Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Observatório do Valongo

Modelagem de efeitos térmicos em condritos carbonáceos: Uma aplicação à familía de Eos

Aluna: Tatiana C. de Moura Bastos

Orientadora: Profa. Dra. Thais Mothé Diniz

Projeto de Final de Curso para a obtenção do título de Mestre em Astronomia

> Rio de Janeiro Dezembro/ 2012

À minha vó, meus pais e irmão. 🛇

Agradecimentos

Agradeço à minha família, meus pais e irmão, pelo apoio irrestrito e amor incondicional em mais uma etapa. Sem essa base, não chegaria até aqui.

Á minha orientadora, Thais Mothe-Diniz, pela generosidade de me oferecer esse projeto, por abrir portas e por toda a confiança e incentivo.

Á minhas amigas Erika e Amanda, pela amizade, paciência, ouvido atento e ombro amigo.

Á Maria Eugenia Varella, pela atenção, ajuda, paciência e contribuição para esse projeto.

Ao Jorge Carvano e Daniela Lazarro, pela contribuição valiosa.

Resumo

Este projeto consiste no estudo dos efeitos térmicos em meteoritos condritos carbonáceos (CO, CV e CK), através de uma modelagem termodinâmica. Os meteoritos carbonáceos são associados a asteroides localizados na parte externa do cinturão principal, região na qual os objetos aí localizados são tradicionalmente tidos como primitivos. Entretanto, trabalhos recentes sobre a família de Eos, localizada nessa região, sugerem uma possível associação a um corpo diferenciado, gerando um paradoxo no entendimento da mineralogia dos corpos que aí se encontram. Segundo nossos resultados, o derretimento de aproximadamente 1% a 20% de um corpo carbonáceo em condições redutoras (fO_2 IW-2) produziria um resíduo com a composição esperada para membros da família (fase de ortopiroxênio e olivinas com Fa $_{20}$).

Abstract

The project consists on an analysis of the thermal effects on carbonaceous chondrite meteorites (CO, CV, and CK), through a thermodynamical modelling. Carbonaceous chondrite meteorites have primitive mineralogies, since they suffered little or no heat throughout their lifes while in the outer space. They are also associated with asteroids in the outer part of the main belt. Neverthenless, recent studies about the Eos asteroid family, which is located in the outer belt, suggest a possible correlation of the family members with a differentiated parent body. This generates a paradox regarding the understanding of the mineralogy of the bodies in this region. According to our results, the melting of approximately 1% to 20% of a carbonaceous chondrite meteorite under reducing conditions (fO_2 IW-2) can produce a residue with the expected composition for the family members (orthopyroxene and olivines with Fa_{~20}).

Sumário

Su	ımár	io	iv
Li	sta d	le Figuras	vi
Li	sta d	le Tabelas	xvii
1	Intr	rodução	1
	1.1	Meteoritos	3
	1.2	Processos térmicos e fontes de aquecimento	6
		1.2.1 Fontes de aquecimento	7
2	A F	amília de Eos	13
	2.1	Comparação de espectros	14
	2.2	Mineralogia da família: Método de Misturas Íntimas e Modelo	
		Gaussiano Modificado (MGM)	21
3	Aná	ilise	27
	3.1	Programas	27
	3.2	Fugacidade do Oxigênio	29
	3.3	Composições	32
	3.4	Variáveis Intensivas	34
	3.5	Teste: Reprodução de resultados experimentais	35
4	Dise	cussão e Resultados	41
	4.1	Resultados do METEOMOD	42
	4.2	Resultados do Rhyolite-MELTS	45
	4.3	Discussão e Conclusão	47

Referências Bibliográficas

Α	Term	odinâmica: Energia livre de Gibbs	59
	A.1 E	Energia Livre de Gibbs (ΔG)	59
В	Repro meteo	odução dos resultados experimentais: Derretimento do orito Allende	61
\mathbf{C}	Gráfie	cos e Tabelas	71
	C.1 (Composição Allende	71
	C.2 C	Composição Vigarano	78
	C.3 (Composição Ornans	84
	C.4 C	Composição Lancé	90
	C.5 (Composição Karoonda	96
	С.6 Т	abelas	102

Lista de Figuras

1.1	Gráfico em função dos elementos próprios semi-eixo maior (distância
	heliocêntrica) versus seno da inclinação de ${\sim}241.000$ asteroides numer-
	ados até agosto de 2010 disponíveis no site (http://hamilton.dm.unipi.it/) 2
1.2	Classificação dos meteoritos quanto à composição e textura 4
1.3	Exemplos das estruturas características em condritos. Os meteoritos
	das imagens são da classe dos carbonáceos. (Weisberg et al., 2006) . . 10
1.4	Classificação petrológica de van Schmus and Wood (1967) 10
1.5	Classes de condritos. Os ordinários e enstatitas são classificados quanto
	à quantidade de ferro presente: $\mathcal{H}(\mathit{High})$ são os ricos em ferro enquanto
	os LL $(\mathit{Low-Low})$ - EL no caso dos condritos enstatitas - são os mais
	pobres nesse elemento
1.6	Diagrama com os tipos petrólogicos para cada grupo de condritos
	(Weisberg et al., 2006)
1.7	Etapas para diferenciação de um corpo. Os meteoritos acondritos,
	pallasitas e ferrosos podem ser fragmentos de partes distintas de um
	corpo diferenciado [Smithsonian-national Museum of Natural History]. 12
2.1	Espectro do asteroide 5622 obtido no SMASS II (Bus, 1999) versus o
	espectro do meteorito Cynthiana do banco de dados RELAB (Pieters
	and Hiroi, 2004) (em vermelho) (Mothé-Diniz et al., 2010) \ldots 15
2.2	Diagrama de cores U-B x B-V para as famílias de Eos (\bullet) e Koronis
	(\blacktriangle). Os objetos do campo são representados por (\circ). Os limites para
	a classe S e C usados são os definidos por Bowell et al. (1978). (Degewij
	et al., 1978)

- 2.3 Índice de cor (infravermelho) J-H versus H-K para 56 membros da família de Eos. As regiões são limitidas pelos índices de cor observados em asteroides do tipo C e S (Chapman and Morrison (1976),Leake et al. (1978),Veeder et al. (1982) e Hahn and Lagerkvist (1988))(Veeder et al., 1995).

