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Abstract

Disordered magnetic systems and fermions in optical
lattices: numerical approaches

Tiago Mendes Santos

Orientador: Raimundo Rocha dos Santos

Coorientadora: Thereza Cristina de Lacerda Paiva

Abstract da Tese de Doutorado apresentada ao Programa de Pós-Graduação
em Física do Instituto de Física da Universidade Federal do Rio de Janeiro -
UFRJ, como parte dos requisitos necessários à obtenção do título de Doutor
em Ciências (Física).

Heavy fermion and cuprate systems often exhibit a competition between antiferromag-

netic (AF) and singlet ground states, and in this thesis we will explore its consquences in a

number of problems. We first use Quantum Monte Carlo (QMC) simulations to examine

the effect of impurities in the vicinity of the AF-singlet quantum critical point (QCP) de-

scribed by the Heisenberg bilayer model. Our key finding is a connection, within a single

calculational framework, between AF domains induced on the singlet side of the transi-

tion, and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1.

We then examine the strong coupling Heisenberg limit on a one-third depleted square

lattice. This is the geometry occupied, after charge ordering, by the spin-1
2
Ni1+ atoms in

a single layer of the nickelate materials La4Ni3O8. Here we determine the location of the

QCP when there is an onset of long range antiferromagnetic order, and the magnitude of

the order parameter and compare with results of spin wave theory.

Another line of problems tackled in this thesis was motivated by experiments with
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ultracold atoms in optical lattices. Here we employed the twist-averged boundary con-

dition (TABC) method in the Lanczos diagonalization of relatively small systems. We

investigate the harmonic-trap control of size and shape of Mott regions in the Fermi Hub-

bard model on a square optical lattice. The calculations in the grand canonical ensemble

together with a local-density approximation (LDA) allow us to simulate the radial den-

sity distribution. We have found that as the trap closes, the atomic cloud goes from a

metallic state, to a Mott core, and to a Mott ring; the coverage of Mott atoms reaches a

maximum at the core-ring transition. A ‘phase diagram’ in terms of an effective density

and of the on-site repulsion is proposed, as a guide to maximize the Mott coverage. We

predict that the usual experimentally accessible quantities, the global compressibility and

the average double occupancy (rather, its density derivative) display detectable signatures

of the core-ring transition.

Motivated by experiments with dipolar atoms in optical lattice, we also considered

the extended Hubbard model (EHM), where on-site (U), and nearest-neighbour (V ) in-

teractions are included. Using the TABC in the Lanczos diagonalization we show that

the momentum distribution function n(k) provides a signature for the AF-charge-density

wave transition. And, finally, we investigate the single-particle spectral properties of the

metal-insulator transitions described by the EHM.

Keywords: Antiferromagnetism, Quantum phase transitions, Optical Lattice, Quan-

tum Monte Carlo
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Chapter 1

Introduction

Heavy-fermions and other strongly correlated systems often exhibit a competition be-

tween antiferromagnetic (AFM) and singlet ground states. One line of problems that we

examine here is the effects of impurities in such a kind of systems. As an experimental

example, we mention the spin-1/2 ladder system SrCu2O3 doped with Zn. In this system,

a small fraction of non-magnetic impurities induces a magnetic response in the otherwise

spin gapped system [1] 1. More recently, a similar effect has been observed in experi-

ments with Cd doped CeCoIn5, in which a small percentage of Cd impurities induces an

antiferromagnetic (AFM) state in the otherwise superconducting (nonmagnetic) system.

However, as indicated by measurements of the NMR relaxation rate, 1/T1, the resulting

phase is quite heterogeneous. In addition, the pristine CeCoIn5 is considered a critical

system, in the sense that it is in the vicinity of a quantum critical point (QCP) to an AFM

state. Thus the plausible scenario is that in the Cd-doped CeCoIn5, AFM emerges locally

in the vicinity of the Cd impurities; and as the size of the regions of local AFM order

grows and reaches the scale of the distance between impurities, the system can undergo

long-range order [2].

Using quantum Monte Carlo (QMC) simulations, we examine the effects of impurities

in the vicinity of such AFM-singlet QCP, through an appropriately defined impurity

1In bibliography, the numbers at the end of each reference indicate the pages in which they are cited.
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susceptibility [3]. This is done in Chapter 4, where we consider the effects of impurities

in the Heisenberg bilayer model; in this model the interlayer coupling between the layers

induces an AFM-singlet QCP. Furthermore, the effects of non-magnetic impurities are

described by removing spins in one of the layers of the system. We found that the

impurity susceptibility captures both the inhibition of AFM order deep in the ordered

phase and its sharp enhancement close to the QCP. We also obtain the spin relaxation

rate, 1/T1, in both the clean and diluted system.

We also consider the Heisenberg model in a one-third-depleted lattice [4]. This is the

geometry occupied, after charge ordering, by the spin-1/2 Ni1+ atoms in a single layer of

the nickelate material La3Ni2O6. In Chapter 5, we use QMC simulations to determine the

location of the QCP where there is an onset of antiferromagnetic order, and the magnitude

of the order parameter, and then compare with results of linear spin wave theory.

In both Chapters 4 and 5 we employ the quantum Monte Carlo (QMC) Stochastic

Series Expansion (SSE). The SSE method has become the standard QMCmethod to study

localized spin models in problems that are free from the sign problem; more about this

issue will be discussed on Chapter 3. One reason for this success is that it is possible to

achieve relatively very large systems with SSE; here we consider Heisenberg-like systems

up to Ns ≈ 104 spins. Systems sizes with Ns ≈ 104 spins are particularly important in

the study of disordered systems, for which a careful study of finite-size effects has to be

performed. In Chapter 3 we review the SSE method for the isotropic Heisenberg model.

The SSE code used was developed in the course of this thesis.

Another line of problems tackled in this thesis was motivated by experiments with

ultracold atoms in optical lattices (OL). Optical lattice experiments have been used as

a platform to emulate the fermionic Hubbard model (HM). In these cases, itinerant spin

models are considered.

The fermionic HM can be stated as follows: fermionic particles can hop from site



3

to site of a lattice with kinetic energy, t, and two particles on the same site have an

interaction energy, U , which can be positive or negative to represent repulsive or attractive

interactions. Furthermore, particles on different sites do not interact. The repulsive

HM on a square lattice is thought to contain the basic mechanism to explain high-Tc

superconductivity. In this case, at half-filling, i.e., one particle per site, QMC simulations

obtain that the ground state corresponds to a Mott insulator with AFM long-range order

[5], [6]. When the temperature is higher than the interaction U , particles move freely

around the lattice, despite the energy penalty for doubly occupied sites. At temperatures

below U , they then freeze into the Mott insulating state, with each particle stuck to every

site. At even lower temperatures, on the order of 4t2/U , the particles enter into the AFM

state. The mechanism responsible for the magnetic ordering is known as virtual exchange.

Further details of the HM are presented in Appendix A.

Doping the half-filled HM with holes or electrons induces a metal-insulator transition

known as Mott transition. Numerical works have shown that some spectral properties

observed in the cuprates, such as spectral weight redistribution upon doping, Fermi arcs,

and hole pockets, can be explained by this model. Nevertheless in the doping regime in

which superconductivity is observerd in the cuprates, there is still no conclusive answer

about the nature of the ground state described by the HM. One reason for this is that

QMC methods fail in this regime, due to the so called sign problem [7]. In view of this

one, a motivation of OL is to answer open questions about the doped repulsive HM, such

as the presence or not of a superconducting ground state.

In these experiments, an artificial OL is created by the interference pattern of counter-

propagating lasers. Fermionic atoms (e.g.,6Li and 40K), prepared in two different hyperfine

states, are then loaded in this artificial lattice. The basic physical ingredients of this sys-

tem are the atomic tunnelling between next nearest-neighbour sites, characterized by the

tunneling rate, t, and the contact (on-site) interaction, U , which occurs when two atoms

meet at the same site. As an effect, cold-atoms experiments are designed to mimic the
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fermionic HM, in a setup that both t and U are tunable parameters. One achievement in

this direction was the realization of the Mott insulating state [8], [9], and, more recently,

a state with AFM order [10]. Another advancing direction of ultracold systems deals

with dipolar atoms (e.g., 161Dy and 167Er) and molecules in OL [11]. These experiments

open up the possibilities towards the investigation of Hubbard-like models with additional

long-ranged and anisotropic interactions [12].

One important experimental aspect of OL experiments is that in addition to the lattice

potential, the atoms are also confined by a trapping potential. From the theoretical

side, different techniques have been used to address this issue in the HM [13], [14], [15].

Dynamical mean field theory (DMFT) shows that the presence of a harmonic trap gives

rise to inhomogeneous density profiles on a three dimensinal lattice, for instance, a Mott

region in the center (Mott core) can coexist with a metallic region in the wings of the trap

[15]. In this direction, QMC also shows that even when the average entropy per particle

is larger than that required for AFM in the homogeneous system, the trap enables the

formation of an AFM Mott phase in the center of the trap [13].

In Chapter 6, we consider a system of fermionic atoms confined in a two-dimendional

OL and a harmonic trap [16]. The aim of this work is to characterize the size and

form of the Mott region in a square OL as functions of the trap opening and of the on-

site interaction. The choice of a square lattice is motivated both by the possibility of

singling out some special features brought about by the van Hove singularity, and by the

use of an unbiased calculational method (see below). We also connect our results with

experimentally acessible global quantities, such as compressibility and average double

occupancy.

We also consider extended Hubbard models (EHM‘s), in which not just the on-site, but

next nearest-neighbour interactions are taken into account. The inclusion of a nearest-

neighbour interaction, V , can give rise, for instance, to a charge density wave (CDW)

ground state. Thus, depending on the relative magnitude of U and V , the ground state
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at half-filling can display two insulating phases: (i) a spin density wave (SDW), and (ii)

CDW. In Chapter 7, we use the Lanczos method to obtain the single-particle spectral

function, A(k, ω), of the one-dimensional EHM; this quantity is probed in angle resolved

photoemission spectroscopy (ARPES). At half-filling, we investigate the spin-charge sepa-

ration in both the SDW and CDW phases. In addition, we study the two metal-insulator

transitions induced upon doping from half-filling: (i) the Mott transition, and (ii) the

CDW-Metal transition. By calculating the density of states (DOS), we make quantitative

predictions about the spectral weight transfer to the Fermi level upon doping in both

transitions.

Two-dimensional extended Hubbard models are then considered in Chapter 8. In this

case, the inclusion of nearest-neighbour interaction can give rise to a checkerboard CDW

phase at half-filling. We also consider a case of current interest in the context of OL‘s,

namely that of a ultracold dipolar atoms. The dipolar EHM incorporates both the long-

range and anisotropic characters of the dipole-dipole interactions. In order to explore the

ground state phase diagram of the dEHM, we use the Lanczos method to obtain the spin

and charge correlation functions. Furthemore, we examine the momentum occupation

function, nσ(k), across the phase transitions described by the dEHM. We show that the

anisotropic character of the dipolar interaction can give rise to different kinds of CDW

phases. Furthemore, by changing the dipole direction different AFM-CDW transitions

can be induced.

The Lanczos diagonalization (LD) method is employed in the calculations of the

ground state and spectral properties discussed in Chapters 6, 7 and 8. In addition to

the LD method we consider the method of twist-averaged boundary conditions (TABC).

Chapter 2 is devoted to discuss the TABC + LD method; also some comparison results

of the LD + TABC results with calculations for larger systems using other methods is

shown. The code used to obtain these results was developed in the course of this thesis.
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Note to the reader.

I write this thesis in such a way that each Chapter with results could be read inde-

pendently of the other. For the published works, we summarize the results in the body of

the Chapter, and present the paper in the Appendix. Appendices D, E and F present the

results of Chapter 4, 5, 6; respectively. Chapters 7 an 8 may be regarded as first drafts

of future submissions.
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Chapter 2

Twist-averaged boundary conditions in
Lanczos diagonalization

The Lanczos diagonalization (LD) method is a standard technique for studying inter-

acting localized and itinerant spin models [17], [18], [19]. This method can be used to

obtain various ground state expectation values and dynamical spectral functions [20],[21].

In this thesis, the LD technique was used to obtain the ground state and the spectral den-

sity function, A(k, ω), for both 1D chains and the 2D clusters of Fig. (2.1). This chapter

is devoted to discussing the LD method. Further, we discuss the method of twist-averaged

boundary conditions (TABC), used to minimize some finite-size effects (FSE) that would

otherwise appear in the LD for the relatively small clusters of Fig. 2.1; and finally we

show some tests of the LD + TABC method applied to the 1D and 2D Hubbard Model

(HM).

Ns = 8 Ns = 10 Ns = 16 Ns = 18

Figure 2.1: Two dimensional clusters considered in the thesis.
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2.1 Ground state and spectral dynamical quantities

In the full Exact Diagonalization (ED) of the HM Hamiltonian, the eingenvalues and

eingenvectors are obtained. To this end, a natural choice of basis is the occupation number

representation, in which the fermion state on each site can be one of the following: |0〉,

| ↑〉, | ↓〉, or | ↑↓〉. Numerically, these site states can be represented by 2 bits, and the

action of the terms in the Hamiltonian can be suitably implemented by bit manipulations

[17]. Thus, one is able to construct the full Hamiltonian matrix, and, a numerical routine

can be used to obtain the eigenvalues and eigenvectors. This strategy is hindered by the

exponential growth of the Hilbert space. For the HM the dimension of the Hilbert space

is NH = 4Ns , where Ns is the number of sites; using this strategy no more than Ns = 8

sites can be considered.

However, the effective size of the Hilbert space can be significantly reduced by the use

of symmetries. In the canonical ensemble (CE) formulation, two symmetries that can be

easily implemented are the conservation of particle number, Ne, and the conservation of

the z component of the total spin Sz. Using these symmetries, we produce Hamiltonian

blocks of size

NB =
Ns!

Nσ!(Ns −Nσ)!
, (2.1)

where Nσ is the number of particles with spin σ. Another symmetry used here is the

translation symmetry (TS), which typically reduces the size NB by a factor of Ns [17].

Using these symmetries, we study systems up to Ns = 18 sites at half-filling with the LD

method in the CE. In the grand canonical ensemble, we consider systems up to Ns = 10

sites.

The basic strategy of the LD method is to construct a subspace of the full Hamiltonian

from which the lowest energy states can be obtained. As will be shown below, in this

basis the Hamiltonian has a tridiagonal representation. The procedure is based on the

fact that acting the Hamiltonian many times on an arbitrary state vector |Ψ〉 will project
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out the eigenvector with the lowest energy (ground state), that is,

Hn|Ψ〉 =
∑
i

ciE
n
i |ψi〉 = c0E

n
0 |ψ0〉

(
1 +

∑
i 6=0

(
ci
c0

)(
Ei
E0

)n
|ψi〉

)
, (2.2)

where |ψi〉 and Ei are the respective eigenvectors and eigenvalues of H, i.e., H|ψi〉 =

Ei|ψi〉. Assuming |E0| > |Ei| for any i 6= 0, and n→∞, we have Hn|Ψ〉 ≈ c0E
n
0 |ψ0〉 [22].

The subspace of the Hilbert space spanned by the set of states Hm|Ψ〉, with m =

0, 1, 2, ..., n, is known as the Krylov space. In the Lanczos procedure an orthogonal basis,

|fi〉, i = 0, 1, ..., Nsteps, is obtained using linear combinations of the Krylov states. In

such a basis the Hamiltonian has a tridiagonal form. Here we will give a brief description

of the basic steps to obtain the ground state and some low energy excited states of a

Hubbard-like Hamiltonian. A more complete discussion of the method can be found in

Refs. [17], [18], [19], [22].

The Lanczos procedure starts with an arbitrary state vector |f0〉 which has some

overlap with the ground state, i.e, 〈φ0|f0〉 6= 0. Once |f0〉 is selected, we define a new

vector by applying the Hamiltonian H to |f0〉, and then subtracting the projection over

|f0〉

|f1〉 = H|f0〉 −
〈f0|H|f0〉
〈f0|f0〉

|f0〉,

which satisfies 〈f1|f0〉 = 0. The next vector, |f2〉, is constructed in such way that it is

orthogonal to the previous two:

|f2〉 = H|f1〉 −
〈f1|H|f1〉
〈f1|f1〉

|f1〉 −
〈f0|H|f1〉
〈f0|f0〉

|f0〉. (2.3)

It can be easily checked that 〈f2|f0〉 = 0 and 〈f2|f1〉 = 0. This procedure is then iterated

to generate an orthogonal basis as:

|fi+1〉 = H|fi〉 − ai|fi〉 − b2
i |fi−1〉, (2.4)
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where, i = 0, 1, 2, ..., and the coefficients are given by

ai =
〈fi|H|fi〉
〈fi|fi〉

, b2
i =

〈fi|fi〉
〈fi−1|fi−1〉

, (2.5)

with b0 = 0 , |f−1〉 = 0. On this basis, the Hamiltonian H has a tridiagonal form.

We use a modified Lanczos method to calculate the ground state |ψ0〉 [19], in which

a 2 × 2 matrix in the Lanczos basis (|f0〉 and |f1〉) is constructed and diagonalized at

each Lanczos iteration. The eigenvector of the 2 × 2 matrix with lowest energy is used

as the initial state, |f0〉, in the next Lanczos iteration. The ground state can be exactly

obtained for a sufficiently large number of iterations, i.e., Nsteps → NH . In practice,

for the Hubbard-like Hamiltonians considered here, the ground state can be accurately

obtained for Nsteps of the order of a few tens to hundreds. The choice of Nsteps is based

on the convergence of the energy of the lowest eigenstate of H. For each Lanczos step,

the lowest energy is calculated and compared with the energy of the previous one, i.e,

δ = |ε0(i)−ε0(i−1)|
ε0(i)

, where ε0(i) is the lowest energy at Lanczos step i. Here we interrupt the

Lanczos procedure whenever δ < 10−10.

The Lanczos method also allows for the calculation of dynamical properties of the

system [18], [21]. The spectral function is defined as

O(ω) =

NH∑
i=1

|〈ψi|O|ψ0〉|2δ[ω − (E0 − Ei)], (2.6)

where O represents some pertubation on the ground state, and |ψi〉 are the eigenvectors

of H with eigenvalues En. For example, for O = ck, O(ω) is the spectral density func-

tion A(k, ω). This quantity can be directly measured in angle-resolved photonemission

(ARPES) experiments. Here we set ~ = 1.

In order to evaluate Eq. (2.6) numerically we use the Lanczos method to write H in

a tridiagonal form. Instead of starting the Lanczos process with a random vector, we

choose the following initial state

|f0〉 =
O|ψ0〉

〈ψ0|O†O|ψ0〉
.
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The Lanczos procedure described above is then used to obtain the eigenstates of H. In

terms of the Lanczos basis, {|fi〉}, the eigenstates of H are written as

|ψn〉 =
∑
m

cnm|fm〉, (2.7)

where the column vector containing the entries {cnm}, with m = 0, 1, 2, ..., Nsteps, is the

eigenvector associated whith the eigenvalue En, and Nsteps is the number of iterations

considered in the construction of the Lanczos basis. Substituting Eq. (2.7) in Eq. (2.6),

we obtain

O(ω) =
1

π

∑
n

|cn0 |2|〈ψ0|O†O|ψ0〉|2
∆

∆2 + (ω − (En − E0))2
, (2.8)

where the set of numbers {cn0} represent the first component of each eigenvector obtained

when the tridiagonal Hamiltonian matrix is diagonalized [18]. Note that the δ-functions

have been replaced by a Lorentzian,

δ(x) = lim
∆→∞

1

π

∆

∆2 + x2
.

In practice a finite value is assigned to ∆. Here we defined ∆ = 2t/Ns [23], where t is the

hopping matrix element of the HM. To test the convergence of the procedure, we compare

the spectral function with a particular ∆, and test by inspection how the results evolve

with the number of iterations, Nsteps; here we consider Nsteps = 100.

2.2 Twist-averaged boundary conditions

One is usually interested in determining the physical properties in the thermodynamic

limit, Ns →∞. However, the use of small clusters may lead to deceptive finite-size effects

(FSE). It is therefore important to mitigate these FSE. Here we list three FSE that arise

when dealing with an Ns sites cluster with periodic boundary condition (PBC). (i) Only

commensurate densities can be accessed, i.e., n = Ne/Ns; e.g., for the Ns = 8 cluster,

n = 0, 0.125, 0.25, ..., 2. (ii) Only a relatively small number of k-points can be accessed
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in the first Brillouin zone (1 BZ). (iii) The degeneracies that appear in the single-particle

spectrum of the non-interacting (NI) system (U = 0). For example, a NI system with

Ns = 4 at half-filling, Ne = 4, has a degenerate ground-state. In this case, the single-

particle states at the Fermi energy are not fully occupied; see the red squares in Fig.

2.2 (a). As a consequence of this open shell effect, the ground state of an interacting

system (U 6= 0) can have a spurious non-zero value for the total spin S [24]. A possible

way to circumvent this is to consider an antiperiodic boundary condition (APBC). It is

important to stress that all aforementioned FSE already appear in the NI system. In order

to minimize the FSE, here we adopt the method of twist-averaged boundary conditions

(TABC) [25], [26], [27], [28]. As shown below, the grand canonical ensemble (GCE)

formulation of the TABC method provides the exact (Ns →∞) single-particle properties

of a NI system. And, most importantly, it improves the FSE related to points (i), (ii),

and (iii) for the interacting system.

(c)

(a)

(b)

 Ns = 4

te-iθx

te-iθy

te-iθ

ε(
k
)

−2

−1

0

1

2

k
−2 0 2

θ = 0 ε(k) = -2cos(k)
θ = π/4 μ = 0
θ = π/3 μ = -1t
θ = π/2
θ = π

L = 4

Figure 2.2: (a) The dispersion relation for the 1D HM, ε = −2t cos(k), is shown as a
continuous line, while the points show the results for different TBC for a system with
Ns = 4. The horizontal lines highlight the chemical potentials µ = 0 and µ = −1t; see
text. TBC are introduced through phases θ [for the chain, panel (b)], and θx and θy [for
the square lattice, panel (c)] in the hopping term, see text.

The typical interacting system we consider is the Hubbard model, whose Hamiltonian
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can be written as

H = −
∑
〈i,j〉,σ

(
ti,jc

†
iσcjσ + t∗i,jc

†
jσciσ

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑
i

(ni↑ + ni↓).

Whenever a fermion hops between two adjacent copies of the cluster, the hopping term

picks up a phase, ti,j = teθα , where α = x or y are the BC direction; otherwise, ti,j = t.

Periodic boundary conditions correspond to θα = 0, while antiperiodic corresponds to

θα = π, and the general conditions with θα 6= 0 and π, correspond to the twisted boundary

condition (TBC); see Fig. 2.2 (b) and (c).

An equivalent way to implement a general TBC is to consider that the phase θα is

uniformly distributed across the system, i.e., ti,j = teθα/Lα [26]. In this way, it is easy to

show that a general TBC does not destroy the translational symmetry of the Hamiltonian.

However, the inversion symmetry is broken when a general TBC is considered [27], [28].

For a one dimensional system, the quantization of the momentum k-points can be

obtained assuming the boundary condition

c†Ns+1,σ = e−iθc†1,σ, cNs+1,σ = eiθc1,σ. (2.9)

Using the momentum representation for the creation and annihilation operators

cj,σ =
1√
Ns

∑
k

eikjck,σ, c†j,σ =
1√
Ns

∑
k

e−ikjc†k,σ,

in the relations (2.9), we obtain the k points in terms of the TBC phase, θ,

k =
2πn+ θ

L
, (2.10)

where n = 0, 1, 2..., Ns − 1. For the square (Ns = 16) cluster of Fig. 2.1, each dimension

has an independent momentum quatization, and

kα =
2πnα + θα

L
.

The definition of the k-points in terms of the TBC phases for the two-dimensional clusters

with Ns = 8 and Ns = 10 is worked out in the Appendix B. We assume that each
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component of the TBC is restricted to be within the range:

0 ≤ θα ≤ 2π. (2.11)

With this choice of range, each momentum state k occurs precisely once in the 1 BZ, and

the exact Fermi surface of a NI system can be recovered [27].

By considering different sets of TBC ~θ = (θx, θy), it is possible to access different

k-points in the 1 BZ, mimicking the dense 1 BZ in the thermodynamic limit (Ns →∞).

Thus, the quantities of interest can be obtained as averages over different realizations of

TBC ~θi = (θix, θ
i
y). The expectation value of an observable Â within the TABC method

is therefore given by

〈A〉 =
1

Nd
r

∑
i

〈
A(~θi)

〉
, (2.12)

where Nd
r is the number of TBC considered in the average, and d is the lattice dimension,

d = 1 or 2. The set of TBC {~θi} is chosen to be within the range of Eq. (2.11).

First we discuss the application of the TABC to a NI system. Figure 2.2 shows the

exact dispersion relation, ε(k) = −2t cos(k). The calculated single-particle energies of a

system with Ns = 4 and different TBC θ are presented in different colours. One important

aspect of the GCE formulation of the TABC is that it is possible to obtain densities which

are not commensurate with the system size, i.e., n = Ne/Ns For example, for µ = −1t,

the TABC gives for the particle density

n =
1

Ns

∑
i

〈
c†i↑ci↑ + c†i↓ci↓

〉
,

the nominal value n = 12/5; sectors with Ne = 2 and Ne = 4 are accessed. In the GCE

formulation, the TABC generates a fluctuation in the number of particles, Ne. Thus

the particle density n can be tuned, by choosing an appropriate µ. As shown below,

this is also true for an interacting system. Following Ref. [27], we call this procedure

the twist-averaged grand canonical ensemble (TA-GCE). Furthermore, the inclusion of

different TBC eliminates the open shell effects when filling up single-particle states. For
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the Ns = 4 chain of Fig. 2.2 (a), the choice of a TBC with θ 6= 0 eliminates the open shell

effects at half-filling, since states with k and −k are no longer degenerate.

The TA-GCE technique gives the exact results (Ns →∞) for single-particle properties

of a NI system. This is related to the fact that the eigenstates of a NI system are product of

Bloch states |k, σ〉, i.e., |ψ〉 =
∏

i |ki, σi〉. As a consequence, the probability of occupation

of a state with momentum k is given by the Fermi distribution n(k) =
[
eβ(ε(k)−µ) + 1

]−1,

and the particle density by

n(µ) =
∑
k

1

exp [β(ε(k)− µ)] + 1
, (2.13)

where for a given TBC θi, a finite set of ε(k) is considered in the sum. If we consider

the TABC, Eq. (2.12), for Nr → ∞ the set of single particle energies, ε(k), expected in

the thermodynamic limit, is recovered, and the expected thermodynamic density, n(µ) is

obtained.

The same argument can be applied to other single-particle quantities. Furthermore, at

zero temperature the momentum occupation, nσ(k) =
〈
c†kσckσ

〉
, within the Fermi surface

(FS) defined by µ, can be exactly obtained; thus the FS for a NI system can be exactly

recovered with the TA-GCE. Based on this argument, only single-particle properties are

guaranteed to be exact; other properties, such as correlation functions, may still display

FSE, though much less serious than with PBC or APBC.

In the canonical ensemble (CE) formulation of the TABC a fixed particle number is

considered, and the TABC generates fluctuations in the chemical potential, µ. In this

case, the exact FS cannot be obtained even for a NI system in some cases. For the 2D

square lattice considered here just at half-filling (n = 1), it is possible to recover the

exact FS with the CE TABC. This feature of the TABC method will be used here in the

study of the two dimensional extended Hubbard model at half-filling. For other fillings,

one must use the GCE formulation in order to obtain the exact (Ns → ∞) momentum

occupation n(k) for a NI system. A discussion about this issue can be found in Ref.[25].
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The arguments used in the previous paragraphs do not apply to an interacting system.

