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Resumo

Influence of van der Waals corrections on multi layer

graphene/graphite systems in Density Functional

Theory

Rafael Rodrigues Del Grande

Orientador: Rodrigo Barbosa Capaz

Coorientador: Marcos Gonçalves de Menezes

Resumo da Dissertação de Mestrado apresentada ao Programa de Pós-
Graduação em F́ısica do Instituto de F́ısica da Universidade Federal do Rio de
Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do t́ıtulo de
Mestre em Ciências (F́ısica).

O grafeno é um material formado por uma folha de átomos de carbono com a espes-

sura de um único átomo que tem atráıdo atenção devido às suas propriedades mecânicas,

elétricas e óticas não usuais. É posśıvel empilhar diversas camadas de grafeno para se

obter grafeno multicamadas (multilayer graphene), cujas propriedades são senśıveis ao

número de camadas e à orientação relativa entre elas.

Estes materiais têm sido extensivamente estudados teoricamente ao longo dos anos com

o aux́ılio da Teoria Funcional da Densidade (DFT na sigla em inglês), entretanto as

interações de van der Waals (VDW), que são fundamentais para a estabilidade desses

materiais, só foram inclúıdas em estudos mais recentes. Neste trabalho, a influência

de diferentes formas de inclusão da interação de VDW nos cálculos DFT sobre as pro-

priedades mecânicas e as frequências de vibração de modos óticos de baixa energia desses

materiais é analisada e comparada.
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Observamos que constantes elásticas e frequências de fônons relacionados ao deslocamento

entre camadas são substancialmente alteradas, tanto para grafite quanto para grafeno mul-

ticamada, com a inclusão da interação de VDW. Interessantemente, sem a inclusão da

interação de VDW, a aproximação LDA (densidade local) para o funcional de troca e

correção da DFT provê uma boa descrição de algumas propriedades muito melhores do

que a aproximação GGA (gradiente generalizado), e comparável com os resultados obtidos

com funcionais de VDW.

Palavras-chave: Grafeno, Grafite, DFT, van der Waals
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Abstract

Influence of van der Waals corrections on multi layer

graphene/graphite systems in Density Functional

Theory

Rafael Rodrigues Del Grande

Orientador: Rodrigo Barbosa Capaz

Coorientador: Marcos Gonçalves de Menezes

Abstract da Dissertação de Mestrado apresentada ao Programa de Pós-
Graduação em F́ısica do Instituto de F́ısica da Universidade Federal do Rio de
Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do t́ıtulo de
Mestre em Ciências (F́ısica).

Graphene is one atom thick material made of carbon atoms that have attracted at-

tention because of its unusual mechanical, electrical and optical properties. It is possible

to stack several graphene layers in order to obtain multilayer graphene, which have prop-

erties that are sensitive to the number of layers and their relative orientation.

Those materials have been theoretically studied over the years with the Density Functional

Theory (DFT), although the van der Waals (VDW) interactions, that are fundamental

for those materials stability, have just recently been included on these studies. In this

work, the influence of different ways of including VDW interactions in DFT calculations

over the mechanical properties and vibrational frequencies of small energy optical modes

of those materials is analyzed and compared.

We observe that, for both graphite and multilayer graphene, elastic constants and phonon

frequencies related to inter-layer displacements are substantially altered with the inclu-
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sion of VDW interactions. Interestingly, without VDW corrections, LDA (local density

approximation) provides a fair description of some interlayer properties as well, much

better than GGA (generalized gradient approximation) without VDW corrections, and

comparable to the results obtained using VDW corrections.

Keywords: Graphene, Graphite, DFT, van der Waals
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Carlos, Pedro, Tarik, Diego e tantos outros pelas discussões e zueiras.



ix

Agradeço as agências de fomento CNPq e INCT nanomateriais de carbono pelo suporte

financeiro oferecido durante o mestrado.



x

Contents

Abstract x

List of Figures xiii

List of Tables xx

1 Introduction 1

1.1 Why study graphene? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Multilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methodology 11

2.1 Crystal Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Density Functional Theory (DFT) . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . . . . 17

2.3.3 The Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Exchange-Correlation functional . . . . . . . . . . . . . . . . . . . . 23

2.3.5 Plane-waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



xi

2.3.6 ~K-point sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.7 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Van der Waals interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Van der Waals on DFT . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Crystalline vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Dynamical Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Forces on DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Calculation of Phonon Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Frozen Phonon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.3 Density Functional Perturbation Theory (DFPT) . . . . . . . . . . 45

3 Results and Discussion 48

3.1 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Lattice and Elastic Constants . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Multilayer Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Phonon Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Multilayer Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Conclusions 73

Bibliography 75

A Eigenvectors for frozen phonon calculations 86

A.1 Bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



xii

A.2 Trilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3 4-layer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4 5-layer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B Anharmonic Effects included by First Order Perturbation Theory 91



xiii

List of Figures

1.1 Schematic view of graphene generating others materiais, respectively from

left to the right: fullerene (0 dimensional), carbon nanotube (1 dimen-

sional), graphite (3 dimensional).Figure reproduced from [1]. . . . . . . . 2

1.2 Electronic dispersion of graphene with emphasis in the linear relation near

the K and K’ points of the first Brillouin zone. Figure reproduced from [7]. 3

1.3 t(n+m)LGs are multilayer graphene with n+m layers where the first n lay-

ers are rotated in relation to the other m layers, so t(2+2)LG and t(1+3)LG

have the same number of layers but their relative orientation are different.

Stokes/anti-Stokes Raman spectra in the C peak region and Stokes spectra

in the G and 2D spectral regions for four t(m+n)LGs are shown above.The

excitation energy used for each t(m+n)LG is indicated. Figure reproduced

from [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 (a) Stokes and anti-stokes C peaks and G peak for multilayer graphene and

graphite (bulk). (b)C and G peaks dependence on the number of layers in

multilayer graphene. Figure reproduced from [33]. . . . . . . . . . . . . . 5

1.5 (a) Raman spectra for multilayer graphene of different thickness and stack-

ing order. (b) The frequency of the subpeaks in the LOZO’ band for mul-

tilayer graphene with two stacking orders as a function of layer thickness.

The error bars correspond to the width of Raman features. Figure repro-

duced from [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5



xiv

1.6 Convergence of out of plane (left) and in plane (right) frequencies as a

function of the number of layers. In both figures solid, open, and thick ring

symbols denote, respectively, Raman, IR, and simultaneous Raman and IR

activity. Dashed lines indicate the corresponding frequency values in bulk

graphite. Figure adapted from [34]. . . . . . . . . . . . . . . . . . . . . . 6

1.7 Comparision of several VDW functionals to evaluate the binding energy

between a graphene sheet and a Ni(111) surface. As one can notice the

PBE functional gives a much smaller binding energy. Figure reproduced

from [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Hexagonal sublattices A and B of graphene and the basis vectors ~a1 and

~a2 generating a honeycomb structure. Reciprocal lattice generated by ~b1

and ~b2. First Brillouin zone and some high symmetry points (Γ, M , K and

K ′). Figure reproduced from [7]. . . . . . . . . . . . . . . . . . . . . . . . 8

1.9 Top view of bilayer graphene in configurations AB (left) and AA (right).

Figure created with xcrysden software [18,19]. . . . . . . . . . . . . . . . 9

1.10 Trilayer graphene in configurations ABA (left) and ABC (right). Figure

reproduced from [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.11 Graphite lattice structure (left) and first Brillouin zone and some high

symmetry points. Figure adapted from [21]. . . . . . . . . . . . . . . . . . 10

2.1 Schematic algorithm to solve self-consitently the Kohn-Sham equations.

The σ index indicates the spin degree of freedom, which is not discussed in

this work. Figure reproduced from [16]. . . . . . . . . . . . . . . . . . . . 23

2.2 Representation of the BZ and IBZ of a square lattice. Figure reproduced

from [59]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Schematic representation of the pseudopotential method in order to make

the wave function smoother. Figure reproduced from [17]. . . . . . . . . . 30



xv

2.4 Fx for various GGAx functionals. Figure reproduced from [54]. . . . . . . . 35

36figure.caption.30

2.6 Phonon dispersion of graphene. As it has 2 atoms per unit cell there will

be 6 branches. In graphene context the ZO and ZA branches indicate

out-of-plane modes. Figure reproduced from [64]. . . . . . . . . . . . . . . 41

3.1 Murnaghan fit (eq. 3.1) for E(A). Harmonic fit is presented for comparison 50

3.2 Comparison of the performance of several functionals for the a lattice con-

stant. The experimental value is 2.4607Å [71] . . . . . . . . . . . . . . . . 51
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Chapter 1

Introduction

1.1 Why study graphene?

Graphene is a two-dimensional material made of carbon that has attracted attention

because of its physical properties and possible applications for industrial and academic

purposes. It consists of a honeycomb arrangement of sp2 carbon atoms and is one atom

thick. For many years this material was studied just theoretically but since its experi-

mental isolation in 2004 [1–3] by mechanical exfoliation of graphite the interest in it has

been increased substantially.

There are other nanomaterials related to graphene, shown in the Figure 1.1. The first

one is a 0D fullerene molecule (C60) that was discovered by Kroto, Curl and Smalley

[4, 5] who won the Nobel Prize in Chemistry in 1996. The C60 molecule is composed

of 60 equivalent carbon atoms and it has the shape of a soccer ball. The second one

is a 1D carbon nanotube, discovered by Iijima [6]. Both molecules are not synthesized

from graphene but, schematically, they can be understood as rolled up graphene sheets.

Graphite can be considered as a stack of several graphene layers with different relative

orientations.
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Figure 1.1: Schematic view of graphene generating others materiais, respectively from
left to the right: fullerene (0 dimensional), carbon nanotube (1 dimensional), graphite (3
dimensional).Figure reproduced from [1].

Graphene has special electronic properties. It is a zero-gap semiconductor and its

valence and conduction bands touch each other at two points of the Brillouin zone (K and

K’) where the eletronic dispersion is linear as a consequence of the symmetry between the

graphene sublattices [2]. In addition to it, states in the valence and conduction bands are

primarily described by the same spinor wave function, so electrons and holes are linked via

charge conjugation what implies that quasiparticles in graphene obey chiral symmetry,

similar to that happens between particles and antiparticles in quantum electrodynamics

(QED). This behavior allows experiments that measures electronic properties of graphene

to probe some QED phenomena [2].
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Figure 1.2: Electronic dispersion of graphene with emphasis in the linear relation near
the K and K’ points of the first Brillouin zone. Figure reproduced from [7].

The vibrational properties have also substantial importance. As graphene is made of

light carbon atoms and the in plane bonds are strong, its sound velocity is high and its

phonon dispersion has been studied theoretically and experimentally [8].

It is possible to stack several graphene layers. For a large number of layers we have

graphite and for few layers we have multilayer graphene. The electronic and mechanical

properties for multilayer graphene are sensitive to the number of graphene layers and

their relative orientation. For example, for bilayer graphene, the electronic dispersion

goes from linear to parabolic near the K point [7]. For multilayer graphene it is possible

to characterize the relative orientation between layers with Raman spectroscopy [9] as

shown in Figure 1.3. One interesting peak in multilayer graphene and graphite in this

work is the C peak as it represents the frequency of shear modes in those materials.
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Figure 1.3: t(n+m)LGs are multilayer graphene with n+m layers where the first n layers
are rotated in relation to the other m layers, so t(2+2)LG and t(1+3)LG have the same
number of layers but their relative orientation are different. Stokes/anti-Stokes Raman
spectra in the C peak region and Stokes spectra in the G and 2D spectral regions for four
t(m+n)LGs are shown above.The excitation energy used for each t(m+n)LG is indicated.
Figure reproduced from [9].

For vibrational dispersion, the frequency of modes with relative movement between the

layers is highly influenced by the van der Waals (VDW) interactions [33]. From graphene

to multilayer graphene, the understanding of how its physical properties change with the

number of layers and their relative orientation is essential. Previous experimental and the-

oretical works evaluated the dependence of low-frequency optical modes on the number of

layers. The shear modes of multilayer graphene were measured with Raman spectroscopy

and well reproduced with DFT using LDA (local density approximation) without VDW

corrections in [33] (see fig. 1.4). In [35] layer-breathing modes were observed using a

Raman combination mode measuring the LO+ZO’ combination mode of the out of plane

layer breathing mode (ZO) and the in plane longitudinal optical mode (LO) (see fig. 1.5).

In [34] the convergence of in-plane and out-plane modes frequencies was observed from

bilayer graphene to graphite (Fig. 1.6) using DFT without VDW corrections.
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Figure 1.4: (a) Stokes and anti-stokes C peaks and G peak for multilayer graphene and
graphite (bulk). (b)C and G peaks dependence on the number of layers in multilayer
graphene. Figure reproduced from [33].