vii

2.9	Exemplo da aplicação do método MGM. O resultado mostrado é para	
	o asteroide 1416 Renauxa, pertencente a família de Eos. A primeira	
	curva na figura são as bandas usadas no ajuste onde as linhas trace-	
	jadas representam bandas de piroxênios e as linhas sólidas são bandas	
	de olivinas. No centro temos o espectro do asteroide (linha cheia)	
	e os pontos do espectro usados no ajuste. Na última curva temos o	
	resíduo. Na figura acima foi utilizado para o ajuste os minerais olivina	
	e ortopiroxênio. (Mothé-Diniz et al., 2008)	23
2.10	Resultado do Método de misturas íntimas de Hapke para o asteroide	
	661 Cloelia. Para esta modelagem também foi usado os minerais oliv-	
	ina e piroxênio(Mothé-Diniz et al., 2008).	24
3.1	Tela inicial do METEOMOD. O programa foi desenvolvido para o	
	ambiente DOS	28
3.2	Tela inicial do programa MELTS	28
3.3	Diagrama do log da $f\mathrm{O}_2$ versus a temperatura mostrando as esta-	
	bilidades relativas para vários estados de oxidação no sistema Fe-Si-	
	O.[Frost (1991)]	31
3.4	Curvas que representam distintas fugacidades do oxigênio em um sis-	
	tema contendo O-Si-Fe e em função da temperatura. O lado direito	
	de cada reação na figura é estável abaixo da curva de fO_2 correspon-	
	dente. No gráfico a fugacidade Ferro-Wustita (IW) é chamada de WI.	
	(Best, 2003)	31
3.5	Versão modificada do Diagrama de Urey-Craig. O total de Fe é con-	
	stante ao longo da diagonal e aumenta da esquerda inferior à direita	
	superior. Os condritos CI não possuem metais enquanto que as en-	
	statitas EH possuem mais Fe. (Zanda, 2004) $\ldots \ldots \ldots \ldots \ldots$	33
3.6	Comparação da composição do magma obtido no experimento e pro-	
	gramas de modelagem para aquecimento do meteorito Allende $(CV3)$	
	e fugacidade redutora IW-1. Para alguns óxidos como ${\rm TiO_2}$ e MnO	
	os valores obtidos são bem próximos. O programa METEOMOD não	
	fornece valores para Cr_2O_3 e para essa temperatura Jurewicz et al.	
	(1993) não detectou Na ₂ O. Comparação para T= 1325°C e para resul-	
	tados de METEOMOD a temperatura mais próxima (T = 1325.5°C)	
	já que o próprio determina o intervalo de temperatura	36

3.7	Comparação da composição do magma agora para a condição oxidante	
	(IW+2) e mesma temperatura (T= 1325°C). Para essa fugacidade	
	os óxidos TiO ₂ , MnO e FeO apresentam valores bem próximos dos	
	obtidos experimentalmente	37
4.1	Diagrama ternário da série sólida do feldspato. O feldspato é um	
	mineral muito comum na crosta terrestre e presente em rochas ígneas.	
	O plagioclásio, por sua vez, pertence à da família do feldspato e pos-	
	sui como extremos a albita (rica em sódio - ${\rm NaAlSi_3O_8})$ e Anortita	
	$(CaAl_2Si_2O_8)$. A presença dos elementos Na e Ca nesses minerais	
	são medidos pelos índices dados pela porcentagem total de albita e	
	anortita respectivamente.	43
4.2	Diagrama ternário para a série sólida do ortopiroxênio e clinopiroxênio.	43
4.3	Fases minerais formadas no derretimento da composição Ornans em	
	função da temperatura e obtidos pelo programa Rhyolite-MELTS para	
	$f\mathrm{O}_2$ IW-2. A porcentagem de resíduo, são as fases sólidas que per-	
	manecem presentes em um determinado estágio do derretimento. $\ . \ .$	48
4.4	Resultados produzidos pelo METEOMOD para a composição Ornans	
	e fugacidade fO_2 em função da temperatura	48
4.5	Conteúdo failítico para composição Vigarano e $f\mathrm{O}_{2}\mathrm{IW}\text{-}1$ em função	
	da temperatura e aquecimento (segundo gráfico). Resultados da sim-	
	ulação no programa Rhyolite-MELTS	49
4.6	Conteúdo faialítico ao longo do processo de derretimento da com-	
	posição Vigarano e $f\mathrm{O}_2$ IW-1 obtido pelo programa METEOMOD	49

ix

B.2	Composição do magma obtido pelo derretimento de uma amostra do
	meteorito Allende a uma fugacidade IW-1 e T= 1275 °C. Para os dados
	do programa METEOMOD usamos a temperatura mais próxima (T=
	1273.6°C)
B.3	Composição do magma resultante do aquecimento do meteorito Al-
	lende obtido em laboratório e teoricamente através dos programas
	MELTS e METEOMOD. O aquecimento foi realizado a uma fO_2 IW
	-1 e T= 1200 °C (exceto para METEOMOD cujo resultado apresentado
	é para T=1200.8°C)
B.4	Composição do magma obtido pelo derretimento de uma amostra do
	meteorito Allende a uma fugacidade IW -1 e T= 1180°C (T= 1177.1°C para
	METEOMOD)
B.5	Composição do magma obtido pelo derretimento de uma amostra do
	meteorito Allende a uma fugacidade IW -1 e T= 1170° C. Para os dados
	do programa METEOMOD usamos a temperatura mais próxima (T=
	1167.9°C)
Рſ	Composição do magma obtido polo derrotimento do uma amostra do
D.0	composição do magina obtido pelo derretimiento de uma amostra do
	METEOMOD
	do programa METEOMOD usamos a temperatura mais proxima (T=
	1155.9°C)
B.7	Composição do magma resultante do aquecimento do meteorito Al-
	lende obtido em laboratório e teoricamente através dos programas
	MELTS e METEOMOD. O aquecimento foi realizado a uma fO_2 IW
	+2 e T = 1325 °C(exceto para METEOMOD cuio resultado apresen-
	tado é para T mais próxima (1326.3°C)) Para essa temperatura em
	especial os valores para Si Ω_2 são próximos do experimental 65
B.8	Composição do magma resultante do aquecimento do meteorito Al-
	lende obtido em laboratório e teoricamente através dos programas
	MELTS e METEOMOD. O aquecimento foi realizado a uma fO_2 IW
	+2e T = 1275 °C (exceto para METEOMOD cujo resultado apresen-