In this case, the eigenstates of the Hamiltonian cannot be expressed as a product of

single-particle Bloch states, so that related quantities can no longer be written as in

Eq. (2.13). However, it can be shown that the TABC substantially reduces the FSE

occurring in the LD of small clusters: this is done by comparing the LD + TABC results

with calculations for larger systems using other methods. The next section is devoted to

show some benchmarking resuts for the interacting system.

2.3 Tests of the LD + TABC method

The TABC + LDmethod was previously used to obtain some properties of the HM [energy,

specific heat, momentum occupation nσ(k), and particle density n(µ)] in Refs. [25], [26],

[29], [30]. As in this thesis we extend the application of this method to the calculation

of other quantities, it is instructive to present some benchmarking for the TABC + LD

method results. Results from Determinantal Quantum Monte Carlo (DQMC) for the

two-dimensional HM, and the Density Matrix Renormalization Group (DMRG) for the

1D HM [23] will be used for comparison. In this section we present results for the particle

density n(µ) for the 2D HM, the momentum occupation function nσ(k), the spectral

density function A(k, ω) and the density of states, N(ω). These results will be explored

in Chapters 6, 7 and 8.

Local density as function of µ: n(µ)

The qualitative shape of the function n(µ) can be drawn with the aid of the features of

the 2D HM. For U > 0 the half-filled HM is a Mott insulator. In this case, the system has

a finite charge gap, ∆c 6= 0, and is incompressible, i.e., dn(µ)/dµ = 0. As a consequence,

the curve n(µ) displays a Mott plateau around µ = 0. For µ > ∆c, i.e. n(µ) > 1, the

system is metallic and compressible, i.e., dn(µ)/dµ > 0.

Figure 2.3 (a) shows n(µ), for U = 3t and µ > 0; particle-hole symmetry can be
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Figure 2.3: Density as a function of the chemical potential µ for the 2D Hubbard model.
(a) U = 3t. Each curve corresponds to a different method. The curve with black squares
corresponds to the Ns = 8 cluster with PBC. The red circles to DQMC results for a
cluster with Ns = 16 × 16 and PBC; the temperature used in the DQMC simulation is
low enough to obtain the ground state properties[7]. The green triangles correspond to
an average over results of the Ns = 8 and Ns = 10 cluster using the TABC method. For
each cluster, Nr = 50− 100 realizations of TBC were used. (b) U = 16t.

used to obtain the relation, n(µ) + n(−µ) = 2; see Appendix A. The µ dependence

of n for the Ns = 8 cluster with PBC (black squares) shows some spurious plateaux

at the commensurate densities, n = Ne/Ns. Determinantal QMC results for a larger

system (16× 16) are also shown in Fig. 2.3 (a), the large error bars around µ = 0 being a

consequence of the so called sign-problem [7]. A comparison with DQMC results indicates

that the plateaux for µ 6= 0 are in fact FSE. With the TABC method (green triangles),

n(µ) is free from the spurious plateaux. Furthermore, one observes a good agreement in

the region of µ in which the DQMC results are not affected by the sign problem, and

the Mott plateau can be clearly seen. Figure 2.3 (b) shows the same graph for a larger

value U = 16t. The FSE are less drastic at stronger couplings: the plateaux are narrower

for larger U , and as it happens for the U = 3t case, the spurious plateux are removed
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when TABC is considered, and incommensurate densities can be obtained. The DQMC

calculation of n(µ) for larger values of U is hindered by a worsening of the sign-problem.

In this sense, the Lanczos + TABC can be seen as a complementary method in this region

of parameters. Other local quantities as functions of µ can be obtained using the Lanczos

+ TABC method; in Chapter 6 we will show results for the double occupancy D(µ), the

local moment m2(µ), and the nearest-neighbour spin-spin correlation functions 〈SiSj(µ)〉.

Momentum occupation function: nσ(k)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0
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       - J e c k e l m a n n  ( 2 0 0 2 )

 

 

n(k
)

k

U  =  4 t  

Figure 2.4: Momentum occupation, nσ(k), for the 1D Hubbard model at half-filling,
U = 4t, Ns = 10 and Nr = 50 (red points). The black points are DMRG data for
Ns = 128 and open boundary condition, extracted from Ref. [23]

Let us also discuss some results for the momentum occupation function, nσ(k). This

quantity is of particular interest for optical lattice experiments. In Chapter 7, we will

show results for nσ(k) for the extended HM at half-filling, and, as it will be shown, nσ(k)

can be used to signal some of the quantum phase transitions occurring in this model.

In Fig. 2.4 we show nσ(k) for a one-dimensional HM with Ns = 10 for an ensemble

of Nr = 50 realizations of TBC. We also show, for comparison, results from the DMRG
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Figure 2.5: Momentum occupation nσ(k) for the 2D Hubbard model at half-filling, U = 8t,
Ns = 16 cluster and Nr = 18. Γ = (0, 0), X = (π, 0), and M = (π, π).

method for a much larger system, Ns = 120 [23]. A good agreement between the two

methods can be seen to occur. For nσ(k = 0), the relative difference is less then 0.4%.

We also show in Fig. 2.5 nσ(k) for the 2D case, with Ns = 16 and Nr = 18.

Despite the good agreement with the thermodynamic limit at half-filling, we do not

find a good agreement for n 6= 1. In this case, the ground state properties of the 1D HM

in the thermodynamic limit are expected to be those of a Tomonaga-Luttinger liquid, for

which n(k) has the characteristic form [31]

n(k) ≈ n(kF )− C|k − kF |α sign(k − kF ).

The TABC + LD method does not reproduce this result. This issue has already been

discussed in Ref. [25]. In the present work we concentrate on nσ(k) at the half-filling.

Single-particle spectral function A(k, ω) and density of states N(ω)

Here we show results for the single particle-spectral function, A(k, ω), for the one-

dimensional HM. The TABC was also employed in order to minimize FSE in the spectral
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density function, A±(k, ω). For a given TBC, ~θi, we use the Lanczos method to obtain

A±(k, ω, ~θi) =
∑
n

|〈ψn|c±k,σ|ψ0〉|2δ[ω ± (E0(~θi)− En(~θi))], (2.14)

where c+
k,σ and c−k,σ stand for c†k,σ and ck,σ, repectively, and the single-particle excitations

c†k,σ|ψ0〉 and ck,σ|ψ0〉 represent the creation of an electron and a hole with momentum k,

respectively. The function A±(k, ω) measures the spectral weight of adding an electron

or a hole with momentum k and energy ω in the ground state |ψ0〉. For a NI system the

single-particle excitations correspond to quasiparticles with well defined energies, ε(k),

where ε(k) is the dispersion relation. In this case the expected thermodynamic limit,

A±(k, ω), A±(k, ω) = δ(ω−ε(k)), can be recovered when we consider an infinite ensemble

of TBC. Figure 2.6 (a) shows A±(k, ω) for the 1D NI system.

For a Fermi liquid A±(k, ω) ≈ δ(ω−ε(k)), and the TABC also gives exact results in the

thermodynamic limit [27]. Nevertheless, the concept of a quasiparticle with well defined

energy and momentum in general does not work for an interacting system. In this case the

excitations c†k,σ|ψ0〉 and ck,σ|ψ0〉 are not eigenstates of the Hamiltonian and in principle

A±(k, ω) can no longer be written as a delta function. A 1D metalic system, for example,

is a Tomonaga-Luttinger liquid for which the low-energy excitations are characterized by

spin-charge separation.

In fact, spin-charge separation occurs in the one-dimensional HM: a single electronic

excitation (e.g., ck,σ|ψ0〉) decomposes into two independent excitations carrying either spin

(spinon) or charge (holon). The single-particle spectral function A(k, ω) is a standard

probe for this phenomenon. At half-filling, A(k, ω) has been previously obtained with

cluster pertubation theory (CPT) and dDMRG [32], [23]. In Fig. 2.6 (b) we show our

results for A−(k, ω < 0) with U = 8t obtained with the TABC + LD method. The

predominant spectral weight occurs for k/π ≤ 1/2, and within the energy range −5t ≤

ω − µ ≤ −2t. Due to the finite charge gap at half-filling, the lowest energy spectral

weight (in relation to the Fermi level), has a finite energy, ω ≈ −2t, and is carried by the
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Figure 2.6: Colour plot of the spectral density function A−(k, ω) for the 1D HM at
half-filling, Ns = 12 and Nr = 20. The Fermi level is at ω − µ = 0. In (a) U = 0;
A−(k, ω) = δ(ω + 2t cos(k)). (b) U = 8t, the arrows indicates the spinon and holon
branches, see the text. Despite the small size of the system, spin-charge separation is
visible. (c) U = 14t, the arrows at k/π = 0 indicates the spinon and holon bandwidths.
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mode k/π = 1/2. Furthermore, an important result for the 1D HM is the splitting of the

spectral weight of A−(k, ω) into two predominant branches within the range 0 ≤ k ≤ π/2

(these branches are marked by arrows in Fig. 2.6 (b)) [32], [33]. A comparison with the

exact Bethe ansatz solution of the 1D HM allows one to recognize these branches as spinon

and holon bands; see Ref. [23]. In the strong coupling limit (U →∞), the bandwidth of

the spinon and holon excitations are given by the magnetic exchange coupling Wspinon =

J ∼ 4t2/U , and the hopping energy scale, Wholon = 2t, respectively [31], [34]. Thus

the single-particle excitations of the 1D HM are charaterized by these two energy scales

Jeff = 4t2/U and 2t, which is a signature of spin-charge separation [35]. Figure 2.6 (c)

shows A−(k, ω) for U = 14t; the values obtained for the spinon and holon bandwidths are

in agreement with the Bethe Ansatz prediction.
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Figure 2.7: DOS of 1D HM at half-filling and Ns = 12. For the black curve we considered
the TABC method with Nr = 20, U = 4t. The blue curve correspond to the dDMRG
results extracted of Ref. [23] for Ns = 128.

The TABC can also be used to minimize FSE in the calculation of the density of states

(DOS). In terms of the spectral density function, A±(k, ω), the TABC expression for the
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DOS is given by

N±(ω) =
1

NrNs

∑
i

∑
k

A±(k, ω, ~θi), (2.15)

where N−(ω) and N+(ω) are the density of occupied and unoccupied states, respectively,

and Nr is the number of TBC realizations considered.

In the DOS for the half-filled HM, a charge gap is formed around ω − µ = 0 (with

µ = 0), and the density of occupied and unoccupied states splits into the so-called Lower

Hubbard Band (LHB) and Upper Hubbard Band (UHB). Figure 2.7 shows the DOS for

U = 4t and U = 8t at half-filling. A good agreement is found when we compare with the

results of dDMRG calculations for a chain with Ns = 120. For U = 8t the size of the

charge gap increases. In Chapter 7 we present the DOS for the extended HM away from

half-filling.
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Chapter 3

Quantum Monte Carlo

In this Chapter we discuss some basic aspects of the quantum Monte Carlo (QMC)

method Stochastic Series Expansion (SSE). The SSE method has become a standard

technique for simulating lattice models of quantum spins. The reason for this success is

that SSE simulations scale with high efficiency, typically linearly in the number of lattice

sites and the inverse temperature, O(Nβ) [36]. In addition, loop-type updating schemes

can be efficiently implemented [37]. Thus, SSE provides exact results for very large

systems; for the isotropic Heisenberg model, systems up to N ≈ 104 were considered here.

Systems sizes N ≈ 104 achieved in SSE simulations are particularly important in the study

of disordered systems, for which a careful study of finite-size effects has to be performed.

The SSE method will be used in Chapter 4 to study effetcts of non-magnetic impurities

close to a singlet-antiferromagnetic quantum critical point. In Chapter 5 we obtain the

phase diagram of the 1/3 depleted lattice at the half-filling, using the Heisenberg model

to represent the regime U →∞.

In this Chapter we describe the basic steps of the implemention of the SSE simulation

for the isotropic Heisenberg model [38], [22].
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3.1 Stochastic Series Expansion (SSE)

Like any QMC method, the goal of SSE is to construct an importance sampling scheme

which leads to the calculation of some observable
〈
Â
〉
. For the moment, let us consider

that
〈
Â
〉
corresponds to the following estimator,〈

Â
〉

=
1

Z
Tr
(
Âe−βĤ

)
→
∑

X A(X)W (X)∑
XW (X)

, (3.1)

where X corresponds to a SSE configuration (to be defined below) and W (X) its weight.

In general terms, the SSE scheme can be summarized in three steps. First, a representation

of the partition function based on the Taylor expansion of e−βĤ is obtained. This will lead

to the definition of a SSE configuration X and the weightW (X). Second, with the weight

W (X) at hand, the Metropolis algorithm is used to generate a succession of most likely

configurations [38]. Some basic update schemes for the isotropic Heisenberg model will be

described here. The last step is to calculate the quantities of interest, through Eq. (3.1).

For the Heisenberg model we show how to perform the calculation of spin-spin correlation

functions and of the AFM order parameter [39]. We also discuss the calculation of the

imaginary-time spin-spin correlation function [40].

The starting point of the SSE is to expand the partition function in a Tayler series

[36],

Z = Tr
(
e−βĤ

)
=
∑
n

∑
α

βn

n!
〈α|(−Ĥ)n|α〉. (3.2)

where {|α〉} is a convenient Hilbert basis, for example the Sz eigenbase;

{|α〉} = {|Sz1Sz2Sz3 ...SzNs〉. We next insert the set of complete basis states,
∑

α |α〉〈α|

between the n products of (−H).

Z =
∞∑
n

∑
{αi}

βn

n!
〈α0|(−Ĥ)|α1〉〈α1|(−Ĥ)|α2〉...〈αn−1|(−Ĥ)|αn〉, (3.3)

where the condition |αn〉 = |α0〉 is necessary to keep the trace nonzero, and
∑
{αi} is a

sum over all possible configurations of the basis states {|αi〉}. For the majority of the
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cases of interest the aforementioned trace is impossible to be performed exactly. In the

SSE method the partition function is obtained with the aid of an importance sampling of

the product of the n matrix elements. Here we will discuss the basic steps to implement

the SSE method for the isotropic Heisenberg model.

It is important to anticipate that the weight of a given SSE configuration, W (x), is

proportional to the product of the n matrix elements. In that sense each individual matrix

element 〈αi−1|(−Ĥ)|αi〉 must be positive, in oder to be interpreted as a probability. Some

of the matrix elements may be negative, depending on the precise form of H. This is

a manifestation of the so called “sign-problem”. This problem can be avoided if all the

terms of the Hamiltonian have (or can be made to have) a negative sign in front of them.

As will be shown below, the Heisenberg model on a bipartite lattice can be written in the

“sign-free“ form [36]. With this in mind, let us consider that a generic Hamiltonian can

be written in the following form,

Ĥ = −
∑
t

∑
b

Ĥt,b, (3.4)

where the index t refers to the type of operator: t = 1 is a diagonal operator, and t = 2

is a non-diagonal operator in the basis {|αi〉}; the index b refers to the lattice bonds.

Furthermore, the action of Ht,b on a basis state is proportional to another basis vector,

i.e., Ĥt,b|αi〉 = at,p|αi+1〉, and at,b > 0. Substituting in Eq. (3.3), yields

Z =
∞∑
n=0

∑
{αi}

∑
{Sn}

βn

n!

n∏
p=1

〈αp−1|Ĥtp,bp |αp〉, (3.5)

where
∑
{Sn} is a sum over all possible combinations of the product of operators for a given

Taylor exponent n, and the index p represents the position in the sequence of operators

Sn. Let us consider a simple example, H = −(ĤA + ĤB). For n = 2, the possible

combinations are (−Ĥ)n = ĤA1ĤA2 + ĤA1ĤB2 + ĤB1ĤA2 + ĤB1ĤB2 , so in this case p = 1

or 2. A given configuration Sn will be called the ”string Sn“ [36] and will be represented

as

[t1, b1], [t2, b2], ..., [tn, bn],
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In the SSE method, the partition function and the expectation values of interest are

obtained using importance sampling in a combined space of the basis states {αi} (Ising

spins for the Heisenberg model) and the strings Sn [36]. A given combination of basis

states {α} and a string of operators Sn represents a SSE configuration, i.e., ({α}, Sn).

An efficient scheme of local and loop updates of the configurations ({α}, Sn) can be

estabilished for quantum spin systems [37], [41]. An important aspect of the update

scheme is that the statistically relevant exponent of the Taylor series is centred around

〈n〉 ∝ Nsβ,

[see Eq.(3.17)], and assuming 〈E〉 ∝ Ns. We can thus define a cutoff nmax = M , above

which any configuration ({α}, Sn) gives zero contribution for the partition function. In

other words, it is possible to truncate the Taylor expansion in M . Even though this

truncation is not necessary, it facilitates the scheme of updates. Then it is possible to

work with a fixed Taylor exponent M inserting M −n ”fill-in“, or unit operators H0,0 = Î

into the operator string SM [36]. These unit operators do not contribute to the partition

function. For a given configuration with n non-unit operators, the different ways of

selecting the positions of the unit operators in the string of operators is given by the

binomial coefficient, M !/(M −n)!n!. Then it is necessary to divide the partition function

by these values. The truncated partition function is given by

Z =
∑
{αi}

∑
{SM}

βn(M − n)!

M !

M∏
p=1

〈αp−1|Ĥtp,bp|αp〉. (3.6)

Here {SM} denotes the set of all concatenations ofM operators Htp,bp and n is the number

of nonunit operators in SM . Finally, we can define the weight of a given SSE configuration

({α}, Sn) as

W ({α}, SM) =
βn(M − n)!

M !

M∏
p=1

〈αp−1|Ĥtp,bp |αp〉. (3.7)
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Thus the partition function is defined as

Z =
∑
{αi}

∑
{SM}

W (αi, SM). (3.8)

The choice of the cutoff M will be discussed below.

We now discuss the calculation of the weight W ({α}, Sn) for the isotropic spin 1/2

Heisenberg model [22], whose Hamiltonian reads,

Ĥ = −J
∑
<i,j>

Si · Sj, (3.9)

where i and j label the sites of a bipartite lattice, and 〈i, j〉 represent nearest-neighbour

sites. The basis states {|α〉} are the eigenstates of the Sz operators,

Szi |α〉 = ±1

2
|α〉, (3.10)

where i is a lattice site.

In order to calculate Eq. (3.7),W ({α}, SM), we rewrite Eq. (3.9), defining the operators

Ĥ1,b = J

(
1

4
− Szi(b)Szj(b)

)
,

Ĥ2,b =
J

2

(
S+
i(b)S

−
j(b) + S−i(b)S

+
j(b)

)
, (3.11)

where Ĥ1,b and Ĥ1,2 are diagonal and non-diagonal operators, respectively, acting on the

bond b connecting sites i(b) and j(b). The Heisenberg Hamiltonian can be cast in the

form of Eq. (3.4). A factor 1/4 was added to Ĥ1,b to simplify the calculation ofW (α, SM),

and to guarantee that the diagonal contribution of Ĥ to the weight W ({α}, SM) is always

positive. It is important to mention that the addition of a constant in the Hamiltonian

does not alter the physical properties of the system. The operator Ĥ2,b was multiplied by

−1 to guarantee that the non-diagonal contribution of Ĥ for the weight W ({α}, SM) is

always positive. This is possible due to the important sublattice rotation symmetry of the
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spin operators on a bipartite lattice. The same symmetry cannot be used in a frustrated

lattice, such as triangular and kagome lattices. In these cases, it is not possible to get rid

of the infamous sign-problem [38].

We are now in position to obtain the weight of a configuration ({α}, SM) for the

isotropic Heisenberg model. The matrix elements of a pair of spins connected by the

bond b are given by,

〈↑↑ |Ĥ1,b + Ĥ2,b| ↑↑〉 = 〈↓↓ |Ĥ1,b + Ĥ2,b| ↓↓〉 = 0

〈↑↓ |Ĥ1,b + Ĥ2,b| ↑↓〉 = 〈↓↑ |Ĥ1,b + Ĥ2,b| ↓↑〉 = 1/2

〈↑↓ |Ĥ1,b + Ĥ2,b| ↓↑〉 = 〈↓↑ |Ĥ1,b + Ĥ2,b| ↑↓〉 = 1/2. (3.12)

Then it is straightforward to show that

W ({α}, SM) =
βn(M − n)!

M !

M∏
p=1

〈αp−1|Ĥtp,bp |αp〉 =

(
β

2

)n
(M − n)!

M !
, (3.13)

where n is the number of nonunity operators in a string of operators SM .

Having presented how to obtain the the weight of a given configuration, we now turn

to the problem of how the different configurations ({α}, SM) are sampled in the SSE

scheme. For Heisenberg models, local and loop updates can be efficiently implemented.

Here we will not present an exhaustive discussion of all updating schemes for Heisenberg

models; we refer to Refs. [37], [41], instead.

One important aspect that must be considered during the sampling of the SSE con-

figurations is that the product of matrix elements,
M∏
p=1

〈αp−1|Ĥtp,bp |αp〉 = 〈α0|(Ĥtp1 ,bp1
)|α1〉〈α1|(Ĥtp2 ,bp2

)|α2〉...〈αM−1|(ĤtpM ,bpM
)|αM〉,

must be periodic, i.e., |α0〉 = |αM〉. Otherwise the weight associated with configuration

({α}, SM) is null. Examples of updating schemes that satisfy this periodic condition are

[41]:

(i) Diagonal updates: replace a unit operator by a diagonal operator acting on bond

b, and vice-versa, i.e. H0,0 ↔ H1,b.
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(ii) Off-diagonal updates (local or loop): change the operator type, diagonal ↔ off-

diagonal, for two (local) or several (loop) operators.

(iii) Flip spins on state |α〉 = |α0〉 that are not acted by the string of operators on Sn.

Here we focus on the discussion of the diagonal updates. First of all, the update must

satisfy detailed balance:

P (A→ B) = min

(
P (B → A)W (B)

P (A→ B)W (A)
, 1

)
. (3.14)

Where P (A → B) is the probability of acceptance of a new configuration A, given that

the current configuration is B, and W (A) and W (B) are the weights of configurations A

and B, respectively.

In update (i) a diagonal operator is inserted (n → n + 1) or removed (n → n − 1)

from the string of operators SM , where n is the number of non-unit operators. Using the

formula for the weight of a configuration [Eq. (3.13], and detailed balance, we can obtain

the probability of (a) switch a unit operator H0,0 by a diagonal operator H1,b acting on a

random bond b, and (b) switch a diagonal operator H1,b by a unit operator H0,0, as

(a) P (n→ n+ 1) = min

(
Nb

β

2(M − n)
, 1

)
,

(b) P (n→ n− 1) = min

(
1

Nb

2(M − n)

β
, 1

)
, (3.15)

where Nb is the number of the bonds on the lattice, and was inserted in the relations to

guarantee datailed balance, i.e.,

P (b→ 0)

P (0→ b)
= Nb.

This means that there are Nb ways of selecting a given bond with index b, but only one

way of removing an operator.
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Then one can use the diagonal update together with the Metropolis algorithm to

sample the SSE configurations. The simulation starts with a SSE configuration ({α}, SM),

for instance, one in which all the operators of SM are equal to H0,0 and a random spin

state |α〉. During the update, each operator in the string SM is visited once. Whenever

an identity operator H0,0 is found, a random bond index b is selected, and the update

H0,0 → H1,b is performed if P (n → n + 1) ≥ 1. If P (n → n + 1) < 1 a random

number r is generated, and the update is accepted if r ≥ P (n → n + 1); otherwise the

update is rejected. Similarly, whenever a diagonal operator H1,b is found, the probability

P (n→ n− 1) is used to perform the update, H1,b → H0,0. During the diagonal updating

scheme, the number of non-unit operators n in the string fluctuates. After visiting all

operators on the string SM , one MC diagonal update sweep is concluded.

The diagonal update scheme does not change the off-diagonal operators of the string

SM . Due to the periodic condition, a single off-diagonal operator H2,b cannot be switched

by unit or diagonal operator. In this case, the loop update can be used to sample the

SSE configurations. In this scheme the types of a set of operators are changed, i.e.,

{Ha1,b1Ha2,b2 ...Hal,bl → H3−a1,b1H3−a2,b2 ...H3−al,bl}. The implementation of this updating

scheme will not be discussed here; details can be found in Ref. [37]. It is important to

mention here that in the loop update the number of non-unit operators in the string SM ,

n, is not changed. Finally, in update (iii) the spins that are not acted by any operators

of SM are flipped with a probability 1/2.

We now turn to the question of determining M . As mentioned before it is possible to

define a truncation Taylor exponent M , such that for n > M all the SSE configurations

W (α, Sn) contribute with a zero weight to the partition function. The choice of M is

made during the thermalization process. It is clearly desirable to choose M as small

as possible without compromising the accuracy of the calculation. This can be done by

starting the simulation with a small M and continually monitoring the number of unit

operators H0,0 in the string of operators. If this number becomes smaller than some low



32

number, M is increased by adding H0,0 operators to the string. This process is continued

until equilibrium is reached. In practice, the simulation starts with a string with M ′ unit

operators, i.e., n = 0. After the first MC sweep, the number of non-unit operators can

vary. Then one changes the size of the stringM ′ after each MC sweep, using the following

condition: if M ′ < n + n/3, a new M ′ = n + n/3 is chosen. The thermalization process

is concluded when M ′ does not change after a certain number of MC sweeps.

The actual simulation is then carried out with the value of M thus obtained. After

the thermalization process, the quantities of interest are obtained. In the next section we

describe the calculation of expectation values.

3.2 Expectation values in SSE

Efficient estimators for many static observables within the SSE method were derived by

Sandvik et. al. [36], [39]. Here we describe the basic steps to calculate the quantities to

be used in Chapter 4 and 5.

As was done for the partition function Z, Eq. (3.6), the thermal average of an operator

Â can be written as a sum of diagonal matrix elements:

〈
Â
〉

=
1

Z

∑
α

∑
{SM}

βn
(M − n)!

M !
〈α|Â

M∏
p=1

Ĥtp,bp|α〉. (3.16)

The estimator of the total energy E can be easily obtained with the aid of the expres-

sion 〈E〉 = − (∂/∂β) lnZ. Considering Eq. (3.6) for Z, we obtain

〈E〉 = − 1

β
〈n〉 , (3.17)

where 〈n〉 is the thermal average of the Taylor exponent n. In order to obtain other

estimators (e.g., spin-spin correlation function, magnetization, etc), we rewrite Eq. (3.16)

in terms of the weight W (α, SM),

〈
Â
〉

=

∑
α

∑
{SM}A(α, SM)W (α, SM)∑
α

∑
{SM}W (α, SM)

, (3.18)
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where

A(α, SM) =


〈α|

∏M
p=1 ÂĤtp,bp |α〉

〈α|
∏M
p=1 Ĥtp,bp |α〉

, if W (α, SM) 6= 0,

0, if W (α, SM) = 0,
,

and W (α, SM) is given by Eq. (3.7).

