−4

p6 = 15.65413 w6 = 6.539175× 10−7,

and for FD using Eq.(5.8),

p1 = 0.252017 w1 = 1.465430× 10−1

p2 = 1.284314 w2 = 1.606581× 10−1

p3 = 3.102998 w3 = 5.069991× 10−2

p4 = 5.873790 w4 = 4.904943× 10−3

p5 = 9.929605 w5 = 1.245349× 10−4

p6 = 16.072385 w6 = 4.300942× 10−7.
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The three quadratures can be found with higher precision in the Supplemental Material.

To calculate the macroscopic fields, we use the Landau-Lifshitz decomposition [23].

We first calculate the energy-momentum tensor

T µν =

Q∑
i=1

fip
µ
i p

ν
i , (5.14)

and, then, solve the following eigenvalue problem using the power method [61]:

TαEβU
β = TαβU

β = εUα (5.15)

to find the energy density ε and the macroscopic velocity Uµ, where the letter E indicates

that the tensor was calculated with the EDF. The hydrostatic pressure P can be obtained

using the equation of state, ε = 2P . The density of particles, n, is calculated as the

contraction of the macroscopic velocity with the particles flux Nµ,

n = UµN
µ
E = UµN

µ = Uµ

Q∑
i=1

fip
µ
i . (5.16)

Lastly, the temperature is calculated with

θ =
1

2

g2(z)

g3(z)

( ε
n

)
, (5.17)

where the EDF integral, gν(z), is defined in Eq.(5.12).

The density of particles and the internal energy can be calculated with the EDF, since,

by Eqs.(5.15) and (5.16), they give the same result as for the non-equilibrium distribution:

n = 2πθ2g2(z), and ε = 2P = 4πθ3g3(z). (5.18)

The Eq.(5.17) was calculated using Eq.(5.18). The validity of Eqs.(5.15) and (5.16) is

a consequence of the conservation of particles flow and the conservation of the energy-

momentum tensor,

∂µN
µ = 0, ∂µT

µν = 0. (5.19)
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To calculate the transport coefficients using the Grad’s expansion, one also needs an

equation for the third order non-equilibrium tensor [99], which requires the fifth order

equilibrium tensor,

TαβγδεE =

∫
f eqpαpβpγpδpε

d2p

p0
, (5.20)

so, the fifth order expansion is clearly need to recover the full dissipation. Another way

to see the required expansion order of the EDF, is to observe that the pressure deviator,

Eq.(5.24), has terms with five velocities, which can be recovered just with a fifth order

expansion. In the Landau-Lifshitz decomposition, the particle flow reads [23]

Nµ = nUµ − qµ

hE
, (5.21)

where qµ is the heat flux,

qµ = κ

(
∇µT − T

c2
DUµ

)
, (5.22)

κ is the thermal conductivity, D = Uα∂α and hE = (ε + P )/n = 3T g3(z)/g2(z) is the

enthalpy per particle, and the energy-momentum tensor is written as

T µν = p〈µν〉 − (P +$)∆µν +
ε

c
UµUν , (5.23)

where

p〈µν〉 = 2η

[
1

2
(∆µ

γ∆ν
δ + ∆µ

δ∆ν
γ)−

1

3
∆µν∆γδ

]
∇γU δ (5.24)

is the pressure deviator, $ = −µb∇αU
α is the dynamic pressure, η is the shear viscosity

and µb is the bulk viscosity. Here, ∆µν = ηµν −UµUν/c2 stands for the projector into the

space perpendicular to Uµ and ∇µ = ∆µν∂ν for the gradient operator.

In the next section, we adopt a reference model (denoted as “ref.” in the figures)

to validate our new models and compare our results with the two-dimensional version of

the LBM described in Ref. [99]. This model is based on a third order expansion, and
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therefore less accurate than the models presented here, but it has the advantage to have a

quadrature with exact streaming, which allows us to analyze the effects of our interpolated

streaming. Because all ultra-relativistic particles move essentially with the same speed,

to find a quadrature with exact streaming on a square lattice, one has to find velocity

vectors belonging, simultaneously, to the lattice nodes and to a circle of radius R:

n2
x + n2

y = R2,

where nx and ny are integers. The simplest lattice that satisfies the above equation and

the quadrature equations, Eq. (5.13), up to N = 6 (third order model) has radius R = 5

and 36 momentum vectors, where the velocity vectors are:

vx = {−5,−4,−4,−3,−3, 0, 0, 3, 3, 4, 4, 5}

vy = {0,−3, 3,−4, 4,−5, 5,−4, 4,−3, 3, 0}

The main disadvantage of this quadrature is a loss of resolution. As a consequence,

to simulate the same system size one needs 5 × 5 = 25 times more lattice points. In

addition, this quadrature can not be used to simulate models based on expansions of

orders higher than three, like our fifth order model. This would require a much bigger

radius R, making the resolution so small that the model would have little practical utility.

So, the interpolated streaming arises as an alternative to keep the resolution and to have

higher order expansions.

5.3 Numerical validation and characterization

5.3.1 Riemann Problem

The Riemann problem consists of a discontinuity in the initial conditions of the macro-

scopic quantities (e.g., density or velocity) which generates shock waves when the system

evolves. This is a benchmark validation for fluid dynamics models which has analytic
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solution for the inviscid hydrodynamic equations [144] but needs to be solved numeri-

cally for viscous fluids [19]. In order to validate our models, we compare solutions for

the pressure, velocity and density fields with a reference model described in Ref. [99].

Initially, we set the density n0 = 1.0 in the domain LX/4 < x < 3LX/4 and 0.1 elsewhere,

with temperature θ0 = 1.0 and velocity u0 = 0.0 on the whole domain. The effectively

one-dimensional system has dimensions LX ×LY = 1000×2 with periodic boundary con-

ditions in both directions. Just half of the system is shown because the other half is an

exact mirror image. The reference model, as well as the previous relativistic LBMs, uses

the viscosity given by Grad’s expansion, but, as we will see in Sec. 5.3.2, the measured

viscosity differs from this theoretical prediction. Because of this discrepancy, instead of

using constant η/s as usual, we perform our simulation using a constant relaxation time

of τ = 10.0. In Fig. 5.3, we see that the three models agree very well with the reference

model for those fields. Notice that the pressure differs for the three EDFs due to the EDF

integrals (see Eq.(5.18)), but, since it is divided by the initial pressure at x = 500, the

curves coincide in Fig. 5.3.
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Figure 5.3: Solution of the Riemann problem after t = 200 time steps for the pressure,
velocity and density fields using our three models and the reference model. The pressure
and the density fields are divided by their initial value at the center (x = 500).
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In order to show the differences between different expansion orders of the EDF, we

calculate the diagonal components of the tensorial fields, from second to fifth order, in

the Riemann problem:

πxx =
∑
i

(f − f eq)pxpx, (5.25)

πxxx =
∑
i

(f − f eq)pxpxpx,

πxxxx =
∑
i

(f − f eq)pxpxpxpx,

πxxxxx =
∑
i

(f − f eq)pxpxpxpxpx.

The results can be seen in Fig. 5.4 for the three EDFs expanded up to fifth order on

the left and for the MJ distribution expanded from second to fifth order on the right.

The numerical values of the tensors are divided by the initial density and temperature at

the center (x = 500) in order to make them non-dimensional. The differences between

the three EDFs clearly appear for these tensors. Considering the MJ distribution with

different expansion order (on the right), we see that all models give similar results for the

second order tensor, but the differences increase with the order of the tensors, becoming

large for the fifth order tensor. As in Fig. 5.1, the results seem to converge when the

expansion order increases. This shows the importance of using higher order expansions

when higher order tensors are considered.

5.3.2 Viscosity measurement

We measure the kinematic viscosity in our models through the Taylor-Green vortex

experiment. This is a initial value problem consisting of initial vortexes rotating in de-

termined directions, which kinetic energy dissipates with time due to the viscosity. The

conservation equations, Eq.(5.19), can be solved exactly for this problem if one considers

low velocities compared to the speed of light, giving exponential decay with time for the
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velocity field depending on the kinematic viscosity ν [48, 95]:

u(x, y, t) = u0(x, y)e−2νt(2π/L)2

, (5.26)

where u0 is the initial velocity and L the length of the squared domain. We simulate a

system with dimensions L ≡ LX = LY = 512 and with periodic boundary conditions for

five different relaxation times, ranging from 0.8 to 5.0 for 45000 time steps. The initial
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conditions are n0 = 1.0 and θ0 = 1.0 in the whole domain and the initial velocities are:

u0x(x, y) = −u0 cos

(
2πx

L

)
sin

(
2πy

L

)
(5.27)

u0y(x, y) = u0 sin

(
2πx

L

)
cos

(
2πy

L

)
, (5.28)

where u0 = 0.1. The initial non-equilibrium distribution is set as described in Ref. [95] in

order to reduce the oscillations in the fields. So the average squared velocity writes

〈u2〉 =

∫ L

0

∫ L

0

dxdy

L2
(u2

x + u2
y) =

u2
0

2
e−16π2νt/L2

, (5.29)

and the standard deviation for u2 is given by

σu2 =

√∫ L

0

∫ L

0

dxdy

L2
(u2 − 〈u2〉)2 =

u2
0

4
e−16π2νt/L2

(5.30)

In Fig. 5.5A we see σu2 as a function of time in semi-log scale for the three models.

From the slope of σu2(t), we can measure the kinematic viscosity ν. Note that ν does not

depend on the distribution, but the shear viscosity, η = (ε+ P )ν, does. Fig. 5.5C shows

the measured kinematic viscosity as a function of the relaxation time. The relation

ν(τ) =
1

4

(
τ − δt

2

)
, (5.31)

shows good agreement for ultra-relativistic models based on exact streaming [47], but

the interpolated streaming introduces a numerical diffusivity which increases the effective

viscosity of the fluid [84,152,159], i.e.,

νeff =
1

4

[
τ − δt

(
1

2
+ δν

)]
. (5.32)

With a linear fit, we measure the increment δν in the viscosity for the three EDFs:

δMJ
ν = −0.2454± 0.0001

δFDν = −0.2454± 0.0002

δBEν = −0.2449± 0.0005.
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These results can be summarized as νeff = 1
4

(τ − 0.2546 δt); see in Fig. 5.5C this function

compared to the data from the simulations. In order to have a more realistic thermody-

namic behavior, the shear viscosity-entropy ratio (η/s) is set constant and the relaxation

time is calculated with τ = 4η/(sθ) + 0.2546 δt, which will be used in Sec. 5.3.4.