B.9	Composição do magma obtido pelo derretimento de uma amostra do	
	meteorito Allende a uma fugacidade IW +2 e T= 1200°C. Para os da-	
	dos do programa METEOMOD usamos a temperatura mais próxima	
	(T= 1201°C). A partir dessa temperatura o METEOMOD não pro-	
	duziu resultados.	66
B.1() Composição do magma obtido pelo derretimento de uma amostra do	
	meteorito Allende a uma fugacidade IW +2 e T= 1180°C. Para tem-	
	peraturas mais baixas e IW $+2$ temos apenas a modelagem do pro-	
	grama MELTS	67
B.11	l Composição do magma obtido pelo derretimento de uma amostra do	
	meteorito Allende a uma fugacidade IW +2 e T= 1170°C. Comparação	
	dos resultados obtidos por Jurewicz et al. (1993) e MELTS	67
B.12	2 Composição do magma obtido pelo derretimento de uma amostra do	
	meteorito Allende a uma fugacidade IW +2 e T= 1160°C. Comparação	
	dos resultados obtidos por Jurewicz et al. (1993) e MELTS	68
B.13	3 Composição do magma obtido pelo derretimento de uma amostra do	
	meteorito Allende a uma fugacidade IW +2 e T= 1150°C. Comparação	
	dos resultados obtidos por Jurewicz et al. (1993) e MELTS	68
B.1 4	4 Composição do magma obtido pelo derretimento de uma amostra do	
	meteorito Allende a uma fugacidade IW +2 e T= 1140°C. Comparação	
	dos resultados obtidos por Jurewicz et al. (1993) e MELTS	69
C_{1}	Fases minerais encontradas na modelagem realizada pelo programa	
0.1	Resulte-MELTS para o derretimento da composição Allende e fO_2	
	$W_{-1} = 1$ função da temperatura (°C)	71
Co	Essas minerais forme des no modele nom de promores Physlite MELTS	
0.2	Fases minerais formadas na modelagem do programa Anyonte-MELLS	
	para a composição Anende e $\int O_2 $ 1 w-1 em função da porcentagem de	79
a .		12
C.3	Fases minerais encontradas na modelagem realizada pelo programa	
	METEOMOD para composição Allende e fO_2 IW-1 em função da	-
	temperatura ($^{\circ}$ C)	72
C.4	Fases minerais encontradas na modelagem realizada pelo programa	
	METEOMOD para composição Allende e $f\mathrm{O}_2$ IW-1 em função da	
	porcentagem de aquecimento	73

C.5	Conteúdo faialítico das olivinas resultante do derretimento parcial da composição Allende e fO_2 IW-1 obtidos pelo programa Bhvolite-	
	MELTS	73
C.6	Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
	parcial da composição Allende e fugacidade IW-1 no programa ME-	
	TEOMOD	74
C.7	Fases minerais encontradas na modelagem realizada pelo programa	
	Rhyolite-MELTS para o derretimento da composição Allende e $f\mathrm{O}_2$	
	IW-2 em função da temperatura (°C). \ldots	74
C.8	Fases minerais formadas na modelagem do programa Rhyolite-MELTS	
	para a composição Allende e $f\mathrm{O}_2$ IW-2 em função da porcentagem de	
	aquecimento.	75
C.9	Fases minerais encontradas na modelagem realizada pelo programa	
	METEOMOD para composição Allende e $f\mathrm{O}_2$ IW-2 em função da	
	temperatura (°C)	75
C.10	Fases minerais encontradas na modelagem realizada pelo programa	
	METEOMOD para composição Allende e $f\mathrm{O}_2$ IW-2 em função da	
	porcentagem de aquecimento	76
C.11	Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
	parcial da composição Allende e fugacidade IW-2 no programa ME-	
	ТЕОМОД.	76
C.12	Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
	parcial da composição Allende e fugacidade IW-2 no programa ME-	
	TEOMOD	77
C.13	Fases minerais encontradas na modelagem realizada pelo programa	
	Rhyolite-MELTS para o derretimento da composição Vigarano e $f\mathrm{O}_2$	
	IW-1 em função da temperatura (°C). \ldots	78
C.14	Fases minerais formadas na modelagem do programa Rhyolite-MELTS	
	para a composição Vigarano e $f\mathrm{O}_2$ IW-1 em função da porcentagem	
	de aquecimento.	78
C.15	Fases minerais encontradas na modelagem realizada pelo programa	
	METEOMOD para composição Vigarano e $f\mathrm{O}_2$ IW-1 em função da	
	temperatura (°C)	79

C.16 Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Vigarano e $f\mathrm{O}_2$ IW-1 em função da	
porcentagem de aquecimento	79
${\rm C.17}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Vigarano e fugacidade IW-1 no programa MELTS.	80
${\rm C.18}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Vigarano e fugacidade IW-1 no programa ME-	
TEOMOD	80
${\rm C.19}$ Fases minerais encontradas na modelagem realizada pelo programa	
Rhyolite-MELTS para o derretimento da composição Vigarano e $f\mathrm{O}_2$	
IW-2 em função da temperatura (°C). \ldots	81
${\rm C.20}$ Fases minerais formadas na modelagem do programa Rhy olite-MELTS	
para a composição Vigarano e $f\mathrm{O}_2$ IW-2 em função da porcenta gem	
de aquecimento.	81
${\rm C.21}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Vigarano e $f\mathrm{O}_2$ IW-2 em função da	
temperatura (°C)	82
${\rm C.22}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Vigarano e $f\mathrm{O}_2$ IW-2 em função da	
porcentagem de aquecimento	82
${\rm C.23}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Vigarano e fugacidade IW-2 no programa MELTS.	83
C.24 Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Vigarano e fugacidade IW-2 no programa ME-	
TEOMOD	83
${\rm C.25}$ Fases minerais encontradas na modelagem realizada pelo programa	
Rhyolite-MELTS para o derretimento da composição Ornans e $f\mathrm{O}_2$	
IW-1 em função da temperatura (°C). \ldots	84
${\rm C.26}$ Fases minerais formadas na modelagem do programa Rhy olite-MELTS	
para a composição Ornans e $f\mathrm{O}_2$ IW-1 em função da porcentagem de	
aquecimento.	84
${\rm C.27}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Ornans e $f\mathrm{O}_2$ IW-1 em função da	
temperatura (°C)	85