The evaluation of Eq. (3.18) is simplified by the fact that a set of configurations

({α(i)}, SM(i)) with equal weight can be obtained using one SSE configuration ({α}, SM(i))

with W ({α}, SM(i)) 6= 0, i.e.,

W (α, SM) = W [α(i), SM(i)], (3.19)

where i = 0, 1, ...,M − 1. In order to explain how the states (α(i), SM(i)) are obtained,

we follow Ref. [36], and define the binary counterparts H ′tp,bp to the operator Htp,bp of SM :

〈α′|H ′tp,bp |α〉 =

{
1, if 〈α′|Htp,bp |α〉 6= 0,

0, if 〈α′|Htp,bp |α〉 = 0,

i.e., on acting on a basis vector, H ′tp,bp , either delivers zero or a basis vector. Let us

consider a configuration (α, SM) for which W (α, SM) 6= 0. The definition of the equal

weight states (α(i), SM(i)) is motivated by the following relation:

〈α|HtM ,bM ...Ht2,b2Ht1,b1|α〉 = 〈α|H ′†t1,b1Ht1,b1HtM ,bM ...Ht2,b2Ht1,b1H
′
t1,b1
|α〉, (3.20)

where H ′†t1,b1 is the adjoint of the operator H ′t1,b1 . Equation (3.20) can be cast in the form

〈α|HtM ,bM ...Ht2,b2Ht1,b1|α〉 = 〈α(1)|Ht1,b1HtM ,bM ...Ht2,b2|α(1)〉, (3.21)

where we defined the ith propagated state |α(i)〉 as

|α(i)〉 =
i∏

p=1

H ′tp,bp|α〉. (3.22)

On the right-hand side of Eq. (3.21), the original sequence of indices on the string SM was

cyclically permuted once, i.e.,
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([t1, b1][t2, b2][t3, b3]...[tM , bM ])→ ([t2, b2][t3, b3]...[tM , bM ][t1, b1]); this expression also holds

when SM is cyclically permuted i times, i.e.,

〈α|HtM ,bM ...Ht2,b2Ht1,b1|α〉 = 〈α(i)|Hti,biHti−1,bi−1
...Ht1,b1HtM ,bM ...Hti+1,bi+1

|α(i)〉, (3.23)

where i ≥ 2.

In the configuration (α(i), SM(i)), SM(i) represents a string obtained by cyclically

permuting i times the original string of operators SM , and |α(i)〉 is an ith propagated

state. It is important to emphasize that although the set of configurations (α(i), SM(i)),

i = 0, 1...,M − 1, gives terms of equal weight, the functions A(α(i), SM(i)) need not to be

the same for every i.

In practice, after each MC step a SSE configuration (α, SM) is chosen, and
〈
Â
〉

is

calculated using the set of equal weight configurations (α(i), SM(i)). Equation (3.18) can

be rewritten as 〈
Â
〉

=
1

M

M−1∑
i=0

A(α(i), SM(i)). (3.24)

If Â is a diagonal operator in the basis {|α〉}, we have the simple expression〈
Â
〉

=
1

M

M−1∑
i=0

A(i),

where A(i) = 〈α(i)|Â|α(i)〉. After a certain number of MC sweeps, Nsweep, the MC

averages of the quantities of interest are performed as

A =
1

Nsweep

Nsweep∑
m=1

〈
Â
〉

(m).

For the Heisenberg model we obtain the z component of the spin correlation function,

〈Szl Szm〉 =
1

M

M−1∑
i=0

Szl (i)Szm(i), (3.25)

where l and m are site labels, and Szl (i) = 〈α(i)|Ŝzl |α(i)〉 corresponds to the expectation

value on Ising-like states. Other observables for this model were obtained using the same

procedure.
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3.2.1 Imaginary time correlation function

In the previous section we described how to calculate static thermodynamic quantities,

e.g., spin-spin correlation function and the AFM order parameter. Another quantity of

interest is the spin relaxation rate, which, as will be discussed in Section 4.3, is given by

1

T1

= lim
ω→0

A2

2
Si,i(ω), (3.26)

where A is the hyperfine coupling, and Si,j(ω) is the Fourier transfomation of the dynam-

ical spin-spin correlation function,

Si,j(ω) =

∫ ∞
0

〈
Szi (t)Szj (0)

〉
,

with Szi (t) = eitĤSzi e
−itĤ . Despite the fact that dynamical quantities like 1/T1 cannot be

obtained directly with QMC methods, it is possible to calculate imaginary-time correla-

tion functions within the framework of SSE [39], [40]. The latter is related to real time

quantities by a Laplace transformation. With the imaginary-time spin-spin correlation

function being defined by

Cl.m(τ) =
〈
eτĤSzl e

−τĤSzm

〉
=

1

Z
{eτĤSzl e−τĤSzm}, (3.27)

the starting point to obtain an SSE estimator for Cl.m(τ) is to consider a Taylor expansion

of eτĤ . In Ref. [39] an expression for Cl,m(τ) in terms of the propagated states |α(l)〉 is

obtained as

〈
eτĤSzl e

−τĤSzm

〉
=

〈
L∑

∆l=0

L!

(L−∆l)!∆l!

(
τ

β

)∆l(
1− τ

β

)L−∆l

cl,m(∆l)

〉
, (3.28)

where the correlator cl,m(∆l) is defined as

cl,m(∆l) =
1

M

M−1∑
l=0

Szl (l + ∆l)Szm(l), (3.29)
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and Szm(l) = 〈α(l)|Ŝzm|α(l)〉; |α(l)〉 is the l-propagated state, see Eq. (3.22). In this thesis

we obain the correlation function Ci,j(τ) using the method of ref. [40]. The strategy is to

calculate the correlator Cl,m(∆l) ”on the fly” while constructing the loop update.

In general, it is difficult to obtain Si,i(ω) from the QMC simulation, since it re-

quires analytic continuation from Matsubara to real frequencies [42]. Here we used the

approximation described in Ref. [43], which relates 1/T1 directly with the long imaginary-

time behaviour of the spin autocorrelation function

1

T1

=
A2

π2T
〈Si(τ = β/2)Si(0)〉 . (3.30)

The regime of validity of Eq.(3.30) is discussed in Ref.[43]. In the next Chapter, the SSE

method will be used to obtain the spin relaxation rate, 1/T1, in the Heisenberg bilayer

model.
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Chapter 4

Impurities near an
antiferromagnetic-singlet quantum
critical point

The effects of impurities have been widely investigated in spin-gapped systems [1],

[44], [45], [46], [47]. As an example, we mention the Zn subtitution for Cu in the spin-

1/2 two-leg ladder system, Sr(Cu1−xZnx)2O3. In the pure case (x = 0), this material is

characterized by a nonmagnetic ground state with an energy gap in its spin excitation

spectra, i.e., a spin gap [48]. Nevertheless, when a small fraction of Zn (x = 0.01)

is introduced, the magnetic susceptibility increases at low temperatures, indicating the

existence of free localized moments in the otherwise spin-gapped system [1]; see Fig. 4.1

(a). The interpretation is that the nonmagnetic impurities break the rung singlets, leaving

free spins-1/2 behind. Furthermore, measurements of the NMR spectrum indicate the

formation of a staggered magnetization (AF puddles) in the vicinity of the Zn impurities,

see Fig. 4.1 (b) [44]. Similar studies were performed in other spin-gapped systems:

CuGeO3, BiCu2PO6, etc [45], [47]. From the theoretical side, impurity-induced effects

have been studied using quantum Monte Carlo (QMC) simulations as well [49], [50], [51].

More recently, a similar effect has been observed in heavy-fermion materials in which

Cd doping of superconducting CeCoIn5 induces long-range magnetic order [2], [53]. The
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(a) (b)

Figure 4.1: (a) Temperature dependence of the dc magnetic susceptibility of
Sr(Cu1−xZnx)2O3 [1]. (b) NMR spectra of Sr(Cu1−xZnx)2O3 for x = 0 and x = 0.25
[44]. The NMR spectrum is a mere histogram of the local fields among all nuclear sites,
thus its width reflects the electronic local magnetization [44], [52]. The broadening of
the NMR spectrum indicates the formation of a sttagered magnetization around the Zn
impurity.

underlying mechanism is believed to be a local reduction of conduction electron-local

moment (c-f) hybridization on the Cd sites, suppressing the singlet energy gain, and

inducing unscreened localized moments in their immediate vicinity [54]. Figure 4.2 shows

some examples of experimental results. The broadening of the NMR spectra linewidth

is an indicative of formation of AF puddles around the Cd impurities. Measurements of

the spin relaxation rate 1/T1 indicate that the regions far from the impurities are not

affected by them, and the resulting phase is quite heterogeneous. In addition, the pristine

CeCoIn5 is considered a quantum critical system, in the sense that it is in the vicinity of

a quantum critical point (QCP) to a AFM phase. Thus the plausible scenario is that in

the Cd-doped CeCoIn5, AFM emerges locally in the vicinity of the Cd impurities [53]; as

the length of the regions of local AFM order grows and reaches the scale of the distance

between impurities, the system can undergo long-range order, see Fig. 4.2 (c)

Motivated by these results, in this work we investigate the effects of impurities near

an antiferromagnetic-singlet quantum critical point(QCP). The results were published in

Ref. [3], which is reproduced in Appendix D. The main results are highlighted in the

body of this Chapter.
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Figure 4.2: (a) NMR spectra of CeCoIn5 and 1% Cd-doped CeCoIn5. The broadening
of spectra linewidth indicates the formation of AF puddles around the impurity. (b)
Spin relaxation rate 1/T1. (c) Schematic illustration of the dependence on pressure of
the size of the AFM regions induced around the Cd atoms that replace In in CeCoIn5.
The pressure tunes the system away from the quantum critical point. The spatial extent
of AFM regions shrinks with pressure. For a higher pressure, the magnetic correlation
length becomes shorter than inter-droplet spacing, leading to suppression of the long-
ranged antiferromagnetic order [2].

4.1 Heisenberg Bilayer

We consider the spin-1/2 Heisenberg bilayer Hamiltonian [55],

H =
∑
〈ij〉,α

Jα~S α
i · ~S α

j + g
∑
i

~S 1
i · ~S 2

i , (4.1)

where subscripts i, j denote spatial sites on a square lattice and superscripts α = 1, 2

label the two layers. With the interplane coupling g = 0, the independent planes have

antiferromagnetic long-range order (AFM) at T = 0 [56]. In this case the spin-spin

correlation length, ξ, diverges as T → 0 and the system has gapless spin excitations.
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For a large g there is a tendency for neighbouring interlayer spins to form singlets. In

this interlayer-singlet-rich phase, both the spin-spin correlation lenght, ξ, and the spin

excitation gap are finite at T = 0. The Heisenberg bilayer model describes a quantum

phase transition between an AFM and a singlet ground state.

The position of the QCP, gc, where the AFM-singlet transition takes place, was pre-

viously estabilished through finite size extrapolations of the the AF order parameter [55],

[57]. As a test of our SSE code, we first reproduce these calculations. The square of

the order parameter is obtained by summing the spin-spin correlations throughtout the

lattice, normalized to the number of spins, N . If these correlations are short ranged (i.e.,

decaying exponentially), the local contributions to the sum, when divided by N , vanish;

by contrast, if the correlations extend over the entire lattice, then the order parameter is

nonvanishing. The square of AF order parameter is defined as

〈m2〉 =

〈(
1

N

∑
i

(−1)xi+yi+α Sαi

)2〉
. (4.2)

For finite-sized systems, the correlation lenght, ξ, of spin-spin correlations is limited by

the finiteness of the lattice, so the AF structure factor, 〈m2〉/N , saturates above some

crossover inverse temperature, β∗. This saturated value is taken as an estimate for 〈m2〉

in the ground state. Figure 4.3 shows the inverse-size dependence of 〈m2〉, obtained for

β = 80 > β∗ and different values of g. For g < 2.52, the AF order parameter extrapolates

to a finite value, which indicates that the ground state has AFM order. On the other

hand, for g ≥ 2.52, 〈m2〉 extrapolates to zero, and the system is in a singlet ground state.

We thus obtain gc ≈ 2.52, in agreement with Ref. [57].

4.2 Non-magnetic impurities

Our aim here is to discuss the effects of non-magnetic impurities by removing spins in the

layer α = 2; see Fig. 4.4 (a). In what follows we summarize our findings, while a detailed

presentation of the results can be found in Appendix D.
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Figure 4.3: Finite-size scaling of the square AF order parameter for the clean Heisen-
berg bilayer model. L is the linear size of the bilayer; here we considered L =
10, 12, 14, 16, 20, 30, 40.

An important result is that this kind of impurities induces AFM order in an otherwise

singlet phase, g > gc. A plausible picture for the impurities-induced AFM is as follows

[49], [58], [50]. The removal of a single spin from the bilayer system in the singlet phase

leaves one spin-1/2 behind, which creates an effective local moment. This is corroborated

by the fact that the T → 0 asymptotic impurity susceptibility - defined as the difference

between the susceptibility with and without impurity - has a Curie form, χzimp → C/T ,

with C = S(S+1)/3. Furthermore, between two effective local moments located in sites i

and j, there exists an effective interaction mediated by spins in an interlayer-singlet state,

see Fig. 4.4 (a). The effective exchange interaction oscillates in phase with an amplitude

that decays exponentially as

Jeff ≈ (−1)−|i−j+1| exp(l/ξ), (4.3)

where l is the separation between impurities, and ξ is the correlation length for the

clean system [50], [51]. Hence the staggered nature with respect to the original lattice is

completely preserved, and the effective spins are antiferromagnetically ordered at T = 0.

In the strong coupling regime (g/J � 1), the impurities-coupling can be understood with

the aid of an l-order pertubation theory; see Fig. 4.4 (b).
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J J

g

(b)

Figure 4.4: (a) The arrangement of spin interactions in the Bilayer: there are two different
couplings, J (intraplane) and g (interplane). In addition, we consider that two spins were
removed from layer α = 2 (two impurities); the effective coupling between two unpaired
spins is given by Eq. (4.3). (b) Illustration of the second-order process responsible for
the effective coupling between the two unpaired spins of (a), in the limt g/J � 1. Here
two exchange interactions J effective flip the unpaired spins, with a triplet interplane
intermediate state. The effective Hamiltonian is Heff = JeffS

1
i · S1

j + k, where k is a
constant. The effective interaction between two unpaired spins separated by a distance l
is given by an l-order process.

In the present work we use SSE to examine the effect of a finite fraction of impurities,

p, in the vicinity of the AFM-singlet QCP, g ≈ gc. We define the impurity susceptibility,

χimp, as

χimp =
d 〈m2〉
dp

∣∣∣∣∣
p=0

, (4.4)

which measures the response of the system as a small fraction of impurities (e.g., p = 0.01)

is introduced. Figure 4.5 shows that χimp has a sharp peak at gc. The effect of impurities

is especially large close to the QCP . Farther away from the the QCP in the AF phase

g < 2, the impurity susceptibility is negative, which indicates that impurities inhibit

AFM.

4.3 Nuclear magnetic ressonance (NMR)

We have also obtained the NMR spin relaxation rate 1/T1. Here we explain the derivation

of Eq. (3) of Appendix D, which relates 1/T1 with the imaginary part of the electronic

dynamical susceptibility, χ′′(~q, ω). The contents of this section is based on Ref. [59]. For

a nuclear spin Ii at site i, the coupling to the electronic spin Si is given by the hyperfine
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Figure 4.5: The impurity susceptibility, χimp, as function of g is sharply peaked at gc
(vertical dashed line): impurities induce AF order. Away from gc, χimp < 0: impurities
reduce the AF order parameter. Inset: shows the g dependence of 〈m2〉 for p = 0.01
(square) and clean system (circles). Both the shift in gc and the large effect of impurities
at the QCP are evident. Data for 〈m2〉 have been extrapolated to L = ∞. The inverse
temperature β = 80.

Hamiltonian,

H = γHzIzi + AIzi S
z
i + A

1

2

(
I+
i S
−
i + I−i S

+
i

)
, (4.5)

where γ is the nuclear gyromagnetic ratio, and A is an isotropic hyperfine coupling,

representing a contact interaction. We also include an external magnetic field, Hz, in the

Hamiltonian.

The external magnetic field gives rise to a Zeeman splitting, δE = γHz, in terms of

which the Larmor frequency is given by ωL = δE/~. The hyperfine interaction affects the

nuclear spin in two ways: (i) the diagonal term generates a shift in the Larmor frequency,

known as Knight shift; (ii) the non-diagonal part of the hyperfine interaction corresponds

to a spin-flip exchange between the electronic spin and the nuclear spin. These processes

do not shift the resonance frequency, but do affect the dynamics of the nuclei and is

responsible for the relaxation process.
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The expression for 1/T1 can be obtained with the aid of time-dependent pertubation

theory. The first two terms of Eq. (4.5) correspond to the non-perturbed Hamiltonian,

H0, and the non-diagonal part is the pertubation, V (t). To first-order pertubation theory,

a generic state |ψ(t)〉 is given by:

|ψ(t)〉 = |ψ(0)〉 − i

~

∫ t

0

e
−iH0t

~ V (t)e
iH0t
~ |ψ(0)〉dt. (4.6)

We assume that at t = 0 the nuclear spin is in the excited state, |i〉 = | ↓〉, of H0. The

transition to the excited state can be caused by a perpendicular magnetic field, but this

process will not be described here. At t > 0, the transition probability for the ground

state, |f〉 = | ↑〉, is given by,

|〈f |i〉|2 =
A2

4~2

∫ t

0

∫ t
′

0

e−iωL(t−t′ )〈sf |S−i (t)|si〉〈si|S+
i (t

′
)|sf〉dtdt

′
.

Using time translation symmetry,

|〈f |i〉|2 =
A2

4~2
t

∫ ∞
0

e−iωLt〈sf |S−i (t)S+
i (0)|sf〉dt.

Finally, the spin relaxation rate 1/T1 = d|〈f |i〉|2
dt

, is obtained as

1

T1

=
A2

4~2

∫ ∞
0

e−iωLt
〈
S−i (t)S+

i (0)
〉
dt. (4.7)

For now on we set ~ = 1 and kB = 1.

The dynamical correlation function
〈
S−i (t)S+

i (0)
〉
is described by the Heisenberg bi-

layer Hamiltonian [Eq. (4.1)]; using the SU(2) symmetry of the Hamiltonian, we have〈
S−i (t)S+

i (0)
〉

= 2 〈Szi (t)Szi (0)〉. Equation (3) from Appendix D is then obtained with the

aid of fluctuation-dissipation theorem [60],

S(q, ωL) = 2χ
′′
(q, ωL)/(1− e−βωL),

where S(q, ω) is the Fourier transform of the dynamical correlation function,
〈
Szi (t)Szj (0)

〉
,

and χ′′(q, ω) is the imaginary part of the dynamical susceptibility [59]. Since the resonance
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frequency ωL is small compared to the electronic spin flucuations J , 1/T1 effectively mea-

sures S(q, ω → 0). The real-time autocorrelation function,

〈Szi (t)Szi (0)〉 = Tr(e−βHSzi (t)Szi (0)), was obtained using the long imaginary-time be-

haviour of the spin-spin correlation function [43]; further details about this calculation

are given in Chapter 3 and in Appendix D.

(a) (b) gc = 2.52

Figure 4.6: (a) Clean system: Spin relaxation rate as a function of T for different values
of g. At the critical value, gc ≈ 2.52, 1/T1 is nearly temperature-independent. Unless
otherwise stated, data are for lattices of linear size L = 50. (b) Blow up of (a) at g = gc
for different lattice sizes, L.

In Appendix D we show the results for 1/T1 for a system with one impurity. Here we

discuss the temperature dependence of 1/T1 for several values of the interlayer coupling g

in the clean Heisenberg bilayer, see Fig. 4.6 (a). In the AF phase (g < gc), 1/T1 increases

as the temperature is lowered, due to the increase of spin fluctuations. On the other hand,

due to the presence of the spin gap, 1/T1 goes to zero in the singlet phase (g > gc). At high

temperatures (i.e., 0.3J < T < 0.5J), 1/T1 is nearly constant in both regimes [61]. The

range of temperatures for which 1/T1 is nearly T -independent increases as g approaches

the QCP. Exactly at gc, our data are consistent with this behaviour extending to low

temperatures, down to T ∼ 10−2J . While we cannot test this at high temperatures

without going beyond the range of validity of the long imaginary-time approximation
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used to obtain 1/T1 [43], at low temperatures we are limited by finite-size effects. Indeed,

Fig. 4.6 (b) shows 1/T1 as a function of T , at g = gc, but for different lattice sizes. The

data exhibit some T dependence for T . 0.1J , but these fluctuations are reduced as

the lattice size increases. In addition, Ref. [61] establishes that in the critical regime the

relaxation rate is described by the nearly T -independent function, 1/T1 ∼ T η, whith the

exponent η = 0.0357. This power-law is plotted as a dashed line in Fig. 4.6 (b). Our

data for 1/T1 , at gc and low temperatures, are consistent with a very weak temperature

dependence.
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Chapter 5

Magnetic order-disorder transitions on
a one-third-depleted square lattice

In this work we analyse the magnetic properties of the Hubbard model in the one-

third-depleted (1/3-depleted) square lattice of Fig. 5.1. One motivation to investigate

this geometry is provided by recent experimental [62] and theoretical [63] studies of the

layered nickelates La4Ni3O8. In this material, the formal Ni valence of +1.5 is separated

into Ni1+ (spin 1/2) and Ni2+ (spin 0), so that spin-1/2 stripes are formed, as in Fig. 5.1.

Here we will investigate the magnetic properties formed by such arragement of spin-1/2.

To this end, we consider the Hubbard model on the 1/3-depleted square lattice,

H = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ t′

∑
〈〈ij〉〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(5.1)

where t and t′ model two types of bonds: ones which are the nearest-neighbours bonds of

the original, full square lattice (t), and ones which connect through the diagonal rows of

removed sites, and which were next-nearest neighbours of the original lattice (t′); see Fig.

5.1. For U → ∞, the Hubbard Hamiltonian can be mapped into the Heisenberg model

using second order pertubation theory in the hopping parameters t and t′,

H = J
[ ∑
〈ij〉

~Si · ~Sj + g
∑
〈〈ij〉〉

~Si · ~Sj
]
, (5.2)
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Figure 5.1: The one-third depleted square lattice. A regular array of black crosses is
removed, leaving the red site structure. We will assume two types of bonds exist: con-
nections between nn (black)[t or J ] and nnn (green) [t′ or J ′] sites of the original square
geometry.

with exchange constants J and gJ on the two types of bonds of Fig. 5.1, such that

t′/t =
√
gJ/J . Similarly to the square lattice, this structure remains bipartite, a fact

that has consequences to antiferromagnetic (AFM) order without frustration, and also to

the abscence of a sign problem in quantum Monte Carlo (QMC) simulations. For t = t′, or

J = gJ , the 1/3-depleted lattice is equivalent to the Honeycomb lattice. In this case, the

AFM long-ranged order emerges at half-filling for a finite value of U , Uc ≈ 3.87 [64], [65],

which is in constrast with the regular square lattice, where AFM occurs at infinitesimal

values of U at T = 0, due to the van Hove singularity and the nesting of the Fermi surface;

see Appendix A. Furthermore, in the Heisenberg limit, a finite value is obtained for the

AFM order parameter, m ≈ 0.26 [66].

Here we investigate the onset of long-ranged AFM order on the the half-filled 1/3-

depleted lattice considering t 6= t′, and J 6= gJ , in both the Hubbard and the Heisenberg

regimes, respectively. The properties of the Hubbard model were obtained using deter-

minant quantum Monte Carlo (DQMC) method; these calculations were performed in

collaboration with the first author of Ref. [4]. The Heisenberg Hamiltonian, Eq. (5.2),
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was treated within linear spin wave theory (LSWT); see Appendix C, and the stochastic

series expansion (SSE) QMC. In what follows we summarize our findings, while a detailed

presentation of the results can be found in Appendix E.

Figure 5.2 (a) shows the AF order parameter (obtained with the aid of finite size

scaling) as a function of the coupling g. The order parameter first increases with g,

reaching a maximum at the honeycomb limit g = 1, and then decreasing. Long-ranged

AFM vanishes above a critical gc; QMC gives gc = 1.75 ± 0.01, and LSWT greatly

overestimates the persistence of LRAFO at large g [4]. We estabilished a phase diagram

(a) (b)

Figure 5.2: (a) AF oder parameter obtained with SSE and LSWT. The SSE results
were obtained with the aid of finite size scaling. With LSWT(SSE), long-ranged AFM
disappears above gc = 6.20 ± 0.02(1.75 ± 0.01). (b) Phase diagram. The U → ∞
Heisenberg limit is along the top of the figure, U/(4 + U) = 1, and is extracted from the
data of (a). For U = 0, the system is a band insulator for t/t′ > 0.5, and a semi-metal
otherwise.

showing the region in the parameters space (t′/t, U) where the long-ranged AFM phase is

present, see Fig. 5.2 (b). The critical interaction Uc ≈ 3.87 for the isotropic honeycomb

lattice, t = t′ was shown to increase with anisotropy, t 6= t′.
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Chapter 6

Fermionic atoms in a two-dimensional
optical lattice

One motivation of the experiments with optical lattice is to emulate the Fermionic

Hubbard model. The realization of the Mott state in a 3D optical lattice (OL) was the

first step in this direction [8], [9].

6.1 Optical Lattice Hubbard Model

We consider the OL Hubbard model (HM):

H =−
∑
〈i,j〉,σ

tij

(
c†iσcjσ + h.c.

)
+ U

∑
i

(ni↑ − 1/2)(ni↓ − 1/2)

−
∑
i

(µ0 − Vtr2
i )(ni↑ + ni↓), (6.1)

where i runs over the Ns sites of a square lattice, the spin state is σ = ↑ or ↓, and

niσ = c†iσciσ; tij is the hopping integral between sites i and j, U is the magnitude of the

on-site repulsion, µ0 is the (bare) chemical potential. In addition, we also considered a

harmonic trap term, Vt, which measures the trap curvature, and ri measures the distance

of site i to the center of the trap. The physical meaning of each term of the Hamiltonian

is illustrated in Fig. 6.1. An important aspect is that t, U , and Vt can be tuned in

the experiments. The lattice depth, V0, is controlled by the laser intensity, and tunes
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the tunneling rate between lattice sites, t. The interaction U between two atoms on the

same site corresponds to an s-wave scattering, whose scattering lenght a can be tuned by

exploring Feshbach resonances [67]. The harmonic trap curvature Vt is produced either

by the optical lattice beams or by an additional magnetic trap [68], [9].

Vt

V0

Figure 6.1: Schematic picture for the basic physical ingredients of OL experiments. The
circles represent fermionic atoms (e.g., 40 K and 6Li). Each color is associated to a different
hyperfine state (spin). Tunneling between nearest neighbour sites is controlled by t. The
on-site interaction between atoms with different spins, U . Vt is a measure of the trap
opening. Due to the presence of the trap, each site has an on-site energy εi. The depth of
each potential well V0. In the Hubbard regime just the lowest band is accessed; transitions
to excited states are unlikely. The figure was extracted from Ref. [68].

An important consequence of the confinement is that different phases can coexixt

within the trap. For instance, a Mott region in the center (Mott core) can coexist with

a mettallic region in the wings of the trap [8]. Experimentally, the Mott phases can be

detected by global measurements, such as the global compressibility, which probes the

response of the system to a change in external confinement. Here the harmonic trap is

taken care of through the local-density approximation (LDA), and the homogeneous 2D
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HM was solved using the TABC method.