Figure 1.5: (a) Raman spectra for multilayer graphene of different thickness and stacking
order. (b) The frequency of the subpeaks in the LOZO’ band for multilayer graphene
with two stacking orders as a function of layer thickness. The error bars correspond to
the width of Raman features. Figure reproduced from [35].
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Figure 1.6: Convergence of out of plane (left) and in plane (right) frequencies as a function
of the number of layers. In both figures solid, open, and thick ring symbols denote,
respectively, Raman, IR, and simultaneous Raman and IR activity. Dashed lines indicate
the corresponding frequency values in bulk graphite. Figure adapted from [34].

As those stacked structures are stabilized by VDW interactions, the purpose of this

work is to analize the effect of including those interactions on DFT calculations. As

graphene is also a prototype for two dimensional materials, the understanding of graphene

and multilayer graphene can help the understanding and development of other 2D mate-

rials and related heterostructures [40,41].

There are works that compare several VDW corrections on DFT and in general bind-

ing energies and equilibrium distances are improved [57, 78] as one can see in fig. 1.7.

Currently in Quantum Espresso package [68] the use of VDW corrections to evaluate

the phonon dispersion through Density Functional Pertubation Theory (DFPT) is not

yet implemented, however there are current works extending DFPT to include non-local

VDW interactions [92]. For better explanations of VDW corrections on DFT and DFPT

see sections 2.4.1 and 2.6.3 respectively.
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Figure 1.7: Comparision of several VDW functionals to evaluate the binding energy be-
tween a graphene sheet and a Ni(111) surface. As one can notice the PBE functional
gives a much smaller binding energy. Figure reproduced from [57].

1.2 Crystal structure

1.2.1 Graphene

Carbon is an element with six electrons whose electronic distribution is 1s22s22p2. The 1s2

electrons are strongly bound to the nucleus and usually do not participate in the chemical

bonds and are called core electrons. The remaining four electrons are responsible for the

bonds in the carbon atom and are called valence electrons. The 2p and the 2s energy

levels are relatively close to each other. This allows the mixing of the valence electrons’

wave function changing the occupation of the 2p and the 2s orbitals. This mixing is the

hybridization of the carbon atom and it is called spn (n = 1, 2, 3) [10, 11]. In graphene

the carbon atoms are in sp2 hybridization and in this configuration each atom has three

σ bonds belonging to the same plane making an angle of 120◦ with respect to each other.

The remaining valence electron is in the pz orbital that is perpendicular to the σ orbitals.

Graphene consists in a honeycomb two dimensional lattice with a basis containing
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two atoms. It is composed of two hexagonal sublattices: A and B (see Figure 1.8). The

primitive vectors can be chosen to be [7]:

~a1 = a

(√
3

2
,
1

2

)
, ~a2 = a

(√
3

2
,−1

2

)
; (1.1)

where a ≈ 2.46Å is the lattice parameter and the carbon-carbon distance is dC−C =

a/
√

3 ≈ 1.42Å. The reciprocal lattice vectors are given by:

~b1 =
2π

a

(
1√
3
, 1

)
, ~b2 =

2π

a

(
1√
3
,−1

)
; (1.2)

It is easy to see that the real space lattice vectors and the reciprocal lattice vectors

obey the relation ~ai.~bj = 2πδij, where δij is the Kronecker delta [12].

The basis can be chosen to be:

~τ1 = (0, 0), ~τ2 =

(
2a√

3
, 0

)
; (1.3)

Figure 1.8: Hexagonal sublattices A and B of graphene and the basis vectors ~a1 and
~a2 generating a honeycomb structure. Reciprocal lattice generated by ~b1 and ~b2. First
Brillouin zone and some high symmetry points (Γ, M , K and K ′). Figure reproduced
from [7].

1.2.2 Multilayer graphene

For multilayer graphene the crystal structure is the same of graphene: it has the same

primitive vectors, as long as there is no relative rotation between the layers. What changes

is the basis as it is necessary to put one layer over the another.
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For bilayer graphene there are two ways of stacking called: AA and AB. In the AA

stacking both layers have the same atoms positions just changing its z component:

~τ1 = (0, 0, 0), ~τ2 =

(
2a√

3
, 0, 0

)
, ~τ3 = (0, 0, δ), ~τ4 =

(
2a√

3
, 0, δ

)
; (1.4)

In the AB stacking the layer above is translated by a/
√

3x̂:

~τ1 = (0, 0, 0), ~τ2 =

(
2a√

3
, 0, 0

)
, ~τ3 =

(
a√
3
, 0, δ

)
, ~τ4 =

(√
3a, 0, δ

)
; (1.5)

Figure 1.9: Top view of bilayer graphene in configurations AB (left) and AA (right).
Figure created with xcrysden software [18,19].

For trilayer graphene, one can find ABA (Bernal) and ABC (rhombohedral) stacking

as shown in Figure 1.10. In ABA structure the third layer is a replica of the first one and

on ABC structure the third layer is translated by (2a/
√

3)x̂ in relation to the first one.

The difference between them is that the ABA structure exhibits mirror symmetry and

ABC has inversion symmetry [20].
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Figure 1.10: Trilayer graphene in configurations ABA (left) and ABC (right). Figure
reproduced from [20].

1.2.3 Graphite

Graphite consists of several graphene layers packed in Bernal structure (ABABA...). Its

primitive vectors are the same of graphene (eq. 1.1) plus one out of plane:

~a1 = a

(√
3

2
,
1

2
, 0

)
, ~a2 = a

(√
3

2
,−1

2
, 0

)
, ~a3 = (0, 0, c); (1.6)

The c parameter is twice the interlayer distance in graphite.

Figure 1.11: Graphite lattice structure (left) and first Brillouin zone and some high sym-
metry points. Figure adapted from [21].
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Chapter 2

Methodology

2.1 Crystal Hamiltonian

We start by writing the non-relativistic hamiltonian of the system of many electrons and

nuclei following [14,16]. It is composed by the kinetic energy and interactions among the

particles. The electrons can be divided in core electrons and valence electrons. The core

electrons are strongly bound to the nucleus and have little influence in chemical bonds.

On the other hand, valence electrons belong to external shells and are responsible for

chemical bonds. Therefore, the core electrons can be treated together with the nucleus

as ions (see section 2.3.7) separately from the valence electrons.

The basic hamiltonian not including external potentials is given by:

H = Hel +Hion +Hel−ion; (2.1)

The first term in eq. 2.1 is given by:

Hel = − ~2

2me

∑
i

∇2
i +

e2

4πε0

∑
i>j

1

|~ri − ~rj|
; (2.2)

The first part in eq. 2.2 is electronic kinetic energy and the second one is the Coulomb

repulsion for each electronic pair. ~ is the Planck’s constant, me is the electron rest mass,
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e is the electron charge and ε0 is the vacuum permittivity. The i and j indices are labels

of the electrons.

The second term in eq. 2.1 is given by:

Hion = −~2

2

∑
A

∇2
A

MA

+
e2

4πε0

∑
A>B

ZAZB

|~RA − ~RB|
; (2.3)

The first part in eq. 2.3 is the kinetic energy of the ions and the second one is the

potential energy for each pair of ions. MI is the ion total mass, ZI is the atomic number

and the A and B indices are labels of the ions.

The last component of the hamiltonian is the interaction between ions and electrons.

Hion−el =
∑
i,A

Vion−el(~RA − ~ri); (2.4)

The Vion−el has not been written explicitly because the Coulomb interaction is altered

by the screening of the atomic nucleus caused by core electrons.

In principle one could try to solve the Schrödinger equation:

HΨ = EΨ; (2.5)

where Ψ = Ψ({ ~RA}, {~ri}) is the full many-body wave-function, depending on the positions

of all electrons and ions. However, eq. 2.5 can be solved analytically only for very simple

cases. Therefore, we adopt a computational approach, on which a sequence of controlled

approximations is employed.

2.2 Born-Oppenheimer approximation

The ratio between the mass of the electrons and nuclei is very small. This means that

electrons respond faster than ions to forces between these two kinds of particles. Therefore,

the movement of electrons and ions can be separated and the ions can be considered

frozen when dealing with electron dynamics. In this point of view, the electrons respond
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instantaneously to the movement of the ions, so one can solve eq. 2.5 for the electronic

part considering the ions as fixed and its positions as parameters. This procedure is known

as Born-Oppenheimer or adiabatic approximation [15,16].

Firstly we can ignore Hion as it depends only on the fixed ionic positions {~R} and

Vion−el depends parametrically on {~R}. Therefore, we can write an equation for the

electronic problem in the form

(Hion−el +Hel)ψµ({~r} : {~R}) = Eel
µ ({~R})ψµ({~r} : {~R}); (2.6)

where Eel
µ is the electronic eigenenergy that takes the ions positions as fixed parameters.

The complete set of eigenfunctions {ψµ} can be used as a basis for the full wave-function

Ψ = Ψ({ ~RA}, {~ri}), solution of 2.5:

Ψ =
∑
µ

χµ({~R})ψµ({~r} : {~R}); (2.7)

where {χµ} are the coefficients of the expansion that depend explicitly of {~R}.

The coupling between electrons and ions wave-functions is described by χµ. To find

those functions, we need to insert eq. 2.7 in 2.5. Multiplying the resulting expression by

ψ∗µ({~r}, {~R}) and integrating over the electronic coordinates, one can obtain

[
−~2

2

∑
A

∇2
A

MA

+
e2

4πε0

∑
A>B

ZAZB

|~RA − ~RB|
+ Eel

µ − E

]
χµ({~R}) = −

∑
ν

Cµνχν({~R}); (2.8)

where Cµν = Aµν +Bµν and

Aµν =
∑
A

1

MA

〈
ψµ({~r} : {~R})

∣∣∣∇A

∣∣∣ψν({~r} : {~R})
〉
∇A; (2.9)

Bµν =
∑
A

1

2MA

〈
ψµ({~r} : {~R})

∣∣∣∇2
A

∣∣∣ψν({~r} : {~R})
〉

; (2.10)
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The Born-Oppenheimer approximation consists of ignoring the off-diagonal matrix

element Cµν . It can be interpreted as if eqs. 2.9 and 2.10 are transition probabilities

between electronic states due to the movement of the ions. By not considering the off-

diagonal matrix elements such transitions are ignored and the movement of the ions is

restricted to a single electronic energy surface Eel
µ ({~R}). The diagonal terms can be

treated easily. Aµµ is 0 and Bµµ can be grouped with Eel
µ ({~R}) in order to generate

a modified potential function for the ions Uµ({~R}) = Eel
µ ({~R}) + Bµµ({~R}). In this

approximation, the nuclear motion is described by:

[
−~2

2

∑
A

∇2
A

MA

+
e2

4πε0

∑
A>B

ZAZB

|~RA − ~RB|
+ Uµ({~R})− Eµi

]
χµi({~R}) = 0; (2.11)

where the index i labels nuclear states. In summary, in the Born-Oppenheimer approxi-

mation the total wave function becomes

Ψiµ = χµi({~R})ψµ({~r} : {~R}); (2.12)

where for a set of ionic positions {~R} the equations 2.6 and 2.11 are obeyed.

Generally this is a excellent approximation except for the cases where there is degen-

eracy or near degeneracy of electronic states. Typical examples are metals, where there

is no energy gap, or other materials with gap smaller than the typical energies for the

motion of the ions.

Electron-phonon coupling plays a crucial role in phenomenons like Raman scattering

and superconductivity and results from the Cµν off-diagonal terms. The dominants terms

are given by eq. 2.9 and physically represent an electronic transition coupled with emission

or absorption of one quantum of lattice vibrations, also known as a phonon.



15

2.3 Density Functional Theory (DFT)

We have separated the movements of ions and electrons in the last section, so now we can

focus on the electronic problem.

2.3.1 Introduction

For a system of N electrons one would have to solve eq. 2.5 for a given set of ionic

positions in the Born-Oppenheimer approximation. As this still is a many-body problem,

it is analytical solvable only for very simple cases. Several methods have been developed

in order to solve this problem, such as the Hartree-Fock and Configuration Interaction

methods, extensively used in quantum chemistry community. However those methods are

applicable only for a small number of atoms.

As explained in Walter Kohn’s Nobel lecture [22] the Van Vleck catastrophe states:

”In general the many-electron wave function ψ(~r1, ~r2, ..., ~rN) for a system of N electrons

is not a legitimate scientific concept, when N > N0, where N0 ≈ 103”. This statement is

based on the fact that both the final numerical error and the amount of data needed to

record the wave function increase exponentially with the number of atoms.