${\rm C.28}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Ornans e $f\mathrm{O}_2$ IW-1 em função da	
porcentagem de aquecimento	85
${\rm C.29}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Ornans e fugacidade IW-1 no programa MELTS.	86
${\rm C.30}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Ornans e fugacidade IW-1 no programa ME-	
TEOMOD	86
${\rm C.31}$ Fases minerais encontradas na modelagem realizada pelo programa	
Rhyolite-MELTS para o derretimento da composição Ornans e $f\mathrm{O}_2$	
IW-2 em função da temperatura (°C). \ldots	87
$\rm C.32$ Fases minerais formadas na modelagem do programa Rhy olite-MELTS	
para a composição Ornans e $f\mathrm{O}_2$ IW-2 em função da porcentagem de	
aquecimento.	87
${\rm C.33}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Ornans e $f\mathrm{O}_2$ IW-2 em função da	
temperatura (°C)	88
${\rm C.34}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Ornans e $f\mathrm{O}_2$ IW-2 em função da	
porcentagem de aquecimento	88
${\rm C.35}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Ornans e fugacidade IW-2 no programa MELTS.	89
${\rm C.36}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Ornans e fugacidade IW-2 no programa ME-	
TEOMOD	89
${\rm C.37}$ Fases minerais encontradas na modelagem realizada pelo programa	
Rhyolite-MELTS para o derretimento da composição Lancé e $f \operatorname{O}_2$ IW-	
1 em função da temperatura (°C)	90
C.38 Fases minerais formadas na modelagem do programa Rhyolite-MELTS	
para a composição Lancé e $f\mathrm{O}_2$ IW-1 em função da porcentagem de	
aquecimento.	90
${\rm C.39}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Lancé e $f\mathrm{O}_2$ IW-1 em função da tem-	
peratura (°C)	91

C.40 Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Lancé e $f\mathrm{O}_2$ IW-1 em função da por-	
centagem de aquecimento	91
${\rm C.41}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Lancé e fugacidade IW-1 no programa MELTS.	92
C.42 Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Lancé e fugacidade IW-1 no programa ME-	
TEOMOD.	92
C.43 Fases minerais encontradas na modelagem realizada pelo programa	
Rhyolite-MELTS para o derretimento da composição Lancé e $f\mathrm{O}_2$ IW-	
2 em função da temperatura (°C)	93
C.44 Fases minerais formadas na modelagem do programa Rhyolite-MELTS	
para a composição Lancé e $f\mathrm{O}_2$ IW-2 em função da porcentagem de	
aquecimento.	93
C.45 Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Lancé e $f\mathrm{O}_2$ IW-2 em função da tem-	
peratura (°C)	94
C.46 Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Lancé e $f\mathrm{O}_2$ IW-2 em função da por-	
centagem de aquecimento	94
C.47 Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Lancé e fugacidade IW-2 no programa MELTS.	95
${\rm C.48}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento	
parcial da composição Lancé e fugacidade IW-2 no programa ME-	
TEOMOD	95
${\rm C.49}$ Fases minerais encontradas na modelagem realizada pelo programa	
Rhyolite-MELTS para o derretimento da composição Karoonda e $f\mathrm{O}_2$	
IW-1 em função da temperatura (°C). \ldots	96
C.50 Fases minerais formadas na modelagem do programa Rhyolite-MELTS	
para a composição Karoonda e $f\mathrm{O}_2$ IW-1 em função da porcentagem	
de aquecimento.	96
${\rm C.51}$ Fases minerais encontradas na modelagem realizada pelo programa	
METEOMOD para composição Karoonda e $f\mathrm{O}_2$ IW-1 em função da	
temperatura (°C)	97

${\rm C.52}$ Fases minerais encontradas na modelagem realizada pelo programa
METEOMOD para composição Karoonda e fO_2 IW-1 em função da
porcentagem de aquecimento
${\rm C.53}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento
parcial da composição Karoonda e fugacidade IW-1 no programa MELTS. 98
${\rm C.54}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento
parcial da composição Karoonda e fugacidade IW-1 no programa ME-
TEOMOD
${\rm C.55}$ Fases minerais encontradas na modelagem realizada pelo programa
Rhyolite-MELTS para o derretimento da composição Karoonda e $f\mathrm{O}_2$
IW-2 em função da temperatura (°C). $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots 99$
${\rm C.56}$ Fases minerais formadas na modelagem do programa Rhy olite-MELTS
para a composição Karoonda e $f\mathrm{O}_2$ IW-2 em função da porcentagem
de aquecimento
${\rm C.57}$ Fases minerais encontradas na modelagem realizada pelo programa
METEOMOD para composição Karoonda e $f\mathrm{O}_2$ IW-2 em função da
temperatura (°C)
${\rm C.58}$ Fases minerais encontradas na modelagem realizada pelo programa
METEOMOD para composição Karoonda e $f\mathrm{O}_2$ IW-2 em função da
porcentagem de aquecimento
$\mathrm{C.59}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento
parcial da composição Karoonda e fugacidade IW-2 no programa MELTS.101
${\rm C.60}$ Conteúdo faialítico das olivinas obtidas na simulação de derretimento
parcial da composição Karoonda e fugacidade IW-2 no programa ME-
TEOMOD

Lista de Tabelas

1.1	Classes espectrais de asteroides segundo o sistema de Tholen (1984).
	Posteriormente foram desenvolvidos outros sistemas de classificação
	mas um detalhamento do mesmo foge do escopo desse trabalho. Mostramos
	nessa tabela a taxonomia extendida de Tholen (1984). (Lewis, 2004) $\ . \ 3$
1.2	Principais características dos condritos carbonáceos. Note que ape-
	nas o carbonáceos do tipo CK possuem tipo petrológico 4-6, isto é,
	sofreram alto grau de alteração térmica
1.3	Estimativas de temperatura (°C) para alteração aquosa nos condritos
	carbonáceos e ordinários. A localização da alteração pode ser no corpo
	progenitor asteroidal (CPA) ou nebulosa solar (S) (Keil, 2000) 7
1.4	Síntese dos efeitos do aumento da temperatura em um corpo de com-
	posição condrítica e desidratado (Hutchison, 2004)
3.1	Principais características dos programas METEOMOD e MELTS 29
3.2	Equações redox para as fugacidades mais usadas: hematita-magnetita
	(HM), ferro-wustita (IW) , ferro-quartzo-faialita (IQF) e quartzo-faialite-
	magnetita (QFM). As fO_2 estão em ordem decrescente de grau de
	oxidação (fO_2 HM é a mais oxidante)
3.3	Composições dos meteoritos Allende, Vigarano, Ornans, Lancé e Ka-
	roonda usadas nas simulações de derretimento parcial. Foram ex-
	cluídas as composições dos meteoritos "achados" de cada grupo estu-
	dado. Composições retiradas do banco de dados Metbase