In order to compare our results with the viscosity from a model with exact streaming,

we perform the same numerical experiment with the reference model, but with different

system dimensions, LX×LY = 320×320, due to the differences in the resolution described

in Sec. 5.2.4. Notice that this system size would be equivalent to LX × LY = 64× 64 for

the models described in this chapter. A linear fit ν(τ) = a(τ + b) gives:

a = 0.2502± 0.0003

b = 0.4996± 0.0005

confirming Eq.(5.31), see Fig. 5.5C. Note that, although this result was obtained directly

from the Boltzmann equation, it is not compatible with the prediction from Grad’s ex-

pansion [100], νGrad = kBτ/5, what underlines the need for a better understanding about

the transport coefficients of relativistic fluids in two dimensions.

5.3.3 Thermal Conductivity Measurement

From the correspondence between the Eckart and Landau-Lifshitz decompositions [23],

one can calculate the heat flux directly by the macroscopic fields (see Eq.(5.21)):

qα =
3Tg3(z)

g2(z)
(nUα −Nα). (5.33)

Thus, combining Eq.(5.22) with Eq.(5.33), we can calculate the thermal conductivity of

the fluid. Considering a one dimensional gradient in temperature in x-direction, Eq.(5.22)

becomes

qx = κF (∆T ) (5.34)
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where

F (∆T ) ≡ −
{(

1 +
(ux)2γ2

c2

)
∂T

∂x
+
Tγ

c2

[
c
∂

∂t
(γux) + ux

∂

∂x
(γux)

]}
. (5.35)

In the non-relativistic limit, Eq.(5.34) becomes Fourier’s law, while F (∆T )→ −∂T/∂x.

In order to measure the thermal conductivity we simulate an effectively one dimen-

sional system with dimensions Lx×Ly = 2048×2 for 5 different gradients in temperature

in the x direction. We calculate the spatial average of F , 〈F (∆T )〉, with Eq.(5.35) and

the average heat flux, 〈qx〉 with Eq.(5.33), where both are essentially constant in space.

For each simulation, the temperatures on the left and right boundaries are constant and

set as θL = 1−∆T/2 on the left and θR = 1 + ∆T/2 on the right, while the differences in

temperature are ∆T = {5.0, 7.5, 10.0, 12.5, 15.0} × 10−4. A zeroth order extrapolation

using the first fluid neighbors is performed to find the density and velocity on left and

right borders and periodic boundary condition are used on top and bottom. The initial

conditions are n0 = 1.0 and u0 = 0 everywhere and we set an initial temperature gradient

as θ0(x) = θL + x(θR − θL)/Lx to have a faster convergence to the solution. Fig. 5.5B

shows the average heat flux as a function of 〈F (∆T )〉 for 5 relaxation times and for the

three EDFs, and their respective linear fits (overlap for the three distributions) after 2000

time steps. The slope of each line gives the thermal conductivity, which can be seen in

Fig. 5.5D as a function of the relaxation time. The linear fits, [κg2(z)/g3(z)](τ) = aτ , for

the three EDFs give:

aMJ = 1.4999998± 0.0000002

aFD = 1.4999998± 0.0000002

aBE = 1.4999997± 0.0000004,

suggesting that the thermal conductivity-relaxation time relation is

κ(τ) =
3 τ g3(z)

2 g2(z)
. (5.36)
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This relation also agrees with the thermal conductivity obtained using the reference model

(with system dimensions LX × LY = 2560× 5), as shown in Fig. 5.5D, for which we find

aref = 1.4999994± 0.0000008,

with the linear fit. Interestingly, this results shows that the interpolated streaming changes

the viscosity but not the thermal conductivity. A similar relation was found in Ref. [47],

where the authors obtained κ(τ) = 1.525τ , with a relative error of 7.2% compared to

our result, possibly due to the small resolution of the numerical experiment (Lx × LY =

32 × 32). Similarly for the viscosity in Sec. 5.3.2, the thermal conductivity obtained

with relativistic LBM differs from the one predicted by Grad’s expansion [100], which

is κGrad = 3c2kBnτ/8. It shows the importance to perform a careful Chapman-Enskog

expansion in two dimensions, since other works in three dimensions have shown very good

agreement between LBM and Chapmann-Enskog [48].

5.3.4 Hot spot relaxation

In the hot spot relaxation experiment [20,44,127] a homogeneous fluid is heated within

a limited region (e.g., with a laser), and then let to relax to equilibrium. Here, we perform

this numerical experiment using our model based on the MJ distribution expanded from

second to fifth order in the relativistic polynomials. The relaxation time is calculated

following the measurements done in Sec. 5.3.2: τ = 4η/(sθ) + 0.2546δt, where η/s = 0.5

and θ is the local temperature. In a system with dimensions LX × LY = 512 × 512, we

have initially n0 = 1.0 and u0 = 0.0 everywhere and the temperature is θ = 1.5 inside the

region (x−LX/2)2+(y−LY /2)2 ≤ 322, and θ = 0.5 elsewhere. Open boundary conditions

are used in both directions. In Fig. 5.6, we see the time evolution of the temperature

and density along the line y = LY /2 (due to the circular symmetry, this region contains

all important information). Fig. 5.7 shows temperature and the x-component of the heat

flux (Eq.(5.33)) profiles at time t = 100 and at y = LY /2. In the insets, we can see the
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deviations between different expansion orders. In order to quantify the differences, we

calculate the average deviation of θ and qx with respect to the results obtained with the

fifth order model:

ε
(N)
θ =

∑x2

x=x1
|θ(N) − θ(5)|∑x2

x=x1
θ(5)

, ε(N)
q =

∑x2

x=x1
|(qx)(N) − (qx)(5)|∑x2

x=x1
(qx)(5)

,

where N denotes the order of the model used to calculate the field and x1 and x2 delimit

the interval considered to calculate the average. Adopting x1 = 256 and x2 = 388, where

x2 here was chosen as the limit from where the fields remain constant (qx = 0 and θ = 0.5),

we have the following average deviations:

ε
(2)
θ = 0.224% ε(2)

q = 5.195%

ε
(3)
θ = 0.114% ε(3)

q = 1.781%

ε
(4)
θ = 0.059% ε(4)

q = 0.744%

These deviations are due to the different values that the truncated expansions give for

the same set of parameters (temperature, velocity, chemical potential), as can be seem in

Fig. 5.1 for the EDF. This result reinforces that higher expansion order provides a more

accurate description, specially in problems with high velocity and/or high temperature

deviations.

5.4 Conclusion

We presented new RLBMs for semiclassical fluids in two dimensions governed by the

BE, FD and MJ distributions expanded up to fifth order. New polynomials and quadra-

tures were developed using appropriate weight functions, which are the distributions them-

selves with zero macroscopic velocity. We analyzed the differences between different ex-

pansion orders concluding that, as expected, higher order expansions give more accurate

results for higher velocities and temperature deviations. Since the fifth order expansion is,
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so far, the highest used in relativistic LBMs, the models presented here are recommended

for simulations where accuracy is important.

The transport coefficients were numerically measured for our models. The previous

models used the viscosity given by Grad’s theory, but, as verified with the measurements,

this theoretical value is not reproduced by the relativistic fluids. We also measured the

kinematic viscosity and thermal conductivity using a reference model, which uses exact

streaming and, therefore, gives results without numerical difusivity. The measurement

suggests that

η =
(ε+ P )

4

(
τ − δt

2

)
, and κ =

3 τ g3(z)

2 g2(z)
.

These coefficients should be confirmed in future analytical calculations using Chapman-

Enskog expansion. As demonstrated recently [48], relativistic hydrodynamics is better

described by Chapman-Enskog rather than by Grad method, which, to the best of our

knowledge, has not been done yet for two-dimensional ultra-relativistic fluids.

The present study opens the way to develop a fully dissipative model with multi-

relaxation time collision operator, similarly as done in Ref. [87], in order to independently

adjust the transport coefficients and enhance the numerical stability. The presented mod-

els can also be extended to three dimensions following similar procedures. The relativistic

polynomials can straightforwardly be calculated for three dimensions, since they are writ-

ten in a tensorial form, and the quadratures can be calculated by finding the roots of the

radial and angular polynomials as done here. The EDF expansion becomes significantly

more complicated, but one can use the ansatz described in Ref. [125].
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Figure 5.5: Measurement of transport coefficients. A) Decay with time of σu2 for the
three distributions and five different relaxation times τ in the Taylor-Green vortex. The
curves for the same τ fall on top of each other. B) Average heat flux as a function
of 〈F (∆T )〉 (Eq.(5.35)) for the three distributions and five relaxation times. The solid
lines represent linear fits, which fall on top of each other for the three distributions. C)
Kinematic viscosity – relaxation time relation for the three distributions obtained with
the Taylor-Green vortex and comparison with the results from the reference model. D)
Thermal conductivity– relaxation time relation for the three distributions and comparison
with the reference model.
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Figure 5.6: Time evolution of the temperature (left), where θ = T/Tr, with Tr = 1.0, and
density (right) at y = LY /2. The model used is based in a fifth order expansion of MJ
distribution.
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Figure 5.7: Temperature and heat flux profiles at t = 100 at y = LY /2 and 256 ≤
x < 512 for MJ distribution. Due to the symmetry, this region in space contains all
relevant information about the problem. The inset shows the differences between different
expansion orders.
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Chapter 6

Kelvin-Helmholtz instability on
graphene

In this chapter, we provide numerical evidence that a Kelvin-Helmholtz instability

occurs in the Dirac fluid of charge carriers in graphene and can be detected in current

experiments. This instability appears for electrons in the viscous regime passing though a

micrometer scale obstacle and affects measurements on the time scale of nanoseconds. A

possible realization with a needle shaped obstacle is proposed to produce and detect this

instability by measuring the electric potential difference between contact points located

before and after the obstacle. We also show that, for our setup, the Kelvin-Helmholtz

instability leads to the formation of whirlpools similar to the ones reported by Bandurin,

D. A., et al. [9] (see Figs. 1.1 and 1.2). To perform the simulations, we use the lattice

Boltzmann method developed in Chap. 5, which is able to recover the full dissipation in

a fluid of massless particles.

6.1 Introduction

The Kelvin-Helmholtz instability (KHI) is one of the most famous instabilities in fluid

dynamics and it is an important mechanism for the formation of vortices and precursor

of turbulence [134, 141, 155]. It appears when two fluids, or two parts of the same fluid,

are sheared against each other with a small perturbation at the interface [25]. It occurs
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in many situations in nature, as with fluctus clouds in the sky, the waves on the beach

or the red spot of Jupiter and it plays an important role to understand phenomena in

magnetohydrodynamics [102] as the interaction between the solar wind and the Earth’s

magnetosphere [60]. It was also observed experimentally [15] in superfluid 3He. The KHI

does not appear for supersonic relative speeds between the two fluids [17], which explains

the stable flow for relativistic planar jets in astrophysical systems as galactic nuclei and

gamma-ray bursts [29, 120].