Instead of working with the complex many-electron wave-function, alternative methods

were developed that work with the electronic density, a much simpler quantity. The

electronic density in the state Ψ(~r1, ~r2, ...) is defined by the following operator:

n̂(~r) =
N∑
i=1

δ(~r − ~ri); (2.13)

where the label i indicates the electrons and δ is the Dirac delta function. The expectation

value of the density operator is given by:

n(~r) = 〈Ψ| n̂ |Ψ〉 =
∑
i

∫
d~r1d~r2..., d ~rNΨ∗(~r1, ~r2, ..., ~rN)δ(~r − ~ri)Ψ(~r1, ~r2, ..., ~rN)

= N

∫
d~r2..., d ~rN |Ψ(~r, ~r2, ..., ~rN)|2;

(2.14)
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We can also evaluate the expectation value of an external potential as an integral of

the electronic density:

〈ψ|Vext |ψ〉 =

∫
d3r1d

3r2...d
3rNψ

∗(r1, r2, ..., rN)

[∑
i

Vext(~ri)

]
ψ(r1, r2, ..., rN)

=
∑
i

∫
d3riVext(~ri)

∫
d3r1...d

3ri−1d
3ri+1...d

3rN |ψ(r1, r2, ..., rN)|2

= N

∫
d3rVext(~r)

∫
d3r2d

3r3...d
3rN |ψ(r, r2, ..., rN)|2 =

∫
d3rVext(~r)n(~r);

(2.15)

where we used eq. 2.14 and the fact that Vext(~r) can be written as a sum of external

potentials over each electron and the indistinguishability of electrons.

The Thomas-Fermi model was the first density functional method developed [23, 24].

In this model the total energy is written as a functional of electronic density in the form:

ETF [n] =
3

10

~2

me

(3π2)2/3
∫
d3rn(~r)5/3 +

∫
d3rVext(~r)n(~r)

+
1

2

e2

4πε0

∫
d3r

n(~r′)n(~r)

|~r′ − ~r|
− e2

4πε0

3

4

(
3

π

)1/3 ∫
d3rn(~r)4/3;

(2.16)

The first term is the kinetic energy within the ideal Fermi gas approximation. The

second is the external potential for the electronic problem (Vion−el included). The third is

the classical Coulomb electronic repulsion (also known as Hartree energy) and the last one

is the Dirac contribution including the exchange interaction for the ideal Fermi gas [15,16].

The ground state density and energy can be found by minimizing the functional 2.16

for all possible n(~r) with the constraint on the total number of electrons

∫
d3~rn(~r) = N ; (2.17)

Using Lagrange multipliers the solution can be found by minimizing the following

functional
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Ω[n] = ETF [n]− µ
[∫

d3~rn(~r)−N
]

; (2.18)

where the Lagrange multiplier µ is the chemical potential (or Fermi energy for zero tem-

perature). For small variations δn(r) the condition for a stationary point is

∫
d3~r

[
~2

me

1

2
(3π2)2/3n(~r)2/3 + v(~r)− µ

]
δn(r) = 0; (2.19)

where v corresponds to the functional derivative of the last three terms in 2.16 in respect

to n(~r). Since 2.19 must be obeyed for any δn(~r), the expression inside the brackets must

be equal to zero, resulting is a relation between the effective potential v and the density

n(~r), known as Thomas-Fermi equation.

The use of density functional theory is attractive because it reduces a many-body

problem that has 3N degrees of freedom for N electrons to a problem with 3 degrees

of freedom, the spatial coordinates of the density. However the Thomas-Fermi approach

shown above uses very simple assumptions and misses essential physical and chemical

features, such as shell structures of atoms and molecular bonds.

2.3.2 The Hohenberg-Kohn theorems

Modern Density Functional Theory is based on two theorems proposed by Hohenberg and

Kohn [25] that are very easily proved. We rewrite 2.6 as

(Hele + Vext(~r))ψ(~r1, ~r2, ..., ~rN) = Eψ(~r1, ~r2, ..., ~rN); (2.20)

where Hele is eq. 2.2 and Vext is the potential due to the ions and other external potentials

(electric field per example).

The first theorem is:

Theorem 1. For any system of interacting particles in a external potential Vext(~r), the

potential Vext(~r) is determined uniquely, except for a constant, by the ground state particle
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density n0(~r)

Proof. Supose that for a given external potential Vext the ground state is |ψ〉 and for

another external potential V ′ext the ground state is |ψ′〉. Our assumption is that both Vext

and V ′ext give the same electronic density n0(~r). By the variational principle, the ground

state energies E and E ′ for each potential satisfy

E = 〈ψ|Hel + Vext |ψ〉 < 〈ψ′|Hel + Vext |ψ′〉 ; (2.21)

E ′ = 〈ψ′|Hel + V ′ext |ψ′〉 < 〈ψ|Hel + V ′ext |ψ〉 ; (2.22)

Adding and subtracting 〈ψ′|V ′ext |ψ′〉 in the inequality 2.21 we get:

E < 〈ψ′|Hel + Vext + V ′ext − V ′ext |ψ′〉

E < 〈ψ′|Hel + V ′ext |ψ′〉+ 〈ψ′|Vext − V ′ext |ψ′〉

E < E ′ +

∫
d3r (Vext − V ′ext)n0(~r);

(2.23)

where in the second step we have used 2.22 and 2.15. Repeating the procedure for E ′ in

2.22 we get

E ′ < E +

∫
d3r (V ′ext − Vext)n0(~r); (2.24)

summing 2.23 and 2.24 we have

E + E ′ < E ′ + E, (2.25)

which is absurd. Since we have assumed the same density n0(~r) for Vext 6= V ′ext, we

conclude that this assumption is incorrect, thus proving the theorem.

The second theorem is:
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Theorem 2. A universal functional for the energy E[n] in terms of the density n(~r) can

be defined, valid for any external potential Vext(~r). For any particular Vext(~r), the exact

ground state energy of the system is the global minimum value of this functional, and the

density n(~r) that minimizes that functional is the exact ground state density n0(~r)

Proof. We can write the total energy as a functional of the density

E[n] = 〈ψ|Hele + Vext |ψ〉 = F [n] + 〈ψ|Vext |ψ〉 ; (2.26)

where F [n] is an unknown universal functional and 〈ψ|Vext |ψ〉 depends on the system.

In particular for the ground state

E[n0] = 〈ψ0|Hele + Vext |ψ0〉 = F [n0] + 〈ψ0|Vext |ψ0〉 ; (2.27)

Using the variational principle and assuming n 6= n0

E[ψ0] < E[ψ]

〈ψ0|Hele + Vext |ψ0〉 < 〈ψ|Hele + Vext |ψ〉

F [n0] + 〈ψ0|Vext |ψ0〉 < F [n] + 〈ψ|Vext |ψ〉

E[n0] < E[n];

(2.28)

In conclusion, there is a variational principle valid the electronic density as there is

one for the wave-function.

The Hohenberg-Kohn theorems describe an exact many-body theory expressing the

energy of the system as a functional of the electronic density. However it does not tell us

anything about how this electronic density functional is constructed or how to solve the

problem. For this, the Kohn-Sham ansatz is needed.



20

2.3.3 The Kohn-Sham equations

Following the Hartree-Fock approach, the Kohn-Sham ansatz [26] aims to reduce the in-

teracting many-body problem to several one body problems in the presence of an effective

potential. It assumes that the exact ground state density can be represented by the den-

sity of an auxiliary system of non-interacting particles and the auxiliary hamiltonian is

chosen to have the usual kinetic energy operator and an effective local potential. The

density of the non-interacting system is

n(~r) =
∑
i

|ψi(~r)|2; (2.29)

where ψi are single-particle states. The auxiliary hamiltonian

Haux = − ~2

2me

∇2 + Veff (~r); (2.30)

The independent-particle kinetic energy is given by

Ts = − ~2

2me

∑
i

〈ψi| ∇2 |ψi〉 ; (2.31)

The classical electronic coulomb interaction is given by the Hartree term

HHartree[n] =
1

2

e2

4πε0

∫
d3rd3r′

n(~r)n(~r′)

|~r − ~r′|
; (2.32)

The Kohn-Sham approach is to rewrite the Hohenberg-Kohn expression 2.26 as

EKS = Ts[n] +HHartree[n] +

∫
d3rVext(~r)n(~r) + Exc[n]; (2.33)

where the new term Exc, the exchange-correlation energy, includes all the exchange and

the so-called correlation effects. Comparing 2.26 and 2.33 we can see that

Exc[n] = F [n]− (Ts[n] + EHartree[n]); (2.34)
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or more explicity with 〈T 〉 and 〈Vint〉 being the mean kinetic energy and mean internal

energy respectively

Exc[n] = 〈T 〉 − Ts[n] + 〈Vint〉 − EHartree[n]; (2.35)

The last equation shows that Exc is just the difference of the kinetic and internal

energies of the true many-body system from those auxiliary independent-particle system.

If the exact Exc were know then the exact ground state energy and density of the many-

body problem could be found by minimizing the functional 2.33 with the constraint 2.17.

Following the approach of Thomas-Fermi, one should minimize 2.33 with respect to

the electronic density. Since Ts is a functional of the single-electron orbitals, which are

functionals of density themselves, and all the other terms are functionals of density explic-

itly, we can minimize the total energy functional EKS with respect to any given orbital

ψ∗i and use the chain rule for n(~r).

δEKS
δψ∗i (~r)

=
δTs

δψ∗i (~r)
+

[
δEext
δn(~r)

+
δEHartree
δn(~r)

+
δExc
δn(~r)

]
δn(~r)

δψ∗i (~r)
= 0; (2.36)

with the orthonormalization condition

〈ψi |ψj〉 = δi,j. (2.37)

From 2.31:

δTs
δψ∗i (~r)

= − ~2

2me

∇2ψi; (2.38)

and from 2.29:

δn(~r)

δψ∗i
= ψi. (2.39)

By using the Lagrange multiplier method, we get the Kohn-Sham equations
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(HKS − εi)ψi = 0, (2.40)

where εi are the eigenvalues and HKS is the effective hamiltonian, given by

HKS = − ~2

2me

∇2 + VKS, (2.41)

in which the Kohn-Sham potential is given by

VKS = Vext +
δEHartree
δn(~r)

+
δExc
δn(~r)

; (2.42)

As one can see from above, to solve the Kohn-Sham equations 2.40 one needs to

know the ground state electronic density in order to construct the functionals in 2.33

and the associated potentials in 2.42. In other words, the potentials depend on the

solutions of the equations. To overcome this problem, the KS equations are solved in

a self-consistent fashion: one starts with a initial guess for n(~r), solves the Kohn-Sham

equations, calculates the new density from the solutions {ψi} and repeats the same steps

until convergence is achieved, as illustrated in Fig. 2.1.
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Figure 2.1: Schematic algorithm to solve self-consitently the Kohn-Sham equations. The
σ index indicates the spin degree of freedom, which is not discussed in this work. Figure
reproduced from [16].

2.3.4 Exchange-Correlation functional

In the Kohn-Sham approach, as the independent-particle kinetic-energy and the long-

range Hatree terms are separated out, the remaining exchange-correlation functional

can be approximated by a local or semilocal functional of the density. The exchange-

correlation functional can be expressed as

Exc[n] =

∫
d~rn(~r)εxc([n], ~r); (2.43)

where εxc([n], ~r) is the exchange-correlation energy per electron at ~r that depends on the

electronic density n(~r).

The exchange-correlation potential is given by
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Vxc =
δExc[n]

δn(~r)
= εxc([n], ~r) + n(~r)

δεxc([n], ~r)

δn(~r)
; (2.44)

The DFT in the KS is exact except by the exchange-correlation that is not known

analytically. Several approximations to Exc[n] have been developed in order to pursue

the ”divine” functional as explained in [27, 28]. In this work, we will only discuss the

Local Density and Generalized Gradient Approximations (LDA and GGA, respectively),

which are the most widely used in Condensed Matter Physics, and some non-local van

der Waals corrections (see chapter 2.4.1). There are another functionals as meta-GGA

and hybrid functionals that are extensively used in the literature. For a comparison of

several functionals, see [29,30]

LDA (Local Density Approximation)

The LDA approximation consists in assuming that the exchange-correlation energy density

is the same as in a homogeneous electron gas with the same electron density at a given

point

ELDA
xc [n] =

∫
d3rn(~r)εhomxc (n(~r)) =

∫
d3rn(~r)(εhomx (n(~r)) + εhomc (n(~r))); (2.45)

One can also separate the correlation and exchange effects. For a homogeneous gas

the exchange term is given by [15]

εhomx [n] = − e2

4πε0

3

4

(
3

π

)1/3 ∫
d3rn(~r)4/3; (2.46)

The correlation energy has been calculated with quantum Monte Carlo methods and

fitted to analytical expressions in the form of εc(rs), where rs is the Wigner-Seitz radius

[12] and represents the radius of a sphere whose volume is equal to the mean volume

occupied by one electron in a solid and is given by
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rs =

(
3

4πn

)1/3

; (2.47)

The rs < a0
1 regime is considered the high-density limit and rs ≥ a0 is the low-density

limit. Since rs is a function of the density n(~r), it is straightforward to write ε(rs) as a

functional of the density.