3.4	Densidade dos meteoritos do tipo CO, CV e CK usados na modelagem.
	Os valores foram tirados de Britt and Consolmagno (2004) e usados no
	cálculo da pressão (Eq 3.1). Para Karoonda utilizamos o valor médio
	para a composição CO e CV já que o mesmo não possui densidade
	determinada
3.5	Valores de pressão usados na modelagem de derretimento parcial cal-
	culados pela Eq3.1
3.6	Tabela com a composição do magma obtido em laboratório (Jurewicz
	et al. (1993)) e através da modelagem termodinâmica dos programas
	MELTS e METEOMOD para condições redutoras (IW -1). Para o
	último usamos a temperatura mais próxima das demais
3.7	Composição do magma obtido pelo derretimento de uma amostra do
	meteorito Allende para IW+2. A menor temperatura calculada por
	METEOMOD é de 1201 e para T mais baixas apresentamos apenas a
	comparação dos resultados de Jurewicz et al. (1993) e MELTS 39
41	Conteúdo faialítico inicial das composições usadas em nosso projeto
	O meteorito Karoonda (CK) possui as olivinas mais ricas em ferro
	$(Fa_{1,21})$ de nossa seleção enquanto que os condritos do tipo CV pos-
	suem olivinas mais pobres do mesmo elemento (Fa $_{\sim 6-10}$)
42	Fases minerais produzidas pelos programas METEOMOD e Rhvolite-
1.2	MELTS para cada fugacidade e composição . As fases são: ol — olivina
	n]=n]agioclásio_opy=ortopirovênio_cpy=c]inopirovênio_e_sp=espinela2
	pi-piagiociasio, opx-ortopiroxenio, cpx-ciniopiroxenio e sp-espineia. 42
4.3	Tabela com os resultados obtidos no programa METEOMOD (ol $=$
	olivina, pl=plagioclásio e opx= ortopiroxênio)
4.4	Fugacidades no Rhyolite-MELTS. Como o programa não permite variações
	da fugacidade IW usamos as $f\mathrm{O}_2$ QFM -4 e -5 que são as próximas da
	IW-1 e IW-2 respectivamente. As melhores aproximações são quando
	o ΔIW aproxima-se dos valores desejados (-1 e -2). Nota-se que isso
	ocorre para temperaturas mais altas
4.5	Tabela com os resumo dos resultados obtidos pelo Rhyolite-MELTS
	(ol = olivina, pl = plagioclásio, sp = espinélio, opx= ortopiroxênio e
	cpx = clinopiroxênio)

4.6	Tabela com a porcentagem de aquecimento e temperatura na qual foi
	encontrado olivinas com Fa $_{\sim 20}.$ Esse é o valor estimado pela aplicação
	do método MGM e de Misturas Íntimas de Hapke para as olivinas pre-
	sentes em membros da família de Eos (Mothé-Diniz et al. (2008)). A
	diferença entre os programas é por conta da aproximação de fugaci-
	dade utilizada no Rhyolite-MELTS
C.1	Resultados do programa Rhyolite-MELTS para composição Allende e
	fO_2 IW-1
C.2	Resultados obtidos pelo programa METEOMOD para composição Al-
	lende e fugacidade IW-1
C.3	Resultados do programa Rhyolite-MELTS para composição Allende e
	fO_2 IW-2
C.4	Resultados obtidos pelo programa METEOMOD para composição Al-
	lende e fugacidade IW-2
C.5	Resultados do programa Rhyolite-MELTS para composição Vigarano
	$e f O_2$ IW-1
C.6	Resultados obtidos pelo programa METEOMOD para composição Vi-
	garano e fugacidade IW-1
C.7	Resultados do programa Rhyolite-MELTS para composição Vigarano
	$e fO_2$ IW-2
C.8	Resultados obtidos pelo programa METEOMOD para composição Vi-
	garano e fugacidade IW-2
C.9	Resultados do programa Rhyolite-MELTS para composição Ornans e
	fO ₂ IW-1
C.10	Resultados obtidos pelo programa METEOMOD para composição Or-
	nans e fugacidade IW-1
C.11	Resultados do programa Rhyolite-MELTS para composição Ornans e
	fO ₂ IW-2
C.12	Resultados obtidos pelo programa METEOMOD para composição Or-
	nans e fugacidade IW-2
C.13	Resultados do programa Rhvolite-MELTS para composição Lancé e
	fO ₂ IW-1
C.14	Resultados obtidos pelo programa METEOMOD para composição
	Lancé e fugacidade IW-1

${\rm C.15}$ Resultados do programa Rhy olite-MELTS para composição Lancé e
fO_2 IW-2
C.16 Resultados obtidos pelo programa METEOMOD para composição
Lancé e fugacidade IW-2
${\rm C.17}$ Resultados do programa Rhy olite-MELTS para composição Karoonda
$e f O_2$ IW-1
C.18 Resultados obtidos pelo programa METEOMOD para composição
Karoonda e fugacidade IW-1
C.19 Resultados do programa Rhy olite-MELTS para composição Karoonda
$e f O_2$ IW-2
${\rm C.20}$ Resultados obtidos pelo programa METEOMOD para composição
Karoonda e fugacidade IW-2

Capítulo 1

Introdução

O sistema solar é composto pelos planetas, cometas e um vasta população de asteroides. Os asteroides são corpos cujo tamanho pode variar de alguns metros a aproximadamente 1000 km. O maior deles foi também o primeiro a ser identificado, o asteroide 1 Ceres. Ceres foi descoberto em 1801 pelo astrônomo Giuseppe Piazzi enquanto este trabalhava em seu catálogo estelar Serio et al.. Após a nova definição de planeta criada pela União Astronômica Internacional (UAI) em 2006, Ceres é considerado um "planeta anão" junto com Plutão.