6.1.1 Local Density Approximation (LDA)

In the LDA we consider that the value of a specific quantity (e.g., local density, n(r)) in

a specific position r of the trap is given by

n(r)→ nhom[µ(r)], (6.2)

where nhom[µ] is the local density obtained by solving the 2D homogeneous Hubbard

model; see Fig. 2.3 in Section 2.3. µ(r) is given by

µ(r) = µ0 − Vtr2, (6.3)

and,

r =

√
µ0 − µ
Vt

. (6.4)

Furthermore, for a 2D trap the number of particles is given by

N =

∫ ∞
0

nhom(r)d2r. (6.5)

Considering Eq. (6.4) and by changing the variable (r → µ) in the integral, we obtain

N =
π

Vt

∫ µ0

−∞
nhom(µ)dµ. (6.6)

Within the LDA, the value of µ0 defines the number of particles within the trap. In

the LDA implementation we choose a specific value of N and trap oppening Vt and then

obtain µ0. With µ0 at hands we are able to obtain the density profile across the trap

using Eq. (6.2), for any configuration of N , Vt, and U . It is important to note that within

the LDA µ0 is a function of NVt. This fact motivates us to define the effective density,

ρ ∼ NVt (see below).
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In what follows we summarize our findings, while a detailed presentation of the results

can be found in Appendix F. Our main result is that the use of experimentally accessible

global quantities, such as compressibility and (derivative of) average double occupancy,

can be used to map out local phases and phase separation. In a two dimensional OL the

Mott phase appears with two shapes: Mott core and Mott ring. We show in Fig. 6.2 a

phase diagram highlighting the regions in parameter space in which Mott rings and Mott

core are formed. We analysed our results in terms of an effective density ρ ∼ NVt (N

Figure 6.2: Phase diagram in ρ and U/W parameter space. ρ = NVt/4t is the effective
atomic density, and W = 8t is the bandwidth. ‘Metal” designates a phase in which the
whole trap is in a metallic state. The red and blue lines are ρc(U/W ) and ρc(U/W ),
respectively, see text

is the number of atoms in the atomic cloud). One important result, is that as the trap

narrows, a Mott core forms at some value of the effective density, ρc, which, upon further

narrowing, becomes a Mott ring at ρm, see Fig. 6.2. Furthermore, the fraction of atoms in

a Mott state displays a maximum at the ring-core transition, ρm. We believe the results

presented in this work should be important for the experimental control of the Mott state

in a two-dimensional OL.

Before closing this Chapter, it is worth mentioning here two important advances in

OL experiments which occured after the conclusion of our work (2015): (i) The possibility

of detecting and controlling fermionic optical lattice systems at the level of single sites

and single particles in two-dimensional OL [69], [70]. We show in Fig. 6.3 a single-
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Figure 6.3: Site-resolved images of Mott ring and Mott core in a two-dimensional OL
[69]. Bright points correspond to the flourescence image of singly occupied sites. The
occupation of every site is determined as unity for single particle of either spin and zero
for the case of an empty sites or doubly occupied site. The images of the atoms in the
square-lattice are shown for varying interactions U/W ; where W = 8t̄ is the bandwidth.
For the weakest interactions (U/W = 1.1(1)) it is observer a purely mettalic state. For
intermediate interactions (U/W = 2.5(1) and U/W = 3.8(2)) a Mott ring structure is
observed, where mettalic, Mott insulator, and band insulator core phases coexist. Finally,
for the strongest interactions (U/W = 15.3(7)) a large Mott core is observed.

site resolution image of the formation of Mott ring and Mott cores regions as the on-site

interaction is increased. This result is in line with those obtained in our work [16]. (ii) The

second advance was the observation of antiferromagnetic correlations [71]. It is already

possible to achieve temperatures at which the AFM correlation length is larger than the

OL size [72], which can be considered a long-ranged AFM state. Current experiments

are trying to analyse the properties of the system near half-filling, aiming to answer open

questions about the doped HM, such as the presence or not of a superconducting ground

state.
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Chapter 7

Metal-insulator transitions in the
extended Hubbard model

The metal-insulator (MIT) transitions induced by doping with holes a Mott insulator

(Mott transition) has attracted a significant amount of interest in recent years. One of

the main reasons for the continuing interest is the emergence of high temperature super-

conductivity upon doping an insulating Néel state in cuprate materials [18]. The Hubbard

Model is considered to be the simplest model that accounts for the Mott transition, in

the sense that just the on-site electron-electron repulsion U is needed. In this case, the

undoped phase at half-filling is characterized by gapless spin and gapped charge excita-

tions. One important aspect of the Mott transition described by the HM is that doping

induces a redistribution of spectral weight in the density of states (DOS), and low energy

states are created at the Fermi level [73],[74],[20], [75]. An important result obtained for

the HM is that this low energy spectral weight per spin at the Fermi level, WFL, sat-

isfies the inequality WFL ≥ δh [73], where δh = 1 − Ne/Ns is the hole concentration (a

simple explanation for this result will be given below). For comparison, one should note

that within a rigid band description of a band insulator, doping simply causes a shift in

the chemical potential, with the occupation of one particle per spin channel, leading to

WFL = δh/2.

On the other hand, the inclusion of a nearest-neighbour interaction V leads to the
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Extended Hubbard Model (EHM); V is known to induce fundamental changes in the

ground state properties of the system, whose phase diagram of the one dimension has

been intensively studied both at quarter and half-filling [76], [77], [78], [79], [80]. At half-

filling, the ground state displays two insulating phases: (i) a spin density wave (SDW)

with gapless spin and gapped charge excitations, and (ii) a charge density wave (CDW)

with both spin and charge gapped excitations; see the phase diagram in Fig. 7.1 (a). A

bond-order wave (BOW) also appears in a narrow region of the phase diagram between

the SDW-CDW transition. The BOW phase is characterized by alternating strengths of

the kinetic-energy on the bonds of the chain [79], [81]; this phase will not be explored

here. By contrast, at quarter filling the ground state displays a MIT induced by U or

V [76], [80]. The insulating phase exhibits a long-range-ordered CDW, but, unlike the

half-filled case, the CDW phase has gapless spin excitations; see the phase diagram in

Fig. 7.1 (b).

Figure 7.1: Schematic phase diagram of the one-dimensional extended Hubbard model at
(a) half-filling and (b) quarter-filling. Red points mark the regions of the phase diagram
which will be explored in the present work. In panel (b), a phase displaying dominant su-
perconducting fluctuations (SUC) is shown for completeness [76] but will not be explored
here.

The 1D EHM is believed to be a minimal model for some quasi-one-dimensional Mott

insulators, such as the cuprate compounds SrCuO2 and Sr2CuO3. In this sense, the
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renewed interest in the 1D EHM was motivated by the experimental observation of the

phenomenon of spin-charge separation through angle-resolved photon emission (ARPES)

in SrCuO2. In these experiments it was found that the low energy electronic excitations

split into holon and spinon bands; the bandwidth of the former scales with the electronic

hopping energy, t, while the bandwidth of the latter scales with the magnetic exchange

coupling, J [35], [82]. From the theoretical side, the spectral properties of the 1D EHM

has been investigated at half-filling [83], where evidence of spin-charge separation was

found in the SDW phase, but not in the CDW phase [84]. As one dopes away from half-

filling, the 1D EHM undergoes two density-driven MIT‘s [75], [79]: (a) one from a Mott

SDW to a metal; and (b) one from a CDW to a metal. For the latter it was argued that,

differently from the Mott transition, the spectral weight induced upon doping may follow

WFL ≈ δh/2, and that the MIT is well described by a rigid-band picture [85]; however, no

attempt to provide a quantitative prediction for the low-energy spectral weight transfer,

WFL, has been advanced.

In order to bridge this gap, here we study the spectral properties of the 1D EHM. We

focus on two main issues: (1) At half-filling we revisit the issue of spin-charge separation,

and obtain the momentum occupation function for different values of V ; see Section

7.2. (2) Away from half-filling we characterized the MIT‘s by analysing the evolution

of the DOS with doping between quarter and half-filling; see the red points in Fig. 7.1

and Section 7.3. But first, in Section 7.1, we describe the EHM and some ground state

properties at quarter and half-filling, and we also show the quantities considered here. In

Section 7.4 we present our conclusions.
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7.1 Model and Methods

The Hamiltonian of the Extended Hubbard Model (EHM) is given by

H = −
∑
〈i,j〉,σ

ti,j

(
c†iσcjσ + h.c.

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
+
V

2

∑
〈i,j〉

(ni − 1) (nj − 1)− µ
∑
i

ni, (7.1)

where i runs over the Ns sites of the chain, the spin state is σ =↑, ↓, niσ = c†iσciσ, and

ni = ni↑ + ni↓; ti,j is the hopping integral between nearest-neighbour sites i and j, U and

V are the strengths of the on-site and nearest-neighbour interactions, respectively, and µ

is the chemical potential. Here we consider repulsive interactions, U ≥ 0 and V ≥ 0. The

EHM Hamiltonian written as in Eq. (7.1) is manifestly particle-hole symmetric. We use

the Lanczos method for chains up to Ns = 12 with twisted boundary conditions (TBC),

in the sense that whenever a fermion hops between two adjacent copies of the chain, the

hopping term picks up a phase, ti,j = eiφ; otherwise ti,j = t

Here we focus on the two insulating phases described by the 1D EHM at half-filling: (i)

a Mott insulator with a spin-density-wave (SDW), and (ii) a charge density wave (CDW).

One can qualitatively characterize these phases in the strong coupling limit, V, U � t. In

this regime, the boundary between CDW-SDW is given by U = 2V .

• For U > 2V , doubly occupied sites are avoided and the ground state is dominated

by a SDW configuration:

|ψ0〉 ≈
1√
2

(| ↑1, ↓2, ↑3, ..., ↑L−1, ↓L〉 − | ↓1, ↑2, ↓3, ..., ↓L−1, ↑L〉) . (7.2)

The average occupation of each site is equal to one. To second order perturbation

theory there is an effective AF interaction between spins given by Jeff = 4t2/(U−V ).

In 1D, due to quantum fluctuations no true long-ranged AFM phase is formed. In

this case the SDW phase is characterized by a power-law decay of the spin-spin
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correlations:

Cspin(r) =
〈
Szi S

z
i+r

〉
, (7.3)

where Szi = (ni,↑ − ni,↓) is the spin operator.

• On the other hand, for 2V > U , configurations with singly occupied sites are avoided

due to the Coulomb repulsion V , and the ground state is dominated by a CDW

configuration:

|ψ0〉 ≈
1√
2

(| ↑↓1, 02, ↑↓3, ..., ↑↓L−1, 0L〉+ |01, ↑↓2, 03, ..., 0L−1, ↑↓L〉) . (7.4)

Doubly occupied sites alternate with empty sites. In this case, a discrete Ising

symmetry is broken, and a true CDW long-range ordered is formed at T = 0 in 1D

[77]. The CDW phase is characterized by a long-ranged charge-charge correlation

function:

Ccharge(r) = 〈nini+r〉 − 〈ni〉2 . (7.5)

Away from the strong coupling regime the position of the CDW-SDW transition was

obtained for different values of U . For U = 8t, Vc = 4.14t [77], [84]. Furthermore, there

is a consensus that for U < Um ≈ 5 a BOW phase arises in a narrow region between the

CDW-SDW transitions [79], [81], [77].

At quarter filling, for U → ∞ the EHM is equivalent to a half-filled spinless fermion

model which, upon increasing V from zero, undergoes a MIT to a CDW insulator at

V = 2t [80].

• In the regime V, U � t, doubly occupied sites and configurations with parallel

spins electrons are avoided due to the Coulomb repulsion, and the ground state is

dominated by a CDW configuration:

|ψ0〉 ≈
1

2
(| ↑1, 02, ↓3, 04, ..., ↓L−1, 0L〉 − | ↓1, 02, ↑3, 04, ..., ↑L−1, 0L〉

+ |01, ↑2, 03, ↓4, ..., 0L−1, ↓L〉 − |01, ↓2, 03, ↑4, ..., 0L−1, ↑L〉). (7.6)

In this case, singly occupied sites alternate with empty sites.
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Here we investigate the spectral properties of the EHM between quarter and half-

filling. The quantity of interest here is the single particle spectral function:

A−(k, ω < 0, φi) =
∑
n

|〈ψn|ck,σ|ψ0〉|2δ[ω − (E0(φi)− En(φi))],

A+(k, ω > 0, φi) =
∑
n

|〈ψn|c†k,σ|ψ0〉|2δ[ω + (E0(φi)− En(φi))] (7.7)

where |ψ0〉 and |ψn〉 respectively denote the ground state with energy E0 and the excited

state with energy En, c†k,σ creates a particle with momentum k and spin σ, and φi is

the specified TBC. In ARPES experiments, high energy photons knock electrons out of

the material, and their energy and momentum are measured; the quantity A−(k, ω) is

proportional to the measured intensity obtained in these experiments [86]. On the other

hand, A+(k, ω) is measured in inverse photonemission experiments (IPES) [86]. The

single-particle spectral functions, A−(k, ω) and A+(k, ω), probe photonemission (PES)

and inverse photonemission (IPES) processes [18], [20].

We also obtain the momentum occupation function

nσ(k) =

∫ µ

−∞
A(k, ω, φi)dω, (7.8)

and the density of states (DOS),

N±(ω) =
1

NsNr

∑
k,i

A±(k, ω, φi). (7.9)

The DOS is calculated performing an average over Nr = 30 − 100 realizations of TBC,

φi. N−(ω) and N+(ω) represent the density of unoccupied (PES) and occupied (IPES)

states, respectively.

7.2 Half-filling

The single-particle spectral function A−(k, ω) of the the 1d EHM at half-filling has been

investigated previously using DMRG [83] and a variational cluster pertubation theory

approach [84]. Here we revisit these results using the Lanczos method with a set of
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Figure 7.2: Color plot of the single-particle spectral function A(k, ω) at half-filling for
U = 8t. We considered a chain with Ns = 12 sites and Nr = 20 realizations of TBC. The
ground state is in the SDW phase. V < Vc = 4.14t [77]. (a) HM (V = 0); the arrows
indicates the spinon and holon branches. (b) V = 2t; the green arrow at k = 0 indicates
the width of the spinon band. (c) V = 4t.

Nr = 20 realizations of TBC. We also investigate the behaviour with V of the momentum

occupation function, nσ(k), which has not been previously discussed, and present results

of the DOS.

The PES A−(k, ω) is a standard probe for spin-charge separation in low dimensional

systems [35], [82]: it corresponds to the decomposition of a single electronic excitation

(e.g., ck,σ|ψ0〉) into two independent excitations carrying either spin (spinon) or charge

(holon). The color plot of A−(k, ω) for the 1D EHM obtained with the Lanczos method

for different values of V is shown in Fig. 7.2; the Fermi level is at ω − µ = 0. Let us
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first discuss the results for the 1D HM, Fig. 7.2 (a). The predominant spectral weight

occurs for k/π ≤ 1/2, and within the energy range −5t ≤ ω − µ ≤ −2t. Due to the

finite charge gap at half-filling, the lowest energy spectral weight (in relation to the Fermi

level), has a finite energy, ω ≈ −2t, and is carried by the mode k/π = 1/2. Furthemore,

an important result of the 1D HM is the splitting of the spectral weight of A−(k, ω) into

two predominant branches, whithin the range 0 ≤ k ≤ π/2 (these branches are marked

by arrows in Fig. 7.2 (a)) [32], [33]. A comparision with the exact Bethe ansatz solution

of the 1D HM allows one to recognize these branches as spinon and holon bands; see Ref.

[23]. In Fig. 7.2 (a), the bandwidth of spinon and holon bands can be obtained at k = 0,

ωspinon − 2t and ωholon − 2t; the former scales with the effective exchange, Jeff = 4t2/U ,

while the latter scales with the hopping energy, 2t [34]. Thus the single-particle excitations

of the 1D HM are charaterized by these two energy scales Jeff = 4t2/U and 2t, which is

a signature of spin-charge separation [35]. In order to get an intuitive idea of the spin-

charge separation in the 1D HM, we illustrate in Fig. 7.3 the propagation of a single hole

in a SDW background.

An examination of Fig. 7.2 (b) indicates that for V = 2t, A−(k, ω) exhibits the

same qualitative behaviour as for the HM, namely the signature of spin-charge separation

[84]. In this case, the bandwidth of spinon excitations is expected to be of the order

of the effective exchange coupling Jeff = 4t2/(U − V ) in the strong coupling regime

(U > 2V � t). The arrow at k = 0 in Fig. 7.2 (b) indicates the bandwidth of spinon

excitations. We also analyse A−(k, ω) for V = 4t in Fig. 7.2 (c). Due to the proximity to

the CDW-SDW transition, the FSE are more dramatic in this case; as a consequence, we

observe discontinuities in A−(k, ω). Nonetheless, one can still see the reminiscent splitting

of the low energy spectral weight, which is a signature of spin-charge separation. Thus,

as in Ref. [84], we conclude that spin-charge separation is present up to the transition

point, Vc.

Now we consider a range of parameters such that the system is in the CDW phase;
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Figure 7.3: (a), (b) and (c) Schematic picture of hole propagation in the SDW background.
A hole is created in the half-filled 1D HM. In (a) the hole is surrounded by two up spins.
In (b) the hole propagates and a domain wall is formed. Now the hole is surrounded by
one up and one down spin . In (c) the original configuration, a hole surrounded by two up
spins has split into a hole surrounded by antiferromagnetically aligned spins (‘holon‘) and
a domain-wall like configuration, two adjacent up spins, which contain an excess spin 1/2
with respect to the initial antiferromagnet (‘spinon‘). (d) and (e) Hole propagation in the
CDW background. Hole propagates through second neighbour sites and carries spin and
charge degrees of freedom, see text. No spin-charge separation takes place in this case.

see Figs. 7.4. The behaviour of A−(k, ω) is qualitatively different from the one found for

the SDW phase. In this case, the charge gap also opens at k = π/2. Nevertheless, the

low energy spectral weight of A−(k, ω) is characterized by a single band, and no signature

of spin-charge separation is observed [84]. Comparing Figs. 7.4 (a), (b), and (c) we see

that the effect of increasing V is to decrease the width of the the low-energy band, and to

spread out the spectral weight for modes with k > π/2. Furthermore, the higher energy

spectral weight is suppressed with V .

In order to gain insight into the nature of the low-energy excitations in the CDW phase

we consider second order perturbation theory for a system with a single hole. Treating the

hopping term of Eq. (7.1) as a pertubation, we obtain the following effective Hamiltonian
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Figure 7.4: Same parameters of Fig. 7.2 The ground state is in the CDW phase. V >
Vc = 4.14t [77]. (a) V = 4.5t, (b) V = 5t; (c) V = 6t.
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up to second order

Heff = E
(0)
0 + teff

∑
i,σ

c†i,σci+2,σ, (7.10)

where i runs over the Ns sites of the chains, E
(0)
0 is the zeroth order energy of the system,

and teff = t2/(2V − U). This Hamiltonian describes hopping between second-neighbour

sites; thus the dispersion relation of a single hole is given by

εhole(k) = −
(

∆c

2
+ 2teff cos(2k)

)
, (7.11)

where ∆c = 4V − U is the charge gap obtained in the atomic limit (t = 0). The low

energy spectral weight of A−(k, ω) shown in Fig. 7.4 (c) (V = 6t) is well described by this

dispersion relation [85]. In Figs. 7.4 (b) and (c), both the charge gap and the bandwidth

of the low energy spectral weight of A−(k, ω) are overestimated by Eq. (7.11), which

indicates that the system deviates from the strong coupling regime as V appoaches Vc.

Nevertheless, even in these cases the low energy spectral weight of A−(k, ω) is described

by a single holon band, and no signature of spin-charge separation is observed. Figures

7.3 (d) and (e) give an intuitive picture for the PES lowest energy excitations in the CDW

phase: an electron hops between second neighbour sites through a second order process,

and, in effect, a hole moves carrying both charge and spin degrees of freedom.

Now let us discuss the momentum occupation function, nσ(k), in the 1d EHM. It is

worth pointing out that the function nσ(k) is equal to the total spectral weight of the

mode with momentum k; see Eq. (7.8). In Figs. 7.5 (a) and (b) we show nσ(k) for

U = 4t and U = 8t, respectively, and for different values of V . At k = kF = π/2, due

to the particle-hole symmetry relation nσ(k) = 1 − nσ(k + π), nσ(k) = 1/2 for all cases

considered. For k 6= kF , we note that nσ(k) is a nonmonotonic function of V . For k < π/2,

nσ(k) increases with V in the SDW phase (V < Vc), while it decreases with V in the CDW

phase (V > Vc). This result can be related to the behaviour of A−(k, ω) shown in Figs.

7.2 and 7.4. In the SDW phase (V = 0 and V = 2t), due to the spin-charge separation
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Figure 7.5: Momentum occupation function n(k) for the 1d EHM. We considered a chain
with Ns = 12 sites and Nr = 20 realizations of TBC. (a) U = 4t (b) U = 8t, and different
values of V .

the predominant spectral weight occurs for k ≤ π/2. On the other hand, in the CDW

phase (V = 5t and V = 6t) the spectral weight spreads out to modes with k > π/2.

The nonmonoticity of nσ(k) with V is well illustrated by the graph of nσ(k = 0) as a

function of V ; see Fig. 7.6. The first-neighbour spin and charge correlation functions are

Cspin and Ccharge, respectively. For U = 8t, DMRG results indicate that there is a first

order SDW-CDW transition at Vc = 4.14t [77]. The transition is signalled in Fig. 7.6 (b)

by an abrupt change in Cspin and Ccharge at V = 4.1. The peak of nσ(k) coincides with

the critical Vc. We conclude that nσ(k) can be used to pinpoint the first order SDW-CDW

quantum phase transition. For U = 4t there is consensus in the literature that there are

two continous transitions in a narrow region of the U−V phase diagram around V ≈ U/2;

SDW to BOW and BOW to CDW. For U = 4t, the system is in the BOW phase in the

range 1.877t ≤ V ≤ 2.164t [81]. Figure 7.6 (a) shows that the behaviour of nσ(k) with V

for U = 4t resembles the one found for U = 8t: nσ(k) increases up to V ≈ 2.1 and then

starts to decrease with V as the system enters the CDW phase. Our result indicates that

the peak of nσ(k = 0) is associated to the transition to the CDW phase. We have found
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(a) U = 4t (b) U = 8t and differents values of V . For U = 4t and U = 8t, Vc = 2.15t and
Vc = 4.14, respectively [77].

no signature for the SDW-BOW transition for V ∼ 1.8. It is important to mention that,

in order to investigate the BOW phase, larger systems are necessary; so DMRG studies

of nσ(k) close to Vc are necessary to settle this issue for U = 4t.

We close this section showing the graph of the DOS for the 1D EHM with U = 8t and

V = 2t, and U = 8t and V = 5t; see Fig. 7.7. In the SDW phase, the DOS splits into the

so called upper Hubbard band and lower Hubbard band. Here we use the nomenclature

lower band (LB) and upper band (UB). As in the SDW phase, for U = 8t and V = 5t, a

charge gap opens up and the DOS splits into LB and UB. In the next section we discuss

the doping effect in the DOS.

7.3 Doped system

In this section we investigate the evolution of the DOS upon doping with holes away from

half-filling. We define the fraction of hole doping as δh = 1 − Ne/Ns. Here we focus on

the two set of parameters (U = 8t, V = 2t) and (U = 8t, V = 5t), for which two kinds of

Metal-inslutator transitions (MIT) are induced: (i) the Mott transition, and (b) CDW-
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Figure 7.7: Density of occupied (black curve) and unoccupied (red curve) states for the
half-filled 1D EHM obtained by integrating the single particle spectral function A−(k, ω)
shown in Fig. 7.2 (b) and Fig. 7.4 (b), respectively; see Eq. (7.9). (a) U = 8t and V = 2t
(SDW phase); and (b) U = 8t and V = 5t (CDW phase). The CDW bandwidth is given
by W ≈ 4teff = 4t2/(2V − U) (marked by the double arrow). For comparison we also
show the DOS of the HM with U = 8t (blue curve).

Metal transtion. Furthermore, a MIT takes place as one approaches the quarter-filling by

increasing δh for U = 8t and V = 5t [80].

We can get a qualitative idea of the evolution of the DOS upon doping by analysing

the EHM in the atomic limit (t = 0) in Eq. (7.1). The arguments presented here are

inspired on Refs. [73], [85], [87]. First, we consider that the ground state is in the SDW

phase, U > 2V � t; see Fig 7.8. At half-filling there are N occuppied states in the LB,

associated to singly occupied sites, and N unoccupied states in the UB, associated to

doubly occupied sites; see Fig 7.8 (A1). These states are separated by an energy gap,

∆c = U . Let us now consider a hole-doped system, see Fig. 7.8 (B1). There are now

N − 1 occupied states in the LB, and N − 1 unoccupied states in the UB. This leaves two

states on the site with a missing electron; these two states lie at the Fermi level. Hence,

the amount of low-energy spectral weight per spin induced by doping the half-filled SDW
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Figure 7.8: Spectral weight redistribution with doping in the atomic limit of the EHM(t =
0). For t = 0 the bands are infinitely narrow; they have been broadened here strictly for
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(A1) Half-filling in the MottSDW phase, and (B1) one hole doped system. (A2) Half-
filling in the CDW phase, and (B2) one hole doped system. (A3) Quarter-filling in the
CDW-phase, and (B3) one electron doped system; see text for explanation.
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phase is given by WFL = δh. This argument shows that the effect of doping is to remove

spectral weight from both the UB and LB and to create additional states at the Fermi

level [20], [73], [75]. It is worth mentioning that this is in contrast to the rigid band

description of a band insulator, in which case doping simply causes a shift in the chemical

potential, with the occupation of one particle per spin channel, or WFL = δh/2.

Let us now consider the ground state in the CDW phase, i.e., 2V > U � t [85].

At half-filling there are N occuppied states associated with doubly occupied sites, and

N unoccupied states associated with empty sites: a charge gap ∆c = 4V − U opens up

between the UB and the LB; see Fig. 7.8 (A2). The removal of one electron from half-

filling leaves one site singly occupied. This state lies at the Fermi level. Thus, in the CDW

phase, the amount of low energy spectral weight per spin is given by WFL = δh/2, which

is in contrast with the Mott transition, for which a spectral weight WFL = δh appears at

the top of the LB. In this case, the states of the UB are not transferred to the Fermi level

as in the Mott transition; see Fig. 7.8 (B2). Finally, we show in Figs. 7.8 (A3) and (B3)

the DOS as the system approaches quarter filling. If we disregard the states separated

by the LB by 2V , the spectral weight redistribution with doping is equivalent to that for

the HM [85]. Upon adding one electron to the system, two occupied states are created at

the Fermi level; in this case, the low energy spectral weight induced by doping is given

by WFL = δh.

We now discuss the results for the DOS obtained with the Lanczos + TABC method

for t 6= 0. Figure 7.9 shows N−(ω) (black curve) and N+(ω) (red curve) versus ω − µ in

the SDW phase (U = 8t and V = 2t) and for different values of δh; the Fermi level is

at ω = 0. The evolution of the DOS with doping in the SDW phase exhibits the same

qualitative behaviour as for the HM [20], [73], [75]. At half-filling [Fig. 7.9 (a)] the Mott

gap forms at the Fermi level and the DOS splits into a LB and an UB. Comparing Figs.

7.9 (a) and (b) we see that the effects of doping are to shift the upper edge of the LB to

ω = 0, and to create low energy states above the Fermi level. Further doping increases
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Figure 7.9: N−(ω) (black curve) and N+(ω) (red curve) for U = 8t and V = 2t for
different values of δh. Ns = 8 chain in the grand canonical ensemble. The density of
holes is defined as δh = 1− 〈n〉, where 〈n〉 is the averaged particle density obtained with
Nr = 50 realizations of TBC.

the amount of spectral weight transferred from the UB to just above the Fermi level; see

Fig. 7.9 (c). It is important to note that the low energy states are created within the

undoped gap; these states are called in-gap states [20], [75].