In this work we used the PZ (Perdew-Zunger) [31] LDA exchange-correlation func-

tional. Its expression for the correlation energy density is

εc(rs) =

{
γ

(1+β1
√
rs+β2rs)

, rs ≥ a0

Aln(rs) +B + Crsln(rs) +Drs, rs < a0
(2.48)

The numerical values of the constants in the expression above can be found in [31]

and in the Appendix B of [16].

GGA (Generalized Gradient Approximation)

In the GGA approximation, εxc(n(~r)) is also a function of the absolute value of the

gradient of density |~∇n(~r)|. As n(~r) varies strongly in real materials it is convenient to

define

EGGA
xc [n] =

∫
d3rn(~r)εxc(n, |~∇n|)

=

∫
d3rn(~r)εhomx [n]Fxc(n, |~∇n|);

(2.49)

where εhomx is given by 2.46 and Fxc is a dimensionless function. It is natural to work with

the dimensionless reduced density gradient that is defined as

sm =
|∇mn|

(2kF )mn
; (2.50)

where kF = 3(2π/3)1/3r−1s .

In this work we use a PBE (Perdew-Burke-Ernzerhof) functional within the GGA

approximation [32]. The expressions for the correlation and exchange functionals are

1a0 is Bohr radius. a0 = 0.529Å
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somewhat lengthy and can be found in [16, 32]. In general, GGA functionals give better

results for binding energies than LDA, however we have found in this work that, for

graphite the interlayer distance is better reproduced by a LDA functional (see fig. 3.3).

Both LDA and GGA approaches have some deficiencies, as for example the self-

interaction. This happens because the approximated exchange interaction does not cancel

the exact Hartree interaction when ~r ≈ ~r′ in eq. 2.32. In the Hartree-Fock approach, this

cancellation occurs because the exchange interactions are included in exact form [16].

2.3.5 Plane-waves

Once we have defined the exchange-correlation functional in Kohn-Sham approach we

face the problem of solving the one-electron eqs. 2.40.

In crystals the Vion−ele potential has the same periodicity of the Bravais lattice. Math-

ematically

Vion−ele(~r + ~R) = Vion−ele(~r); (2.51)

where ~R is a vector of the Bravais lattice. Since Vion−ele has this property, the electronic

density must have the same periodicity and so does the Kohn-Sham (KS) potential (eq.

2.42).

As the KS equations (eq. 2.40) are one-electron equations and the KS potential is

periodic, the KS orbitals obey Bloch’s theorem [12–15] and the wave function can be

written as

ψn~k = ei~r.
~kun~k(~r); (2.52)

where ui~k(~r) is a function with the same periodicity of the lattice, n is the band index

and ~k is a vector in the first Brillouin zone (BZ) and the quantity ~~k is known as crystal

momentum because the wave function 2.52 is not an eigenstate of the momentum operator

~p = (~/i)~∇ making p not a good quantum number.
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As un~k is a periodic function, one can expand it in a plane wave function basis that

only contains vectors of the reciprocal lattice

un~k(~r) =
∑
~G

cn~k ~Ge
i ~G.~r; (2.53)

where ~G is a vector of the reciprocal lattice. In the same way one can expand the periodic

KS potential as

VKS(~r) =
∑
~G′

V ~G′e
i ~G′.~r; (2.54)

Using expressions 2.52, 2.53 and 2.54 in equation 2.40, we get the following expression

for the cn~k ~G coefficients

~2

2m

∑
~G

cn~k ~G(k +G)2ei
~G.~r +

∑
~G

∑
~G′

V ~G′cn~k ~Ge
i( ~G′+ ~G).~r = εn~k

∑
~G

cn~k ~Ge
i ~G.~r; (2.55)

Applying the bra
〈
ei
~G′′~r
∣∣∣ and using the orthonormalization condition

〈
ei
~G′′~r
∣∣∣ ei ~G~r〉 =

δ ~G′′, ~G we get the central equation

(
~2

2m
(k +G′′)2 − εn~k

)
cn~k ~G′′ +

∑
G

cn~k ~GV ~G′′− ~G = 0; (2.56)

By solving the eq. 2.56, one can obtain the eigenvalues εn~k and the coefficients cn~k ~G

to construct the eigenfunction 2.52. The term V ~G′′− ~G couples the coefficients cn~k ~G′′ and

cn~k ~G, making it impossible to find a general analytic solution.

If both the function un~k and the KS potential are sufficiently smooth, the plane-wave

expansions 2.53 and 2.54 can be truncated with a relatively small number of plane waves.

The typical parameter used in the DFT context is the cutoff energy, defined as

Ec =
~2

2m
G2; (2.57)
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The Ec value define the maximum magnitude of the ~Gs vectors in the plane-wave expan-

sions.

The more localized the function un~k and the KS potential are, more plane waves are

necessary , thus increasing the computational cost of the calculation. In such cases, other

basis sets might be more adequate, such as an atomic-like orbital basis, which we do not

discuss in this work.

2.3.6 ~K-point sampling

Evaluation of many quantities, such as energy, density of states and response functions,

requires integration over the BZ. The mean value of an arbitrary quantity f(~k) is given

by [16,17]

f =
1

N

∑
~k∈BZ

f(~k) =
Ωcell

(2π)d

∫
BZ

ddkf(~k); (2.58)

where Ωcell is the unit cell volume in real space and d is the dimension.

If the function f(~k) is periodic in reciprocal space, one can expand it in a plane wave

basis that contains only the vectors ~R of the real space lattice, analogously in 2.53 and

2.54

f(~k) =
∑
~R

f̃(~R)ei
~k ~R; (2.59)

To avoid an integration over the BZ, integrals are approximated by summations over

an appropriated set of k points.

One first simplification is to take advantage of the point group symmetries of the

crystal, reducing the summation over the BZ to a summation over the irreducible Brillouin

zone (IBZ) [59]. For the summation over the IBZ each k point is associated to a weight

function ω~k that is the total of k points related to a given k point in the IBZ divided by

the total of points N
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f =
1

N

∑
~k∈BZ

f(~k) =
1

N

∑
~k∈IBZ

ω~kf(~k); (2.60)

Figure 2.2: Representation of the BZ and IBZ of a square lattice. Figure reproduced
from [59].

The method proposed by Monkhorst and Pack (MP) [58] is the most widely used

method because it generates an uniform set of points using the following expression

~kn1,n2,n3 =
3∑
i

2ni −Ni − 1

2Ni

~Gi; (2.61)

where Ni is the number of unit cells in the direction i and ni = 1, 2, ..., Ni. One of the

main advantages of the MP method is that it reproduces exactly the mean value of f

when the expansion 2.59 is truncated in a finite mesh N1xN2xN3 of vectors of the real

lattice.

2.3.7 Pseudopotentials

As explained in the beginning of this chapter, one can separate the electrons in valence

and core electrons, because the core electrons are not substantially affected when the

atoms form a solid or a molecule. The pseudopotential method transforms the Coulomb

potential (∼ r−1) into a smoother function for the valence electrons (see fig. 2.3) in the

core region. By doing that, valence electrons that vary very quickly in the core region

(as they are orthogonal to core electrons) becomes smoother functions in the core region

but maintain their properties in the valence region. This procedure reduces the number

of plane-waves necessary to describe the valence electrons and the Vion−el potential 2.4.
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In this section we describe the Phillips-Kleinman pseudopotential [16,60], which is the

first pseudopotential proposed in the literature. Although it is not used any longer in

practical calculations, it shares many of the properties of present-day pseudopotentials.

Figure 2.3: Schematic representation of the pseudopotential method in order to make the
wave function smoother. Figure reproduced from [17].

For a given isolated atom we have the following eigenstates of the hamiltonian

H |ψci 〉 = εci |ψci 〉 (2.62a)

H |ψvi′〉 = εvi′ |ψvi′〉 ; (2.62b)

where ψci is an eigenstate of a core electron and ψvi′ is a valence electron. One can define

a new set of valence states φ̃vi′ that obey the following relation

|ψvi′〉 =
∣∣∣φ̃vi′〉−∑

i

〈
ψci

∣∣∣ φ̃vi′〉 |ψci 〉 , (2.63)

which preserves the orthogonality condition 〈ψvi′ |ψci 〉 = 0. Using this expression in 2.62b

we get
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H

[∣∣∣φ̃vi′〉−∑
i

〈
ψci

∣∣∣ φ̃vi′〉 |ψci 〉
]

= εvi′

[∣∣∣φ̃vi′〉−∑
i

〈
ψci

∣∣∣ φ̃vi′〉 |ψci 〉
]

; (2.64)

By using eq. 2.62a we get

[
H +

∑
i

(εvi′ − εci) |ψci 〉 〈ψci |

] ∣∣∣φ̃vi′〉 = εvi′
∣∣∣φ̃vi′〉 ; (2.65)

It is possible to see that the new states φ̃vi′ , also called pseudostates, obey a Schrödinger

equation with the same eigenenergy of ψvi′ , but with a modified potential

V ps = V +
∑
i

(εvi′ − εci) |ψci 〉 〈ψci | ; (2.66)

where V is the original (bare) potential and V ps is the pseudopotential.

The additional term in 2.66 is repulsive as the valence states have greater energy than

core states. Thus, this term is repulsive and tends to screen the attractive Coulomb

potential from the nucleus. As it is composed by the projector of core states
∑

i |ψci 〉 〈ψci |

this repulsive term acts more near the nucleus where the core states are localized and

far from the nucleus the influence of the core states becomes smaller and the Coulomb

potential is recovered.

One can notice that the pseudostates are not unique. By adding a linear combination of

core states into it, eq. 2.63 remains unchanged. There are many possible pseudofunctions

and pseudopotentials that obey eqs. 2.65. It is desirable to create a pseudopotential

that is smooth near the nucleus and that represents well the Coulomb potential from the

nucleus at long distances. The smoother is the wavefunction, the smaller is the number of

plane waves necessary to reproduce it. For a more extensive review of the subject see [16]

chapter 11.
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2.4 Van der Waals interactions

Van der Waals (VDW) interactions are non-bonded interactions that are weaker than

bonded and Coulomb interactions and whose range of distance is of the order of a few

nanometers. Friction, surface tension, viscosity, adhesion, cohesion, wetting and capil-

larity are some of the phenomena related to VDW interactions [36–42]. Also known as

dispersion interactions, VDW interactions are caused by the long range correlation of

electrons.

VDW interactions are composed of three different interactions, all proportional to r−6,

where r is the distance between the atoms or molecules.

The first one is the Keesom interaction. This term represents the mean attractive

interaction between two permanent dipoles and is temperature dependent [43]. It is given

by

UKeesom = − ~µ1.~µ2

3(4πε0ε)2kBTr6
= −CKeesom

r6
; (2.67)

where µi is the dipole moment of molecule (or atom) i, ε0 is the vacuum permittivity,

ε is dielectric constant of the surrounding, kB is the Boltzmann constant and T is the

temperature.

The second one is the Debye interaction. This term is due to the interaction of a

permanent dipole with a induced dipole by the influence of the permanent dipole. It is

given by

UDebye = − µ2
1α02

(4πε0ε)2r6
= −CDebye

r6
; (2.68)

where α02 is the dipole polarizability of the second atom or molecule.

The last term is the London interaction. This term is due to the interaction between

two induced dipoles. It is caused by random fluctuations in the electronic density of a

atom or a molecule generating an instantaneous dipole that induces a dipole in other
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atom or molecule. It is given by

ULondon = −3

2

α01α02

(4πε0ε)2r6
I1I2
I1 + I2

= −CLondon
r6

; (2.69)

where α0i is the dipole polarizability of the atom (or molecule) i and Ii is the first ionization

potential.

The complete VDW interaction is thus given by

UV DW = −(CLondon + CDebye + CKeesom)

r6
= −CV DW

r6
; (2.70)

The VDW interactions have some general properties [44, 45] as they are long-range

interactions that range from 0.2 to 10nm, do not only attract molecules but tend to align

them and are no additive as the surrounding affects the interactions of the molecules by

changing their polarizabilities.