In this chapter, we provide numerical evidence that the KHI can be produced and

detected, with current technology, on the Dirac fluid in graphene. Since most of the

recent studies are on the steady states of the flow (e.g., whirlpools), our proposal to

observe the KHI should make it possible to explore also transient states, complementing

our understanding about the hydrodynamic regime of electrons. We first simulate an

idealized system (Sec. 6.4) to observe the appearance of the so-called cat-eyes pattern in

the charge density field when we have shear between two regions of the fluid. Next, in Sec.

6.5,we simulate the fluid of electrons passing by an obstacle of micrometric scale, which

creates a shear in the fluid, and analyze the impact of the KHI on the electric potential

difference (EPD) between two contact points before and after the obstacle. According

to our simulations, the duration of the instability is on the time scale of nanoseconds.

Since this is challenging to observe experimentally, we suggest to produce it many times

by using an alternating squared current of few hundreds of megahertz, and later take

the statistical average of the signal. As we will see, the KHI leads to the formation of

whirlpool-like regions similar to the ones in Ref. [9].

To perform the simulations in this chapter, we use the new RLBM developed in chapter

5 for the Dirac fluid in graphene based on the expansion of the FD distribution up to

fifth order in orthogonal polynomials. According to the 14-moment Grad’s theory, the

fifth order expansion of the EDF is needed to recover the full dissipation in the fluid, i.e.,

the Navier-Stokes equation and Fourier’s law [23, 99, 100], which is necessary to have an
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accurate description for instabilities and other viscous effects. The previous models for

graphene using a similar approach were limited to a second order expansion [97,113].

This chapter is organized as follows. In Sec. 6.2 we review the RLBM developed in

Chap. 5 adapting it for the physics of graphene. In Sec. 6.3, we review the theory for KHI

and discuss the conditions for which it happens in graphene. In Sec. 6.4, we study the

formation of the KHI in a idealized setup with shear between two parts of the electronic

fluid. In Sec. 6.5, we propose a realistic setup to produce the KHI and show how to detect

it though the electric current and electric potential difference (EPD).

6.2 Model description

In this section, we review and adapt the model of Chap. 5 to simulate the hydrody-

namics of the Dirac fluid of charge carriers in graphene. We use the relativistic formalism

to describe the relativistic dispersion relation and the equation of states of graphene. In

this relativistic approach the speed of light (c) is played by the Fermi speed (vF ). Nev-

ertheless, the fluid moves with velocity much smaller than the Fermi speed in our setup

to study the KHI. Because of this, relativistic corrections of our formalism are negligible

giving, therefore, the same results as standard (non-relativistic) hydrodynamics [85].

6.2.1 Lattice Boltzmann equation

We use in our model the relativistic Boltzmann equation with the Anderson-Witting

collision operator [23] (the same used in Chap. 5, Eq. (6.1)), which is appropriate to treat

massless particles, to describe the time evolution for the Dirac fluid:

p̄µ∂µf = − p̄µU
µ

v2
F τ

(f − f eq), (6.1)

where τ is the relaxation time, which is a numerical parameter of our model used to tune

the shear viscosity. We assume the Einstein’s notation, where repeated indexes represent

a sum. The greek indexes range from 0 to 2 while the latin ones range from 1 to 2. The
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relativistic momentum is denoted by p̄µ = (E/vF , p̄), the velocity is Uµ = γ(vF ,u) and

the time-space coordinates are xµ = (vF t,x), where γ(u) = 1/
√

1− u2/v2
F is the Lorentz

factor. We use here the relativistic FD distribution,

f eqFD =
1

z−1 exp
[
p̄αUα

kBT

]
+ 1

, (6.2)

where z = eµ̄/kBT is the fugacity. The charge carries are modeled as ultra-relativistic

particles, for which the kinetic energy is much larger than the rest mass energy. Thus

p̄µp̄µ = (p̄0)2 − p̄2 = 0 ⇒ p̄0 = |p̄|, and Eq. (6.1) becomes

∂f

∂t
+ v · ∇f = −γ(1− v · u)

(f − f eq)
τ

. (6.3)

Here v = p̂ = p̄/|p̄| is the microscopic velocity with norm vF and we adopt from now on

natural units vF = kB = ~ = e = 1. Note that u/vF → u in natural units. To implement

the above equation numerically, the phase space is discretized as described in section 4.7

and we use the discrete version of Eq. (6.1):

fα(t+ δt, r + vαδt)− fα(t, r) = −γ(1− vα · u)
δt(fα − f eqα )

τ
, (6.4)

where δt is the time step of the simulations.

In the above formalism for ultra-relativistic particles the linear dispersion relation

of charge carriers in graphene was naturally included. Nevertheless, the electronic fluid

moves with a small velocity as compared to the Fermi speed (u� vF ⇒ γ ≈ 1) and the

relativistic corrections from our model are negligible.

6.2.2 Expansion of the equilibrium distribution function

To expand the FD distribution, we first introduce non-dimensional quantities: θ =

T/T0, p = p̄/T0 and µ = µ̄/T0, where T0 is the initial temperature. So, considering the

ultra-reativistic regime, Eq. (6.2) becomes

f eqFD =
1

z−1 exp [p0γ(1− v · u)/θ] + 1
. (6.5)
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We find the relativistic polynomials by a Gram-Schmidt procedure, with the weight func-

tions for graphene with zero chemical potential reads:

ω(p) =
1

ep + 1
. (6.6)

The details can be found in Sec. 5.2.2 while the explicit expansion is given in the Appendix

D and in the Supplemental Material1

The expansion of the EDF up to fifth order can be expressed as following,

f eq = ω(ξ)

[
5∑

N=0

1

N !
Ai1...iNP i1...iN +

4∑
M=0

1

M !
Ai1...iM0P i1...iM0

]
, (6.7)

where A are the projections of the EDF on the polynomials

Aµ1 µ2···µN =

∫
d2p

p0
f eqP µ1 µ2···µN . (6.8)

Notice that the denominators N ! and M ! in the expansion stem from the normalization,

Eq.(5.4), as derived in Ref. [31] and for the Hermite polynomials. The explicit expansion

can be found in the Supplemental Material. This expansion allows us to calculate the full

set of conservation equations for a viscous fluid and the transport coefficients, since it is

required to expand up to fifth order to recover the fifth order moment of the EDF [23,99,

100]:

TαβγδεE =

∫
f eqpαpβpγpδpε

d2p

p0
. (6.9)

The Gaussian quadrature used in this model to calculate the moments of the EDF is

given in Sec. 5.2.4. It uses the weight function of Eq. 6.6 to calculate the discrete weights

and the momentum vectors.

6.3 Kelvin-Helmholtz instability

When two fluid or two regions of the same fluid shear against each other with different

tangential velocities and a perturbation is introduced on the interface, the KHI takes

1Download the Supplemental Material together with the source files at arXiv: https://arxiv.org/

e-print/1709.09073

https://arxiv.org/e-print/1709.09073
https://arxiv.org/e-print/1709.09073
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place. To understand the critical values for which the instability occurs, lets consider two

fluids, separated by a flat interface in the middle, under an external force perpendicular to

the velocities, e.g, an electrical force [47]. The fluid in the upper part has smaller energy

density ε2 and is moving with velocity U2 while the fluid in the bottom has energy density

ε1 and velocity U1. If a perturbation in the fields (charge density, velocity or pressure),

δq ∝ exp[i(kx+ ly − ωt)], (6.10)

is introduced at the interface, a linear stability analysis [25] provides that the minimum

wave number in the parallel direction (transverse modes do not affect the instability) of

the shear flow to have the KHI is

kmin =
E g2(z)|ε2

1 − ε2
2|

3 ε1 ε2 T g3(z)(U1 − U2)2
, (6.11)

where we considered an external electrical field E perpendicular to the flow causing an

acceleration nE
ε+P

= Eg2(z)
3Tg3(z)

. The KHI occurs for any k > kmin. Note that here the external

force has a stabilizing role. Another way to stabilize the shear flow is with a gradient of

charge density and/or velocity [50]. Defining the relativistic Richardson number for this

problem as

Ri = − E g2(z)

3 ε T g3(z)

dε/dy

(dUx/dy)2
, (6.12)

the linear stability analysis gives that the necessary condition to have a stable flow is

Ri > 1/4 everywhere [25, 107]. The flow can be stable for Ri < 1/4 only in the absence

of perturbations. The flow can also be stable for supersonic shear velocities [17]. For

instance, for the simple case with l = ω = 0, the flow is stable when M > 1, where the

relativistic Mach number is defined as

M =
uxγ(ux)

csγ(cs)
. (6.13)

For the conditions we consider in the simulations for graphene, the flow is unstable for

every perturbation because we do not have any external force perpendicular to the flow

neither supersonic velocities.
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0.992 0.996 1.000

Figure 6.1: Formation of the KHI in graphene at a) t = 0 ns, b) t = 0.72 ns, c) t = 1.00
ns, d) t = 1.43 ns. The streamlines shows the velocity field and the colors represents the
charge density fluctuations relative to the initial charge density, n/n0.

Figure 6.2: Realistic setup to observe the KHI at Re = 53. By using a constant current
0.05 vF in the source (left side), we see the snapshots for a) t = 0.14 ns, b) t = 0.43 ns,
c) t = 0.85 ns, d) t = 1.42 ns. The colors represent the density fluctuations relative to
the initial density, n/n0, and the gray object represents a needle shaped obstacle. The
streamlines show the directions of the velocity field.

In the following simulations, we consider that the charge carriers are in the hydrody-

namic regime, which implies that the mean free path for carrier-carrier collisions gives the
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smallest spatial scale for the system. See Ref. [83] for measurements of mean free paths

and for the transition between ballistic and hydrodynamic regime in graphene. In order

to reduce the scattering with impurities and phonon, we consider ultra-clean samples at

appropriate temperature. The sample is on a substrate, e.g., SiO2, with finite carrier

density controlled by an external gate voltage. In addition, all simulations are performed

for small velocities.