Grande parte dos asteroides conhecidos encontra-se no cinturão principal, uma região entre as órbitas de Marte e Júpiter (faixa compreendida entre 2.1 -3.2 unidades astronômicas (UA)). Nesta região podemos identificar fragmentos agrupados em parâmetros orbitais * muito próximos, as chamadas famílias de asteroides. Essas são formadas principalmente pela colisão de asteroides dada a densidade desses objetos nessa região. Deste modo, acredita-se que os asteroides que compõem uma família são provenientes de um mesmo corpo progenitor. Algumas são bem conhecidas como Vesta, Flora e Eos (figura 1.1).

Nosso conhecimento quanto à composição de asteroides vem principalmente da espectroscopia realizada com telescópios terrestres. Obtemos os espectros no visível e infravermelho próximo e pela análise de bandas de absorção podemos estimar a composição do corpo. Uma característica importante que também podemos obter é o valor do albedo, que é a fração de luz refletida pela superfície do asteroide.

Os asteroides são classificados quanto aos valores de albedos e características

^{*} Ou seja, semi-eixo maior $(a_p),$ inclinação
 (I_p) e excentricidade (e_p) próprios

Figura 1.1: Gráfico em função dos elementos próprios semi-eixo maior (distância heliocêntrica) versus seno da inclinação de ~ 241.000 asteroides numerados até agosto de 2010 disponíveis no site (http://hamilton.dm.unipi.it/)

espectrais e a taxonomia mais utiliada é a criada por Tholen (1984) com base em dados fotométricos. Uma versão expandida das classes de Tholen (1984) e suas principais características como albedo e minerais presentes encontram-se na tabela 1.1.

Além da espectroscopia temos acesso a informações sobre composição e propriedades de asteroides a partir dos fragmentos que sobrevivem a entrada em nossa atmosfera e atingem o solo. Esses são os meteoritos, e sua origem pode ser de planetas rochosos, satélites e asteroides. Ao todo estima-se mais de 30.000 exemplares recolhidos. São classificados em "quedas" (mais conhecidos pelo termo em inglês *falls*) e "encontrados" (do inglês *finds*) conforme foram resgatados. Os *falls* são aqueles cuja entrada na Terra foi acompanhada e o meteorito recuperado logo em seguida e os *finds* aqueles que permaceram no solo por algum tempo até

1.1. METEORITOS

Tabela 1.1: Classes espectrais de asteroides segundo o sistema de Tholen (1984). Posteriormente foram desenvolvidos outros sistemas de classificação mas um detalhamento do mesmo foge do escopo desse trabalho. Mostramos nessa tabela a taxonomia extendida de Tholen (1984).(Lewis, 2004)

		Classes espectrais de aster	01000		
Classe	Albedo	Minerais	Meteoritos análogos		
А	Alto	Olivina;Olivina+metal	Acondritos, pallasitas		
В	baixo	Silicatos, carbono,	Carbonáceos CI ou CM		
		orgânicos	alterados		
С	Muito	Silicatos, carbono,	Carbonáceos CI ou CM		
	baixo	orgânicos			
D	Muito	Carbono, orgânicos	Tipo C desidratados		
	baixo				
Е	Muito alto	Enstatita, forsterita	Acondritos enstatita		
F	Muito	Silicatos, carbono,	Carbonáceos CI e CM		
	baixo	orgânicos	alterados		
G	Muito	Silicatos, carbono,	Carbonáceos CI e CM		
	baixo	orgânicos	alterados		
М	Moderado	Metal; Metal + es-	Ferrosos		
		ntatita			
Р	Muito	Carbono, orgânicos	Tipo C desidratados		
	baixo				
Q	Alto	Olivinas, piroxênios,	Condritos ordinários		
		metal			
R	Alto	Piroxênios, olivinas	Acondritos		
S	Moderado	Metal, olivina,	Pallasitas		
		piroxênio			
Т	Muito	Silicatos, carbono,	Carbonáceos CI e CM		
	baixo	orgânicos	muito alterado		
V	Alto	Piroxênios, fedlspato	Basaltos		

Classes espectrais de asteroides

serem recolhidos.

1.1 Meteoritos

O registro mais antigo de uma queda de meteorito data de 1462, um corpo de 127 kg que caiu na região de Ensisheim na França. Entretanto, os meteoritos só foram considerados rochas de origem extraterrestre na primeira metade do século XIX.

São classificados quanto a sua composição química, mineralogia e textura em três categorias: Rochosos (também chamados de aerólitos), Ferro-rochosos (siderólitos) e Ferrosos (sideritos). Os rochosos são ainda divividos em condritos e acondritos dependendo do grau de alteração sofrido. Pelo modelo clássico de formação do sistema solar, os acondritos sofreram derretimento e diferenciação (processo onde corpo aquecido passa a apresentar uma estrutura manto-crostanúcleo) enquanto que os condritos sofreram pouco ou nenhum desses processos. Esses, por apresentarem uma composição próxima à da nebulosa solar, são chamados de "primitivos". Alguns acondritos possuem composição primitiva como os condrito, mas a maioria é resultado da diferenciação. Os ferrosos e ferro-rochosos também são resultados de processos térmicos. A classificação atual dos meteoritos é esquematizada na figura 1.2.

Figura 1.2: Classificação dos meteoritos quanto à composição e textura.