2.4.1 Van der Waals on DFT

As LDA is a local functional and GGA is a semilocal one the van der Waals interactions

are not well described in those approximations as it consists on correlation in long range

distances. Those interactions are of substantial importance for, 2D materials, biomolecules

and liquids just to name a few systems.

In this section we describe the VDW corrections used in this work

DFT-D

The DFT-D correction [55, 56] is an empirical dispersion energy is added to the total

energy

Edisp = −s6
N∑
i=1

N∑
j=i+1

Cij
6

r6ij
fdamp(rij); (2.71)
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where Cij
6 denotes the dispersion coefficient for atom pair ij and s6 is a global scaling

factor that depends on the exchange-correlation functional used. To avoid singularities

for small rij a damping function is used

fdamp(rij) =
1

1− e−d(rij/rr−1)
; (2.72)

where rr is the sum of the atomic VDW radii.

For transferability purposes, the Cij
6 is parametrized for a pair with the same atomic

species. For dimers with different atoms i and j the Cij
6 is given by the geometric mean

of the individual coefficients.

VDW-DF

The vdw-df [46–48] is an exchange-correlation functional based in the adiabatic connection

fluctuation-dissipation theorem (ACFDT) [49]. It is expressed as

Exc[n(~r)] = EGGA
x [n(~r)] + ELDA

c [n(~r)] + Enl
c [n(~r)]; (2.73)

where the first terms is the rev-PBE GGA [50], the second is the PW correlation [51] and

the last one is the non-local contribution given by

Enl
c [n(~r)] =

1

2

∫ ∫
d3r1d

3r2n(~r1)n(~r2)φ(q1, q2, r12); (2.74)

where r12 = |~r1−~r2| and q1, q2 are values of a universal function q0[n(~r), |∇n(~r)|], evaluated

at ~r1 and ~r2. The kernel φ has an universal form that depends on q1~r1 and q2~r2 that has

to do to local response. Details of φ and q0 can be found in [46,47].

VDW-DF2

The differences from vdw-df2 [53] to vdw-df are that the exchange functional revPBE is

replaced by the PW86 [52], with the motivation that revPBE is generally too repulsive
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near the equilibrium separation, and a different approach is used to determine the ker-

nel φ [53]. While it gives better results for intermolecular interactions, its behavior for

asymptotic distances becomes worse compared to vdw-df [41].

VDW-DF-C09

The C09 correction [54] is an exchange functional created to work with the vdw-df func-

tional by replacing the first term in eq. 2.73. In eq. 2.49 the Fx(s) is chosen to be

quadratic for small s and to reproduce the revPBE for large s as is shown in fig. 2.4.

Figure 2.4: Fx for various GGAx functionals. Figure reproduced from [54].

In fig. 2.5, it is possible to see that for a benzene sandwich dimer vdw-df2 improves

the equilibrium distance in relation to vdw-df, but over-estimates the binding energy.

Vdw-df-c09 corrects the overbinding and preserves the correct equilibrium distance.

VDW-DF2-C09

The vdw-df2-c09 functional is the vdw-df2 functional described above with the C09 ex-

change. As reported in [57], vdw-df2-c09 gives better results in general for adsorption of

graphene on metal surfaces.

2Coupled Cluster method. For a quick introduction see [15]. S, D and T mean Single, Double and
Triple substitution, respectively



36

Figure 2.5: Performance of vdw-df (open circles), vdw-df2 (black triangles), vdw-df-c09
(red circles) and CCSD(T)2(blue line) compared for the interaction energy for benzene
sandwich dimer. Figure reproduced from [54].

2.5 Crystalline vibrations

Crystalline vibrations are of substantial importance for the understanding of matter. At

finite temperature the atoms in solids or molecules vibrate around their equilibrium po-

sitions [12, 17, 62, 63] and these vibrations can be understood in terms of normal modes

of ionic movement. The excitation of those normal modes is called phonons. A wide va-

riety of physical properties of solids depend on phonons: infrared, Raman, and neutron-

diffraction spectra; specific heats, thermal expansion, and heat conduction; and phe-

nomena related to the electron-phonon interaction such as the resistivity of metals and

superconductivity.

2.5.1 Dynamical Matrix

To study the lattice dynamics first we introduce the set of atomic positions described by

~r~R,~τ = ~R + ~τ + ~u~R,~τ ; (2.75)
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where ~R is the origin of the unit cell, ~τ is the equilibrium position of an atom that

composes the basis of the Bravais lattice and ~u~R,~τ is it displacement from ~R + ~τ .

The potential 2.11 for the ions depends only on the set of atomic positions {~r~R,~τ} and

it is minimum when {~r~R,~τ} = {~R+~τ}. Assuming that the displacements {~u~R,~τ} are small

compared to the interatomic distance one can expand the potential in a Taylor series

U({~r~R,~τ}) ≈ U({~R}) + (~u.~∇)U |{~r~R,~τ}={~R} +
1

2
(~u.~∇)2U |{~r~R,~τ}={~R} +O(u3); (2.76)

where we have introduce the matrix notation

~u =



u1,1,x
u1,1,y
u1,1,z

...
u~R,τ

...
uN,γ,x
uN,γ,y
uN,γ,z


; (2.77)

and the ~∇ operator represents

~∇ =



∂
∂x1,1
∂

∂y1,1
∂

∂z1,1
...
∂

∂n̂~R,τ
...
∂

∂xN,γ
∂

∂yN,γ
∂

∂zN,γ
;


(2.78)

where N is the total number of unit cells, γ the total number of atoms of the basis and

we introduced the notation u~R,~τ where the index τ absorbs the directions of displacement,

in other words, it describe a given atom of the basis moving in a given direction. This
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procedure is called the harmonic approximation because eq. 2.76 is truncated at the

quadratic term, in analogy to the harmonic oscillator.

The first term in the 2.76 is the equilibrium energy and we can take it to be zero. The

second one is a term proportional to the first multidimensional derivative of the potential

and, as the expansion occurs around the minimum of the potential, this term is zero.

The third term is given by

1

2
(~u.~∇)2U =

1

2

(
u1,1,x

∂

∂x1,1
+ ...+ uN,γ,z

∂

∂zN,γ

)(
u1,1,x

∂

∂x1,1
+ ...+ uN,γ,z

∂

∂zN,γ

)
U

=
1

2

3Nγ∑
ν=1

3Nγ∑
µ=1

uµ
∂2U

∂uµ∂uν
uν ;

(2.79)

where the indices µ and ν represent the which unit cell, atom of the base and direction

of displacement and Nγ is the total of atoms.

In matrix notation, it can be written as 1
2
uTΦu, where Φ is known as a Hessian matrix

or Force Constant Matrix (FCM)

Φ =


∂2U

∂u1∂u1
. . . ∂2U

∂u1∂u3Nγ
...

. . .
...

∂2U
∂u3Nγ∂u1

. . . ∂2U
∂u3Nγ∂u3Nγ

;

 (2.80)

Each term Φµν in the FCM represents a constant of spring that connects the pair of

atom/direction µ and ν.

Forces over all atoms can also be represented by a 3Nγ vector as 2.77 .The force

component n̂ over the atom (~R, ~τ) represented by the index µ is given by

Fµ = −(Φu)µ = −
∑
ν

∂2U

∂uν∂uµ
uµ; (2.81)

or particularly, if in a crystal one atom/direction has the infinitesimal displacement δuµ

the atom/direction ν will be sense a force δFν = −Φνµδuµ. To construct the FCM, one
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only needs to apply infinitesimal displacements and measure the forces components of all

atoms.

The FCM has 2 key properties

• Φ is a symmetric matrix. This happens because one can change the order in the

mixed derivatives

Φνµ =
∂2U

∂uν∂uµ
|{~r}={~R+~τ} =

∂2U

∂uµ∂uν
|{~r}={~R+~τ} = Φµν ; (2.82)

• The sum of all elements over a line (or a column) is zero. This is a consequence of

the fact that if every ion moves with the same displacement, there will not be any

internal distortions and forces in the crystal.

Once defined the FCM, to study the dynamics of ions we need to write 3Nγ equations

of motion.

Mτ ü~R,τ = −
∑
~R′,~τ ′

Φ~R′~τ ′, ~R~τu~R′,~τ ′ ; (2.83)

or in matrix notation

M ü = −Φu; (2.84)

where M is the mass matrix, a diagonal matrix with the elements Mµµ represents the

mass of the ion µ, and ü is the second derivative in time of u.

To solve eq. 2.83 we can use the following ansatz

u~R,~τ =
1√
M~τ

ε̂~τ (~k)ei[
~k. ~R−ωt]; (2.85)

where ε̂~τ is the polarization vector of the normal mode that describes the direction in

which the ions move. This means that every (τ) ion/direction have a displacement ε̂~τ and

that equivalent ions separated by a lattice vector ~R oscillate with a phase shift ei
~k. ~R
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Using Born-von Karman Periodic Boundary Conditions (PBC) we restrict the ~k to be

in the first BZ [12]. The translation of k to the real space is the wavelength λ = 2π/k

that indicates the length of the periodicity of a vibration. As k is in the BZ, its smaller

magnitude is 0 (λ → ∞) and greater when it is lying over the edge of the BZ (λ → the

order of lattice parameter)

Using the ansatz 2.85 in 2.83, one gets

ω2(~k)ε̂~τ (~k) =
∑
~τ

∑
~R′

Φ~τ ~R,~τ ′ ~R′e
i~k.(~R′−~R)

√
M~τM~τ ′

 ε̂~τ ′(~k), (2.86)

in matrix notation

ω2(~k)ε̂(~k) = D(~k)ε̂(~k); (2.87)

D(~k) is known as the dynamical matrix. Its elements are given by

D~τ~τ ′(~k) =
1√

M~τM~τ ′

∑
~R′

Φ~τ ~R,~τ ′ ~R′e
i~k(~R′−~R)

 ; (2.88)

As one can notice Φ is a 3Nγx3Nγ matrix while D is a 3γx3γ matrix that is easily

diagonalizable. The problem is completely defined. To find the frequencies and modes

of vibration of a crystal, one must solve the eigenvalue eq. 2.87 for each ~k, finding the

dispersion relation ω(~k).

As there are γ atoms per unit cell, there will be 3(γ − 1) optical and 3 acoustic

branches. The 3 acoustical branches have zero frequency at the Γ point and, in general,

for small k their frequencies depends linearly on k with the sound velocity as constant of

proportionality. The 3 acoustical branches are called LA (Longitudinal Acoustic), when

the polarization vector is parallel to the wave vector ~k and TA (transverse acoustic), when

the polarization vector is perpendicular to LA displacements. The optical branches are

also classified as LO (Longitudinal Acoustic) or TO (Transverse Acoustic) using the same

rule. An example of phonon dispersion curve is shown in fig. 2.6.
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Figure 2.6: Phonon dispersion of graphene. As it has 2 atoms per unit cell there will be
6 branches. In graphene context the ZO and ZA branches indicate out-of-plane modes.
Figure reproduced from [64].

2.5.2 Forces on DFT

Once we have discussed how to construct the dynamical matrix, one needs to know how

to measure forces on ions in the DFT context. To solve this problem we can make use of

the Hellman-Feynman theorem [15,16]

One can consider that a hamiltonian, H, depends on a parameter λ, where λ may

represent the ionic coordinates as, for example,in the KS hamiltonian (eq. 2.41). The

eigenvalues and eigenstates of H(λ) also depend on λ.

Theorem 3. Starting with the eigenvalue problem

H(λ) |Ψ(λ)〉 = E(λ) |Ψ(λ)〉 ; (2.89)

with

E(λ) = 〈Ψ |H(λ) |Ψ〉 ; (2.90)

Deriving both sides of 2.90 in respect to λ and using 2.89
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dE(λ)

dλ
=

〈
Ψ

∣∣∣∣ dH(λ)

dλ

∣∣∣∣Ψ〉+ E(λ)

(〈
dΨ(λ)

dλ

∣∣∣∣Ψ〉+

〈
Ψ

∣∣∣∣ dΨ(λ)

dλ

〉)
=

〈
Ψ

∣∣∣∣ dH(λ)

dλ

∣∣∣∣Ψ〉+ E(λ)
d 〈Ψ |Ψ〉
dλ

;

(2.91)

as 〈Ψ |Ψ〉 is constant, the last derivative is 0.