6.4 Ideal setup

As an idealized setup to observe the KHI, we model a system with size Lx × Ly =

512× 512 grid points, representing a 37µm× 37µm physical system, where the fluid has

opposite velocities in the two halves, that is,

u0
x = −U0 tanh

(
y − Ly/2

a

)
, (6.14)

where we set U0 = 0.1vF and a = 1. We introduce a small perturbation to trigger the

instability as

u0
y = upert sin

[
2π(x− Lx/2)

Lx

]
exp

[
−(y − Ly/2)2

b2

]
, (6.15)

where upert = 0.005vF and b = 10. Initially, the charge density [98] and the temperature

are the same everywhere, n0 = 2.26× 10−5 C/m2 and T0 = 100 K. For this temperature,

the electron-phonon interactions are negligible [10]. The numerical shear viscosity-entropy

ratio for the simulations of the KHI is η/s = 0.12. By using the Gibbs-Duhem relation for

zero chemical potential, ε+ p = sT , we calculate the kinematic viscosity ν = (η/s)/T0 =

0.12 and the Reynolds number for this simulation, Re = L0v0/ν = 427, where we use

the size of the sample as the characteristic length L0 and the velocity in each half as

the characteristic velocity v0. For a graphene sample with T = 100K the kinematic

viscosity [97] is ν = 8.57 × 10−3m2/s. The boundary conditions are periodic in left and

right direction and, at top and bottom, the boundary is open except for the horizontal
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velocity ux(t) = u0
x that is set constant. In Fig. 6.1 we see the formation and evolution of

the KHI for different times (δt = 71 fs). At t = 0 ns, we have the two regions of the fluid

moving in opposite directions and a small perturbation in the velocity field at the middle.

Since there is no external force perpendicular to the flow, Eq.(6.11) gives that kmin = 0,

i.e., any perturbation makes the flow be unstable. Therefore the KHI appears as we can

see in Fig. 6.1 for t = 0.72 ns and t = 1.00 ns, where we can recognize the pattern of

the cat-eyes in the charge density field. After some time, the flow stabilizes due to the

generation of a gradient in the velocity and charge density fields and to the absence of

perturbations (Fig.6.1 d).

6.5 Realistic setup

In order to detect the KHI in experiments we propose a more realistic setup that

could be performed nowadays, where we force the Dirac fluid to flow through an obstacle

(see Fig. 6.2). We simulate a system with Lx × Ly = 512 × 256 with a needle shaped

obstacle measuring 16×128 nodes, which represents 1.1µm×9.1µm, positioned 96 nodes

(6.8µm) away from the source. Initially, all fields are homogeneous: n0 = 2.26 × 10−5

C/m2, T0 = 100 K, u0 = 0. We use bounce-back boundary conditions at the obstacle’s

surface (u = 0), open boundary at the right side (drain), slide-free boundaries at top

and bottom (uy = 0) and, at the left side, the source, we set a current in the horizontal

direction: nin = n0, uinx (t), uiny = 0, and we obtain the temperature at the boundaries by

a zero-order extrapolation from the first fluid neighbors.

Now we analyze the fields when a constant current is applied at the source. In Fig.

6.2, we see the evolution of the charge density field and the formation of the KHI for a

velocity uinx = 0.05vF at the source, which corresponds to an electrical current of I0 =

j0 Ly = 20.6µA. Considering uinx as the characteristic velocity and the length of the

obstacle as the characteristic length, we have Re = 53 for this simulation. When the

current reaches the obstacle (t = 0.14 ns), we see that the fluid at the bottom region
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Figure 6.3: Average charge density, average x-component of the velocity and current as
functions of time for different source velocities measured close to the drain. The inset
show the current for a longer time and the red rectangle indicates the region that is being
amplified.
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Figure 6.4: EPD between the two points indicated by the black squares in the inset
divided by a reference voltage V0.

has velocity > uinx , while the fluid at the upper region has ux = 0 generating a shear

flow. Since we have no external force in the vertical direction, Eq.(6.11) says that the

flow is unstable for every perturbation, which, in our case, is generated by the initial
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Figure 6.5: Frequency of the signal due to the KHI as a function of the source velocity
and a linear fit.

passage of the fluid and, therefore, the KHI appears (Fig. 6.2b). At t = 0.85 ns the flow

begins to stabilize due to the formation of gradients and the absence of perturbations

and, at t = 1.42 ns, we can not see signs of the instability anymore. The streamlines in

Fig. 6.2 show that, after the passage of the KHI, we have the formation of permanent

(steady state) whirlpool-like regions between the obstacle and the drain similarly to the

ones reported in Refs. [9, 86, 119, 145]. It suggests that the KHI drives the formation of

these experimentally observed whirlpools in graphene analogously to many other vortex

formation in nature [134, 141, 155]. The KHI can be identified in the electrical current

signal, because there are fluctuations in charge density and velocity when the instability

passes by the measurement points. In Fig. 6.3, we see the time evolution for the current

, jx(t) =
∫
dy n ux, the average charge density, n(t) =

∫
dy n/Ly, and the average x-

component of the velocity, ux(t) =
∫
dy ux/Ly, measured close to the drain (10 nodes

before) for 5 source velocities, where δt = 71 fs. For the velocity 0.05vF , we can observe

fluctuations in the fields due to the instability starting approximately from 0.36 ns to

0.71 ns, which agrees with, respectively, the times when the instability reaches the right

border and disappears in Fig. 6.2. In the inset of Fig. 6.3 one can observe the first

big oscillation in the electrical current that is due to the waves generated by the initial
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passage of the fluid through the obstacle. Since these waves depend only of the sound

speed, they reach the drain at the same time, independently of the source velocity uinx .

After this, one can observe oscillations, of few microamperes, due to the KHI that have

a smaller period for higher source velocities. This is expected as the instabilities have

approximately the same dimensions, but travel faster for higher velocities. To estimate

the period of each oscillation of the instability, TKH , we consider the charge density curves,

since they are smoother and the instability’s sign can be identified more easily. In order

to numerically measure the beginning of the oscillation, we define it as the point at which

the derivative is smaller than a reference value, which we choose as being half of the

derivative at the decreasing region in the fields (for instance, between 0.4 ns and 0.6 ns

for u0 = 0.05vF ). We find the end of the oscillation in a analogous way but considering

the derivative in the increasing region. Thus, we calculate the frequency of the instability

defined by fKH = 1/TKH and plot it as a function of the source velocity, Fig. 6.5. We can

identify a linear relation, which is expected from the wave equation v = λ×f . By a linear

fit we find λ ≈ 17.4µm, that approximately corresponds to the length of the instability.

In Fig. 6.2, we see that the length of the instability does correspond to roughly half of

the system size (18.2µm), what confirms that this oscillation in the current measurement

is due to the KHI.

One can detect the instability in experiments by measuring the electric potential dif-

ference (EPD). We consider the simplification adopted in Ref. [146], which considers that

the EPD is caused by fluctuations in the charge density field, leading to:

∆V ≈ ∆n

C
, (6.16)

where C = ε0εr/d is the capacitance per unit area, ε0 is the vacuum permeability, εr is

the relative permeability of the substrate and d is the thickness of the substrate. Fig. 6.4

shows the EPD between the two points indicated by black squares in the inset (upper

boundary and in the middle of each domain) divided by a reference potential, V0 = n0/C,
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with n0 being the initial density. Here, ∆n = nR−nL is the difference between the charge

density at the right and left contacts. Initially, the EPD is zero, due to the homogeneous

initial condition in charge density. The first oscillations occur when the moving fluid

reaches the contacts and they do not depend on the fluid velocity as discussed before.

Between 0.3 ns and 1 ns, we can see the oscilations due to the KHI, which depend on the

fluid velocity likewise with the electrical current. Considering, for instance, a substrate

of SiO2, which has εr = 3.9, and typical experimental parameters [41] (d = 3 × 10−7 m,

n0 = 2.26× 10−5 C/m2), we can estimate that the oscillations due to the KHI are on the

scale of ∼ 10 mV, which could be measured in current experiments. The oscillations in

the electrical current, on the scale of microamperes, are much harder to detect.

Since the duration of the KHI is on the scale of nanoseconds, it would be challenging

to observe it with a constant current, but one could generate it with a high frequency and

observe its influence on the electrical current and EPD. We simulate a squared current

(on-off) with a frequency of 470 MHz for three source velocities and the time dependence

of the electrical current and the EPD can be seen in Fig. 6.6 for three cycles starting

from 4 ns to avoid the initial stabilization of the system. The behavior that we observed

for a constant current (Figs. 6.3 and 6.4) can be reproduced indefinitely and we can

clearly identify the oscillations that are due to the KHI, since they change with the source

velocity. As can be seen in Fig. 6.6, the cycles are basically identical and, therefore, one

could distinguish the oscillations due to the KHI from the experimental noise by taking

the statistical average of many cycles. Note that the current at the drain becomes negative

when the source current is interrupted, which is due to the whirlpools (see Fig. 6.2) that

cause a back flow.

6.6 Conclusion

The Kelvin-Helmholtz instability was analyzed in an idealized setup, with a shear flow

between two regions of the Dirac fluid moving in opposite directions. We also simulated a
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Figure 6.6: Electrical current at the drain and EPD between the two contacts indicated
in Fig. 6.4 when an alternated squared current of 470 MHz is applied at the source for
three different source velocities. The dashed rectangles indicate where the oscillations due
to the KHI can be identified, which are amplified in the figures on the top.

flow through a needle shaped obstacle, which would be a possible experimental realization

to observe this instability, and we analyzed its impact on the electrical potential difference

measurements. The Kelvin-Helmholtz instability can be identified by changing the current

at the source. An alternating squared current can be used to produce the instability many

times, such that one can later take the statistical average over the different cycles and

differentiate the instability from noise. Since this instability always occur in the presence

of an obstacle, it can even be produced and measured accidentally in experiments and

be confused with experimental noise. Therefore, it should be considered in experiments

performing measurements on the scale of nanoseconds. As illustrated here, the Kelvin-

Helmholtz instability leads to the formation of whirlpools similar to the ones reported in

Ref. [9] (see Fig. 6.2).
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Chapter 7

Conclusion

Here we summarize the main results and give future perspectives for the work

developed in this thesis.

One of the main advantages of the LBM is the ease of simulating flows in complex

geometries without the need to draw sophisticated meshes as occur for the finite element

methods for instance. This was illustrated in Chap. 2 with the simulation of a fluid

passing though many different samples of porous media. These samples were artificially

built by placing spheres in random positions until the desired porosity is reached. The

use of artificial samples instead of the digitalization of real rocks offers the possibility to

control the characteristics of the samples such as the porosity and the size of the grains

and, besides, we have more statistics. Using LBM, we were able to calculate fluid dynamic

properties of the samples (permeability and tortuosity) and relate them with geometrical

properties (porosity, size of the grains and specific surface area). We found out that the

Kozeny-Carman equation applies to our artificial samples.