Figure 7.10 shows the evolution of N−(ω) and N+(ω) with doping in the CDW phase

(U = 8t, V = 5t). At half-filling a charge gap opens up at the Fermi level and the DOS

splits into a LB and an UB; see Fig. 7.10 (a). Doping yields the DOS depicted in Figs.

7.10 (b) and (c). As it occurs for the Mott transition, doping induces a MIT and low

energy unoccupied states are created at the Fermi level. These states are separated by

an energy gap from the higher energy states of the UB, and further increase in doping

pushes the UB states to lower energies. Below we investigate how these UB states are

transferred to the Fermi level upon doping.

In order to quantify the amount of spectral weight per spin transferred to the Fermi
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level we define

WFL =

∫ Γ

0

dωDOS(ω), (7.12)

where Γ is a cutoff defined by the bandwidth of low energy states, while ω = 0 is the

position of the Fermi level. As it can be seen in Figs. 7.9 and 7.10, the band of low-

energy states created upon doping is separated by an energy gap from the UB; in these

cases we define by inspection Γ = 3t and Γ = 2t, respectively. The total spectral weight

WFL may be seen as the effective number of degrees of freedom in the low-energy regime,

responsible for the low-energy physics [87]. The total spectral weight of N−σ (ω) is given

by the number of particles with spin σ, WLB = (1 − δh)/2; and using the sum rule

for the DOS,
∫∞
−∞ dω[N+(ω) + N−(ω)] = 1, we define the spectral weight of the UB as

WUB = 1−WLB−WFL. At half-filling,WLB = WUB = 1/2. Upon doping,WUB represents

the spectral weight that remains in the UB.

Figure 7.11 shows WFL(δh) and WUB(δh) for different values of V in the Mott transi-
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weight of the UB, WUB (triangles), as a function of hole doping, δh, for U = 8t and
different values of V < Vc ≈ 4.1. WFL and WUB were obtained from the DOS graphs, see
text and Fig. 7.9.

tion. The behaviour of WFL(δh) and WUB(δh) is qualitatively the same as the one found

for the HM [73], [74], [75]. For δh > 0, spectral weight from both the LB and UB is

transferred to the Fermi level, i.e., WUH(δh) decreases with δh > 0, and as a consequence,

WFL(δh) > δh. Furthermore, as one increases V , WFL(δh) slightly increases, as it can

be seen in Fig. 7.11. This is consistent with the result obtained for the HM that the

lower-energy states bandwidth is given by the spin effective exchange O(J) for U = 8t

[33].

We further examine the effect of doping on each individual k mode by investigating

the single-particle spectral function for U = 8t and V = 2t. Figures 7.13 (a) and (b)

show A(k, ω) for δh = 0 and δh = 0.17, respectively. As already discussed in the previous

section, at half-filling the spectral weight is predominant for modes k < π/2, and the

stronger peak of A(k, ω) splits in spinon and holon branches, as it can be seen for modes

k/π < 0.2. Comparing Figs. 7.13 (a) and (b), we see that doping creates a band of low

energy states that extends from k ≈ 0.4π to k = π. This result is qualitatively the same
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as the one obtained for the HM in Ref [33].

On the other hand, the redistribution of spectral weight in the CDW-Metal transition

shows a qualitatively different behaviour from the one obtained for the Mott transition.

The behaviour of WFL(δh) and WUB(δh) with δh in the CDW-Metal for V = 4.5t and

V = 5t is shown in Fig. 7.12. The spectral weight of the UB is not transferred to

the Fermi level, i.e., WUB(δh) does not change with δh and is equal to WFL(δh) = 1/2.

As it can be seen in Fig. 7.10, the effect of a small doping in the DOS is to push the

higher energy states of the UB to lower energies, but, differently from the Mott transition,

these states are not directly transferred to the Fermi level for a tiny δh; here we considered

densities up to δh = 0.17. Furthermore, our results indicate thatWFL(δh) follows the same

behaviour as the one obtained in the atomic limit, WFL(δh) = δh/2. Further increase in

doping pushes the high energy states, and the UB collapses with the states at the Fermi

level. Thus, the definition of the low energy spectral weightWFL(δh) becomes meaningless
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when the gap fills up upon increasing δh. We conclude that for tiny dopings the low energy

spectral weight may follow WFL(δh) ≈ δh/2.

Next let us investigate the filling dependence of the single particle spectral function for

U = 8t and V = 5t; see Figs. 7.14 (a) and (b). Figures 7.14 (a) and (b) show A(k, ω) for

δh = 0 and δh = 0.17, respectively. Comparing Figs. 7.14 (a) and (b), we see that the low

energy spectral weight appearing just above the Fermi level is carried by k modes centred

around k = π/2, and, in contrast to the Mott transition, no low energy spectral weight

appears for modes around k = π. Furthermore, the single-particle dipersion at half-filling

remains basically unchanged. This result indicates that for small doping, δh = 0.17, the

spectral weight of the UB is not transferred to the Fermi level. Thus the low energy states

of the DOS can be described by an almost rigid band-picture.

As δh increases, a second doping-driven MIT occurs at quarter filling [80]. At this
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filling the system is also a CDW. Figure 7.15 shows the DOS for U = 8t and V = 5t

and different densities 〈n〉. Here it is worth defining the electron doping concentration as

δe = 〈n〉 − 0.5, so that δe increases from the bottom to the top of Fig. 7.15. For δe = 0, a

charge gap opens up at the Fermi level; see Fig. 7.15 (a). Increasing δe generates occupied

states below the Fermi level, and a MIT takes place. We quantified the amount of low

energy spectral weight lying below the Fermi level, WFL(δe), by calculating Eq. (7.12) in

the energy interval within the two vertical lines of Fig. 7.15. Figure 7.16 shows WFL(δe)

as a function of δe for U = 8t and V = 5t. We found that WFL(δe) > δe. It is important

to mention that at half-filling the effect of electron doping is equal to hole doping due to
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Figure 7.15: N−(ω) (black curve) and N+(ω) (red curve) for U = 8t and V = 5t for
different values of δe. Chain with Ns = 8 in the grand canonical ensemble. The density of
electrons is defined as δe = 〈n〉 − 0.5, where 〈n〉 is the averaged particle density obtained
with Nr = 50 realizations of TBC.

particle-hole symmetry, and consequently WFL(δh) = WFL(δe). Thus at quarter-filling,

despite the system being on a CDW state, the low energy SWWFL(δe) induced by electron

doping follows the same behaviour as the one found for the Mott transition.

7.4 Conclusions

We have investigated the spectral properties of the 1d EHM using the Lanczos method

with TABC. At half-filling, A(k, ω) splits into spinon and holon branches, which is a

signature of spin-charge separation of the low energy single-particle excitations [84]. On

the other hand, no signature of spin-charge separation was observed in the CDW phase.

In this case, we found that the low-energy spectral weight of A(k, ω) can be described

by Eq. (7.11), corresponding to the energy of a single hole in the strong-coupling limit.

We have also obtained the momentum distribution function nσ(k), which has not been
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Figure 7.16: Spectral weightWFL andWUB as a function of electron doping, δe, for U = 8t
and V = 5t. WFL and WUB were obtained from the DOS graphs, see text and Fig. 7.15.

explored before for the EHM. One important result is that the momentum occupation of

a mode k provides a signature for the transition to the CDW phase. More specifically,

for k < π/2, nσ(k) is a nonmonotonic function of V , displaying a peak at the transition

to the CDW phase.

Away from half-filling, we characterized the Mott and CDW-Metal transitions by in-

vestigating the evolution of the DOS upon doping. We also quantified the low-energy

spectral weight created at the Fermi level, WFL. In the Mott transition, as is already

known for the HM [73],[75], spectral weight from both the LB and UB is transferred to

the Fermi level, andWFL(δh) > δh. For a given doping fraction, δh, WFL slightly increases

with V .

The evolution of the DOS with doping in the CDW-Metal transition is qualitatively

different from the Mott transition. In this case, the spectral weight from the UB is pushed

into lower energies upon doping, but is not transferred to the Fermi level for a tiny amount

of doping. For U = 8t and V = 5t we have established that the low energy spectral weight
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at the Fermi level followsWFL(δh) ≈ δh/2, up to δh < 0.17. Furthermore, the behaviour of

the spectral function away from half-filling indicates that for small dopings the system is

well described by a rigid band. Finally, doping the insulating quarter-filled CDW system

with electrons leads to a low-energy spectral weight WFL(δe) > δe, as it occurs for the

Mott transition.
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Chapter 8

Dipolar Extended Hubbard Model

As mentioned before in the Chapter 6, optical lattice (OL) experiments have been used as

a platform to emulate the Hubbard model. One important achievement in this direction

was the realization of an antiferromagnetic (AFM) state [71], [72]. Another advancing

direction with ultracold systems deals with atoms or molecules possessing a dipole moment

[88]. A quantum degenerate Fermi gas of dipolar magnetic atoms (e.g., 161Dy and 167Er)

has already been realized [89], [90]. The anisotropic and long-range character of the

dipole-dipole interaction opens up the possibility of studying novel phases of matter [11].

In this sense, trapped dipolar atoms in an OL can realize extended Hubbard models, in

which not just on-site, but next nearest-neighbour interactions are taken into account

[12].

The inclusion of nearest-neighbour interaction V in the extended Hubbard model

(EHM) can give rise, for instance, to a checkerboard charge density wave (CDW) ground-

state [91], [92]. At half-filling the EHM describes a CDW-AFM transition by increasing V .

Here we consider a case of current interest in the context of OL‘s, namely that of a ultra-

cold dipolar atoms. The dipolar EHM incorporates both the long-range and anisotropic

characters of the dipole-dipole interactions. This model has been recently explored by dif-

ferent techniques at half-filling for both spinless [93], [94], [95], [96] and spin-1/2 particles

[97], [98]. In Ref. [97] the functional renormalization group technique was used to explore

the phase diagram of the dEHM in the weak coupling regime. However, experiments are
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usually carried out in the opposite regime, i.e., when the interaction is larger than the

kinetic energy, so that a strong-coupling description is more appropriate. Furthermore,

it was shown that away from half-filling the dEHM exhibits CDW phases with charge

arrangements different from the EHM [99].

Antiferromagnetic and CDW phases can be experimentally probed by measuring spin

and charge correlation functions with a quantum gas microscope. Experimental results

can then be directly compared with numerical simulations for the Hubbard model [71].

On the other hand, an important experimental tool to probe phase transitions in OL

experiments is given by time-of-flight measurements, which provide information about

the momentum occupation function [100].

Here we use the Lanczos method to explore the ground state phase diagram of the

dEHM at half-filling. In order to investigate the competition between AFM and CDW

phases, we obtain the spin and charge correlation functions, and also examine the mo-

mentum occupation function, nσ(k), across the phase transitions described by the dEHM.

This Chapter is organized as follows: In Section 7.1 we present the model and the quan-

tities of interest. Section 7.2 revisits the EHM. In Section 7.3 we obtain the properties of

the dEHM in the atomic limit (t = 0). In Section 7.4 we obtain the phase diagram of the

dEHM. Section 7.5 deals with the behaviour of nσ(k), while in Section 7.6 we present our

conclusions.

8.1 Model and Methods

We consider the dipolar Extended Hubbard Model (dEHM) for a two-component (pseudo-

spin-1/2) dipolar Fermi gas in a square OL at half-filling [99], [97]. The two pseudospin

states can be two hyperfine states of the dipolar atoms, and the dEHM Hamiltonian is
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Figure 8.1: Dipolar fermions in a square optical lattice. The circles represent fermionic
atoms. Each color is associated to a different hyperfine state (spins up and down). The
orientation of the dipoles is given by the spherical angles θ and φ. The figure was extracted
from Ref. [99].

given by

H = −
∑
〈i,j〉,σ

ti,j

(
c†iσcjσ + h.c.

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
+
∑
i,j

Vi,j
2

(ni − 1) (nj − 1) , (8.1)

where i runs over the Ns sites of the 2D clusters of Fig. 2.1, the spin state is σ =↑, ↓,

niσ = c†iσciσ, and ni = ni↑ + ni↓; ti,j is the hopping integral between nearest-neighbour

sites i and j, U is the strength of the on-site interaction, and Vi,j is the dipole interaction

Vi,j =
V

r3
i,j

[
1− 3(r̂i,j · d̂)2

]
, (8.2)

where ri,j = ri−rj is the vector connecting sites i and j, and the vector d = dd̂ represents

the magnetic dipole moment. We assume that all the dipoles are parallel, with d̂ = (1, θ, φ)

[99], [93], [97]. where the angles θ and φ are controlled by an external magnetic field [12];

see Fig. 8.1. The dEHM Hamiltonian written as in Eq. (8.1) is manifestly particle-hole
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Horizontally striped

Diagonally striped

Figure 8.2: Cartoon showing the charge arrangement corresponding to wave vectors (a)
q = (π, π), q = (0, π), and (c) q = (π/2,−π/2). The red and the yellow circles represent
spins up and down.

symmetric. We consider that Vi,j extends up to second nearest-neighbour sites,

Vx = V [1− 3(sin θ cosφ)2]

Vy = V [1− 3(sin θ sinφ)2]

Vd1 =
V

23/2
{1− 3

2
[sin θ(cosφ+ sinφ)]2}

Vd2 =
V

23/2
{1− 3

2
[sin θ(cosφ− sinφ)]2} (8.3)

where (Vx, Vy) and (Vd2, Vd2) are first and second neighbour interactions, respectively.

This cutoff for Vi,j is introduced due to the relatively small size of the 2D cluster, but

one expects that the main features of the dipolar interaction, namely anisotropy and the

possibility of attractive interactions, are already present. We use the Lanczos method for

the 2D clusters of Fig. 2.1 with PBC. In addition, in order to obtain nσ(k) we also consider

twisted boundary conditions (TBC), in the sense that whenever a fermion hops between

two adjacent copies of the 2D clusters, the hopping term picks up a phase, ti,j = eiφ;

otherwise ti,j = t.

We want to probe the onset of magnetic and charge order. To this end, we calculate

the spin-spin correlation function

Cspin(r) = 〈Sz0Szr 〉 , (8.4)
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where Szi = (ni,↑ − ni,↓) is the spin operator, and r is the position vector, and the charge-

charge correlation function

Ccharge(r) = 〈n0nr〉 . (8.5)

Furthermore, we collect the contributions to the spin-spin and charge-charge correlation

functions from different sites, and calculate the spin and charge structure factors

SFspin(q) =
∑
r

e−iq·rCspin(r),

SFcharge(q) =
∑
r

e−iq·r [Ccharge(r)− 〈n0〉 〈nr〉] , (8.6)

where q is the wave vector. SFspin(q) and SFcharge(q) peak at values of q corresponding to

the dominant magnetic and charge arrangements, respectively. For the two-dimensional

Hubbard model at half-filling, the peak of SFspin(q) located at q = (π, π) signals anti-

ferromagnetic (AFM) order in the ground state [5], [6]. Here we investigate the onset of

AFM and of different charge orderings for the dEHM at half-filling; see Fig. 8.2.

An important experimental tool for experiments with optical lattices is the time-of-

flight measurements [100], which is used to obtain information about the momentum

occupation function

nσ(k) =
〈
c†kσckσ

〉
. (8.7)

We also obtain this quantity, and investigate its evolution throughout different k-points

in the first Brillouin zone in terms of the anisotropic dipolar interaction Vi,j.

8.2 Extended Hubbard Model (EHM)

First, we consider the usual extended Hubbard Model (EHM), i.e, Vx = Vy = V and

Vd1 = Vd2 = 0. In 2D, and at half-filling, the EHM has been previously studied in

Refs. [91], [92], [85], [84]. For U = 8t, this system undergoes a first-order quantum

phase transition between an AFM and a checkerboard CDW (cbCDW) for V = 2.023t

[84]. As a test of our code, we first reproduce these calculations. Figures 8.3 shows the
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Figure 8.3: Structure factor as a function of V for the standard EHM. We considered
the clusters with Ns = 8, 10, 16, 18 sites of Fig. 2.1. In (a) we consider the spin SF with
q = (π, π) and (b) the charge SF with q = (π, π), which correspond to the checkerboard
CDW.
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Figure 8.4: AFM-CDW critical V for U = 8 in the atomic limit t = 0 as function of the
cutoff introduced in the interaction Vi,j for the isotropic case, θ = 0. Cutoff = 1, 2, ...
means that the interaction is up to first-, second-, ..., further-neighbours.

V dependence of the spin and charge structure factors (SF’s) for different cluster sizes

with periodic boundary conditions; both cases correspond to q = (π, π). SFspin is almost

constant for V < 2 and has an abrupt change at V ≈ 2.05. Comparing the results for

different sizes we note that SFspin increases with Ns for Ns = 8, 10, 16, which is indicative

of AFM long-range order. For all clusters considered, SFspin has an abrupt drop at

V ≈ 2.05, where the AFM correlations are suppressed. On the other hand, SFcharge has

an abrupt increase from zero at V ≈ 2.05, and the value of SFcharge for a given V increases

with Ns, indicating long-range CDW order.

8.3 Limiting case: Atomic limit(t=0)

The AFM-CDW transition can be understood by a strong coupling argument (U, V � t).

To zeroth order perturbation theory, we assume the atomic limit (t = 0), so the total

energy of the system can be easily computed. For a Mott insulating state, i.e., one particle
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per site, each particle interacts with four nearest-neighbours, and the total energy is

EMott
0 = 2V Ns + C,

where C is a constant, while in a checkerboard CDW state there are Ns/2 doubly occupied

sites, and the total energy is

EcbCDW
0 =

UNs

2
+ C,

The nearest-neighbour interaction V increases the energy of the Mott state, in such way

that if V > U/4, the cbCDW state becomes the ground state. It is important to mention

that for U = 8, the critical V that we obtain in Fig. 8.3 (Vc = 2.05t) is well described

by the atomic limit. For the Mott state (V < U/4), the effective Hamiltonian obtained

up to second order pertubation theory is given by the isotropic Heisenberg model, H =

Jeff
∑
〈i,j〉 Si · Sj, with Jeff = 4t2/(U − V ), which has an AFM ground state.

We investigate the long-range aspect of the dipolar interaction by obtaining Vc in the

atomic limit for θ = 0 in Eq. (8.2); in this case the dipolar interaction is isotropic. Fig.

8.4 shows Vc as function of the cutoff considered for Vi,j. Introducing a cutoff up to first-

neighbour (cutoff= 1), we obtain the result discussed in the last paragraph, Vc = 2, while

for second-neighbour (cutoff= 2), Vc increases to Vc = 3.09. The physical reason for this

increase is that interactions along the diagonal increase the energy of the cbCDW state.

As the cutoff increases beyond second-neighbour, Vc oscillates with the cutoff, but quickly

tends to a finite saturated value. The reason for the oscillation of Vc is that for some

distances the interaction increases the energy of the cbCDW state, while for others this

does not happen. Furthermore, we note that for cutoff= 13 Vc is just 1% different from

the critical V found for the cutoff= 2.

Let us now explore the anisotropic character of the dipolar interaction in the atomic

limit. Setting φ = 0 and θ = π/2 in Eq. (8.3) yields an anisotropic interaction: Vy = V ,

Vx = −2V , and Vd1 = Vd2 = −V/
√

2. For V � U , the atractive interaction in the

x direction favours the formation of a horizontally-striped CDW (hCDW); see Fig. 8.2
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(a) (b)

(c)

U = 8t

Figure 8.5: V dependence of correlation functions for U = 8t and θ = 0. Panels (a) and
(b) show Cspin(r) and Ccharge(r), respectively, for different distances r. Panel (c) shows
the spin SF with q = (π, π) and the charge SF with q = (π, π) (checkerboard), q = (0, π)
(horizontal-striped), and q = (π/2,−π/2) (diagonal-striped).
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(b). The hCDW state competes with the Mott state and the cbCDW for U ∼ V and

intermediate values of θ. We then obtain the energies of these states in the atomic limit.

Setting φ = 0 in Eq. (8.3), it is straightforward to show that

EMott
0 (θ) = NsV

[(
4 +
√

2

2

)
− 3

(
4 +
√

2

4

)
sin2 (θ)

]
+ C,

EcbCDW
0 (θ) = Ns

[
U

2
+

V√
2

(
1− 3

2
sin2 (θ)

)]
+ C,

EhCDW
0 (θ) = Ns

[
U

2
+ V

(
1− 3 sin2 (θ)

)]
+ C, (8.8)

where C is a constant. In the V � U regime, the energy of the Mott state is the

largest one, and the phases cbCDW and hCDW compete as θ varies from 0 to π/2.

Comparing EcbCDW
0 and EhCDW

0 we establish that the cbCDW-hCDW transiton takes

place at θ∗ ≈ 0.4 for V & 4. In the next section we compare the boundaries between the

AFM, cbCDW and hCDW phases defined by Eqs. (8.8) with the Lanczos results for the

dEHM.

8.4 Dipolar EHM

In this section we show the Lanczos results for the dEHM for U = 8t obtained for the

Ns = 16 sites cluster with periodic boundary condition (PBC). First, we consider the

isotropic case, i.e., θ = 0. Figures 8.5 (a) and (b) show the spin and charge correlation

functions, Cspin and Ccharge, respectively, for different distances r. For V . 3.1t, the

first and second-neighbour Cspin have negative and positive values, respectively, and in

both cases Ccharge(r) ≈ 1, which is characteristic of a Mott insulating state with AFM

correlations. For V & 3.1t, spin correlations are suppressed, and the first-neighbour

Ccharge(r) decreases with V , while the second one increases and tends to the saturated

value, Ccharge(r) = 2. This charge correlation arrangement corresponds to a checkerboard

CDW (cbCDW). Figure 8.5 (c) shows SFAFM and SFCDW , with different wave vectors

q. Similarly to what we obtain for the EHM, an abrupt change of SFAFM and SFCDW
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(a) (b)

(c)

U = 8t

Figure 8.6: V dependence of correlation functions for U = 8t, θ = 0.5π and φ = 0. Panels
(a) and (b) show Cspin(r) and Ccharge(r), respectively, for different distances r. Panel
(c) shows the spin SF with q = (π, π) and charge SF with q = (π, π) (checkerboard),
q = (0, π) (horizontal-striped), and q = (π/2,−π/2) (diagonal-striped).

allows us to identify an AFM-cbCDW transition at Vc ≈ 3.1t. We note that the addition

of second-neighbour interactions, Vd1 and Vd2, increases the value of Vc, in comparison

with the one found for the EHM, as expected from the atomic limit prediction.

We now consider the dipole direction to be parallel to the plane of the lattice, i.e.,

θ = π/2, which leads to an anisotropic interation; see Eq. (8.3). In Figs. 8.6 (a) and (b)

we show Cspin and Ccharge for φ = 0. For V . 1.6t, anisotropic AFM spin correlations

are formed between first- and second-neighbour sites, with Cspin(x) 6= Cspin(y). On the

other hand, for V & 1.6t, the charge correlations for r = y and r = x+ y are suppressed,

while the ones for r = x and r = 2x increase with V and tend to the saturated value,
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U = 8t

(a) (b)

(c)

Figure 8.7: θ dependence of correlation functions for U = 8t, V = 3.6t and φ = 0. Panels
(a) and (b) show Cspin(r) and Ccharge(r), respectively, for different distances r. Panel
(c) shows the spin SF with q = (π, π) and charge SF with q = (π, π) (checkerboard),
q = (0, π) (horizontally striped).

Ccharge(r) = 2. This charge correlation arrangement corresponds to a hCDW. The AFM-

hCDW transition occurs at Vc ≈ 1.6t, as it can be seen from the graph of the spin and

charge SF as functions of V ; see Fig. 8.6 (c).

As discussed above, the anisotropic dipolar interaction can induce different CDW

phases when the non local interactions are large enough to suppress AFM correlations.

We now discuss the transitions induced by varying the dipole direction θ. In Figs. 8.7 we

show the θ dependence of Cspin and Ccharge for φ = 0 and V = 3.6t. For intermediate values

of θ, 0.3 . θ . 0.55, a Mott insulating phase with Ccharge ≈ 1 and AFM spin correlations

is formed; see Figs. 8.7 (a) and (b). For other values of θ the AFM correlations are

suppressed, and cbCDW and hCDW charge correlations are formed for θ . 0.3 and θ &

0.55, respectively. As V increases, the intermediate range of θ in which AFM correlations

are dominant shrinks, and is completely suppressed for a V larger than some V ∗. As
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(a) (b)

Figure 8.8: θ dependence of spin and charge SF with q = (π, π) (checkerboard) and
q = (0, π) (horizontally striped) for U = 8t, φ = 0, and (a) V = 4t, (b) V = 4.3t

discussed in the previous section, in the atomic limit, V ∗ ≈ 4t, and the cbCDW-dCDW

transition takes place at θ∗ = 0.4. Nevertheless, for U = 8t, it is still possible to see an

intermediate AFM phase for V = 4t, see Fig. 8.8 (a). On the other hand, for V = 4.3t

no intermediate AFM phase is observed as θ varies, see Fig. 8.8 (b).

We obtain the spin and charge SF for different values of V and θ, from which we draw a

phase diagram in the space of parameters V and θ, for φ = 0; see Fig. 8.9. It is important

to mention that due to the relatively small system sizes we cannot ascertain the onset of

long-rang order for both AFM and CDW phases. Nevertheless, we can establish which

correlations, AFM or CDW, and which CDW arrangement dominates (within error bars)

for a given value of V and θ. Hence a more precise statement is that the phase diagram

of Fig. 8.9 shows the regions of the space of parameters, V and θ, where AFM or CDW

(checkerboard or h-striped) correlations dominate. The points in Fig. 8.9 are extracted

from the graphs of the spin and charge SF as function of V. The error bars describe the

uncertainties in the values of Vc; see Fig. 8.10. In addition , we also present the atomic

limit prediction for the boundaries between AFM, cbCDW and hCDW phases. As it

can be seen, the phase diagram for U = 8t can be qualitatively explained by the atomic

limit results. However, for θ = 0.42 the cbCDW phase dominates for an intermediate

range of V ; see Fig. 8.10 (c). This indicates that the vertical cbCDW-dCDW boundary
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Figure 8.9: Phase diagram showing the regions in the space of parameters V and θ
dominated by AFM, cbCDW, and hCDW correlations. The continuous line is the atomic
limit (t = 0) result for the boundaries between the AFM, cbCDW and hCDW phases.
The points are estimations for the critical Vc and were extracted from the graphs of the
the spin and charge SF as function of V , see Fig. 8.10.

at θ ≈ 0.4 might have an inclination for U = 8t; see inset of Fig. 8.9. Summing up,

an interesting result we have obtained is that by varying θ, one can induce different

AFM-CDW transitions.
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(a) (b)

(c)

(d) (e)

Figure 8.10: V dependence of spin and charge SF for U = 8t and φ = 0 and (a) θ = 0.4,
(b) θ = 0.41, (c) θ = 0.42, and (d) θ = 0.43, and (e) θ = 0.44.



95

8.5 Momentum distribution function

In this section we show results for the momentum occupation function, nσ(k). Our aim

here is to investigate the behaviour of nσ(k) for different k-points within the 1BZ in terms

of the non local interaction, Vi,j. Here we consider the Ns = 16 sites cluster with different

twisted boundary conditions.