The final Hellmann-Feynman expression is

dE(λ)

dλ
=

〈
Ψ

∣∣∣∣ dH(λ)

dλ

∣∣∣∣Ψ〉 ; (2.92)

In the DFT context the total energy is given by

E[n] = − ~2

2m

∑
i

〈
Ψi

∣∣∣ ~∇2
∣∣∣Ψi

〉
+

1

2

e2

4πε0

∫ ∫
d3rd3r′

n(~r)n(~r′)

|~r − ~r′|
−
∫
d3rVel−ionn(~r)

+
e2

4πε0

∑
A<B

ZAZB

| ~RA − ~RB|
+

∫
d3rεxc[n(~r)]n(~r);

(2.93)

One can derive this expression with respect to a certain position ~Rµ of ion µ with

charge Zµe. If one uses the correct ground state density, the force on ion µ is

~Fµ = −Zµ
e2

4πε0

(
∂

∂ ~Rµ

∑
A6=µ

ZA

| ~RA − ~Rµ|
−
∫
d3rn(~r)

∂

∂ ~Rµ

1

|~r − ~Rµ|

)
; (2.94)

For a complete derivation of eq. 2.94, see [15] section 6.7

2.6 Calculation of Phonon Spectra

2.6.1 Frozen Phonon

The frozen-phonon is a direct approach [16,63,65]. One can apply infinitesimal displace-

ments corresponding to the normal modes, by knowing them previously, and measure the

second derivative of the energy variation to get the frequency associated with this mode.

A given eigenvector εα of the dynamical matrix D(~k) obeys
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D(~k)εα = ω2
αεα; (2.95)

and this eigenvector is given by

~ε =



ε1
ε2
...
ε~τ
...
ε3γ


; (2.96)

Applying εTα and using eq. 2.88

εTαD(~k)εα = εTαω
2
αεα∑

~τ

∑
~τ ′

ε~τD~τ,~τ ′(~k)ε~τ ′ = ω2
α||εα||2 = ω2

∑
~τ

|ε~τ |2;
(2.97)

where ||εα|| is the modulus of vector εα

On the other hand, if we want to evaluate the energy variation for a given displacement

u, using the ansatz 2.85 in the quadratic term of 2.76 we get

uTΦu =
∑
µ

∑
ν

uµΦµνuν

=
∑
~R~τ

∑
~R′~τ ′

ετ
Φ~R~τ, ~R′~τ ′e

i~k.(~R′−~R)

√
M~τM~τ ′

ε~τ ′

=
∑
~τ

∑
~τ ′

∑
~R′

∑
~R

ετ
Φ~R~τ, ~R′~τ ′e

i~k.(~R′−~R)

√
M~τM~τ ′

ε~τ ′

= N
∑
~τ

∑
~τ ′

ετ

∑
~R′

Φ~0~τ,(~R′−~R)~τ ′e
i~k. ~R′

√
M~τM~τ ′

 ε~τ ′
= N

∑
~τ

∑
~τ ′

ετD~τ~τ ′ε~τ ′ = NεTDε;

(2.98)

where N is the total of unit cells in the crystal and we used the translational symmetry

of the crystal in the first summation. If ε is chosen to be an eigenvector 2.97, the 2.76

becomes
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U ≈ U0 +
Nω2

α

2
||εα||2; (2.99)

We can relate ||εα|| to ||uα||, which is easier to work with. By the ansatz 2.85, the

3Nγ length u vector relates to the ε, 3γ length vector, by

u =



u1
u2
...
u3γ
u3γ+1

...
u3(N−1)γ+1

...
u3Nγ


=



ε1e
i~k. ~R1/M

1/2
1

ε2e
i~k. ~R1/M

1/2
2

...

ε3γe
i~k. ~R1/M

1/2
3γ

ε1e
i~k. ~R2/M

1/2
1

...

ε1e
i~k. ~RN/M

1/2
1

...

ε3γe
i~k. ~RN/M

1/2
3γ ;


(2.100)

The norm of u is given by

||uα||2 = N
∑
~τ

|ε~τ |2

M~τ

; (2.101)

in the particular case of M~τ = M and supposing we are working with an eigenvector εα

||uα||2 =
N

M

∑
~τ

|ε~τ |2 =
N

M
||εα||2; (2.102)

combining the above expression with 2.99

U ≈ U0 +
Mω2

α

2
||uα||2; (2.103)

One can create a curve of energy as function of ||uα|| and from that obtain the respec-

tive frequency. For more applications, see section 3.3.3

2.6.2 Finite Difference Method

This method consist on to apply a displacement δuν over an atom in a certain direction and

measure the forces components δFµ on all atoms of the unitary cell in order to construct
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the FCM

Φµν ≈ −
δFµ
δuν

; (2.104)

For the frozen phonon and finite difference method one can make use of group theory

to find symmetries in the Φ matrix related to the point group symmetries of the crystal or

the eigenvectors [66,67]. For studies at the Γ point, one only needs to study one unit cell,

as since k = 0 means that in eq. 2.85 all equivalent atoms from different unit cells have the

same displacement. For studies at points ~k 6= 0 one needs the supercell approximation,

in which a cell with size of the order of the wavelength λ = 2π/k is chosen, since the

periodicity of vibrations in real space is equal to λ 3.

2.6.3 Density Functional Perturbation Theory (DFPT)

To evaluate the the force constant matrix element Φµν (eq. 2.80), one can derive the force

Fµ (eq. 2.94) with respect to the position ~Rν
4 [61]

Φµν =
∂2U

∂ ~rµ∂ ~rν
= −∂Fµ

∂uν

= Zµ
e2

4πε0

(
∂2

∂ ~Rµ∂ ~Rν

∑
A 6=µ

ZA

| ~RA − ~Rµ|
−
∫
d3rn(~r)

∂2

∂ ~Rµ∂ ~Rν

1

|~r − ~Rµ|
−
∫
d3r

∂n(~r)

∂ ~Rν

∂

∂ ~Rµ

1

|~r − ~Rµ|

)
;

(2.105)

To obtain the force constant Φµν from eq. 2.105 one needs the ground state density

and the linear response to a distortion of the nuclear geometry ∂n(~r)/∂ ~Rν .

We can generalize the eq. 2.105 by replacing the ionic coordinates by the parameters

λi, which can represent the positions of ions or external electric fields. The mixed second

derivative of the energy is given by

3In eq. 2.85 for k 6= 0 the phase shift between two u vectors is e2πi(
~Rµ−~Rν)/λ

4In this section we adopt that {~Rν} represents a general set of atomic positions (not necessarily the
ground-state) for the simplification of the notation
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∂2E

∂λi∂λj
=
∂2Vion−ion
∂λi∂λj

+

∫
d3rn(~r)

∂2Vext
∂λi∂λj

+

∫
d3r

∂n(~r)

∂λi

∂Vext
∂λj

; (2.106)

where Vion−ion is the ionic Coulomb interaction (second term in eq. 2.3) and V in our case

is the interaction of the electronic density with the ions as in the second part of 2.105 but

can include also other external agents.

To evaluate the derivative ∂n(~r)/∂λi one can linearize the independent particle density

(eq. 2.29)

∆λn = 2Re
∑
i

ψ∗i (~r)∆
λψi(~r); (2.107)

where the ψi are the solutions to the KS problem (eqs. 2.40) and the ∆λ operator is

defined as

∆λf ≡
∑
i

∂f

∂λi
∆λi; (2.108)

using first order perturbation theory

(HKS − εi) |∆ψi〉 = −(∆VKS −∆εi) |ψi〉 ; (2.109)

where VKS is the KS potential (eq. 2.42), ∆εi = 〈ψi |∆VKS |ψi〉 and ∆VKS is the first-

order correction to the self-consistent potential

∆VKS = ∆Vext + ∆VHartree + ∆Vxc; (2.110)

and the above terms depend on the perturbed electronic density (eq. 2.107). The per-

turbed wave-function is

∆ψi(~r) =
∑
i 6=j

ψj
〈ψj |∆VKS |ψi〉

εi − εj
; (2.111)
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Equations 2.107 and 2.109 form a set of self-consistent equations analogous to the KS

problem, in which the eigenvalue problem is replaced with a linear system. The right

side of 2.109 couples equations with different indices i making the solution of this linear

system costfull. Several improvements to deal with this problem can be found in [61].
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Chapter 3

Results and Discussion

3.1 Technical Details

All DFT calculations were done with the Quantum Espresso package [68]. For all materials

(graphite, graphene and multilayer graphene), in the plane wave approximation (section

2.3.5), a cutoff energy of 60Ry was used. For integrations over the BZ, a Monkhorst-Pack

mesh [58] was used for k-point sampling (section 2.3.6). For graphite a 8× 8× 8 grid was

used and for graphene and multilayer graphene a 8× 8× 1 grid was used.

In this work, we compared the performance of GGA and LDA approximations with

and without the DFT-D corrections [55, 56] and the vdw-df [46–48] and vdw-df2 [53]

functionals with and without the c09 correction [54] (for a brief description see section

2.4.1). For GGA we used the PBE exchange-correlation functional [32] and for LDA

we used the PZ functional [31]. We used the RRKJ ultrasoft pseudopotentials [70] with

non-linear core correction [69] 1.

The atomic positions of graphite and graphene were relaxed with convergence thresh-

old on forces of 10−3Ry/bohr and on energy of 10−4Ry and multilayer graphene structures

were relaxed with a convergence threshold on forces of 10−5Ry/bohr and on energy of

1For details on pseudopotential generation see http://www.quantum-espresso.org/wp-
content/uploads/Doc/pseudo-gen.pdf
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10−4Ry. The convergence threshold for selfconsistency field (SCF) calculations for the

KS equations is 10−10Ry (Fig. 2.1). A vacuum slab of 15Å for graphene and multilayer

graphene was inserted in the direction perpendicular to the graphene sheets.

3.2 Lattice and Elastic Constants

3.2.1 Graphene

For graphene, only LDA and GGA functionals with no VDW corrections were used as it

consists of a single graphene sheet.

To obtain the equilibrium lattice parameter for graphene, we evaluated its total energy

for a set of lattice parameters and fitted the corresponding values to a two-dimensional

Murnaghan equation [73]

E(A) = E0 +B0A0

[
1

B′0(B
′
0 − 1)

(
A

A0

)1−B′
0

+
1

B′0

A

A0

− 1

B′0 − 1

]
; (3.1)

where A = a2
√

3/2 is the area of the unit cell, A0 is the ground state area of the unit

cell, E0 is the ground state energy, B0 is the two-dimensional bulk modulus and B′0 =

(∂B/∂P ) |B=B0 , where P = ∂E/∂A is the two-dimensional pressure (surface tension).

In fig. 3.1 the Murnaghan fit is compared to a harmonic fit, showing that the curve

E(A) for graphene is not symmetric with respect to its minimum.
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Figure 3.1: Murnaghan fit (eq. 3.1) for E(A). Harmonic fit is presented for comparison

The Poisson ratio for graphene was obtained in the same way as for graphite (figs.

3.9, 3.10 and 3.11). As there is no experimental value of the Poisson ratio of graphene,

it can be estimated to be the same as the in plane Poisson ratio of graphite [74]. Several

theoretical works found values in the range 0.125− 0.456 [75,76].

The knowledge of the bulk modulus B0 and the poisson ratio ν allows one to evaluate

other elastic constants for graphene [77]. The Lamé coefficients λ and µ are related to λ

and ν through

B0 = λ+ µ; (3.2)

ν =
λ

2µ+ λ
; (3.3)

The evaluated elastic constants for graphene are summarized in the table 3.1. For the

poisson ratio ν in the above equations the mean of νxy and νyx was used.
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Table 3.1: Some physical parameters of graphene

GGA LDA Experimental value Other theoretical works

a(Å) 2.4642 2.4457 2.461 [71] 2.4619 [71]
B0(N/m) 207.41 216.53 - 203.31(0K) [83], 200 [84] 206.6 [85]

B′0 4.40623 4.3496 - 4.33 [85]
νxy 0.16775 0.17644 0.165 [72] 0.125− 0.456 [75,76]
νyx 0.16881 0.17317 0.165 [72] 0.125− 0.456 [75,76]

λ(N/m) 29.87 32.22 - 52.06(0K) [83]
µ(N/m) 147.65 152.09 - 151.25(0K) [83]

3.2.2 Graphite

The relaxed structural parameters for graphite for each functional we considered are shown

in figs. 3.2 and 3.3. For the in plane lattice parameter a it is possible to see that GGA,

GGA with dft-d correction, vdw-df-c09 and vdw-df2-c09 give the best results, although

the other cases present variations about 0.02Å only. For the out of plane lattice parameter

c, which is twice the interlayer distance, LDA and vdw-df2-c09 have better results and

GGA gives the worst result.