In previous attempts to build a LBM for semiclassical fluids, including my master

thesis (Refs. [30, 34,67, 130,157]), regimes far from the classical one can not be achieved.

Therefore, one could not treat electrons in metals for instance. This occur because, in

these previous models, the expansion of the BE and FD distributions is made in Hermite

polynomials, which are appropriate only for the MB distribution (classical fluids). This

problem was solved with the discovery of the generalized polynomials described in Chap.
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3. These polynomials are orthogonal for a generic weight function and are particularly

interesting for the expansion of semiclassical distributions (BE and FD) using appropriate

weights. We calculate analytically the polynomial coefficients up to fourth order and,

as expected, we are able to recover well known polynomials (Hermite, Chebyshev and

Legendre) using their respective weights to calculate the coefficients.

The non-relativistic semiclassical LBM, based on the generalized polynomials, is de-

scribed in details in Chap. 4. We expand a generic distribution function, which can be

the BE and the FD, up to fourth order in generalized polynomials. The obtainment of

the macroscopic equations for semiclassical fluids is done using a non-expanded generic

distribution function by means of the Chapman-Enskog method, which generalizes the

work done in my master thesis [30, 34]. Also, the forcing therm is studied for the new

model in order to see if it satisfies the first three moment constraints and new Gaus-

sian quadratures are calculated to be used in the semiclassical models. A simple model

for electrons in metals is constructed and tested by using the Riemann problem and the

Poiseuille flow. As expected for electrons in metals, the Ohm’s law is recovered when the

electronic fluid pass through a medium with randomly placed obstacles, which exemplifies

the use of the LBM for electrons in complex geometries.

It is known that to recover the macroscopic equations and the transport coefficients for

a fluid made of ultrarelativistic particles we need, at least, a fifth order expansion of the

EDF [100]. In 2013, Mendoza et. al. [99] developed a model with improved dissipation,

which is based on a third order expansion of the MJ EDF. The first model with full

dissipation is developed in the Chap. 5 for ultrarelativistic semiclassical particles. We

expand the three relativistic distributions (MJ, FD and BE) up to fifth order in relativistic

polynomials, which are a relativistic version of the polynomials given in Chap. 3. Besides,

new quadratures able to calculate high order moments of the EDF are developed. These

quadratures require interpolations to find the distributions at the grid points, but they

have the advantage to preserve the spatial resolution in a squared lattice. We validate
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and characterize the models using four numerical tests: the Riemann problem, the Taylor-

Green vortex, the Fourier flow and the hot-spot relaxation. In these tests, we analyze

qualitatively and quantitatively the differences between the models based in different

expansion order of the EDF. Furthermore, we numerically measure, with high precision,

the kinematic viscosity and the thermal conductivity for ultrarelativistic fluids in two

dimensions. As discussed, these transport coefficients do not agree with the predictions

from the Grad method, but should serve for future comparisons with results from the

Chapman-Enskog method, which was gives correct results for three dimensional systems.

In Chap. 6, we use the fully dissipative relativistic LBM developed in Chap. 5 to

simulate the Dirac fluid of charge carriers in graphene. The relativistic LBMs was used

many times in literature for graphene because it naturally includes its linear dispersion

relation, but the low velocity regime is adopted. We investigate the Kelvin-Helmholtz

instability of electrons in graphene and we propose an experiment to detect it through the

electric potential difference and the electric current. As we observed, this instability occur

very easily in the presence of an obstacle, which should be considered in measurement

on the time scales of nanoseconds. This application illustrates the use of LBM to study

transient states of the flow in electron hydrodynamics, what would be challenging to

perform analytically with the macroscopic equations (Navier-Stokes).

In this thesis, we have two specific materials: metals and graphene. Nevertheless, our

methodology is general and these models could be straightforwardly extended to other

systems just changing the physical parameters (e.g., chemical potential, density). The

hydrodynamic regime can be achieved in a wide range of novel materials as the Dirac

materials [150], topological insulators [24], which has carriers on the surface that may

behave like a fluid, Weyl systems [89] and 2D metal Palladium cobaltate [103].

Besides, the models here presented can be improved to account other effects. For

instance, thermal effects can be treaded if more relaxation times are included in the

collision term as done in Ref. [87] for relativistic models or in Ref. [128] for non-relativistic
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models. In addition, one could study electron-phonon interaction if the spatial curvature

is included in the forcing term as in Refs. [40,52].
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[20] U. Briskot, M. Schütt, I. V. Gornyi, M. Titov, B. N. Narozhny, and A. D. Mirlin.

Collision-dominated nonlinear hydrodynamics in graphene. Phys. Rev. B, 92:115426,

Sep 2015. 5, 118

[21] PC Carman. Fluid flow through granular beds. Chemical Engineering Research and

Design, 75:S32–S48, 1997. 14

[22] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim.

The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, Jan 2009. 3, 5

[23] Carlo Cercignani and Gilberto Medeiros Kremer. Relativistic Boltzmann Equation.
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Appendix A

Tensorial identities involving the IN

Here we obtain especial formulas derived from the definition of the IN ’s given in

Eq.(3.10) and obtained from tensorial contractions of the tensor ξi1 · · · ξiN , and, conse-

quently, from the δi1···iN .∫
dDξ ω(ξ) = I0,

∫
dDξ ω(ξ) ξi1ξj1 = I2 δi1j1 ,∫

dDξ ω(ξ) ξ2 = D I2.

∫
dDξ ω(ξ) ξi1ξi2ξj1ξj2 = I4 δi1j1i2j2 ,∫

dDξ ω(ξ) ξi1ξi2ξ
2 = (D + 2)I4 δi1j1 ,

∫
dDξ ω(ξ) ξ4 = (D + 2)DI4. (A.1)∫

dDξ ω(ξ) ξi1ξi2ξi3ξj1ξj2ξj3 = I6 δi1j1i2j2i3j3 ,∫
dDξ ω(ξ) ξi1ξi2ξj1ξj2ξ

2 = (D + 4)I6 δi1j1i2j2 , (A.2)∫
dDξ ω(ξ) ξi1ξi2ξ

4 = (D + 4)(D + 2)I6 δi1j1 , (A.3)∫
dDξ ω(ξ) ξ4 = (D + 4)(D + 2)DI6. (A.4)∫
dDξ ω(ξ) ξi1ξi2ξi3ξi4ξj1ξj2ξj3ξj4 = I8 δi1j1i2j2i3j3i4j4 ,∫
dDξ ω(ξ) ξi1ξi2ξi3ξj1ξj2ξj3ξ

2 = (D + 6)I8 δi1j1i2j2i3j3 ,∫
dDξ ω(ξ) ξi1ξi2ξj1ξj2ξ

4 = (D + 6)(D + 4)I8 δi1j1i2j2 ,∫
dDξ ω(ξ) ξi1ξj1ξ

6 = (D + 6)(D + 4)(D + 2)I8 δi1j1 ,∫
dDξ ω(ξ) ξ8 = (D + 6)(D + 4)(D + 2)DI8. (A.5)
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Appendix B

Quadratures for the semiclassical
LBM

In Table (B.1) we show more quadratures for the semiclassical LBM in 1D, 2D and

3D. The expressions for the D1V7 lattice can be found below.

The lattice D1V7 can be used in models with higher orders EDF expansions sin it has

orderM = 9. The geometrical velocities are {e0, e1, e2, e3, e4, e5, e6} = {0,+1,−1,+2,−2,+3,−3},

and the weight are w0 for α=0, w1 for α = 1 and 2, w2 for α = 3 and 4 and w3 for α = 5

and 6. Quadrature equations satisfied by the D1V7 lattice:

∑
α

wα = I0 ⇒ w0 + 2w1 + 2w2 + 2w3 = I0∑
α

wαe
2
α = I2c

2
s ⇒ 2w1 + 8w2 + 18w3 = I2c

2
s∑

α

wαe
4
α = 3I4c

4
s

⇒ 2w1 + 32w2 + 162w3 = 3I4c
4
s∑

α

wαe
6
α = 15I6c

6
s

⇒ 2w1 + 128w2 + 1458w3 = 15I6c
6
s
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∑
α

wαe
8
α = 105I8c

8
s

⇒ 2w1 + 512w2 + 13122w3 = 105I8c
8
s

Solutions:

w0 =
1

360
(360I0 − 150I6c

6
s + 420I4c

4
s − 490I2c

2
s)

w1 =
1

16
(−13I4c

4
s + 5I6c

6
s + 12I2c

2
s)

w2 =
1

120
(30I4c

4
s − 15I6c

6
s − 9I2c

2
s)

w3 =
1

720
(15I6c

6
s − 15I4c

4
s + 4I2c

2
s)

There are six solutions for cs, which can be found by solving the equation

12I2 − 49I4c
2
s + 70I6c

4
s − 35I8c

6
s = 0.

One of them is:

cs =
{2

3

I6

I8

− 49 21/3I4

(B +
√

4A3 +B2)1/3

+
140 21/3I2

6

3I8(B +
√

4A3 +B2)1/3
+

(B +
√

4A3 +B2)1/3

105 21/3I8

}1/2

where

A = −4900I2
6 + 5145I4I8

B = 686000I3
6 − 1080450I4I6I8 + 396900I2I

2
8
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Lattice M eα p wα cs

D1V3 5 0 1 I0(1− J2/3)
√

I2
3I4

±1 2 I0J2/6
D1V5 7 0 1 I0 − 10I2c

2
s/9 + I4c

4
s/3

(a and b) ±1 2 9I2c
2
s/16− 3I4c

4
s/16

√
10I4±
√

100I2
4−60I6I2

10I6

±3 2 3I4c
4
s/144− I2c

2
s/144

D2V6 3
(
cos 2πn

6
, sin 2πn

6

)
6 I0/6

√
I0
2I2

D2V9 5 (0, 0) 1 I0(1− 5J2/9)

(1, 0)FS 4 I0J2/9
√

I2
3I4

(1, 1)FS 4 I0J2/36
D3V15 5 (0, 0, 0) 1 I0(1− 7J2/9)

(1, 0, 0)FS 6 I0J2/9
√

I2
3I4

(1, 1, 1)FS 8 I0J2/72
D3V19 5 (0, 0, 0) 1 I0(1− 2J2/3)

(1, 0, 0)FS 6 I0J2/18
√

I2
3I4

(1, 1, 0)FS 12 I0J2/36
D3V27 5 (0, 0, 0) 1 I0 − 2I2

2/(3I4)− I6I
3
2/(27I3

4 )

(1, 0, 0)FS 6 (3I2
2I

2
4 + I6I

3
2 )/(54I3

4 )
√

I2
3I4

(1, 1, 0)FS 12 (3I2
4I

2
2 − I6I

3
2 )/(108I3

4 )
(1, 1, 1)FS 8 I3

2I6/(216I3
4 )

Table B.1: Generalized lattices and their weights. M is order of the quadrature (see Sec.
4.7) and p is the number of velocities with the same weight. The subscript FS denotes a
fully symmetric set of points.
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Appendix C

Integrals for the relativistic model

Here we show more details about the calculation of the integrals used in the EDF

expansion, Eq.(5.10), which are laborious to solve analytically even using computer algo-

rithms. Consider, for instance, the projection in the second order polynomial P i1i2 ,

Ai1i2 =

∫
d2p

p0

D1p
i1pi2 + [D2(p0)2 +D3p

0 +D4]δi1i2

z−1ep0γ(1−v·u)/θ) + ξ
. (C.1)

Because of the inner product v · u (where v = p/|p|) in the exponential, the integration

in separate spatial components is more complicated than in non-relativistic case. To solve

this kind of integral we consider the integration of each monomial separately, which, in

the example above, are {pxpx, pxpy, pypy, (p0)2, p0, 1}.