First, it is worth discussing the effects of the particle-hole (ph) symmetry of Eq. (8.1)

in nσ(k). The ph transformation

ciσ = (−1)ic̃†iσ

c†iσ = (−1)ic̃iσ, (8.9)

where c̃†iσ and c̃iσ are fermionic creation and destruction operators, is expressed in k-

momentum space as

ck,σ = c̃†k+~π,σ

c†kσ = c̃k+~π,σ,

where ~π = (π, π). It is then straightforward to obtain the ph transformation of nσ(k)

nσ(k) =
〈
c†kσckσ

〉
→
〈
c̃k+~π,σ c̃

†
k+~π,σ

〉
= 1−

〈
c̃†k+~π,σ c̃k+~π,σ

〉
, (8.10)

or,

nσ(k) + ñσ(k + ~π) = 1, (8.11)

where→ stands for ph transformation, and ñσ(k) =
〈
c̃†k,σ c̃k,σ

〉
. The fact that the dEHM

Hamiltonian is invariant under the ph transformation leads to nσ(k + ~π) = ñσ(k + ~π).

Hence the momentum occupation function at half-filling satisfies the following relation

nσ(k) + nσ(k + ~π) = 1. (8.12)

A consequence of the aforementioned relation is that if

nσ(k) = nσ(k + ~π), (8.13)
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(a)

(b)

(c)

(d)

Figure 8.11: Momentum distribution for the EHM with U = 8t. Panels (a), (b) and (c)
show nσ(k) as a function of V for different k-points. A portion of the 1BZ is illustrated
in the inset of the panels with the points Γ = (0, 0), X = (π, 0), and M = (π, π). The red
line marks the Fermi surface of the NI system. Panel (d) is shows nσ(k) across three paths
of the 1BZ, the black dashed line corresponds to results for the non-interacting case.
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due to other symmetries of the Hamiltonian, then nσ(k) = 1/2, for any value of U and

V . For example, the translational and time reversal symmetries lead to the following

relations

nσ(k) = nσ(k± 2~π)

nσ(k) = nσ(−k),

respectively. Using these relations, it is then straightforward to show that nσ[k =

(π/2, π, 2)] = nσ(k + ~π). Thus, nσ(π/2, π/2) = 1/2.

For the non-interacting (NI) system, k is a good quantum number, so that at T = 0

nσ(k) =

{
1, if |k| < |kF|,
0, if |k| > |kF|.

For the interacting system, k is no longer a good quantum number, and the occupation

nσ(|k| > |kF|) 6= 0. The function nσ(k) has been previously studied for the HM [25],

[101]. Below we show that for some k-points within the 1BZ, nσ(k) can be used to signal

the AFM-CDW transition in the dEHM.

Figures 8.11 (a), (b) and (c) show nσ(k) for the EHM as a function of V for U = 8t

and for different k-points within the 1BZ. For k = (π/2, π/2), nσ = 1/2 for any value of

V , as was discussed above; see Fig. 8.11 (b). The fact that the interaction is isotropic

also guarantees that Eq. (8.13) holds for k = (0, π) and (π, 0), which yields nσ = 1/2;

see Figs. 8.11 (a) and (c). For the other k-points shown, nσ(k) provides a signature for

the AFM-cbCDW transition, Vc = 2.05t. In Fig. 8.11 (a), for instance, nσ(k) has a peak

at Vc = 2.05t for k = (0, 0) and (0, π/2). Furthermore, using Eq. (8.12), we see that at

Vc = 2.05t, the peak of nσ at k = (0, 0) becomes a minimum at k = (π, , π); see Fig. 8.11

(c). In addition, Fig. 8.11 (d) shows the momentum distribution function across three

paths of the 1BZ for different values of V . The evolution of nσ(k) as V increases can then

be traced as follows: for k < kF, nσ(k) increases with V in the AFM phase up to the

AFM-CDW transition, and then decreases in the CDW phase; for k > kF, nσ(k) exhibits
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(a2)
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(b1)
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Figure 8.12: Results of the dEHM. In all panels is shown nσ(k) as a function of V for
different k-points and U = 8t. In (a1), (a2) and (a3) θ = 0, and (b1), (b2) and (b3)
θ = π/2 and φ = 0.

the opposite trend, i.e., it decreases with V in the AFM phase up to the AFM-CDW

transition, and then increases in the CDW phase.

We now consider the dipolar interaction. Figures. 8.12 (a) show nσ(k) as function of

V for θ = 0 (isotropic interaction). The results resemble the ones found for the EHM,

i.e., nσ(k) for k < kF (or k > kF) provides a signature for the AFM-cbCDW transition

at Vc ≈ 3.1t. In adition nσ(k) = 1/2 for any V for k = (0, π), (π, 0) and (π/2, π/2). On

the other hand, Fig. 8.12 (b) shows nσ(k) as a function of V for θ = π/2 and φ = 0

(which leads to an anisotropic interaction with Vx 6= Vy). Differently from the isotropic
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case, nσ[k = (0, π)] and nσ[k = (π, 0)] are not V -independent. Due to the breakdown of

lattice rotation symmetry, Eq. (8.13) does not hold for these k-points. Thus the presence

of an anisotropic interaction induces fundamental modifications in the occupation of the

modes k = (0,±π) and k = (±π, 0). Furthemore, for the other k modes, nσ still provides

a signature for the AFM-dCDW transition at Vc ≈ 1.6t.

8.6 Conclusions

In this work we used the Lanczos method to study the dEHM at half-filling. The

anisotropic character of the dipolar interaction induces different kinds of CDW phases:

cbCDW and hCDW. These phases compete with the AFM phase when the non local

interaction V varies. For φ = 0 we have proposed a phase diagram in the space of param-

eters V and θ. One interesting result is that the competition between the cbCDW and the

hCDW phase broadens the region in the phase diagram in which the AFM correlations

dominate. Futhermore the variation of θ can induce different AFM-CDW transitons, such

as the cbCDW-AFM-hCDW one.

We have also ivestigated the momentum occupation function for different k points

within the 1BZ. For some k-points, nσ signals the AFM-CDW transitions induced by vary-

ing V . In addition, due to the particle-hole symmetry, nσ(k) is an interaction-independent

function for a set of points when an isotropic interaction is considered, but not in the pres-

ence of anisotropy.
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Chapter 9

Conclusions

In the first two works presented in this thesis (Chapter 4 and 5) we used the quantum

Monte Carlo method stochastic series expansion (SSE) and linear spin-wave theory to

study localized spin systems described by Heisenberg-like models.

In Chapter 4, we examined the effects of impurities in the proximity of an

antiferromagnetic-singlet quantum citical point. Using QMC simulations we have shown

that the impurity susceptibility, defined as the response of the AF order parameter to

the removal of a small number of spins, exhibits a sharp peak at the QCP so that low

disorder concentrations readily lead to long-range order. The critical concentration pc for

randomness to induce long-range AF order in the singlet phase, at moderate β, is well

described by ξ√pc ∼ 0.4, where ξ is the spin-correlation length at g > gc. Furthermore

we also have obtained the spin relaxation rate 1/T1. In the clean system, we verified that

1/T1 is nearly temperature independent at the QCP, and have also shown that it has an

abrupt increase on an impurity site, which provides a clear signature of the QCP.

In Chapter 5, we have investigated the magnetic ordering of the Heisenberg model on

a one-third-depleted lattice. We used spin-wave theory and SSE QMC to determine the

range of the ratio g = J ′/J in which an AFM phase exists at T = 0. We have established

that an AFM-singlet quantum phase transition occurs for gc = 1.75 ± 0.01, and that

AFM order persists to very small J ′/J as a consequence of the fact that extended one-

dimensional chains are still present when J ′ = 0. The itinerant limit described by the
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Hubbard model was also examined; the determinantal QMC simulations used to study

the HM was performed by the first author of Ref.[4]. The critical interaction strength

Uc ∼ 3.87 for t′ = t(honeycomb limit), in which the semimetal-AFM takes place, was

shown to increase with the anisotropy t′ 6= t, where t′/t is the ratio of the hoppings of the

two bonds.

The other line of problems that we explored here (Chapater 6 and 8) was motivated

by ultracold atoms in optical lattice (OL) experiments. In these works we used the

LD + TABC method to study ground state properties of Hubbard-like models.

In Chapter 6, we considered the two-dimensional OL Hubbard model. We show that

fermionic atoms trapped in 2D OL display several interesting features when analyzed in

terms of an effective density, ρ ≈ NVt (N is the number of atoms in the cloud, and

Vt is the trap opening). As the trap narrows, a Mott core forms at some ρc , which,

upon further narrowing, becomes a Mott ring at ρm. The fraction of atoms in a Mott

state displays a maximum at ρm , so that the number of atoms in a Mott state does

not grow with U/W beyond the ring-core transition. A phase diagram for the boundaries

ρm(U/W ) and ρc(U/W ) was proposed, which should be useful in the experimental control

of the geometry of the Mott state. These special densities can be experimentally identified

through the global compressibility and the double occupancy.

We have also obtained the single-particle spectral function, A(k, ω), for the one-

dimensional EHM using the TABC + LD method in Chapter 7. At half-filling we revisited

the issue of spin-charge separation in both the spin density wave (SDW) and charge den-

sity wave (CDW) insulating phases. As previously shown in the literature, we show that

no spin-charge separation takes place in the CDW phase. We also studied the evolution

of the density of states (DOS) upon doping in both the Mott and CDW-metal transitions

by quantifying the spectral weight induced at the Fermi level, WFL. The evolution of

DOS with doping is qualitatively different for the two transitions. While for the Mott

transition, WFL > δ, in the CDW-metal, WFL ≈ δ/2, and the behaviour of A(k, ω) is well
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described by a rigid band picture. In contrast, doping the insulating quarter-filled CDW

system with electrons leads to WFL > δ, as it occurs for the Mott transition.

In Chapter 8, we considered the two-dimensional dipolar Extended Hubbard model

(dEHM) at half-filling. The study of this model has been motivated by recent experiments

with dipolar atoms in OL. Contrary to the half-filled 2D homogeneous HM, which has

been intensively explored in the literature, the dEHM in the regime of parameters explored

here has not been discussed before. For this reason, we just focused on the homogeneous

properties of dEHM, and did not consider any trapping potential. We have shown that the

anisotropic character of the dipolar interactions can give rise to different CDW phases.

These phases compete with the AFM phase as the non local interaction V varies. In

addition, the variation of the dipolar interaction, induced by changing the direction of

the dipoles, leads to different AFM-CDW transitions. We have also shown that the

momentum occupation function provides a signature for the AFM-CDW transition as a

function of V .
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Appendix A

Hubbard model

The Hubbard model (HM) offers one of the simplest ways to understand how the

interactions between electrons can give rise to Mott insulating, magnetic, and supercon-

ducting phases in a solid. It was proposed in the early 1960‘s and was initially applied

to understand the behaviour of the transition metal monoxides (FeO, NiO, CoO) com-

pounds which are antiferromagnetic Mott insulators, yet had been predicted to be metalic

by methods that do not consider the effects of strong correlations [102]. More recently,

the HM has been intensively studied in the context of optical lattices experiments, as

discussed on this thesis.

The HM Hamiltonian is

H =− t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑
i

(ni↑ + ni↓), (A.1)

where the first term is the hopping term, the second one is the interaction energy (it has

been written in the particle-hole symmetric form; see below), and the final term is the

chemical potential which controls the filling.

The purpuse of this Appendix is to present some properties of HM in the two extremes,

U = 0 and U → ∞, and to discuss the particle-hole symmetry. We only include topics

which are relevant to this thesis and, therefore, many interesting aspects of the HM have
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been omitted.

A.1 Particle-hole symmetry

The Hubbard Hamiltonian has a particle-hole (ph) symmetry which allows us to relate

its properties for different set of parameters. We consider the ph transformation by

introducing the new fermionic operators, c̃†iσ and c̃iσ, which exchange the role of creation

and destruction:

ciσ = (−1)ic̃†iσ

c†iσ = (−1)ic̃iσ. (A.2)

The ph transformation for the number operator is

niσ = 1− ñiσ,

where ñiσ = c̃†iσ c̃iσ.

Let us now consider what happens to the Hamiltonian under the ph transformation.

Here we consider a bipartite lattice, i.e., a lattice that can be divided into two sublattices

A and B in such a way that a site in A has all its neighbours in B and vice-versa. As

examples of bipartite lattices, we mention the square and the honeycomb lattices.

The hopping term transforms as

c†iσcjσ = (−1)i+jc̃iσ c̃
†
jσ = c̃†jσ c̃iσ,

where (−1)i+j = (−1) for a bipartite lattice. It is then straightforward to show that,

under the ph transformations, the HM is

H =− t
∑
〈i,j〉,σ

(
c̃†iσ c̃jσ + h.c.

)
+ U

∑
i

(
ñi↑ −

1

2

)(
ñi↓ −

1

2

)
+ µ

∑
i

(ñi↑ + ñi↓) + C, (A.3)
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where C is a constant. Thus the HM with a given µ maps into the HM with the sign

of the chemical potential reversed, and that for µ = 0, the HM is invariant. In fact this

implies that the whole phase diagram of the HM on a bipartite lattice is symmetric about

half-filling, as we discuss below.

The ph transformation of the particle density operator for a given µ leads to

〈ni↑ + ni↓〉 = 2− 〈ñi↑ + ñi↓〉 .

Thus we obtain

n(µ) + n(−µ) = 2. (A.4)

Where we use the fact that ñ(µ) = n(−µ). Equation (A.4) alow us to conclude that for

µ = 0 the system is at half-filling; moreover at this filling the HM is invariant under the

ph transformation.

It is worth to mentioning here that the extended Hubbard models considered in Chap-

ters 7 and 8 is also ph symmetric at the half-filling.

A.2 The noninteracting limit (U = 0)

In the absence of of interactions (U = 0), it is convenient to transform operators to

momentum space by defining

cjσ =
1√
Ns

∑
k

eikjckσ. (A.5)

The non-interacting (NI) HM is diagonal in terms of these operators

H =
∑
kσ

(ε(k)− µ)c†kσckσ, (A.6)

where ε(k) is the dispersion relation. For a square lattice

ε(k) = −2t(cos (kx) + cos (ky)). (A.7)

Figure A.1 (a) shows the Fermi surface for different fillings. In the half-filled case (µ = 0),

the fact that ε(kF ) = ε(kF +~π) means that there is a perfect nesting at the Fermi surface;
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(a) (b)

Figure A.1: (a) Fermi surface for the two-dimensional square lattice. Band fillings are
n = 0.25, 0.5, ..., 1.5 starting from the inner surface. The Fermi surface of half-filled case
is marked by a full red line. Note that it is nested; the blue arrow representes the AFM
wave vector ~π = (π, π). (b) Density of states for the 2D square-lattice. The van Hove
singularity at the origin is logarithmic. Both Figs. (a) and (b) were extracted from Ref.
[103].

the nesting vector is ~π = (π, π). Furthermore, at this filling, the density of states (DOS)

exhibits a van Hove singularity [103], see Fig. A.1 (b).

The nesting, the van Hove singularity and the particle-hole symmetry at half-filling

have important consequences for the magnetic properties of the interacting system. In

order to see these consequences, let us consider the q-dependent magnetic susceptibility

within the random-phase approximation (RPA) [104]

χ(q) =
2χ0(q)

1− Uχ0(q)
, (A.8)

where χ0(q) is the q-dependent zero frequency susceptibility for the non-interacting case

χ0(q) = − 1

N

∑
k

f(ε(q + k))− f(ε(k))

ε(q + k)− ε(k)
, (A.9)

f(ε) is the Fermi distribution function. χ0(q) peak at values of q corresponding to the

dominant magnetic arrangement. For the square lattice, q = (0, 0) and q = (π, π)

correspond to ferromagnetic and antiferromagnetic (AFM) arrangements, respectively.

Furthermore, the condition Uχ0(q) > 1, is the condition for a magnetic instability, and
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the critical value of the interaction strength in which the magnetic transition takes place

correponds to [105]

U = 1/χ0(q).

For ph symmetric systems, the dispersion relation has the special property [104]

ε(k + Q) = −ε(k), (A.10)

where Q is the AFM wave vector defined by the bipartite structure of the lattice. For the

square lattice Q = (π, π). Using the relation (A.10), we can write Eq. (A.9) as

χ0(Q) = −
∫
N(ε)f(ε)

ε
dε, (A.11)

where N(ε) is the density of states. For the half-filled square lattice, due to the van

Hove singularity at the Fermi level, χ0(Q) has a log-squared singularity at the AFM wave

vector [103]. Hence RPA predicts that the critical value for the AFM transition is Uc = 0.

Furthermore, at half-filling, the AFM mean-field solution has a finite gap, and the ground

state corresponds to an insulating AFM for U > 0 [103].

Before closing this section, we use the same RPA arguments for the honeycomb lattice.

In this case, the half-filled NI system is a semi-metal and the DOS is

N(ε) ∼ |ε|,

i.e., it vanishes at the Fermi level. Hence, differently from the square lattice case, χ0(Q)

does not diverge, and RPA predicts that the transition to an insulating AFM state occurs

for a finite value of U [105]. Quantum Monte Carlo simulations obtain Uc ∼ 3.87 [64],

[65], as discussed on Chapter 5.

A.3 Strong coupling limit (U →∞)

In this section, we consider that the system is at half-filling (i.e., µ = 0) and U → ∞.

In this regime it is appropriate to use perturbation theory, where we assume that the
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U
t t

Figure A.2: Cartoon illustrating an example of the virtual hopping responsible for the
superexchange interaction. In this case, two spins are exchanged through an intermediated
doubly-occupied state.

interacting term of Eq. (A.1) is the non-perturbed part H0, and the hopping one is the

pertubation V . To zeroth order, we assume the atomic limit (t = 0). In this case, the

ground state corresponds to configurations with just singly occupied sites, as for example

|ψn0 〉 = | ↑1, ↓2, ↑3, ..., ↑L−1, ↓L〉n=1, | ↓1, ↓2, ↓3, ..., ↓L−1, ↑L〉n=2, ... (A.12)

It is important to note that all configurations with just singly occupied sites have the

same ground state energy, E0. Thus the ground state is 2Ns-fold degenerate (i.e., n =

1, 2, ..., 2Ns), where Ns is the number of sites.

Let us now consider degenerate pertubation theory up to second order. Denoting

by E0 the ground state of the interacting term, H0, and by Em the other eigenen-

ergies, H0|m〉 = Em|m〉 for Em 6= E0. For two vectors |ψi0〉 and |ψj0〉, and up to

second oder in V ,

〈ψi0|Heff |ψj0〉 = E0 + 〈ψi0|V |ψj0〉+
∑

|m〉6=|ψ0〉

〈ψi0|V |m〉〈m|V |ψj0〉
E0 − Em

. (A.13)

Thus, the degenerate pertubation theory leads to an effective Hamiltonian Heff ; which

acts only in the degenerate subspace of H0, and describes the relevant degrees of freedom

in the regime that U →∞.

For the case discussed here, the charges are frozen in the sites, and the relevant degrees

of freedom are the spins of the particles. In this case, the term responsible for the first-

order corrections is null, while the second-order virtual hoppings generate a superexchange
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interaction between the spins, see Fig. A.2; and the effective Hamiltonian is

Heff = J
∑
〈i,j〉

Si · Sj, (A.14)

whith J = 4t2/U . For both the square and honeycomb lattices, QMC simulations obtain

an AFM ground state for the aforementioned Hamiltonian [56], [106].
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Appendix B

Twisted boundary conditions in tilted
clusters

In this Appendix we discuss how twisted boundary conditions are implemented on

the tilted clusters of Fig. B.1. In terms of the creation and destruction operators, an

arbitrary boundary condition is given by the following relation,

c†r′,σ = e−iθlc†r,σ,

cr′,σ = eiθlcr,σ (B.1)

where r e r′ are two sites connected by the translation vector (equivalent sites),

R = n1L1 + n2L2.

Here n1 and n2 are integers, and L1 and L2 are the vectors describing the periodicity of the

cluster; see Fig. B.1. The twisted boundary conditions (TBC) θ1 and θ2 are considered

in both L1 and L2 directions.

In k-momentum space, the creation and destruction operators are given by,

c†r,σ =
1√
N

∑
k

e−ikrc†k,σ,

cr,σ =
1√
N

∑
k

eikrck,σ. (B.2)
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(a) Ns = 8 (b) Ns = 10

Figure B.1: Tilted two dimensional clusters. The square lattice can be generated by
suitable translations of the clusters; R = n1L1 + n2L2, where n1 and n2 are integers.
Here L1 and L2 are the vectors of peiodicity of the cluster. (a) For Ns = 8 cluster,
L1 = (−2, 2) and L2 = (2, 2), and (b) for Ns = 10 L1 = (−1, 3) and L2 = (3, 1). The
TBC is considered both in the L1 direction and in the L2 direction, θ1 and θ2, respectively.
In order to guarantee translation symmetry one must consider the extra TBC θ(1,2), see
text.

Using the twisted boundary condition, Eq. (B.1), we can estabilish the conditions for

quantization of k-points,

k · (r′ − r) = 2πn+ θl. (B.3)

It is important to mention that Eq. (B.3) must be satisfied in order to guarantee transla-

tional symmetry.

In order to satisfy Eq. (B.3), we must consider the following boundary conditions for

the Ns = 8 cluster,

c†8′,σ = e−iθ1c†8,σ (B.4)

c†7′,σ = e−iθ2c†7,σ (B.5)

c†6′,σ = e−iθ(1,2)c†6,σ, (B.6)

where TBC θ1 is considered between the sites connected by L1 (e.g., sites 8 and 8′ in Fig.

B.1 (a)); θ2 is considered between the sites connected by L2; and the extra TBC θ(1,2) is

considered between the sites connected by R̄ = −L1 + L2; see Fig. B.1 (a). Conditions
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(B.4) and (B.5) lead to the quantization of k-points in the L1 and L2 directions,

k1 =
2πm1 + θ1

L

k2 =
2πm2 + θ2

L
. (B.7)

Here L = 2
√

2 is the linear size of the tilted cluster, and m1 and m2 are integers; we

consider k = k1(L1/L1) + k2(L2/L2). Furthemore, the extra conditon (B.6) leads to

k2 − k1 =
2πm(1,2) + θ(1,2)

L
(B.8)

Taking (B.7) into (B.8) yields

θ2 − θ1 − θ(1,2) = 2π(m(1,2) +m1 −m2) = 2πm̄, (B.9)

where m̄ is an integer number. Thus, in order to satisfy Eq. (B.3), one must consider the

following constraint between the TBC θ1, θ2 and θ(1,2),

θ(1,2) = θ2 − θ1 − 2πm̄. (B.10)

The BC for the Ns = 10 cluster is given by,

c†1′,σ = e−iθ1c†1,σ (B.11)

c†7′,σ = e−iθ2c†7,σ (B.12)

c†6′,σ = e−iθ(1,2)c†6,σ (B.13)

where the TBC θ1 is considered between the sites connected by L1; θ2 is considered

between the sites connected by L2; and the extra TBC θ(1,2) is considered between the

sites connected by R̄ = L1 + L2; see Fig. B.1 (b), Similarly to the discussion for the

Ns = 8 cluster, Eq. (B.3) leads to the following constraint between the TBC θ1, θ2 and

θ(1,2),

θ(1,2) = θ1 + θ2 − 2πm̄. (B.14)
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Appendix C

Linear spin-wave theory

In this Appendix we present the Linear Spin Wave Theory (LSWT) used to calculate the

sttagared magnetization of the 1/3-depleted lattice on Chapter 5; for comparison we also

show the results for the magnetization of the anisotropic square lattice, i.e., Jx 6= Jy. The

Heisenberg Hamiltonian for a bipartite system with NA = NB (Nα is the number of sites

on sublattice α) is

H =
∑
i∈A,δ

J(δ)SAi S
B
i+δ, (C.1)

where i runs over the sites of subsystem A, and i + δ are the nearest-neighbour sites of

site i. For the 1/3 depleted lattice

δ1 = a(1, 0), δ2 = a(0, 1), δ3 = a(−1,−1), (C.2)

where a is the lattice parameter, we set a = 1, and J(1) = J(2) = J , J(3) = J ′.

C.1 Linear spin wave theory (LSWT)

The spin operators can be expressed in terms of bosonic operators as introduced by

Holstein-Primakoff (HP) [107]. The HP operators are defined with respect to a given

direction, here we consider the z direction:

Szi = S − a†iai, S+
i =
√

2f(a†iai)ai, S−i =
√

2a†if(a†iai),
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and,

f(a†iai) =

√
1− a†iai

2S

The function f(a†iai) can be expanded in powers of 1/S. In the linear approxima-

tion, we set f(a†iai) = 1. In this case, we are able to obtain a noninteracting “spin

wave” Hamiltonian. This approximation describes small fluctuations around the broken

symmetry phase of the Heisenberg model [107], Eq. (C.1).

For a bipartite system we choose two set of HP operators. Ones in sublattice A in the

z direction (A→ (a†i , ai)); and ones in the sublattice B in the −z direction (B → (b†i , bi)).

This arrangement represents an AFM classical state. The rotated spins on subsystem B

is defined as:

Sz′j = −Szj , S−′j = S+
j , S+′

j = S−j ,

where j ∈ B. Eqquation (C.1) can then be written as

H =
∑
iεA,δ

J(δ)(−S2 + S(a†iai + b†i+δbi+δ) + S(aibi+δ + a†i b
†
i+δ)),

and considering the Fourier transformation of the HP operators,

ai =
1√
NA

∑
k

eikriak,

bi =
1√
NB

∑
k

eikribk, (C.3)

where k‘s are the wave vectors, the Heisenberg Hamiltonian is

H = −NS2J? + S
∑
k,δ

J(δ)(a†kak + b†−kb−k) + S
∑
k

(γ(k)akb−k + γ†(k)a†kb
†
−k), (C.4)

where J? =
∑

δ J(δ) and γ(k) =
∑

δ J(δ)e−ikrδ .

This Hamiltonian can be diagonalized with the aid of the Bogoliubov transformation

αk = uk ak + vk b
†
−k, βk = vk a

†
k + vk b−k.
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where αk and βk satisfy the canonical bosonic commutation relations when

|uk|2 − |vk|2 = 1. Using the inverse transformation

ak = u∗k αk − vk β†k, b−k = u∗k βk − vk α†k,

in Eq. (C.4), we obtain

H = −NS2J? + S
∑
k

[J?(|uk|2 + |vk|2)− γ(k)u∗kvk − γ†(k)v∗kuk]

+[J?(|uk|2 + |vk|2)− γ(k)u∗kvk − γ†(k)v∗kuk](α†kαk + β†kβk) +

(2J?u∗kv
∗
k − γ(k)u∗ku

∗
k − γ†(k)v∗kv

∗
k)αkβk +

(2J?ukvk − γ(k)vkvk − γ†(k)ukuk)α†kβ
†
k.

Considering that the coefficients of α†kβ
†
k and αkβk are zero, we finally obtain the nonin-

teracting “spin wave” Hamiltonian

H = −NS2J? + S
∑
k

(ω(J?,k)− J?) + S
∑
k

ω(J?,k)(α†kαk + β†kβk), (C.5)

where,

ω(J?,k) = J?
√

1− |γ(k)|2
J?2

, (C.6)

C.1.1 Staggered magnetization

The staggered magnetization is given by

ms =
1

N

(∑
iεA

〈Szi 〉 −
∑
iεB

〈Szi 〉
)

= S − 1

N

∑
k

〈
a†kak + b†kbk

〉
(C.7)

Writing the above expression in terms of the Bogoliubov operators, we obtain

ms = S +
1

2
− 1

N

∑
k

(nk + 1)

 1√
1− |γ(k)|2

J?2

 , (C.8)

where nk =
〈
α†kαk + β†kβk

〉
= 1

eω(k)/kBT−1
. The vectors k are obtained by imposing

periodic boundary condtion (PBC) in a finite system. We now showms for the anisotropic

square lattice and 1/3 depleted lattice.
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Square Lattice

For the anisotropic square lattice (Jx, Jy)

γ(k) = 2 (Jxcos(kx) + Jycos(ky)) ,

where, ki = 2πni
Li

, with i = x or y, and ni = 0, 1, 2, ..., L − 1; 2L is the linear size of the

square lattice.