Figure 3.2: Comparison of the performance of several functionals for the a lattice constant.
The experimental value is 2.4607Å [71]
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Figure 3.3: Comparison of the performance of several functionals for the c lattice constant.
The experimental value is 6.7053Å [71]

According to the elasticity theory, elastic constants are related to second derivatives

of the energy evaluated in the ground-state. In the case of graphite one can obtain the

following elastic constants [71]

C11 + C12 =
1√
3c0

∂2E

∂a2

C33 =
2c0√
3a20

∂2E

∂c2

C13 =
1√
3a0

∂2E

∂a∂c

Ct =
1

6
[(C11 + C12) + 2C33 − 4C13]

B0 =
C33(C11 + C12)− 2C2

13

6Ct
;

(3.4)

where Cij are stiffness coefficients, Ct is the tetragonal shear modulus and B0 is the

bulk modulus. To evaluate the derivatives on the equations above the total energy was

evaluated in SCF calculations for a set of (a, c) points around the equilibrium parameters

obtained by the minimizations. The data was fitted by a fourth-order two-dimensional

Taylor series. To evaluate the elastic constants 3.4 we used the relaxed parameters (figs.
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3.2 and 3.3) and the experimental ones [71] for the values a0 and c0.

For C11 + C12, the use of experimental values for a0 and c0 improves the results , as

shown in Fig. 3.4. This means that the second derivative ∂2E/∂a2 is well evaluated.

One can compare fig. 3.3 and fig. 3.4 and realize that functionals that have c parameter

smaller (higher) than the experimental value present higher (smaller) values for C11 +C12

what comes from due to the 1/c0 factor in eq. 3.4. For C33 the use of experimental

values gives better results for LDA, vdw-df-c09 and vdw-df2-c09 functionals as shown in

Fig. 3.5. For C13, Fig 3.6 shows that negatives values for this constant were found in

accordance with the theoretical calculations of [71], although the experimental value is

positive. For Ct and B0 (Figs. 3.7 and 3.8, respectively), the best performances are from

LDA, vdw-df-c09 and vdw-df2-c09 using the experimental lattice constants and vdw-df

and vdw-df2 using the theoretical lattice constants.

Figure 3.4: C11 + C12 elastic constant divided by its experimental value (1240GPa at
300K) [71]
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Figure 3.5: C33 elastic constant divided by its experimental value (36.5GPa at 300K) [71]

Figure 3.6: C13 elastic constant divided by its experimental value (15GPa at 300K) [71]
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Figure 3.7: Ct elastic constant divided by its experimental value (208.8GPa at 300K) [71]

Figure 3.8: Bulk modulus divided by its experimental value (35.8GPa at 300K) [71]

Another relevant elastic constant is the Poisson ratio. To evaluate it, a rectangular

supercell was created (fig. 3.9) and distortions from −2% to 2% were applied in the x̂ (ŷ)

direction and, after relaxations the distortions in the ŷ (x̂) directions were measured. As

the Poisson ratio is given by
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νij = − εi
εj
, (3.5)

where εi is the strain in the î direction, we plotted εy as a function of εx and fit the curve

to a linear function (fig. 3.10) , from which the Poisson ration νxy was extracted.

Figure 3.9: Graphite supercell used to evaluate poisson ratio, represented by the black
rectangle. ŷ direction corresponds to armchair direction and x̂ to zig-zag. Figure created
with xcrysden software [18,19].

Figure 3.10: Example of poisson ratio evaluation

The in-plane Poisson ratio was evaluated by applying distortions in armchair and zig-

zag directions for different functionals. The results are shown in Fig. 3.11. The values are

independent of the distortion direction and the vdw-df2 has the closest agreement with

the experimental value [72].
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Figure 3.11: Poisson ratio evaluated by applying distortion in the armchair (zig-zag)
direction and measuring distortion in the zig-zag (armchair) direction. Experimental
value: νexp = 0.165 [72]

The energy per atom was evaluated for several interlayer distances c/2 in order to

calculate the exfoliation energy of graphite. The results are summarized in Fig. 3.12.

The values that are closer to the reported experimental values are from the GGA with

dft-d, vdw-df, vdw-df2 and vdw-df2-c09 functionals. LDA has also a good performance

reproducing the exfoliation energy and GGA gives a much smaller exfoliation energy as

compared to experiment data.
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Figure 3.12: Interlayer interaction energy per atom in graphite as a function of the in-
terlayer distance c/2 evaluated for several functionals. Horizontal dashed lines represent
experimental values for the exfoliation energy per atom [78] and the horizontal line rep-
resents the experimental value for the interlayer distance 3.35265Å [71]. Experimental
values in meV/atom are: 42 [79], 35 [80], 52 [81], 31 [82]

3.2.3 Multilayer Graphene

Considering the exfoliation energy, stiffness coefficients and phonon frequencies (section

3.3.2) we chose as VDW functional the vdw-df2-c09. For multilayer graphene we worked

with GGA and LDA without VDW corrections and vdw-df2-c09 functionals to evaluate

their layer breathing and shear modes frequencies. For each functional we used as in plane

lattice parameter those in fig. 3.2 assuming that the bond distance will not vary with the

number of layers.

The structures were prepared in the Bernal stacking and its ionic positions relaxed

in z direction. For bilayer, trilayer graphene and graphite the mean interlayer distance

is the real interlayer although in 4layer and 5 layer graphene the variation in interlayer

distances is about 0.02Å. The mean interlayers distances are shown in fig. 3.13.
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Figure 3.13: Mean interlayer distance for multilayer graphene and graphite.

3.3 Phonon Dispersion

For all DFPT calculations the acoustic sum rule is imposed, the frequencies of acoustic

modes at the Γ point are zero and the Monkhorst-Pack mesh used was 8 × 8 × 2. The

path in the BZ for the phonon dispersion evaluation for graphene, graphite and multilayer

graphene is shown in fig. 3.14.

Figure 3.14: K path for evaluation of the phonon dispersion for graphite. For graphene
and multilayer graphene the same path is used except the A− Γ part
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3.3.1 Graphene

DFPT

For graphene, only DFPT calculations with GGA and LDA functionals were done. The

results are shown in fig. 3.15. LDA calculations give higher frequencies than GGA for

optical modes.

Figure 3.15: (Left) Phonon dispersion of graphene calculated in the LDA and GGA
approximations. (Right) Solid line: GGA calculation [71] on graphene and experimental
data of graphite. The experimental data are EELS (electron energy loss spectroscopy)
from [87–89] (respectively squares, diamonds, and filled circles), neutron scattering from
[90] (open circles), and x-ray scattering from [86] (triangles). Figure reproduced from [71]

3.3.2 Graphite

DFPT

For graphite, DFPT calculations with LDA and GGA functionals using the theoretical

and experimental lattice constants (figs. 3.2 and 3.3) were done and the results are

summarized in fig. 3.16. Presently, DFPT calculations with VDW functionals are not yet

implemented in the Quantum Espresso [68], although there are works in progress in this

direction [92].
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Figure 3.16: (Left) Phonon dispersion for graphite using GGA (red) and LDA (blue) with
the theoretical lattice parameters (solid lines) or experimental (dashed lines). (Right)
GGA (solid lines) and LDA (dashed lines) from [71]. The experimental data are EELS
(electron energy loss spectroscopy) from [87–89] (respectively squares, diamonds, and
filled circles), neutron scattering from [90] (open circles), and x-ray scattering from [86]
(triangles). Figure reproduced from [71]

Frozen Phonon

Following the procedure explained in section 2.6.2, we performed frozen-phonon calcula-

tions for a couple phonon-modes. We focus on in-plane (shear) and out-of-plane modes

at Γ in which the graphite planes move rigidly with respect to each other according to

the eigenvectors shown in appendix A. For each displacement along these modes a SCF

calculation was done and the corresponding frequencies were obtained from the harmonic

approximation (Appendix B). Examples of how the procedure works are shown in fig.

3.17
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Figure 3.17: Example of frozen phonon calculations for out-of-plane (left) and in-plane
(right) modes. The two in plane modes (displacements in the armchair and zigzag direc-
tions) are degenerate. Harmonic fits (green curves) are presented for comparison.

One can see in the above graphs that anharmonic effects may be important for a

proper description of these vibrational modes. We also included anharmonic effects by

first order perturbation theory as explained in Appendix B for the out-of-plane modes.

In plane modes wold require degenerate perturbation theory and we leave this subject for

future work. Results comparing the inclusion of anharmonic effects are summarized in

fig. 3.23

Data Analysis

The results of DFPT and frozen phonon calculations for the in-plane and out-of-plane

modes are shown in figs. 3.18 and 3.19 respectively. Theoretical and experimental lattice

parameters were used.

For the in plane mode, in general, the use of experimental lattice parameters improves

the performance of the calculations. For the theoretical parameters, LDA and vdw-df2-c09

have the best performances in reproducing the experimental value of the frequency.
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Figure 3.18: Comparison of DFPT method and frozen-phonon for several functionals for
the in plane mode frequency at the Γ point. Experimental value is 42 cm−1 [91]. Bars
without label DFPT refer to frozen phonon calculations.

For the out of plane mode, the use of GGA with experimental lattice parameters and

LDA, GGA with dft-d, vdw-df-c09 and vdw-df2-c09 with theoretical parameters have the

best performances.

Figure 3.19: Comparison of DFPT method and frozen-phonon for several functionals for
the out of plane mode. Experimental value is 127 cm−1 [91]. Bars without label DFPT
refer to frozen phonon calculations.
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The LDA with dft-d using theoretical lattice parameters overestimates the frequencies

of the in plane and out of plane modes. This can be associated to the overestimation of

the binding energy of graphene using this functional (see fig. 3.12). One can also notice

that there is a good agreement between DFPT and frozen phonon calculations for the

LDA and GGA functionals, thus showing that the eigenvectors for graphite in appendix

A are exact.

3.3.3 Multilayer Graphene

As there is no experimental values for the interlayer distance for multilayer graphene, we

use theoretical values obtained from relaxation. The in plane parameter used for all cases

was the theoretical value for graphite for each functional, as shown in fig. 3.2.

For multilayer graphene, we use only the vdw-df2-c09 as functional that includes VDW

interactions, as it has the best performance in reproducing the experimental frequencies

and exfoliation energies for graphite, according to our discussion in the previous section.

DFPT

DFPT calculations for multilayer graphene (from 2 to 5 layers) were done for GGA and

LDA functionals and phonon dispersions are shown in fig. 3.20.
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Figure 3.20: Phonon dispersion of bilayer graphene (top left), trilayer graphene (top
right), 4layer graphene (down left) and 5layer graphene (down right) using LDA (red
lines) and GGA (blue lines) functionals. Units in cm−1

At the Γ point, there are N − 1 out-of-plane non-zero frequency modes and 2(N − 1)

in-plane non-zero frequency modes degenerated two by two.

Frozen Phonon

For multilayer graphene we follow a procedure similar to that of graphite, as described

in section 3.3.2. However, for multilayer graphene, we use an approximation of nearest-

neighbor interactions only between graphene sheets and the assumption that force con-

stants between neighboring sheets are the same for all pairs. The accuracy of these

approximations assumptions will be tested against the finite difference approach, to be

described below. The corresponding eigenvectors can be found in appendix A.

We included anharmonic effects by first order perturbation theory as explained in
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Appendix B. Results comparing the inclusion of anharmonic effects are summarized in

fig. 3.23.

Finite Difference Method

As explained in section 2.6.2, we construct the FCM by applying displacements in specific

directions and measuring the forces over graphene layers. For each layer, displacements

from −0.6 bohr to −0.6 bohr were applied and curves of force vs distance were fitted by

a fifth order polynomial as in fig. 3.21. The force constant is given by the first derivative

of the fitted curve. Once the FCM is obtained the acoustic sum rule is imposed.

Figure 3.21: Force in the out-of-plane direction on the edge layer of 4-layer graphene as a
function of the displacement in the out-of-plane direction of the same layer as an example
of evaluation of a matrix element of the FCM. This example corresponds to µ = 1 and
ν = 1 in eq. 2.104

Data Analysis

Out of plane frequencies obtained from DFPT, frozen-phonon (FP) and finite difference

(FD) at the Γ point method are shown in fig. 3.22. All three methods used for LDA

and GGA agree with each other satisfactorily, indicating that the eigenvectors, obtained

from first neighbors approximation, in appendix A are good approximations. Vdw-df2-
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c09 gives higher frequencies than LDA by about 5 − 10 cm−1 and reproduces better the

experimental values from [94] for the higher frequencies for each N-layer. GGA gives

frequencies that are clearly too low with respect to experiment.

Figure 3.22: Out of plane frozen phonon (FP), finite difference (FD) and DFPT calcula-
tions (triangles, reverse triangles and circles respectively) using GGA (blue), LDA (red)
and vdw-df2-c09 (green) functionals. Experimental value for the layer breathing mode of
graphite is from [91] and black crosses are experimental values from two-phonon overtone
spectra observed in doubly resonant Raman spectroscopy in [94]. Lines are connecting the
higher frequencies for each N-layer to show the convergence of those values with the num-
ber of layers until they reach the graphite frequency. Theoretical calculations of graphite
presented here were done with the theoretical lattice parameters (figs. 3.19).