One can write v ·u = u cos(φ−α) where α is the angle between u and the x-axis and

φ is the angle between v and the x-axis. Lets define a generic integral of f eq as

I
(mnq)
1 ≡

∫ 2π

0

∫ ∞
0

dpdβ
pm sinn(β) cosq(β)

z−1epγ(1−u cos(β)/θ) + ξ
,

where β ≡ φ− α. If n is odd, the integral is zero, but if n is even

I
(mnq)
1 = 2

∫ π

0

∫ ∞
0

dpdβ
pm sinn(β) cosq(β)

z−1epγ(1−u cos(β)/θ) + ξ
.

Using the identity ∫ ∞
0

dp
pm

z−1ep y + ξ
= y−(m+1)Γ(m+ 1)gm+1(z),
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where gν(z) is defined in Eq.(5.12), and after some algebra, we find

I
(mnq)
1 =

2θm+1

γm+1un+q
Γ(m+ 1)gm+1(z) ·

∫ π

0

dw[u2 − (1− w)2](n−1)/2 (1− w)q

wm+1
. (C.2)

The remaining integral can be solved exactly for given integers m, n and q. With this,

we have separated the original integral of two variables in two non-dimensional integrals

in one variable, including the EDF integral gν(z).

The Eq.(C.2) allows us to calculate projections of the EDFs in the monomials:

Imnq2 ≡
∫
d2p

p0

pm(px)n(py)q

z−1epγ(1−v·u)/θ) + ξ
.

As an example, lets consider the projection in the monomial pxpx,

I020
2 =

∫
d2p

p0

(px)2

z−1epγ(1−v·u)/θ) + ξ
=

∫ 2π

0

∫ ∞
0

dpdφ
(p cos(β + α))2

z−1epγ(1−u cos(β))/θ) + ξ

Since

cos2(α + β) =
1

2
+

1

2
cos2(α) cos2(β)

− 1

2
cos2(β) sin2(α)− 2 cos(α) sin(α) cos(β) sin(β)

− 1

2
cos2(α) sin2(β) +

1

2
sin2(α) sin2(β),

and considering that the odd powers of sin(β) give null integrals, we write

I020
2 =

1

2
I

(200)
1 +

1

2
(cos2(α)− sin2(α))(2I

(202)
1 − I(200)

1 ).

Thus, using Eq.(C.2), we have

I020
2 = 2πθ3g3(z)γ2[(1− u2) + 3uxux].

And with the integrals I2, one can calculate any projection of the EDF. Eq.(C.1), for

instance, becomes for the Axx component:

Axx = D1I
020
2 +D2I

200
2 +D3I

100
2 +D4I

000
2 .
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Below we see all the integrals needed to perform the fifth order expansion

I000
2 = 2πθg1(z)

I100
2 = 2πθ2g2(z)γ

I200
2 = 2πθ3g3(z)(2 + u2)γ2

I300
2 = 6πθ4g4(z)(2 + 3u2)γ3

I400
2 = 6π(8 + 24u2 + 3u4)θ5g5(z)γ4

I010
2 = 2πθ2g2(z)uxγ

I020
2 = 2πθ3g3(z)(1− u2 + 3uxux)γ2

I030
2 = 6πθ4g4(z)(3(1− u2)ux + 5(ux)3)γ3

I040
2 = (6π(3 + 3u4 + 30(ux)2 + 35(ux)4 − 6u2(1 + 5(ux)2))θ5g5(z))γ4

I001
2 = 2πθ2g2(z)uyγ

I002
2 = 2πθ3g3(z)(1− u2 + 3uyuy)γ2

I003
2 = 6πθ4g4(z)(3(1− u2)uy + 5(uy)3)γ3

I004
2 = ((6π(3 + 3u4 + 30(uy)2 + 35(uy)4 − 6u2(1 + 5(uy)2))θ5g5(z))γ4)

I220
2 = 6π(4− 3u2 − u4 + 5(ux)2(6 + u2))θ5g5(z)γ4

I120
2 = 6πθ4g4(z)((1− u2) + 5uxux)γ3

I202
2 = 6π(4− 3u2 − u4 + 5(uy)2(6 + u2))θ5g5(z)γ4

I102
2 = 6πθ4g4(z)((1− u2) + 5uyuy)γ3

I022
2 = (6π((1− u2) + 4(1− u2)u2 + 35(ux)2(uy)2)θ5g5(z))γ4

I031
2 = 30πθ5g5(z)(3(1− u2) + 7(ux)2)uxuyγ4

I211
2 = 30π(6 + u2)θ5g5(z)uxuyγ4

I011
2 = 6πθ3g3(z)uxuyγ2

I111
2 = 6πθ4g4(z)(5uxuy)γ3

I130
2 = −30πux(−3 + 3u2 − 7(ux)2)θ5g5(z)γ4
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I310
2 = 30π(4 + 3u2)θ5uxg5(z)γ4

I110
2 = 6πθ3g3(z)uxγ2

I101
2 = 6πθ3g3(z)uyγ2

I013
2 = 30πθ5g5(z)(3(1− u2) + 7(uy)2)uxuyγ4

I103
2 = −30πuy(−3 + 3u2 − 7(uy)2)θ5g5(z)γ4

I121
2 = −30π(−1 + u2 − 7(ux)2)uyθ5g5(z)γ4

I201
2 = 6πθ4g4(z)(4 + u2)uyγ3

I301
2 = 30π(4 + 3u2)θ5uyg5(z)γ4

I021
2 = 6πθ4g4(z)((1− u2) + 5uxux)uyγ3

I112
2 = −30π(−1 + u2 − 7(uy)2)uxθ5g5(z)γ4

I210
2 = 6πθ4g4(z)(4 + u2)uxγ3

I012
2 = 6πθ4g4(z)((1− u2) + 5uyuy)uxγ3

I050
2 = 30πux(15(1− u2)2 + 70(ux)2(1− u2) + 63(ux)4)θ6g6(z)γ5

I005
2 = 30πuy(15(1− u2)2 + 70(uy)2(1− u2) + 63(uy)4)θ6g6(z)γ5

I500
2 = 30π(8 + 40u2 + 15u4)θ6g6(z)γ5

I230
2 = 30πux(18− 3u4 + 56(ux)2 + u2(−15 + 7(ux)2))θ6g6(z)γ5

I203
2 = 30πuy(18− 3u4 + 56(uy)2 + u2(−15 + 7(uy)2))θ6g6(z)γ5

I041
2 = 90π((1− u2)2 + 14(ux)2(1− u2) + 21(ux)4)uyθ6g6(z)γ5

I221
2 = −30π(−6(1− u2)− u2(1− u2)− 56(ux)2 + u2(−7(ux)2))uyθ6g6(z)γ5

I014
2 = 90π((1− u2)2 + 14(uy)2(1− u2) + 21(uy)4)uxθ6g6(z)γ5

I032
2 = −30πux((ux)2(−1 + 4u2 − 63(uy)2) + 3(−1 + (−5 + 6u2)(uy)2))θ6g6(z)γ5

I212
2 = −30π(−6(1− u2)− u2(1− u2)− 56(uy)2 + u2(−7(uy)2))uxθ6g6(z)γ5
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I410
2 = 90πux(8 + 12u2 + u4)θ6g6(z)γ5

I023
2 = −30πuy((uy)2(−1 + 4u2 − 63(ux)2) + 3(−1 + (−5 + 6u2)(ux)2))θ6g6(z)γ5

I401
2 = 90πuy(8 + 12u2 + u4)θ6g6(z)γ5

I140
2 = 90π((1− u2)2 + 14(ux)2(1− u2) + 21(ux)4)θ6g6(z)γ5

I320
2 = −30π(−4(1− u2)− 3u2(1− u2)− 42(ux)2 + u2(−21(ux)2))θ6g6(z)γ5

I104
2 = 90π((1− u2)2 + 14(uy)2(1− u2) + 21(uy)4)θ6g6(z)γ5

I302
2 = −30π(−4(1− u2)− 3u2(1− u2)− 42(uy)2 + u2(−21(uy)2))θ6g6(z)γ5

I122
2 = −30π(−1 + u2 − 6u2(1− u2)− 63(ux)2(uy)2)θ6g6(z)γ5

I131
2 = −630πux(−1 + u2 − 3(ux)2)uyθ6g6(z)γ5

I311
2 = 315π(2 + u2)θ6g6(z)2uxuyγ5

I113
2 = −630πuy(−1 + u2 − 3(uy)2)uxθ6g6(z)γ5
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Appendix D

Fifth order expansion of the
relativistic Fermi-Dirac distribution

In this appendix, we show the expansion of the relativistic Fermi-Dirac distribution

up to fifth order in orthogonal polynomials, which was used in Chaps. 5 and 6. The

expansions of the MJ and BE distributions is given in the Supplemental Material1.. To

perform the expansion, we introduce some non-dimensional variables: θ = T/T0, p = p̄/T0

and µ = µ̄/T0, where T0 is the initial temperature, and the Fermi-Dirac distribution

becomes:

f eqFD =
1

z−1 exp [p0γ(1− v · u)/θ] + 1
, (D.1)

where z = e
µ
θ is the fugacity. The expansion up to fifth order is given by:

f eq =
n

2πg2(z)θ2
ω(ξ)

[
5∑

N=0

1

N !
Ai1...iNP i1...iN +

4∑
M=0

1

M !
Ai1...iM0P i1...iM0

]
, (D.2)

where Fermi-Dirac integral is

gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1 dx

z−1ex ± 1
, (D.3)

and the projections of the EDF on the polynomials are

Aµ1 µ2···µN =

∫
d2p

p0
f eqP µ1 µ2···µN . (D.4)

1Download the Supplemental Material together with the source files at arXiv: https://arxiv.org/

e-print/1709.09073

https://arxiv.org/e-print/1709.09073
https://arxiv.org/e-print/1709.09073
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Note that we divide the density n by a normalization factor 2πθ2g2(z), since
∫

d2p
p0 p

αf eqFD =

2πθ2g2(z)Uα = nUα . See below the terms of the expansion.