Os condritos são os mais abuntantes de nossa coleção correspondendo a aproximadamente 82% das quedas observadas. São formados principalmente por quatro componentes petrológicos: côndrulos, inclusões refratárias, matriz, metais e sulfetos (figura 1.3). A presença de côndrulos é a principal característica dessa classe e justifica seu nome. Côndrulos são estruturas esféricas pequenas (na ordem de milímetros) compostas predominantemente de silicatos que foram parcialmente ou totalmente derretidos. Quanto as inclusões refratárias podem ser de dois tipos: inclusões ricas em cálcio-alumínio (CAIs do termo em inglês *Calciumaluminium rich inclusions*) e "olivinas amoeboides agregadas" (AOAs do inglês *Amoeboid olivine aggregates*). As CAIS são as estruturas que datam da formação do sistema solar, medem aproximadamente 1 cm e são compostas de óxidos e silicatos enquanto que as AOAs são aglomerações de forma irregular dominadas por uma mistura de silicatos, sulfatos, metais, óxidos, e por vezes, carbonatos. Condritos são divididos em cinco classes: carbonáceos, ordinários, enstatita, R e K. Também são classificados quanto a sua textura no sistema primeiramente proposto por Van Schmus e Wood (van Schmus and Wood, 1967) ainda em vigor após sofrer modificações. São seis classes, numeradas de 1 a 6, ordenadas de modo a retratar um aumento do metamorfismo térmico. O tipo 3 são os mais primitivos com composições muito semelhantes a do corpo progenitor com pouca modificação devido a metamorfismo ou alteração aquosa. Os do tipo 2 e 1 apresentam decrescente grau de alteração aquosa. Os classificados de 4 a 6 são os corpos que sofreram grau crescente de alteração térmica (figura 1.4). Os processos de metamorfismo e alteração aquosa serão abordados com mais detalhes na próxima seção. A classificação dos condritos quanto a composição é apresentada na figura 1.4 e na figura 1.6, temos a variação do tipo petrológico para todos os condritos.

Nosso projeto é um estudo dos efeitos térmicos em condritos carbonáceos. Dentre os condritos, esses são os melhores registros da fase de pré acreção e acreção pois conservam uma composição dessa época. Por sua vez, são subdivididos em oito grupos (figura 1.5). O tipo CI possui composição semelhante ao Sol, exceto pelos elementos voláteis. Segundo a classificação petrólogica de Van Schumus-Wood (van Schmus and Wood, 1967), os carbonáceos variam entre os tipos 1 a 3. Uma exceção é o tipo CK que varia de 4-6. Apesar de não apresentar indícios de processos térmicos, os carbonáceos sofreram algum grau de alteração aquosa. Na tabela 1.2 temos algumas características dos oito grupos de condritos carbonáceos.

Tabela 1.2: Principais características dos condritos carbonáceos. Note que apenas o carbonáceos do tipo CK possuem tipo petrológico 4-6, isto é, sofreram alto grau de alteração térmica.

	CI	CM	CO	CV	CK	CR	CH
Tipo petrológico	1	1-2	3	2-3	3-6	1-3	2
Tamanho do côndrulo	-	0.27	0.15	1.0	0.8	0.7	< 0.1
matriz (vol $\%$)	99	70	30	40	75	30-50	5
Côndrulos (vol%)	0	20	40	45	15	55	~ 70
CAIs $(vol\%)$	0	5	13	10	4	0.5	0.1
metal (vol%)	0	0.1	1-5	1-5	traço	5-8	~ 20

Características dos condritos carbonáceos

Vimos que os meteoritos são classificados primeiramente pelo grau e processos de alteração sofridos. Os principais processos responsáveis pela modificação da textura e mineralogia são: alteração aquosa e metamorfismo térmico. Abordaremos de forma resumida na próxima seção, cada um desses processos assim como as possíveis fontes de aquecimento.

1.2 Processos térmicos e fontes de aquecimento

Os meteoritos apresentam texturas e conteúdos que são indicativos de diferentes processos de alteração. Os principais são: alteração aquosa, derretimento parcial e diferenciação.

Os efeitos da alteração aquosa estão muito presentes em condritos carbonáceos enquanto que os acondritos e a categoria dos ferrosos foram formados pelo derretimento total de um condrito. Os planetas rochosos apresentam uma estrutura diferenciada, isto é, possuem superfíce, manto e núcleo.

Alteração Aquosa

É o processo cujo efeito é mais presente em condritos com exceção do grupo da enstatita. É identificado pela presença de filossicatos hidratados (principalmente serpentina e a argila esmectita), associados a carbonatos, sulfatos e óxidos (magnetita). São alterações químicas em minerais causados pelo contato com a água e em condritos ocorreram a baixas temperaturas (de 0 a 300°C). Estimativas de temperatura para condritos carbonáceos e ordinários são apresentados na tabela 1.3.

Os diferentes graus de alteração nos condritos são resultados da alteração aquosa nas diversas condições de pressão, temperatura, fugacidade do oxigênio e presença de água.

Derretimento parcial e Diferenciação

São os processos responsáveis pelo metamorfismo térmico. Os acondritos (excetos os ditos primitivos) e os meteoritos ferrosos e ferro-rochosos são resultados do derretimento parcial. A diferenciação é o caso extremo de metamorfismo pois ao final o corpo é composto por um núcleo denso formado de elementos mais pesado como metais, manto e superfície formada por elementos mais leves (figura 1.7).

Os primeiros processos de derretimento ocorreram para temperaturas de $\sim 950^{\circ}$ C. Apesar da diferenciação ter sido o processo dominante na formação de planetas

Temperatura	Localização	Referência
CI (20 - 150°)		
20°	CPA	Dufresne and Anders (1962)
50-150°	CPA	Zolensky et al. (1993)
85°	CPA	Hayatsu and Anders (1981)
$< 125^{\circ}$	CPA	Bunch and Chang (1980)
150°	CPA	Clayton (1999)
CM (~ 0 a < 170°)		
$\sim 0\text{-}25$ °	CPA	Clayton (1993);Clayton (1999)
$< 20^{\circ}$	CPA	McSween (1999)
20°	CPA	Dufresne and Anders (1962)
$\sim 25~\mathrm{a} \sim 225^\circ$	S	Ikeda and Prinz (1993)
$< 50^{\circ}$	CPA	Zolensky et al. (1993)
105-125°	CPA	Hayatsu and Anders (1981)
$< 125^{\circ}$	CPA	Bunch and Chang (1980)
$< 180^{\circ}$	CPA	Zolensky (1984)
CO $(< 50^{\circ})$		
< 50°	CPA	Zolensky et al. (1993)
CV3 (< 100 a $< \sim 300^{\circ}$)		
$\sim 50~{\rm a} \sim 200^\circ$	S	Hashimoto and Grossman (1987)
$< 100^{\circ}$	CPA	Keller et al. (1994)
$< \sim 125^{\circ}$	S	Keller and Buseck (1991)
$< 150^{\circ}$	CPA	Lee et al. (1996)
$<\sim 300^{\circ}$	CPA	Krot et al. (1998b,a)
$\mathbf{CR} \ (\sim 25 \ \mathrm{a} \sim 225^\circ)$		
$\sim 25~\mathrm{a} \sim 225$ °	S	Ichikawa and Ikeda (1995)
$< 150^{\circ}$	APB	Zolensky et al. (1993)
Ordinários H, L e LL ($\sim 260^{\circ}$ C)		
$<\sim 260^{\circ}$	CPA	Alexander et al. (1989)

Tabela 1.3: Estimativas de temperatura (°C) para alteração aquosa nos condritos carbonáceos e ordinários. A localização da alteração pode ser no corpo progenitor asteroidal (CPA) ou nebulosa solar (S) (Keil, 2000).

internos (ou rochosos) também é presente em asteroides, como o asteroide Vesta. Os efeitos do aumento da temperatura em condritos são listados na tabela 1.4.