Figure C.1 shows the zero temperature sttagered magnetization ms as function of

g = Jy/Jx. For g = 0, the system is a bunch of 1d chains and there is no AFM order

ms = 0 at T = 0. A interesting prediction of LSWT is that a finite “small“ coupling

g∗ ≈ 0.033 is required in order for AFM order appears [108]. However, more accurate

calculations of the anisotropic model shows that g∗ = 0 [109].
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Figure C.1: Staggered magnetization of the anitropic square lattice in the LSWT. g
dependence of ms. The inset shows a blow up for g ∼ 0.

1/3 depleted lattice

For the 1/3-depleted lattice we choose the real space basis

a1 = (2,−1), a2 = (1, 1).
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and the reciprocal space basis,

b1 =
1

3
(1,−1), a2 =

1

3
(1, 2).

Thus,

γ(k) = J
[
e−i(

kx+ky
3 ) + e−i(

kx−2ky
3 )

]
+ J ′ei(

2kx−ky
3 ),

where, ki = 2πni
Li

, with ni = 0, 1, 2, ..., Li − 1, and Li is the linear size in the ai direction.

Figure 5.2 (a) of Chapater 5 shows the zero temperature sttagered magnetization ms

as function of g = J ′/J obtained in the LSWT and quantum Monte Carlo simulations.

For g = 1, the 1/3-depleted lattice is equivalent to the honeycomb lattice. We obtained

the same values of Ref. [66] for ms, ms(QMC) = 0.26 and ms(LSWT) = 0.24. For g = 0,

the 1/3 lattice is a bunch of ”zig-zag“ chains and, as it happens in the anisotropic square

lattice, there is no AFM order, ms = 0. In this case, LSWT also predicts that a finite

coupling is required in order for AFM order appears, g∗ = 0.065 ± 0.005. Furthermore,

this model describes a quantum phase transition between a AFM and a singlet phase

(formed between two ”zig-zag“ chains) at g = gc. We obtain that gc(LSWT) = 6.2± 0.02

and gc(QMC) = 1.75± 0.01.
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Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between
antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the
effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately
defined “impurity susceptibility” χimp. Our key finding is a connection within a single calculational framework
between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic
resonance (NMR) relaxation rate 1/T1. We show that local NMR measurements provide a diagnostic for the
location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values
of χimp.

DOI: 10.1103/PhysRevB.95.054419

I. INTRODUCTION

In materials, such as the cuprate superconductors, mobile
impurities introduced, e.g., via the replacement of La by Sr, are
known to destroy antiferromagnetic (AF) order very rapidly
[1,2]. Long-range spin correlations are somewhat more robust
to static scatterers, e.g., via Zn substitution for Cu in the same
materials [3–5]. This competition of AF and chemical doping
is a central feature of many other strongly correlated systems,
including Li doping in nickel oxides [6,7], spin chains [8], and
ladders [9] and has been explored by quantum Monte Carlo
(QMC) approaches in single band fermion models [10] and
their strong-coupling spin limits [11].

Materials with multiple fermionic bands or localized spins
in multichain or multilayer geometries offer an additional
richness to the effect of impurities on AF since even in
the clean limit they can exhibit a quantum critical point
(QCP) separating AF and singlet phases. Although impurities
reduce AF deep in the ordered phase, nearer to the QCP,
they can increase AF and even, beginning in the quantum
disordered phase, induce AF by breaking singlets [8,9]. This
has recently been explored in heavy-fermion materials where
Cd doping of superconducting CeCoIn5 induces long-range
magnetic order [12]. The underlying mechanism is believed
to be a local reduction of conduction electron-local moment
(c-f ) hybridization on the Cd sites, suppressing the singlet
energy gain. The experimental observation that the NMR
spectra linewidths broaden with Cd substitution indicates that
Cd impurities induce AF puddles around them. The size of
these AF regions shrinks with pressure, which increases this
hybridization towards its value in the absence of disorder, ulti-
mately yielding a revival of superconductivity (SC). However,
as indicated by NMR relaxation rate 1/T1 measurements, the
resulting phase is quite heterogeneous [13] not unlike the stripe
and nematic orders which coexist with superconductivity in
the cuprates. Prior theoretical work examined domains within
a mean-field theory of competing AF and SC orders [13].

A useful initial route to a better understanding of the
mechanisms of the evolution of the NMR relaxation rate 1/T1

is to single out the contributions from the spin degrees of
freedom. This is the approach we follow here in which two
antiferromagnetically coupled layers give rise to a competition
between an interlayer-singlet-rich and an AF phase. By
allowing dilution in the second layer, thus breaking interlayer
singlets, one mimics the reduction of c-f hybridization. In
addition, from a pragmatic perspective, accessible system
sizes for QMC simulations of itinerant fermion systems are
not sufficiently large to encompass multiple impurities and
carefully study finite-size effects. However, it is known that
many of the qualitative features of itinerant AF models,
such as the Hubbard Hamiltonian, are reflected in their spin
counterparts [14,15], notably the successful modeling of the
Knight-shift anomaly, certain aspects of which can be captured
either with descriptions in terms of localized spins [16] or
itinerant electrons [17]. This paper reports QMC simulations of
a disordered bilayer Heisenberg Hamiltonian, characterizing
its physics within an exact treatment of quantum many-body
fluctuations. Key findings are as follows: (i) An appropriately
defined impurity susceptibility captures both the inhibition of
AF order deep in the ordered phase and its sharp enhancement
near the QCP; (ii) quantitative determination of the AF regions
induced by impurities and the criterion for their coalescence
into a state with long-range order at experimentally relevant
temperature scales; (iii) verification of the suggestion that
1/T1 is very weakly temperature dependent at the QCP in the
clean system. We also establish that the local value of 1/T1 at
an impurity site increases abruptly at the QCP and resembles
the behavior of the clean system “far away” from the impurity.

QMC, in combination with analytic scaling arguments, has
previously been used to study the loss of magnetic order and
multicritical points in bilayers where the dilution at a given
site discards simultaneously the spins in both layers [18].
Interesting topological considerations arise from the removal
of a single spin from a bilayer system in the singlet phase since
an unpaired spin-1/2 object is left behind [19]. QMC has been
used to study the spin texture produced by a single impurity
[20] as well as the onset of AF order in lattices of dimerized
chains [21].

2469-9950/2017/95(5)/054419(6) 054419-1 ©2017 American Physical Society
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II. MODEL AND METHODS

We consider the spin-1/2 AF Heisenberg bilayer Hamilto-
nian,

H =
∑
〈ij〉,α

J α �S α
i · �S α

j + g
∑

i

�S 1
i · �S 2

i , (1)

where subscripts i,j denote spatial sites on a square lattice and
superscripts α = 1,2 label the two layers. We study the case
when the intraplane exchange constants J α = J are the same,
and we choose J = 1 to set the energy scale. g is the interlayer
exchange.

The Heisenberg bilayer model considered here describes
the competition between AF order and singlet formation, such
as in the Kondo effect. The spin-1/2 Heisenberg Hamiltonian
has been studied widely as a model of quantum magnetism,
in particular, as the AF parent compounds of the cuprate
superconductors. In that context, the establishment, via QMC
simulations, that long-range order (LRO) occurs in the ground
state of the Heisenberg model on a square lattice, i.e., g = 0
in Eq. (1) [22] was followed by the demonstration that LRO
is also present at T = 0 in the half-filled fermion Hubbard
Hamiltonian [23,24], emphasizing similarities between the
two models, in the insulating phase of the latter.

In the absence of disorder, the AF-singlet transition has been
located to high accuracy through finite-size extrapolation of the
AF order parameter. The square of the order parameter sums
the spin-spin correlations throughout the lattice, normalized
to the lattice volume N . If those correlations are short ranged
(e.g., decaying exponentially), the local contributions to the
sum, when divided by N , vanish. If the correlations extend
over the entire lattice, then the order parameter is nonvanishing.
In practice, in QMC simulations, careful finite-size scaling is
essential to demonstrate LRO. See also Eq. (1) and Fig. (S1)
of the Supplemental Material for further discussions [25]. Our
focus here will be on the nature of these correlations in the
neighborhood of an impurity,

〈m2〉 =
〈(

1

N

∑
i

(−1)xi+yi+αSα
i

)2〉
. (2)

For the symmetric case [26,27] J 1 = J 2, the critical
interlayer exchange is gc = 2.5220. For the “Kondo-like”
lattice where one of the intralayer J ’s is zero, gc = 1.3888.

As in Ref. [26], we use the stochastic series expansion
(SSE) method to obtain 〈m2〉. SSE samples terms in a power
expansion of e−βĤ in the partition function using operator loop
(cluster) updates to perform the sampling efficiently [28]. Here
we consider bilayer systems with N = 2×L×L and L up to
100 sites.

We also evaluate the NMR relaxation rate, given by the
low-frequency limit of the dynamic susceptibility,

1

T1
= T lim

ω→0

∑
q

A2 χ ′′(q,ω)

ω
, (3)

where A is the hyperfine coupling and T is the temperature.
We obtain 1/T1 using the long imaginary-time behavior of the

FIG. 1. The square of the staggered magnetization 〈m2〉 as a
function of the impurity concentration p for different g’s. In the
AF phase with g = 2 < gc(p = 0) = 2.522, impurities reduce the
order. The effect of impurities near the QCP and in the singlet phase
is discussed in the text. The inset: Finite-size scaling of 〈m2〉 for
p = 0.01. The position of the QCP is increased to gc(p = 0.01) =
2.65. Data were averaged over 120 disorder realizations. The inverse
temperature is β = 80.

spin-spin correlation function,

1

T1
= A2

π2T
〈Si(τ = β/2)Si(τ = 0)〉; (4)

the regime of validity of Eq. (4) is discussed in Ref. [29].

III. AF DOMAINS AND IMPURITY SUSCEPTIBILITY

For a given lattice size L and one disorder realization (i.e.,
random removal of a fraction p of the spins on layer α = 2),
we perform the simulations to obtain the quantities of interest;
these are then averaged over about 120 disorder realizations.
The inset of Fig. 1 shows an example of the size dependence
of the AF order parameter thus calculated for a given impurity
concentration and different values of g: The intercepts with the
vertical axes provide the extrapolated (L → ∞) values for the
given p appearing in the main body of the figure. As expected,
impurities decrease 〈m2〉 deep within the AF phase (g = 2)
where they act to reduce the average coordination number of
the lattice and hence the tendency to order. Closer to the QCP, a
different behavior emerges. Impurities begin to inhibit singlet
formation by leaving unpaired moments on their partner sites.
The AF order parameter, which had been disrupted by singlet
formation, therefore increases with p for g � gc and does so
especially sharply at g = gc. For g > gc, sufficiently large
p can induce AF order, even though these larger interplanar
couplings would result in singlet formation in the pure case.
The appearance of a finite pc for g > gc is discussed further
below.

The effect of impurities on the AF order parameter can be
characterized by an impurity susceptibility,

χimp = d〈m2〉
dp

∣∣∣∣
p=0

, (5)

which, as shown in Fig. 2, has a sharp peak at gc. The
effect of impurities is especially large close to the QCP
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FIG. 2. The impurity susceptibility χimp is sharply peaked at
gc (vertical dashed line): Impurities induce AF order. Away from
gc, χimp < 0: Impurities reduce the AF order parameter. The inset
shows the g dependence of 〈m2〉 for p = 0.01 (squares) and the clean
system (circles); these data were used to obtain χimp. Both the shift in
gc and the large effect of impurities at the QCP are evident. Data for
〈m2〉 result from extrapolations to L = ∞. The inverse temperature
is β = 80.

where the system in delicately poised between two phases.
Farther away from the QCP in the AF phase g � 2, the
impurity susceptibility is negative as in the two-dimensional
(2D) Heisenberg model with site dilution [30].

For g > gc, impurities induce AF order in an otherwise
singlet phase [31]. We estimate the critical impurity con-
centration as follows: Prior to the establishment of order,
the coupling between two regions centered at sites i and
j will oscillate in phase with an amplitude which decays
exponentially [32–34] Jeff ≈ J (−1)−|i−j+1|exp(−〈l〉/ξ ). Here
〈l〉 is the mean impurity separation, and ξ is the correlation
length in the clean system. For 2D, 〈l〉 = 1/

√
p. Assuming that

the AF order will set in when the average distance between the
impurities is on the same scale as ξ yields ξ

√
pc ≈ 1. For a

dilute system, we compute ξ by embedding a single impurity in
the lattice and evaluating the decay of the spin-spin correlation
in its vicinity; see the Supplemental Material [25]. Figure 3(a)
shows the resulting ξ , and panel (b) validates the picture that
the critical concentration of impurities to induce AF order
occurs when 〈l〉 = 1/

√
p ∝ ξ .

There are several subtleties to this argument. At T = 0, an
exponentially small interaction between impurities can induce
order [35]. (This occurs despite the fact that some impurity
pairs, which are sufficiently close spatially, lock into singlets
[36].) This suggests pc = 0 throughout the singlet phase—an
arbitrarily small number of impurities will order despite the
rapid decay of their coupling. The effect of these very small
couplings is, however, seen only at extremely low T , a fact
that is reflected in SSE simulations [35] by the need to study
inverse temperatures β ∼ 104–105 (except very close to the
QCP where ξ diverges). In contrast, β which is two to three
orders of magnitude smaller is sufficient to reach the ground
state on lattices of L ∼ 60 studied here.
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FIG. 3. (a) Correlation length ξ as a function of g. Data are shown
around a single impurity (square) and for the clean system (circles).
(b) ξ

√
pc is roughly constant, consistent with a picture where AF

order occurs when the mean impurity separation 〈l〉 is proportional to
ξ . Data for inverse temperatures β = 40,80 were compared to ensure
convergence to the ground state. L up to 100 was used to calculate ξ .
(c) The AF order parameter at fixed β = 80 exhibits a sharp crossover
indicating the position of the enhanced range of AF order created by
the spin-1/2 impurities.

The ordering temperatures in Cd-doped CeCoIn5 are about
2–5 K, and the c-f coupling is reported to be around 49 meV
so that Tc ∼ 10−2J . Thus a more refined interpretation of
Fig. 3(b) is that, although AF likely exists at infinitesimal pc

strictly at T = 0, panel (b) gives the effective critical impurity
concentration to induce AF in the singlet phase at experimental
temperature scales [37]. Figure 3(c) shows the position of this
sharp crossover in the AF order parameter.

IV. UNIVERSAL BEHAVIOR OF
THE NMR RELAXATION RATE

The NMR spin-relaxation rate 1/T1 provides an experimen-
tal window into doped heavy-fermion materials. Secondary
spectral peaks and broadening of the main line implicate
the presence of inhomogeneous environments [13]. Here we
provide a quantitative description of the effect of impurities
on 1/T1 and demonstrate that these provide a crisp signature
at the QCP.

The main panel of Fig. 4(a) shows the evolution of 1/T1

with interlayer coupling at different fixed temperatures for
the clean case: It follows the same trend as the AF order
parameter 〈m2〉, i.e., it initially rises as the two planes are
coupled, has a maximum for g ≈ 0.5, and then decreases to
small values at the QCP. The inset of Fig. 4(a) emphasizes
the common crossing point at gc ∼ 2.52, which is indicative
of a very weak T dependence of 1/T1 as the QCP is
approached. Indeed, this behavior is consistent with early
predictions [38] of universality in clean two-dimensional
quantum antiferromagnets, according to which 1/T1 ∼ T η

with η ≈ 0.0375 [39] and in the Kondo lattice model [40];
more on this in the Supplemental Material [25].
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FIG. 4. (a) 1/T1 as a function of g for different values of β. The
linear size is L = 50,60. The inset: blowup of the crossing point.
g < gc, g = gc, and g > gc. (b) g dependence of 1/T1 for a system
with a single removed spin. x = 0,1,2,L/2 are different horizontal
distances from the impurity. See the text. For the impurity system the
linear lattice size is L = 20,30.

The behavior of 1/T1 in the presence of disorder is shown
in Fig. 4(b). We consider the simplest case of a single spin
removed from one layer and compute the relaxation rate of
spins in the pure layer as a function of distance x on a horizontal
line from the removed site. x = 0 corresponds to the removed
spin’s immediate partner, whereas x = 1,2 are near and next-
nearest neighbors and finally at x = L/2, far away from the
impurity. For x = 0 the partner shows a sharp QCP signature.
Above g = gc when all the other spins are locked in singlets,
the free spin-1/2 left behind by spin removal has a greatly
enhanced 1/T1. Meanwhile, the relaxation rate is small for
all other sites. For g = 0 the spins on the undiluted plane are
decoupled from the second layer and hence share a common
value of 1/T1 regardless of impurities. Figure 4(b) indicates
this independent plane behavior extends out to g � gc for
x � 1. The curve for x = 0 breaks away for g � 1 and has a
sharp increase at the QCP. Comparison with the results for the
clean system shows that 1/T1 on the farthest spin is unaffected
by the impurity as observed experimentally [37].

FIG. 5. T dependence of 1/T1 for separations x from the
impurity. See the text. The inset: determination of the η′ exponent.
Linear lattices sizes were L = 20,30, somewhat smaller than in
previous figures because of the necessity to compute the imaginary
time-dependent correlation functions.

FIG. 6. AF correlation C(r) of the spin at an impurity site with
the other spins in the layer α = 1. g = 4, 3, 2.7, and 2.52. See the
text.

We conclude by computing the T dependence of 1/T1 at the
QCP g = 2.52 for this same collection of sites. As emphasized
by Fig. 5, 1/T1 is weakly temperature dependent away from
the impurity site. For the spin left behind at x = 0, 1/T1

increases substantially as T is lowered and can be described by
a power law (the inset). Sachdev et al. have argued [19] that
the imaginary-time autocorrelation function of an impurity
at the QCP scales as Si(τ )Si(0) ∼ τ η′

, implying, through
Eq. (4), that 1/T1 ∼ T (η′−1). Here we obtain η′ = 0.41 ± 0.03,
in agreement with Ref. [20].

Finally, we study correlations between AF puddles believed
to form around Cd sites. Figure 6 shows the AF correlation
function C(r) = (−1)�r〈S1,z

i S
1,z
i+r〉, around an impurity site i, at

the center of the lattice. For g = 4 only spins in the close
vicinity of an impurity at the lattice center are correlated
with it. When g = 3 other impurity locations become evident.
Correlations start to become substantial over the whole lattice
at g ∼ 2.7. For an impurity density p = 0.01 (16 impurities
on a 40×40 lattice), enhanced spin-correlation values gc =
2.52 (bottom right panel) are consistent with the establishment
of a nonzero order parameter value of m2 ∼ 0.02 in Fig. 1.

V. CONCLUSIONS AND OUTLOOK

Exploration of randomness and dilution effects on mag-
netic and superconducting order is crucial to understanding
disordered strongly interacting quantum systems, such as
heavy fermions and cuprates. Impurities reduce order but also
nucleate ordered domains which, when sufficiently proximate,
coalesce to create long-range order [41–43]. We brought
together exact QMC calculations of the effect of impurities
on spin correlations/domains and the NMR relaxation rate as
a system is tuned through a QCP.

Our key conclusions are as follows: (i) The impurity sus-
ceptibility, defined as the response of the AF order parameter
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to the removal of a small number of spins, exhibits a sharp
peak at the QCP so that low disorder concentrations readily
lead to long-range order; (ii) the critical concentration pc for
randomness to induce long-range AF order in the singlet phase,
at moderate β, is well described by ξ

√
pc ∼ 0.4, where ξ is

the spin-correlation length at g > gc; and (iii) verification that
the NMR relaxation rate is nearly temperature independent at
the QCP and that an abrupt increase in the local value of 1/T1

on an impurity site provides a clear signature of the QCP.
Our paper focused on localized Heisenberg spins. Anal-

ogous studies dealing with itinerant electrons, such as the
periodic Anderson model, are underway [44]. In that case, an
impurity is modeled by a site with reduced c-f hybridization
V ∗ < V , and similar to our case, it becomes increasingly

effective at inducing AF correlations as the AFM-singlet
transition is approached.
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Quantum Monte Carlo simulations are used to study the magnetic and transport properties of the Hubbard
model, and its strong coupling Heisenberg limit, on a one-third-depleted square lattice. This is the geometry
occupied, after charge ordering, by the spin- 1

2 Ni1+ atoms in a single layer of the nickelate materials La4Ni3O8

and (predicted) La3Ni2O6. Our model is also a description of strained graphene, where a honeycomb lattice has
bond strengths which are inequivalent. For the Heisenberg case, we determine the location of the quantum critical
point (QCP) where there is an onset of long range antiferromagnetic order (LRAFO), and the magnitude of the
order parameter, and then compare with results of spin wave theory. An ordered phase also exists when electrons
are itinerant. In this case, the growth in the antiferromagnetic structure factor coincides with the transition from
band insulator to metal in the absence of interactions.

DOI: 10.1103/PhysRevB.95.045131

I. INTRODUCTION

Over the last several decades, quantum Monte Carlo (QMC)
methods have been widely used to investigate magnetic,
charge, and pairing correlations in the Hubbard Hamiltonian
on a square lattice [1–7]. A central issue has been the
intimate interplay between these different types of order,
most fundamentally the possibility that magnetic correlations
give rise to d-wave superconductivity. The occurrence of
inhomogeneous (stripe) charge distributions upon doping the
half-filled lattice, where antiferromagnetism (AF) survives in
regions of low hole concentration but is suppressed on stripes
of high concentration, has also been shown to have profound
implications for pairing [8].

In more recent studies, the effect of depletion of the square
lattice has also been investigated. In this case, a regular
removal of sites can be regarded as an extreme limit of
the spontaneous formation of charge and spin patterns in
which the degrees of freedom on certain sites are completely
eliminated. Further types of transitions were then shown to
occur within these geometries. Two prominent examples are
the Lieb lattice [9], where 1/4 of the sites are removed,
giving rise to a flat electronic band and ferromagnetism, and
the 1/5-depleted lattice [10–15], where spin liquid phases
compete with magnetic order. This latter geometry is realized
by the vanadium atom locations in CaV4O9, and also by some
members of the iron-pnictide family [16,17]. A crucial feature
of this situation is the occurrence of two separate types of
bonds, and hence of exchange or hopping energies, in the
depleted structure.

Depleted lattices can also be formed starting from other,
nonsquare, lattices. For example, the Kagomé lattice arises
from removing one fourth of the sites of a triangular lattice.
Like the Lieb lattice, the Kagomé structure has a flat band.
However, because it is not bipartite, the band does not lie
between the dispersing ones.

In this paper we investigate the magnetic and charge
patterns within the 1/3-depleted square lattice of Fig. 1, which
is formed by the red sites remaining after the removal of
the black sites, which form stripes along one diagonal. The
bonds between red sites are of two sorts: ones which were the

near-neighbor bonds of the original, full square lattice, and
ones which connect through the diagonal rows of removed
sites, and which were next near neighbors of the original lattice.
This distinction will be modeled, in the following sections, by
allowing for different energy scales on the two types of bonds.
Notice that this lattice structure remains bipartite, a fact which
has implications for AF order without frustration and also for
the absence of a sign problem in QMC simulations.

Figure 1 is equivalent to a strained version of the hon-
eycomb geometry realized in graphene. “Artificial graphene”
lattices can be achieved by nanopatterning [18], by molecule-
by-molecule assembly [19], or by trapping ultracold atoms
on optical lattices. They offer the possibility of tunable bond
strengths, for example through application of strain, and have
recently been discussed as a means for further investigation of
Dirac particles and their associated correlated and topological
phases [20]. Graphene with a “Kekulé distortion” [19,21,22]
involves the appearance of two distinct bond hoppings, albeit
in a pattern different from that of Fig. 1.

A second motivation for investigating the geometry of
Fig. 1, which more directly connects with the notion of
“depletion” and which also fundamentally involves magnetic
order, is provided by recent experimental [23] and theoretical
[24] studies of the layered nickelates La4Ni3O8 and La3Ni2O6.
In these materials, the formal Ni valences of +1.33 and +1.5
are separated into charge ordered Ni1+ (spin 1

2 ) and Ni2+ (spin
0), so that spin- 1

2 stripes are formed at 45◦ relative to the
Ni-O bonds, as in Fig. 1 for La4Ni3O8. This charge ordering is
accompanied by structural distortions and the opening of a gap.
The Ni1+ atoms form an AF arrangement in analogy with the
magnetism of the CuO2 planes of the cuprate superconductors.
Here we will investigate AF correlations associated with this
geometry. Other layered nickelate materials [25–28] have also
been investigated with quantum simulations, especially within
the classical spin-fermion method [29].

II. STRONG COUPLING (HEISENBERG) LIMIT

We first consider the case of localized spin-
1/2 moments on the 1/3-depleted lattice with

2469-9950/2017/95(4)/045131(6) 045131-1 ©2017 American Physical Society
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FIG. 1. The one-third-depleted square lattice. A regular diagonal
stripe array of black crosses is removed, leaving the red site structure.
We will assume two types of bonds exist corresponding to connections
between NN (black) and NNN (green) sites of the original square
geometry. (See text.)

Hamiltonian

H = J

⎡
⎣∑

〈ij〉
�Si · �Sj + g

∑
〈〈ij〉〉

�Si · �Sj

⎤
⎦, (1)

with exchange constants J and gJ on the two types of bonds
of Fig. 1.

This model can be treated within linear spin wave theory
(LSWT) by replacing the spin operators by bosonic ones
via the Holstein-Primakoff (HP) transformation, and then
invoking the linear approximation describing small fluctu-
ations around the broken symmetry phase. The resulting
noninteracting Hamiltonian can be diagonalized in momentum
space and through a Bogliubov rotation. The spin wave
spectrum is

ω(J ∗,k) = J ∗

√
1 − |γ (�k)|2

J ∗2
, (2)

where

γ (�k) =
∑

δ

J (δ)e−i�k·�rδ =J [e−i[(�k·�a1)+(�k·�a2)]/3 + ei[(�k·�a1)−2(�k·�a2)]/3]

gJei[2(�k·�a1)−(�k·�a2)]/3, (3)

with lattice vectors �a1 = 2x̂ − ŷ and �a2 = x̂ + ŷ. Here J ∗ =∑
δ J (δ) is the sum of exchange constants over near-neighbor

sites. The AFM staggered order parameter

ms = 1

N

(∑
i∈A

〈
Sz

i

〉 − ∑
i∈B

〈
Sz

i

〉)
(4)

is obtained in the LSWT, writing 〈Sz
i 〉 in terms of HP operators.

At T = 0 we obtain

ms = S + 1

2
− 1

N

∑
�k

(
1 − |γ (�k)|2

J ∗ 2

)
, (5)

where S is the spin.
We can also treat the Hamiltonian more accurately on

lattices of finite size using the stochastic series expansion

FIG. 2. Finite size scaling of the square of the AF order parameter
m2 for the spin-1/2 Heisenberg model. For a ratio g > 1.75 = gc of
exchange couplings, a transition to a disordered spin liquid state
occurs. LRAFO persists to small values of the interchain exchange.
Data were obtained with the SSE algorithm.