AP = 2A2
1g1(z)πθ

Ai1P i1 = 2B2
1(pxux + pyuy)g2(z)γπθ2

A0P 0 = 2πθ(C2g1(z) + C1g2(z)γθ)(C2 + C1p)

Ai1i2P i1i2 = 2πθ((D4g1(z) + γθ(D3g2(z) + g3(z)γ(D1 + 2D2

+(2D1 +D2)(ux)2 + (−D1 +D2)(uy)2)θ))(D4 +D3p+D2p
2

+D1(px)2) + 6D2
1g3(z)γ2uxuyθ2pxpy + (D4g1(z) + γθ(D3g2(z)

+g3(z)γ(D1 + 2D2 + (−D1 +D2)(ux)2 + (2D1 +D2)(uy)2)θ))

(D4 +D3p+D2p
2 +D1(py)2))

Ai10P i10 = 2(pxux + pyuy)γπθ2(E2g2(z) + 3E1g3(z)γθ)(E2 + E1p)

Ai1i2i3P i1i2i3 = 6γπθ2(ux(F4g2(z) + γθ(3F3g3(z) + g4(z)γ(F1(3

+2(ux)2 − 3(uy)2) + 3F2(4 + u2))θ))px(3F4 + 3F3p+ 3F2p
2

+F1(px)2) + uy(F4g2(z) + 3γθ(F3g3(z) + g4(z)γ(F1 + 4F2 + (4F1

+F2)(ux)2 + (−F1 + F2)(uy)2)θ))(F4 + F3p+ F2p
2 + F1(px)2)py

+ux(F4g2(z) + 3γθ(F3g3(z) + g4(z)γ(F1 + 4F2 + (−F1 + F2)(ux)2

+(4F1 + F2)(uy)2)θ))px(F4 + F3p+ F2p
2 + F1(py)2) + uy(F4g2(z)

+γθ(3F3g3(z) + g4(z)γ(3F2(4 + u2) + F1(3− 3(ux)2

+2(uy)2))θ))py(3F4 + 3F3p+ 3F2p
2 + F1(py)2))

Ai1i20P i1i20 = 2πθ((g1(z)G6 + γθ(g2(z)G5 + γθ(G2g3(z)(1 + 2(ux)2

−(uy)2) + g3(z)G4(2 + u2) + 3g4(z)γ(G1 + 2G3 + (4G1 + 3G3)(ux)2

+(−G1 + 3G3)(uy)2)θ)))(G6 +G5p+G4p
2 +G3p

3 +G2(px)2

+G1p(p
x)2) + 6γ2uyθ2(G2g3(z) + 5G1g4(z)γθ)(G2 +G1p)p

y((pxux

+pyuy)− uypy) + (g1(z)G6 + g2(z)G5γθ + g3(z)G4γ
2(2 + u2)θ2

+G2g3(z)γ2(1− (ux)2 + 2(uy)2)θ2 + 3G3g4(z)γ3(2 + 3u2)θ3

−3G1g4(z)γ3(−1 + (ux)2 − 4(uy)2)θ3)(G6 +G5p+G4p
2 +G3p

3

+G2(py)2 +G1p(p
y)2))
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Ai1i2i3i4P i1i2i3i4 = 6πθ((g1(z)H9 + g2(z)γH8θ + g3(z)γ2H7(2

+u2)θ2 + 2g3(z)γ2H4(1 + 2(ux)2 − (uy)2)θ2 + 3g4(z)γ3H6(2

+3u2)θ3 + 6g4(z)γ3H3(1 + 4(ux)2 − (uy)2)θ3 + 3g5(z)γ4H5(8

+24u2 + 3u4)θ4 + 6g5(z)γ4H2(4− 3u2 − u4 + 5(6 + u2)(ux)2)θ4

+g5(z)γ4H1(3 + 3u4 + 30(ux)2 + 35(ux)4 − 6u2(1 + 5(ux)2))θ4)

(3(H9 + p(H8 + p(H7 + p(H6 +H5p)))) + 6(H4 + p(H3

+H2p))(p
x)2 +H1(px)4) + 4γ2uxuyθ2(3g3(z)H4 + 5γθ(3g4(z)H3

+g5(z)γ(H1(3 + 4(ux)2 − 3(uy)2) + 3H2(6 + u2))θ))px(3H4

+3H3p+ 3H2p
2 +H1(px)2)py + 4γ2uxuyθ2(3g3(z)H4

+5γθ(3g4(z)H3 + g5(z)γ(3H2(6 + u2) +H1(3− 3(ux)2

+4(uy)2))θ))pxpy(3H4 + 3H3p+ 3H2p
2 +H1(py)2) + 2(g1(z)H9

+γθ(g2(z)H8 + γθ(g3(z)(H4 +H7)(2 + u2) + 3γθ(g4(z)(H3 +H6)

(2 + 3(ux)2 + 3(uy)2)− g5(z)γ(−(H2 +H5)(8 + 3(ux)4 + 24(uy)2

+3(uy)4 + 6(ux)2(4 + (uy)2)) +H1(−1 + 4(ux)4 − 3(uy)2 + 4(uy)4

−3(ux)2(1 + 9(uy)2)))θ))))(H9 +H8p+H7p
2 +H6p

3 +H5p
4

+p2(H4 + p(H3 +H2p)) +H1(px)2(py)2) + (g1(z)H9 + g2(z)γH8θ

+g3(z)γ2H7(2 + u2)θ2 − 2g3(z)γ2H4(−1 + (ux)2 − 2(uy)2)θ2

+3g4(z)γ3H6(2 + 3u2)θ3 − 6g4(z)γ3H3(−1 + (ux)2 − 4(uy)2)θ3

+3g5(z)γ4H5(8 + 24u2 + 3u4)θ4 + 6g5(z)γ4H2(4− 3u2 − u4

+5(6 + u2)(uy)2)θ4 + g5(z)γ4H1(3 + 3u4 + 30(uy)2 + 35(uy)4

−6u2(1 + 5(uy)2))θ4)(3(H9 + p(H8 + p(H7 + p(H6 +H5p))))

+6(H4 + p(H3 +H2p))(p
y)2 +H1(py)4))

Ai1i2i30P i1i2i30 = 6γπθ2(ux(g2(z)I6 + γθ(3g3(z)I5 + γθ(g4(z)(I2(3

+2(ux)2 − 3(uy)2) + 3I4(4 + u2)) + 5g5(z)γ(I1(3 + 4(ux)2 − 3(uy)2)

+3I3(4 + 3(ux)2 + 3(uy)2))θ)))(3(I6 + p(I5 + p (I4 + I3p)))p
x

+(I2 + I1p)(p
x)3) + uy(g2(z)I6 + 3γθ(g3(z)I5 + γθ(g4(z)(I2 + 4I4

+(4I2 + I4)(ux)2 + (−I2 + I4)(uy)2) + 5g5(z)γ(I1 + 4I3 + 3(2I1

+I3)(ux)2 + (−I1 + 3I3)(uy)2)θ)))(I6 + I5p+ I4p
2 + I3p

3 + (I2

+I1p)(p
x)2)py + ux(g2(z)I6 + 3g3(z)γI5θ + 3g4(z)γ2I4(4 + u2)θ2

−3g4(z)γ2I2(−1 + (ux)2 − 4(uy)2)θ2 + 15g5(z)γ3I3(4 + 3u2)θ3

−15g5(z)γ3I1(−1 + (ux)2 − 6(uy)2)θ3)px(I6 + I5p+ I4p
2 + I3p

3

+(I2 + I1p)(p
y)2) + uy(g2(z)I6 + γθ(3g3(z)I5 − γθ(g4(z)(I2(−3

+3(ux)2 − 2(uy)2)− 3I4(4 + u2))− 5g5(z)γ(3I3(4 + 3(ux)2

+3(uy)2) + I1(3− 3(ux)2 + 4(uy)2))θ)))(3(I6 + p(I5 + p (I4

+I3p)))p
y + (I2 + I1p)(p

y)3))
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Ai1i2i3i4i5P i1i2i3i4i5 = 30γπθ2(ux(g2(z)J9 + g6(z)γ4J1(15γ−4

−70(−1 + u2)(ux)2 + 63(ux)4)θ4 + 2γ2θ2(g4(z)J4(3 + 2(ux)2

−3(uy)2) + 5γθ(g5(z)J3(3 + 4(ux)2 − 3(uy)2) + g6(z)γJ2(4(ux)4

+(ux)2(41 + (uy)2)− 3(−6 + 5(uy)2 + (uy)4))θ)) + 3γθ(g3(z)J8

+γθ(g4(z)J7(4 + u2) + 5γθ(g5(z)J6(4 + 3u2) + 3g6(z)γJ5(8

+12u2 + u4)θ))))(15(J9 + p(J8 + p(J7 + p(J6 + J5p))))p
x

+10(J4 + p(J3 + J2p))(p
x)3 + J1(px)5) + uy(g2(z)J9 + 3g3(z)γJ8θ

+3g4(z)γ2J7(4 + u2)θ2 + 6g4(z)γ2J4(1 + 4(ux)2 − (uy)2)θ2

+15g5(z)γ3J6(4 + 3u2)θ3 + 30g5(z)γ3J3(1 + 6(ux)2 − (uy)2)θ3

+45g6(z)γ4J5(8 + 12u2 + u4)θ4 + 15g6(z)γ4J1(γ−4 − 14(−1

+u2)(ux)2 + 21(ux)4)θ4 − 30g6(z)γ4J2(−6 + u4 − 56(ux)2 + u2(5

−7(ux)2))θ4)(3(J9 + p(J8 + p(J7 + p(J6 + J5p)))) + 6(J4 + p(J3

+J2p))(p
x)2 + J1(px)4)py + ux(g2(z)J9 + 3g3(z)γJ8θ

+3g4(z)γ2J7(4 + u2)θ2 − 6g4(z)γ2J4(−1 + (ux)2 − 4(uy)2)θ2

+15g5(z)γ3J6(4 + 3u2)θ3 − 30g5(z)γ3J3(−1 + (ux)2 − 6(uy)2)θ3

+45g6(z)γ4J5(8 + 12u2 + u4)θ4 + 15g6(z)γ4J1(γ−4 − 14(−1

+u2)(uy)2 + 21(uy)4)θ4 − 30g6(z)γ4J2(−6 + u4 − 56(uy)2

+u2(5− 7(uy)2))θ4)px(3(J9 + p(J8 + p (J7 + p(J6 + J5p))))