We also included anharmonic effects in the frozen phonon calculations by first order

perturbation theory (see appendix B). In general, its inclusion improves the frequencies

of low out-of-plane optical modes.
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Figure 3.23: Effect of including anharmonic effects in the out-of-plane modes in frozen
phonon calculations. Squares include anharmonic effects and triangles do not using GGA
(blue), LDA (red) and vdw-df2-c09 (green) functionals. Experimental value for the layer
breathing mode of graphite is from [91] and black crosses are experimental values from
two-phonon overtone spectra observed in doubly resonant Raman spectroscopy in [94].
Lines are connecting the higher frequencies for each N-layer to show the convergence of
those values until graphite frequency. Theoretical calculations of graphite presented here
were done with the theoretical lattice parameters (figs. 3.18).

In plane frequencies obtained from DFPT, FP and FD at the Γ point method are shown

in fig. 3.24. Once again, all calculations with GGA have very small frequencies due to

the weak interaction between layers (fig. 3.12). We notice several potential problems in

the calculations: (1) Contrary to the out-of-plane case, DFPT for LDA does not agree

very well with FP for LDA. (2) FP and FD method for LDA and vdw-df2-c09 cases work

well for bilayer graphene, although for the other multilayer structures they underestimate

the experimental frequency and have smaller frequency than the DFPT for LDA. (3) FP

calculations seem not to follow the trend that the highest frequency should increase with

the number of layers, gradually approaching the value for graphite.
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Figure 3.24: In plane frozen phonon (FP), finite difference (FD) and DFPT calculations
(triangles, reverse triangles and circles respectively) using GGA (blue), LDA (red) and
vdw-df2-c09 (green) functionals. Experimental value for the shear mode of graphite is
from [91], black crosses are ab initio calculations from [33] and cyan stars are experi-
mental Raman measures of C peak position from [33]. Lines are connecting the higher
frequencies for each N-layer to show the convergence of those values until graphite fre-
quency. Theoretical calculations of graphite presented here were done with the theoretical
lattice parameters (figs. 3.18).

Trying to correct the results, a convergence study of the frequencies of in-plane modes

was done in relation to the K points sampling and an example of analisys is shown in fig.

3.25. Some frequencies change about 5cm−1. We believe that this happens because of the

symmetry break due to in-plane displacements that opens an electronic gap in multilayer

graphene requiring a higher K points sampling.
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Figure 3.25: Convergence of the frequency of the highest mode of 5-layer graphene in
relation to the number of K points sampling

We considered a grid 30×30×1 satisfactory and frozen phonon frequencies with this

grid are shown in fig. 3.26. The higher frequencies of in plane modes are closer to the

experimental values and show the convergence behavior in relation to the number of layers.
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Figure 3.26: In plane frozen phonon (FP) using higher K points sampling than in fig.
3.24, finite difference (FD) and DFPT calculations (triangles, reverse triangles and circles
respectively) using GGA (blue), LDA (red) and vdw-df2-c09 (green) functionals. Ex-
perimental value for the shear mode of graphite is from [91], black crosses are ab initio
calculations from [33] and cyan stars are experimental Raman measures of C peak posi-
tion from [33]. Lines are connecting the higher frequencies for each N-layer to show the
convergence of those values until graphite frequency. Theoretical calculations of graphite
presented here were done with the theoretical lattice parameters (figs. 3.18).

To evaluate the consistency of our calculations, we can evaluate the ratio (ωgraphite/ωbilayer)
2.

By analyzing the eigenvalues in appendix A, this ratio is expected to near 2, if one con-

siders a simple mass-spring model in which, within the first neighbor approximation,

one graphene sheet in graphite interacts with other two adjacent layers, while in bilayer

graphene one graphene layer just interacts with another, making the effective spring con-

stant over one layer in graphite twice that of one layer in bilayer graphene (of course,

assuming the the force constants do not change their value with the number of layers).
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Table 3.2: (ωgraphite/ωbilayer)
2

LDA GGA vdw-df2-c09
In plane

DFPT 2.07 4.0 -
Frozen phonon 2.17 3.95 2.29

Out of plane
DFPT 2.20 3.38 -

Frozen phonon 2.11 4.45 2.23
Frozen phonon with perturbation 2.00 3.38 2.13

Table 3.2 shows that the ratio (ωgraphite/ωbilayer)
2 is close to 2 for by LDA and vdw-df2-

c09 in both DFPT and frozen phonon techniques, but much higher for GGA calculations.
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Chapter 4

Conclusions

In summary, we have analyzed the accuracy of different vdW functionals in describing

different properties of graphene and graphite. For graphene most physical parameters

obtained with GGA and LDA functionals are in good agreement with experimental and

other reported theoretical values. The phonon dispersion is also satisfactory except at the

K point, where the Born-Oppenheimer approximation fails [96].

For graphite, we have analyzed the stiffness coefficients, exfoliation energy and the

frequencies of the breathing layer and shear modes obtained from DFPT and frozen

phonon calculations. Based on our results, we chose the vdw-df2-c09 as the best functional

for calculations in multilayer graphene, even though LDA with no VDW corrections also

has a good performance. For properties that depend on a good description of the interlayer

interaction, GGA with no VDW corrections gives the worst results.

For calculations on multilayer graphene, DFPT, frozen phonon (FP) and finite differ-

ence methods (FD) were used. The out-of-plane mode is better reproduced by FP and

FD with the vdw-df2-c09 functional. It is possible to see that the higher frequencies of

N-layer graphene converges to graphite frequency with respect to the number of layers.

The in-plane modes are not well reproduced by FP and FD. DFPT with LDA gives the

correct behavior, but it overestimates the experimental values. The use of a higher K

points sampling for frozen phonon correct those frequencies reproducing better the ex-
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perimental results. The use of first order perturbation theory in the out of plane modes

gives small corrections to calculated frequencies and brings them closer to experimental

values.

In summary, we see that the use of vdw-df2-c09 improves substantially the properties

that depend on the interlayer interactions, although LDA with no VDW corrections gives

satisfactory results. Frozen phonon calculations including only nearest layer interactions

have a good performance in comparison to other methods.
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Appendix A

Eigenvectors for frozen phonon
calculations

As explained in section 2.6.2 the knowledge of the eigenvectors uα allow us to relate

variations of energy to the eigenvalues of the dynamical matrix through eq. 2.103. As we

are interested only in shear and layer breathing modes, we can model each graphene layer

in multilayer graphene or graphite as a ”particle”. These modes belong to the Γ point,

making the use of supercells unnecessary.

The shear and layer breathing modes are uncoupled due to symmetry, so we can deal

with each one separately. In both cases, as we show below, the associated dynamical

matrices have the same form, but the force constants are different.

We include only first neighbor interactions in this model, as we are dealing with VDW

interactions. One can estimate for the case of graphite the second order force constant by

remembering that the VDW interaction is proportional to 1/r6, and that the next nearest

layer will be at a distance that is twice the distance that the first neighbor is. With

that, the ratio between the force that the next nearest layer exerts and the force that the

nearest layer exerts over a layer is (1/2)7 ≈ 0.01. Therefore, the next nearest layer force

constant is about 1% of the nearest layer force constant. For bonded interactions, the

inclusion of up to fourth neighbors is necessary in graphite [93].
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As we are approximating our problem to N coupled harmonic oscillators, the higher

frequencies for each N-layer graphene is given by [95]

ωN = ω∞cos
( π

2N

)
; (A.1)

where ω∞ is the frequency of an infinite 1D linear chain (or in our context, graphite). The

convergence behavior in fig. A.1 is well reproduced by our results in figs. 3.24 and 3.22.

Figure A.1: Plot of the ratio ωN/ω∞ as a function of the number of layers using equation
A.1.

One can see that the frequencies from the higher eigenvalues described below obey the

equation A.1.

A.1 Bilayer graphene

For bilayer graphene, the dynamical matrix at the Γ point is given by

D =
1

M

[
c −c
−c c

]
; (A.2)

where c is the force constant between the two layers (which is different for shear and layer

breathing modes) and M = 2Mcarbon. The eigenvectors are given by
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[
1
1

]
,

[
1
−1

]
; (A.3)

The first one corresponds to a translation of the center of mass and the second to a vi-

brational mode (shear or layer breathing). The corresponding eigenvalues are respectively

0 and 2c/M .

A.2 Trilayer graphene

For trilayer graphene, the dynamical matrix at the Γ point is given by

D =
1

M

 c −c 0
−c 2c −c
0 −c c

 ; (A.4)

The eigenvectors are given by

1
1
1

 ,
 1
−2
1

 ,
−1

0
1

 ; (A.5)

and the corresponding eigenvalues are respectively 0, c/M and 3c/M .

A.3 4-layer graphene

For 4-layer graphene, the dynamical matrix at the Γ point is given by

D =
1

M


c −c 0 0
−c 2c −c 0
0 −c 2c −c
0 0 −c c

 ; (A.6)

The eigenvectors are given by


1
1
1
1

 ,


1
−1
−1
1

 ,

−1
− 1

1+
√
2

1
1+
√
2

1

 ,

−1
1√
2−1

− 1√
2−1

1

 ; (A.7)
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and the corresponding eigenvalues are respectively 0, 2c/M , (2 −
√

2)c/M and (2 +
√

2)c/M .

A.4 5-layer graphene

For 5-layer graphene, the dynamical matrix at the Γ point is given by

D =
1

M


c −c 0 0 0
−c 2c −c 0 0
0 −c 2c −c 0
0 0 −c 2c −c
0 0 0 −c c

 . (A.8)

The eigenvectors are given by


1
1
1
1
1

 ,

−1
1−
√
5

2

0√
5−1
2

1

 ,


1√
5−3
2

1−
√

5√
5−3
2

1


,


−1√
5+1
2

0

−
√
5+1
2

1

 ,


1

−
√
5+3
2

1 +
√

5

−
√
5+3
2

1

 ; (A.9)

and the corresponding eigenvalues are respectively 0, [(3−
√

5)/2]c/M , [(5−
√

5)/2]c/M ,

[(3 +
√

5)/2]c/M and [(5 +
√

5)/2]c/M .

A.5 Graphite

In the graphite case we make use of PBC. For interlayer vibrations, one can consider

graphite as an infinite 1D linear homogeneous chain [12]. The dynamical matrix at the Γ

point is given by

D =
1

M

[
2c −2c
−2c 2c

]
; (A.10)

The eigenvectors are given by

[
1
1

]
,

[
1
−1

]
. (A.11)
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The corresponding eigenvalues are respectively 0 and 4c/M . As in the above cases

this analyses is valid for the shear and layer breathing modes (each one with a different

force constant c).
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Appendix B

Anharmonic Effects included by
First Order Perturbation Theory

The unperturbed quantum harmonic oscillator hamiltonian is given by

H(0) =
p̂2

2m
+

1

2
mω2

0x̂
2; (B.1)

and its eigenvalues are

E(0)
n = ~ω0

(
n+

1

2

)
; (B.2)

for each eigenvector
∣∣n(0)

〉
. The frequency for a phonon in this quantum harmonic oscil-

lator is given by

~ωf =E
(0)
1 − E

(0)
0

ωf =ω0;
(B.3)

If we want to include anharmonic effects, we can do it by using the following pertur-

bation

H ′ = λx4; (B.4)

where λ is a constant. This particular form of perturbation is adequate for the out-of-

plane mode of graphite, as the potential energy with respect to the mode displacement is



92

symmetric with respect to x, as it can be seen in Fig. 3.17. For multilayer systems and

in-plane modes, a term proportional to x3 may appear, but energy eigenvalue corrections

from this term in first-order perturbation theory are zero. The first order correction to

the energy is given by

E(1)
n =

〈
n(0)

∣∣H ′ ∣∣n(0)
〉
. (B.5)

To evaluate the term
〈
n(0)

∣∣x4 ∣∣n(0)
〉

we can make use of the creation and annihilation

operators [97], writing x̂ as a function of â and â†.

The first correction in energy is given by

E(1)
n = λ

(
~

2mω0

)2

(6n2 + 6n+ 3). (B.6)

With this information we can modify the phonon frequency

~ωf = (E
(0)
1 + E

(1)
1 )− (E

(0)
0 + E

(1)
0 )

ωf = ω0 + 3λ
~

m2ω2
0

;
(B.7)

In summary, if in frozen phonon calculations we fit an energy curve by a polynomial

V (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + ..., the phonon frequency as a function of a2 and

a4 is

ωf =

(
2a2
m

)1/2

+
3

2

~a4
ma2

. (B.8)
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