(SSE) quantum Monte Carlo method [30,31]. SSE samples
terms in the power expansion of e−βĤ in the partition
function. Operator loop (cluster) updates perform the sampling
efficiently [30,32]. The square of the staggered magnetization
〈m2

s 〉 can be evaluated to high precision, and extrapolated to
the thermodynamic limit.

Figure 2 shows the results of SSE simulations for different
values of the bond anisotropy g and inverse linear system size
1/L. The order parameter first increases with g, reaching a
maximum at the honeycomb limit g = 1, and finally begins
to decrease. LRAFO vanishes above gc = 1.75 ± 0.01. The
extrapolated order parameter from SSE (Fig. 2) and from
LSWT [Eq. (5)] is given in Fig. 3. LSWT greatly overestimates
the persistence of LRAFO at large g. It also predicts a quantum
phase transition at small, but nonzero, gc = 0.065 ± 0.005.
Similar to the case of a square lattice with anisotropic exchange
[33–35], a zero gc is expected here though a small nonzero
value is obtained in our calculations due to finite size effect.

FIG. 3. Extrapolated values of the SSE results for the AF order
parameter from Fig. 2 and the results of LSWT analysis, Eq. (5). With
LSWT (SSE), LRAFO disappears above gc = 6.20 ± 0.02 (1.75 ±
0.01). The QMC data are shown in the Supplemental Material [32].
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We emphasize the contrast of these results with those of
the Heisenberg model on 1/5-depleted lattice [12] appropriate
to modeling CaV4O9 where the lower gc = 0.60 ± 0.05. The
difference, as for the case of the anisotropic square lattice, is
that for the 1/5-depleted case the building blocks are small
clusters (either dimers or four site plaquettes) in both the g

small and g large limits. In the present case, two site clusters
are formed for large g, but the small g limit still has extended
one-dimesnional (1D) structures. These give rise to LRAFO
even for small g.

III. ITINERANT LIMIT

We next consider itinerant electrons, a single band Hubbard
Hamiltonian on the same 1/3-depleted lattice,

H =−t
∑
〈ij〉σ

(c†iσ cjσ + c
†
jσ ciσ ) − t ′

∑
〈〈ij〉〉σ

(c†iσ cjσ + c
†
jσ ciσ )

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (6)

The hoppings along and between the one-dimensional
chains are t and t ′, respectively. The properties of this model
are solved using the determinant QMC method [32,36]. In
this method the partition function is expressed as a path
integral. The discretization of inverse temperature β enables
the isolation of the quartic interaction terms which are
decoupled via a Hubbard-Stratonovich (HS) transformation.
The resulting quadratic fermionic trace is done analytically,
and the HS field is then sampled stochastically. Because the
scaling is cubic in the lattice size N we study systems only up to
N = 2 × 12 × 12 sites in contrast to the spin models described
in the previous section where SSE scales linearly in N and
systems up to N = 1600 (or more) are accessible. Equation
(6) is written in particle-hole symmetric form so that the lattice
is half-filled ρ = 〈ni↑ + ni↓〉 = 1 for all lattice sites i and any
values of t ′, U , and temperature T . At this electron density,
simulations are possible down to low T without encountering
the fermion sign problem [37].

In the noninteracting limit of Eq. (6) we have two bands
with dispersion,

E(�k) = ± {[t + t cos(�k · �a2) + t ′ cos(�k · �a1)]2

+ [t sin(�k · �a2) + t ′ sin(�k · �a1)]2}1/2. (7)

Here the noninteracting band width w is kept fixed, w = 4t +
2t ′ = 6, as t ′/t varies, setting the the energy scale w = 6
throughout the paper. As illustrated in Fig. 4(a), the band gap
� vanishes for t ′/t < 2. These bands touch at two Dirac points
for t ′/t = 1

2 in Fig. 4(b). Figure 4(c) shows the band insulating
case t/t ′ = 0.25.

To characterize the magnetic properties of Eq. (6) we
measure the AF structure factor

SAF = 1

N

∑
l,j

(−1)l〈�Sj · �Sl+j 〉, (8)

where the factor (−1)l = +1 (−1) if site l is on the same
(different) sublattice of the bipartite structure of Fig. 1.

The spin correlation in the singlet phase falls off exponen-
tially with separation l and SAF is independent of lattice size.

t'/t
0.0 0.5 1.0

Δ

0
1
2
3

t/t'
0.5 0.0

k ⋅ a2/π
→ →

k ⋅ a1/π 
→ →

k ⋅ a1/π 
→ →k ⋅ a2/π

→ →

(a)

(b) (c)

FIG. 4. (a) Band gap � as a function of the ratio of hopping. �

vanishes for t ′/t < 2. The noninteracting limit is a band insulator
(� > 0) for t ′/t > 2. (b) Semimetallic band structure at t ′/t = 0.5.
(c) Insulating band structure at t/t ′ = 0.25.

If LRAFO is present, SAF ∝ N , since spin correlations remain
nonzero out to all distances on a finite lattice.

Figure 5 shows SAF on an N = 8 × 8 lattice for different
U as a function of t/t ′. It is known that LRAFO exists at
the symmetric honeycomb lattice point t = t ′ only when U

is sufficiently large [38–41], with the most accurate value
[42] of the critical point Uc = 3.869 ± 0.013. The data of
Fig. 5 are suggestive of this result, with SAF being essentially
independent of the value of t/t ′ for U = 1,2,3, and becoming
both larger and sensitive to the anisotropy for U � 4.

t'/t
0.0 0.5 1.0

S A
F

0

4

8

12

t/t'
0.5 0.0

U=1
U=2
U=3
U=4
U=5
U=6

FIG. 5. The AF structure factor SAF is shown as a function of
hopping anisotropy for different U . The linear lattice size L = 8
so that the number of sites N = 128. (There are 64 unit cells
each with two sites.) The inverse temperature discretization �τ =
β/L = 1/2U except for U = 1 where �τ = 1/4. Data were acquired
from 25 simulations of 1000 equilibration and 4000 measurement
sweeps for each t ′/t . The QMC data is shown in the Supplemental
Material [32].
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FIG. 6. Finite size scaling of the AF structure factor SAF for t/t ′ =
0.95 (a) and t ′/t = 0.90 (b). In both cases Uc > 4.5 is well above the
critical interaction strength Uc = 3.869 for isotropic hopping [42].

Finite size scaling can be used to analyze quantitatively
the possibility of LRAFO. Such data are shown in Fig. 6. We
find that hopping anisotropy increases Uc, in agreement with
our results for the g dependence of the order parameter in the
strong coupling Heisenberg model (Fig. 3) which falls off to
either side of g = 1.

A second diagnostic of magnetic order is the near-neighbor
spin correlation between adjacent pairs of sites. This can be
evaluated for both intra- and interchain bonds, and measures
the formation of singlet correlations mt and mt ′ , respectively,
on the associated bonds. Figure 7 shows mt and mt ′ for different
values of U . For the Heisenberg limit, U → ∞, we use J ∼
t2/U to convert g = J ′/J to

√
t ′/t . In the strong coupling

limit 〈Si · Sj 〉 = − 3
4 for a singlet. Here in the Hubbard model,

the finite value of the on-site repulsion U < ∞ allows for
charge fluctuations which reduce the magnitude of the singlet
correlator. The quantities mt and mt ′ have opposite trends in
the two regimes t ′ < t and t < t ′ of Fig. 7. When t/t ′ < 1, mt

is suppressed, and mt ′ increases and saturates with decreasing
t/t ′. This supports the physical scenario in which singlets are

FIG. 7. Near-neighbor (singlet) spin correlation function across
intra- and interchain bonds mt and mt ′ , respectively. 〈Si · Sj 〉 is large
and independent of t ′/t for t ′/t � 2. This value matches the point at
which a nonzero gap � opens in the spectrum, Fig. 4(a). The limiting
value at t ′ = 0 (t = 0) is 0.4515 [42] (0.75). The QMC data are shown
in the Supplemental Material [32].

U
/(4
+U
)

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 0.5 0

t'/t t/t'

AF

Metal Band insulator

FIG. 8. Phase diagram. The U = ∞ Heisenberg limit is along the
top of the figure, U/(4 + U ) = 1, and is extracted from the data of
Fig. 3. The critical interaction strength diverges even prior to entry
into the band insulator phase at t/t ′ = 0.5.

formed between the stronger t ′ bonds. On the other hand, if
t ′/t < 1, mt ′ is diminished. mt approaches the short range AF
correlations of the 1D chains [43], without the formation of
singlets on the t bonds. Thus although at first glance Fig. 5
indicates similar, reduced values for SAF for both small t ′/t

and for small t/t ′, the singlet correlator of Fig. 7 suggests
these are rather distinct limits: full singlets form at t/t ′ → 0
but not t ′/t → 0. It is interesting to note that the crossing of
the two NN spin correlators is always at t = t ′ regardless of
U . This is in contrary to what was found in the 1/5-depleted
square lattice [15]. The reason is that for the lattice considered
here we get a honeycomb lattice at t = t ′ where all bonds
are equivalent. However in the 1/5-depleted case, the bonds
remain inequivalent at t = t ′, so to get the spin correlations
the same we need to shift t away from t ′.

The evaluation of these magnetic correlations allows us to
sketch the phase diagram in the plane of hopping anisotropy
and interaction strength shown in Fig. 8. The fact that gc =
1.75 in the Heisenberg limit is less than the anisotropy required
to open a nonzero gap � in the noninteracting band structure
suggests that the destruction of LRAFO involves more than
the simple RPA-like criterion of the vanishing of the density
of states at the Fermi level. That is, the competing possibility
of singlet formation also plays a role in the absence of LRAFO.

IV. CONCLUSION

In this paper we have investigated magnetic ordering on a
two-dimensional lattice formed by the regular removal of one
third of the sites from a square lattice. We analyzed the strong
coupling, Heisenberg limit using spin-wave theory and QMC
(SSE), and determined the range of the ratio J ′/J on the two
types of bonds in which an ordered AF phase exists at T = 0.
Unlike the one-fifth-depleted lattice, which breaks into small
clusters in both the J = 0 and J ′ = 0 limits, we have shown
that AF order persists to very small J ′/J as a consequence of
the fact that extended one-dimensional chains are still present
when J ′ = 0.

We also used DQMC to study the single band Hubbard
Hamiltonian on this lattice. The singlet correlator was found
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to grow rapidly for t ′/t ∼ 1.5, coinciding with a loss of AF
order and the approach to the band insulator at t ′/t > 2 in
the noninteracting limit. The critical interaction strength Uc ∼
3.87 for t = t ′ was shown to increase with inhomogeneity
t ′ �= t . The effect of random removal of sites on AF order has
been studied in both itinerant and localized models [44–48].

The one-third-depleted geometry that we investigated has
recently been shown to be realized as a result of charge stripe
ordering in the nickelates [23,24], so our simulations speak
to the conditions for AF order in those materials. The relative
strengths of first and second neighbor exchange couplings for
nickelates has not yet been addressed. Another key feature is
the presence of multiple NiO2 layers and the surprising nature
of charge equivalence between the layers [23,24]. We cannot
immediately address this phenomenon, since in our treatment
charge ordering is put in a priori through our consideration of

a one-third-depleted lattice and, in addition, our restriction to
a single layer model.

A more approximate method than DQMC, which considers
itinerant electrons interacting with classical spins [49,50], can
be employed to treat multiple bands. It may be used to explore
the spontaneous formation of charge ordering, and we leave
the details of this to future study.
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We investigate the harmonic-trap control of the size and shape of Mott regions in the Fermi-Hubbard model
on a square optical lattice. The use of Lanczos diagonalization on clusters with twisted boundary conditions,
followed by an average over 50–80 samples, drastically reduces finite-size effects in some ground-state properties;
calculations in the grand-canonical ensemble together with a local-density approximation allow us to simulate
the radial density distribution. We have found that as the trap closes, the atomic cloud goes from a metallic state
to a Mott core and to a Mott ring; the coverage of Mott atoms reaches a maximum at the core-ring transition. A
“phase diagram” in terms of an effective density and of the on-site repulsion is proposed as a guide to maximize
the Mott coverage. We also predict that the usual experimentally accessible quantities, the global compressibility
and the average double occupancy (rather, its density derivative), display detectable signatures of the core-ring
transition. Some spin-correlation functions are also calculated and predict the existence Néel-like ordering within
Mott cores and rings.

DOI: 10.1103/PhysRevA.91.023632 PACS number(s): 03.75.Ss, 67.85.−d, 71.30.+h

I. INTRODUCTION

Ultracold atoms in optical lattices have emerged as an
invaluable tool in the study of strongly correlated fermions
[1–3]. The range of applications has broadened, shedding light
on the problems of coherence and entanglement [2]; also,
imaging has become an important asset [4] in the study of
dynamics of quantum phase transitions [5]. Ultracold atoms in
optical lattices also may act as quantum simulators, in the sense
that experiments can extract information on many-body mod-
els which have so far eluded many theoretical approaches [3].
For instance, the compressibility of 40K atoms in an optical lat-
tice has been measured as a function of both trap compression
and on-site repulsion [6]: as the trap is deepened or the repul-
sion between atoms is increased, first a Mott “shell” develops
within an overall metallic phase, followed by the emergence
of a Mott core; the appearance of these Mott regions is in
line with theoretical predictions for a trapped Hubbard model
[7–10]. The controlled appearance of Mott regions represents
an important step towards the experimental observation of
antiferromagnetism in fermionic atomic clouds [11]; as such
it could also help elucidate its role as a precursor to the
superconducting state in cuprates [3], especially in relation to
the the two-dimensional CuO2 planes. In this respect, one must
be able to characterize the size and form of the Mott region for
the trap parameters at hand. Here we focus on aspects of the
latter issue for the case of a square optical lattice; this choice of
lattice is motivated both by the possibility of singling out some
special features brought about by the van Hove singularity and
by the use of an unbiased calculational method (see below).
Our main result is that the use of experimentally accessible
global quantities, such as compressibility and (derivative of)
average double occupancy, can be used to map out local
phases and phase separation; accordingly, we have established
a “phase diagram” describing the boundaries between the Mott
ring and core in terms of trap depth, fermion repulsion, and
the number of particles.

II. MODEL AND METHODOLOGY

The fermionic atoms are described by a repulsive Hubbard
model with a position-dependent chemical potential (due to a

parabolic confining potential), namely,

H = −
∑
〈i,j〉,σ

tij(c
†
iσ cjσ ) + U

∑
i

(ni↑ − 1/2)(ni↓ − 1/2)

−
∑

i

(
μ0 − Vtr

2
i

)
(ni↑ + ni↓), (1)

where i runs over the Ns sites of the lattice, the spin state is
σ =↑ or ↓, and niσ = c

†
i σ ci σ ; tij is the hopping integral (or

tunneling rate) between sites i and j, U is the magnitude of
the on-site repulsion, μ0 is the (bare) chemical potential, Vt

measures the trap curvature, and ri measures the distance of
site i to the center of the trap.

We first consider the homogeneous Hamiltonian (i.e.,
Vt = 0) on the clusters of Fig. 1(a). Whenever a fermion hops
between two adjacent copies of the cluster [or, equivalently,
reenters through an opposite edge of the same cluster, as in
Fig. 1(b)], the hopping term picks up a phase, tij = teiϕij ;
otherwise, tij = t (the bandwidth W = 8t sets the energy
scale). Periodic boundary conditions (PBC) correspond to
ϕij = 0,∀ i,j, and antiperiodic ones correspond to ϕij = π,∀ i,j.
Different sets of pairs ϕ ≡ (ϕx,ϕy) yield different allowed k
points, and finite-size effects are minimized by considering
an ensemble of random sets ϕ(�), � = 1, . . . ,M; for each
ϕ(�), we calculate the quantities of interest (see below) and
average over the M realizations [12–16]. In so doing, the
number of allowed k points increases, mimicking the dense
(Ns → ∞) Brillouin zone (BZ). Clusters of up to ten sites are
amenable to Lanczos diagonalizations, and Fig. 2(a) compares
three different results for the fermion density as a function
of the chemical potential. Lanczos diagonalization with PBC
displays spurious plateaus (“closed-shell” effects [17]), which
are wiped out with averaged boundary conditions (ABC).
ABC also improve considerably the agreement with quantum
Monte Carlo (QMC) results on much larger lattices, with the
advantage of being free from the “minus-sign problem” at low
temperatures [17,18], signaled in Fig. 2(a) by the large error
bars for μ/t � 2; the corruption of QMC worsens in the more
interesting regime, U > W .

1050-2947/2015/91(2)/023632(5) 023632-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) Square-lattice clusters; (b) “twisted”
boundary conditions introduced through phases ϕx and ϕy in the
hopping term (see text).

III. RESULTS AND DISCUSSIONS

The harmonic trap is taken care of through the local-density
approximation (LDA): we assume the fermion density at
a distance r from the trap center is given by the uniform
density at the value μ = μ0 − Vtr

2, with μ0 determined
by fixing N = 2π

∫ ∞
0 n(r)r dr = (π/Vt )

∫ μ0

−∞ dμn(μ), with
n(μ) being the fermion density. LDA is known to provide a
good description of density profiles but can fail for spectral
properties [7,19,20]. Our results were obtained for N ∼ 103

atoms and typically between 50 and 80 samples of BC, which
also include the different clusters of Fig. 1. Although we limit
our study to ground-state properties, the results are relevant to
actual experiments: In the temperature scale kBT � t , already
accessible to experiments, the entropy is associated with the
spin, not “charge,” degrees of freedom; therefore, the density
and compressibility (see below) do not vary appreciably with
temperature in this regime [20].

Figure 2(b) shows typical radial distributions of atoms for
different trap openings. For shallow traps the cloud spreads out,
minimizing repulsion, thus favoring a single metallic phase
with average site occupancy less than 1. As the trap narrows,
phase separation sets in: the atoms confined around the trap
center form an incompressible core with singly occupied sites
over a radius of approximately 15 optical lattice sites; the atoms
surrounding this Mott core are in a metallic state. Further
trap narrowing leads to the formation of an insulating Mott
ring, surrounded by metallic phases; with increasing Vt , the

FIG. 2. (Color online) (a) Fermion density vs chemical potential
using different methods: Lanczos diagonalization with PBC and ABC
and QMC. The spurious plateaus with PBC are removed when ABC
are used. (b) Radial distribution for N = 103 atoms for different trap
depths Vt .

FIG. 3. (Color online) (a) Local-moment radial distribution.
(b) First-neighbor (solid symbols) and second-neighbor (open sym-
bols) spin-correlation functions, calculated at different positions;
arrows illustrate the magnetic arrangements.

metallic core eventually becomes a “band-insulating” center
(site occupancy of two fermions per site, within a radius of
only a few lattice sites). We will see below that for fixed Vt ,
the evolution of Mott phases with increasing U is reversed:
metallic to ring to core.

The magnetic properties of the cloud are influenced by
the phase separation. For a homogeneous system, the local
moment in the ground state, m2

i ≡ 〈[ni↑ − ni↓]2〉, is maximum
at the Mott insulating density [21]. Figure 3(a) shows the
radial local-moment distribution for the optical lattice: the
nearly saturated plateaus (for Vt/t = 0.02 and 0.05) occur
exactly at the half-filled sites, as depicted in Fig. 2(b); this
provides further evidence that these rings and cores are,
indeed, Mott regions. We have also examined the spin-spin
correlation function, Cδ = 〈Sz

i S
z
i+δ〉, where δ = ax̂ or aŷ for

nearest neighbors and δ = ax̂ + aŷ for next-nearest neighbors;
a is the lattice spacing. Figure 3(b) shows Cδ for the same trap
openings discussed in Fig. 3(a). Within both Mott regions
(ring and core), the local moments are strongly correlated,
that is, both nearest- and next-nearest-neighbor correlations
are saturated in a Néel-like arrangement; by contrast, the
correlations are suppressed outside the Mott regions. For the
wide trap, the correlations are much weaker, showing no
saturation throughout the trap. Therefore, in order to probe
a Néel state, experimenters have at their disposal not just Mott
cores but Mott rings as well.

Figure 4(a) shows the number of atoms in the Mott state NM

as a function of the trap depth Vt/t for a fixed on-site repulsion
U/W and for different total numbers of trapped atoms. Two
thresholds are clearly identified: the one at smaller Vt/t signals
the first appearance of a Mott region (the core), while the one
at larger Vt/t marks the maximum number of Mott atoms; the
latter also coincides with the changeover between core and
ring geometries. As the number of atoms increases, the Mott
regions appear at wider traps, but the two thresholds approach
each other.
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FIG. 4. (Color online) (a) Number of atoms in a Mott state NM

vs trap depth for different numbers of atoms in the cloud N . The inset
shows the fraction of atoms in a Mott state, θ ≡ NM/N , in terms of
the scaled density, which tracks Vt/t (see text). (b) Mott fraction θ

as a function of the scaled density for several values of U . (c) Phase
diagram: the bottom and top curves respectively show ρc and ρm (see
text).

The trap brings about another length scale, ζ ≡√
4t/Vt [19,22], the effective trap size. We then plot the

fraction of Mott atoms, θ ≡ NM/N , in terms of an effective
atomic density, ρ = N/ζ 2: the data collapse into a single
curve [inset of Fig. 4(a)]. This perfect universal behavior (for
a given U/W ) can be shown to be an artifact of the LDA;
nonetheless, the overall trend of Fig. 4(b), which shows the
evolution of the Mott coverage with U/W , can certainly be
used as a guide to optimize the area of the Mott regions in
actual experiments. We note that the lowest threshold density
ρc increases quite slowly with U/W . By contrast, ρm, the
density at which the Mott atomic fraction peaks (above which
the Mott region is a ring), displays a significant increase
with U/W ; likewise, Fig. 4(b) shows that the peak width
also increases monotonically with U/W . In three-dimensional
optical lattices, values of U/W � 7 have been tuned for
40K [6,23], as well as values of �3 for 6Li [11,20]; Fig. 4(b)
indicates that with values of U/W ∼ 4 on two-dimensional
optical lattices, one can expect to find at least 50% of the
atoms in a Mott state for a wide range of effective densities.

These results are summarized in the phase diagram in
Fig. 4(c): both ρc and ρm are shown as functions of the
repulsion U/W , thus highlighting the regions in parameter
space in which Mott rings and Mott cores are formed. The
diagram shows that U (tuned by, e.g., a magnetic field
probing the Feshbach resonance) controls the range of effective
densities in which Mott cores are found: larger values of
U/W allow more flexibility in the choice of trap openings
and number of atoms in the cloud. It also sets limits (through
ρm) beyond which one can select Mott rings instead: the larger
the values of U/W are, the tighter the traps have to be in order
to generate rings.

The experimental probes used in Ref. [6] to detect the
presence of Mott phases in the trapped cloud are the global

FIG. 5. (Color online) Global compressibility (solid black line;
left axis), derivative of double occupancy (dashed green line; right
axis), and Mott coverage (dotted red line; left axis) as functions of
the effective density. Each panel is for a fixed value of U/W ; data
for the compressibility are scaled by

√
2N for clarity. The inset in

(b) is the double occupancy, whose derivative is plotted in the main
panels. For U/W �= 0, the light blue vertical lines guide the eyes to
signatures of ρc and ρm.

compressibility, defined as

κRsc
≡ − 1

R2
sc

dRsc

dρ
, Rsc =

√
〈R2〉
Nσ

, (2)

where
√

〈R2〉 is the mean-square average cloud size and Nσ =
N/2 for an unpolarized gas, and the global double occupancy

D = 1

N

∫
d2r d↑↓(r) n(r), d↑↓ = 〈n↑n↓〉. (3)

As we now discuss, these quantities can be used to distinguish
between the core and rings. For completeness, we mention
that other definitions of compressibility, local and global, have
been adapted to the context of trapped atoms [19,20,22,24,25],
but they have not been used to map shapes and sizes of the
Mott regions.

Figure 5 shows our results for these probes; data for θ (ρ)
from Fig. 4(b) have also been included for comparison. For
U = 0 [Fig. 5(a)], κRsc

(ρ) shows a hump when the chemical
potential crosses the van Hove singularity; for the square lattice
this occurs when sites near the trap center are singly occupied
(n = 1), while for the simple cubic lattice our calculations (not
shown) indicate that this occurs at the edge of the singularity,
corresponding to the occupation n ∼ 0.4. For U �= 0, the
hump in κRsc

(ρ) persists but is now followed by a drop;
interestingly, a similar hump appears in one instance of the
corresponding experimental data for the three-dimensional
optical lattice [6], but as far as we know, a systematic analysis
has not been carried out. A comparison with the plots of
θ (ρ) correlates this drop with ρc: the second derivative of
Rsc appears to be discontinuous at ρc. Further, this drop is
interrupted at some larger effective density, which is now
associated with ρm, beyond which κRsc

(ρ) goes through a
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FIG. 6. (Color online) (top) Mott coverage, (middle) global com-
pressibility, and (bottom) D′ as a function of U/W for different ρ.
The vertical line across the panels locates the critical value of U/W

for the formation of a Mott core when ρ = 5 (see text).

local maximum. The latter rise was clearly visible in the
experimental data for ultracold 40K atoms [6] and was actually
used to signal the appearance of a Mott region in three
dimensions; unfortunately, cores or “shells” could not be
systematically resolved by those data, which have also been
somewhat smoothed by the low, but finite, temperatures.

The inset in Fig. 5(b) shows the average double occupancy
D(ρ) rising slowly from zero for wide traps and sharply beyond
ρm: the decrease in the Mott coverage beyond this trap depth
(for fixed N ) allows double occupancy to set in between the
trap center and the Mott ring [see Fig. 2(b)]. However, a dis-
tinctive signature of ρc cannot be unambiguously identified in
the D(ρ) plots. By contrast, the panels for U/W �= 0 in Fig. 5
show that D′ ≡ ∂D/∂ρ does display a local maximum at ρc

and a sudden rise at ρm. These signatures are more distinctive
for larger values of U/W , when D′ goes to zero between

ρc and ρm, as a result of a large fraction of atoms being in Mott
states. Therefore, the use of D′ allows one to resolve these
critical effective densities.

It is also instructive to discuss the behavior with U/W for
three fixed effective densities, as shown in Fig. 6. For ρ = 5,
the ring-core “transition” occurs at (U/W )c = 1, the value at
which a vertical line is drawn: θ is peaked, and both κRsc

and D′
abruptly change their slopes. As ρ decreases, so does (U/W )c,
but for sufficiently small ρ (e.g., ρ = 2.3 in Fig. 6), the Mott
core cannot withstand strong repulsion and becomes metallic.
Again, the signature of the ring-core transition can also be
sought in the U/W dependence of these global quantities.

IV. CONCLUSIONS

In summary, fermionic atoms trapped in a two-dimensional
optical lattice display several interesting features when an-
alyzed in terms of an effective density, ρ ∝ NVt (N is the
number of atoms in the cloud, and Vt is the trap opening). As
the trap narrows, a Mott core forms at some ρc, which, upon
further narrowing, becomes a Mott ring at ρm. The fraction
of atoms in a Mott state θ (ρ) displays a maximum at ρm,
so that the number of atoms in a Mott state does not grow
with U/W beyond the ring-core transition. A phase diagram
for the boundaries ρm(U/W ) and ρc(U/W ) was proposed,
which should be useful in the experimental control of the
geometry of the Mott state. These special densities can be
experimentally identified through the global compressibility
and the double occupancy D (actually, ∂D/∂ρ). Finally, we
note that the density of states leaves detectable traces on
measurable quantities. This could pave the way for studies
of trapped fermionic atoms in two dimensions addressing
two long standing issues related to the Hubbard model: the
Fermi-liquid nature (marginal or otherwise [26,27]) of the
ground state and the evolution from a Mott insulator to
superconductor, as in the cuprates.
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