+6(J4 + p(J3 + J2p))(p
y)2 + J1(py)4) + 2ux(g2(z)J9

+γθ(3g3(z)J8 + γθ(g4(z)(3J7(4 + u2) + J4(6− (ux)2 + 9(uy)2))

+5γθ(g5(z)(3J6(4 + 3(ux)2 + 3(uy)2) + J3(6 + (ux)2 + 15(uy)2))

−g6(z)γ(−9J5(8 + (ux)4 + 12(uy)2 + (uy)4 + 2(ux)2(6 + (uy)2))

−J2((ux)4 + 2(ux)2(13 + 8(uy)2) + 3(12 + 46(uy)2 + 5(uy)4))

+J1(4(ux)4 − (ux)2(1 + 41(uy)2) + 3(−1− 5(uy)2

+6(uy)4)))θ))))px(3J9 + 3J8p+ (J4 + 3J7)(px)2 + (J3

+3J6)p(px)2 + (J2 + 3J5)(px)4 + 3(J4 + J7)(py)2 + 3(J3

+J6)p(py)2 + (J1 + 4J2 + 6J5)(px)2(py)2 + 3(J2 + J5)(py)4)

+2uy(g2(z)J9 + γθ(3g3(z)J8 + γθ(g4(z)(J4(6 + 9(ux)2 − (uy)2)

+3J7(4 + u2)) + 5γθ(g5(z)(J3(6 + 15u2) + 3J6(4 + 3(ux)2 + 3(uy)2))

−g6(z)γ(−9J5(8 + (ux)4 + 12(uy)2 + (uy)4 + 2(ux)2(6 + (uy)2))

−J2(36 + 15(ux)4 + 26(uy)2 + (uy)4 + 2(ux)2(69 + 8(uy)2))

+J1(−3 + 18(ux)4 − (uy)2 + 4(uy)4 − (ux)2(15

+41(uy)2)))θ))))py(3J9 + 3J8p+ 3(J4 + J7)(px)2 + 3(J3 + J6)p(px)2

+3(J2 + J5)(px)4 + (J4 + 3J7)(py)2 + (J3 + 3J6)p(py)2 + (J1 + 4J2

+6J5)(px)2(py)2 + (J2 + 3J5)(py)4) + uy(g2(z)J9 + g6(z)γ4J1(15γ−4

−70(−1 + u2)(uy)2 + 63(uy)4)θ4 + 2γ2θ2(g4(z)J4(3− 3(ux)2

+2(uy)2) + 5g5(z)γJ3(3− 3(ux)2 + 4(uy)2)θ + 5g6(z)γ2J2(18− 3u4

+56(uy)2 + u2(−15 + 7(uy)2))θ2) + 3γθ(g3(z)J8 + γθ(g4(z)J7(4 + u2)

+5γθ(g5(z)J6(4 + 3u2) + 3g6(z)γJ5(8 + 12u2 + u4)θ))))(15(J9

+p(J8 + p(J7 + p(J6 + J5p))))p
y + 10(J4 + p(J3 + J2p))(p

y)3 + J1(py)5))
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Ai1i2i3i40P i1i2i3i40 = 6πθ((g1(z)K12 + g2(z)γK11θ + g3(z)γ2K10(2

+u2)θ2 + 2g3(z)γ2K6(1 + 2(ux)2 − (uy)2)θ2 + 3g4(z)γ3K9(2 + 3u2)θ3

+6g4(z)γ3K5(1 + 4(ux)2 − (uy)2)θ3 + 3g5(z)γ4K8(8 + 24u2 + 3u4)θ4

+6g5(z)γ4K4(4− 3u2 − u4 + 5(6 + u2)(ux)2)θ4 + g5(z)γ4K2(3 + 3u4

+30(ux)2 + 35(ux)4 − 6u2(1 + 5(ux)2))θ4 + 15g6(z)γ5K7(8 + 40u2

+15u4)θ5 + 15g6(z)γ5K1(γ−4 − 14(−1 + u2)(ux)2 + 21(ux)4)θ5

−30g6(z)γ5K3(−4 + 3u4 − 42(ux)2 + u2(1− 21(ux)2))θ5)(3(K12

+p(K11 + p(K10 + p(K9 + p(K8 +K7p))))) + 6(K6 + p(K5 + p(K4

+K3p)))(p
x)2 + (K2 +K1p)(p

x)4) + 6γ2uxuyθ2(3g3(z)K6

+5γθ(3g4(z)K5 + γθ(g5(z)(K2(3 + 4(ux)2 − 3(uy)2) + 3K4(6 + u2))

+21g6(z)γ(K1(1 + 2(ux)2 − (uy)2) + 3K3(2 + (ux)2 + (uy)2))θ)))

·(3(K6 + p(K5 + p(K4 +K3p)))p
xpy + (K2 +K1p)(p

x)3py)

+2(g1(z)K12 + γθ(g2(z)K11 + γθ(g3(z)(K10 +K6)(2 + u2)

+3γθ(g4(z)(K5 +K9)(2 + 3(ux)2 + 3(uy)2) + γθ(g5(z)((K4 +K8)

·(8 + 24u2 + 3u4) +K2(1 + 3u2 − 4u4 + 35(ux)2(uy)2))

+5g6(z)γ((K3 +K7)(8 + 40u2 + 15u4) +K1(1 + 5u2 − 6u4

+63(ux)2(uy)2))θ)))))(K12 +K11p+K10p
2 +K9p

3 +K8p
4 +K7p

5

+p2(K6 + p(K5 + p(K4 +K3p))) + (K2 +K1p)(p
x)2(py)2)

+4γ2uxuyθ2(3g3(z)K6 + 5γθ(3g4(z)K5 − γθ(g5(z)(K2(−3 + 3(ux)2

−4(uy)2)− 3K4(6 + u2))− 21g6(z)γ(3K3(2 + u2) +K1(1− (ux)2

+2(uy)2))θ)))(3(K6 + p(K5 + p (K4 +K3p)))p
xpy + (K2

+K1p)p
x(py)3) + (g1(z)K12 + g2(z)γK11θ + g3(z)γ2K10(2 + u2)θ2

−2g3(z)γ2K6(−1 + (ux)2 − 2(uy)2)θ2 + 3g4(z)γ3K9(2 + 3u2)θ3

−6g4(z)γ3K5(−1 + (ux)2 − 4(uy)2)θ3 + 3g5(z)γ4K8(8 + 24u2

+3u4)θ4 + 6g5(z)γ4K4(4− 3u2 − u4 + 5(6 + u2)(uy)2)θ4

+g5(z)γ4K2(3 + 3u4 + 30(uy)2 + 35(uy)4 − 6u2(1 + 5(uy)2))θ4

+15g6(z)γ5K7(8 + 40u2 + 15u4)θ5 + 15g6(z)γ5K1(γ−4 − 14(−1

+u2)(uy)2 + 21(uy)4)θ5 − 30g6(z)γ5K3(−4 + 3u4 − 42(uy)2

+u2(1− 21(uy)2))θ5)(3(K12 + p(K11 + p(K10 + p(K9 + p(K8

+K7p))))) + 6(K6 + p(K5 + p(K4 +K3p)))(p
y)2 + (K2 +K1p)(p

y)4))

For a discrete version of this distribution function, it is enough to change the mo-

mentum vectors by the discrete ones given in section 4.7, pα → pαi , and do the same

for the weight function, ω(p) → wi. We used constant Fermi-Dirac integrals gν(z), since

µ = 0→ z = 1, but it could be straightforwardly generalized for other chemical potentials.
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See bellow the values we used:

Fermi-Dirac integrals for µ = 0
g1(1) 0.69314718055994530942
g2(1) 0.82246703342411321824
g3(1) 0.90154267736969571405
g4(1) 0.94703282949724591758
g5(1) 0.97211977044690930594
g6(1) 0.98555109129743510409

Below, we see the coefficients of the polynomials to expand the FD EDF using the

weight function

ω(p) =
1

ep + 1
.

For the coefficients to expand the MJ and BE distributions, see the Supplemental Material.

Coefficients for the polynomials
A1 0.479178512802528099359 B1 0.420162144163116575919
C1 -0.438644124462952026498 C2 0.520481568553045876911
D1 -0.233608989389108006407 D2 -0.097441004413398425703
D3 0.917597045579769802408 D4 -0.531475000588975578840
E1 -0.242247573630216072834 E2 0.763412795154197003902
F1 -0.103390027980148910695 F2 -0.034487194253661956789
F3 0.497679176861580881375 F4 -0.787677504156166562193
G1 -0.105145692979121715529 G2 0.532992207396207113467
G3 -0.018002883696682218035 G4 0.393750481276605935516
G5 -1.412420536798268410807 G6 0.536990688435255488358
H1 -0.038969930308370242115 H2 -0.011080524390703751100
H3 0.213394348146601288690 H4 -0.543343339611386537125
H5 -0.001561775510992725660 H6 0.074095215773109831851
H7 -0.802501886208720176718 H8 1.916560801015023818452
H9 -0.540434081091062445460 I1 -0.039217041702671633262
I2 0.275525771736009317417 I3 -0.005720483825062511177
I4 0.169014628075014851651 I5 -0.983557036184103758269
I6 1.039602964347412266588 J1 -0.012980727644304316166
J2 -0.003293121530373324716 J3 0.078969365409892639233
J4 -0.278006887135326353965 J5 -0.000392510072743078929
J6 0.023430514884233595564 J7 -0.343764130645662945885
J8 1.332632547448642249020 J9 -1.056984063842437016982
K1 -0.013008192610242189999 K2 0.117184604048740181739
K3 -0.001672210511396452841 K4 0.061915830095755708422
K5 -0.495675381489720021628 K6 0.844215355098998003249
K7 -0.000186298805996007738 K8 0.012179616524288047656
K9 -0.233313830639162821450 K10 1.431765270179315000143
K11 -2.427035803258861132046 K12 0.542840276987905644691
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