1.2.1 Fontes de aquecimento

Quanto à fonte de aquecimento necessária para os processos descritos temos atualmente três hipóteses: aquecimento por decaimento de 26 Al, indução eletromagnética e aquecimento por impacto.

Apesar de permanecer em discussão, a teoria mais aceita na literatura é a pro-

Tabela 1.4: Síntese dos efeitos do aumento da temperatura em um corpo de composição condrítica e desidratado (Hutchison, 2004).

T (°C)	Metamorfismo térmico em condritos
300- 600	Olivina equilibrada; matriz translúcida
600-700	Tipo 4: Piroxênio de pouco Ca equilibrado; matriz cristalizada
700-750	Tipo 5: Metal homogenizado, kamacita é formada
750-950	Tipo 6: Plagioclase pura é formada; minerais equilibrados
> 950	Tipo 7: Principalmente plagioclase; grãos grossos; granulação
	Derretimento parcial e formação de acondritos primitivos
	e urelitas
~ 980	Metal e sulfato começam a derreter em uma taxa de $15/85$;
	Alguns côndrulos permanecem
980-1050	1-3 vol% do magma é metal-sulfato; sem migração de magma;
	acapulcoites
\sim 1050-1200	Magma de silicatos; $>5\%$ magma (silicato+ metal-sulfato);
	migração de magma; lodranitas e brachanitas são os resíduos;
	destino do magma é desconhecido
$\sim \! 1250$	Magma corresponde a 10-30 vol%;urelitas são os resíduos
	Derretimento parcial, possível formação de eucritas
1150 - 1200	5-20 vol% do magma pode produzir eucritas ordinárias;
1325	O carbonáceo Murchison é 35% derretido
	Formação do núcleo, oceano de magma, ferrosos do tipo IIAB ?
1500 - 1530	Corpo com 70 vol% de magma com segregação do núcleo;
	um manto sólido de dunita é formado acima do núcleo.

posta por H.Urey em 1955 (Urey, 1955) de que o decaimento do radionuclídeo de curta meia-vida, ²⁶Al, seria o responsável pelo aumento da temperatura na época da formação dos planetas. O ²⁶Al possui meia-vida de ~ 0.7 Ma e seu produto é o ²⁶Mg. O decaimento ocorre segundo a reação de emissão de pósitron: ²⁶Al \rightarrow ²⁶Mg + β^+ + ν_e onde β^+ é o pósitron e ν_e é neutrino de elétron (Alexander, 2010). A hipótese é sustentada por três parâmetros: (a) a abundância proporcional de Al em condritos, (b) a meia-vida e (c) a alta energia de decaimento por nuclídeo (2 MeV). Por esses fatores, o decaimento pode ter sido uma fonte de calor intensa por alguns milhares de anos. No entanto essa teoria acarreta uma distribuição heterogênea de ²⁶Al na nebulosa enquanto que as taxas de ²⁶Al/²⁷Al observadas em CAIs e em diferentes classes de meteoritos apontam para uma homogenidade (Huss et al., 2001).

O aquecimento por impacto é gerado pela conversão da energia potencial gravitacional e energia cinética causada pela velocidade, em calor. Uma parte é perdida pela ejeção de massa ou é irradiada ao espaço mas o restante é depositado no corpo alvo da colisão. Impactos podem não ser a causa de metamorfismo em asteroides mas podem causar aquecimento que se assemelha a um metamorfismo térmico. Acredita-se que para 4.25 G.y atrás essa era a única fonte possível de calor e muitos condritos apresentam indícios desse tipo de alteração.

A teoria de aquecimento por indução eletromagnética, sugerida por Sonett and Colburn (1968) baseia-se nas ejeções de massa e vento solar na fase T Tauri. Uma corrente magnética é criada em planetesimais (corpos rochosos que mais tarde formariam os planetas) que se deslocam em campos eletromagnéticos gerados pela fase T Tauri do Sol. Essa corrente geraria calor. A intensidade e duração do vento solar durante a fase T Tauri determina a quantidade de corrente produzida no planetesimal e deste modo, determina também a quantidade de calor produzido. Modelar o aquecimento por indução é uma tarefa complexa pois depende de parâmetros tais como condutividade elétrica, velocidade do vento solar, taxa de rotação do Sol nessa fase, tamanho do planetesimal entre outros. Segundo o Decampli (1981) a massa perdida nessa fase da evolução estelar é de aproximadamente $10^{-8}M_{\odot}$ por ano o que poderia não justificar esse processo como fonte de aquecimento principal para metamosfismo. Na falta de um melhor conhecimento quanto aos valores dos parâmetros da indução eletromagnética, a questão do aquecimento por indução permanece em aberto.

Nesse projeto focamos nos efeitos do derretimento parcial em condritos carbonáceos em específico os CI, CO, CV e CK. Para tanto, realizamos simulações em programas de modelagem termodinâmica e aplicamos o resultado no estudo da família de asteroides Eos, que pode tratar-se de uma família diferenciada em uma região tida como primitiva do cinturão principal.

No capítulo seguinte, fazemos um histórico dos resultados na literatura e discutimos a problemática da família. O capítulo três dedica-se a metodologia empregada ao longo do projeto e apresentamos nossos resultados no capítulo final.

Figura 1.3: Exemplos das estruturas características em condritos. Os meteoritos das imagens são da classe dos carbonáceos. (Weisberg et al., 2006)

Figura 1.4: Classificação petrológica de van Schmus and Wood (1967).

Figura 1.5: Classes de condritos. Os ordinários e enstatitas são classificados quanto à quantidade de ferro presente: H(High) são os ricos em ferro enquanto os LL (Low-Low) - EL no caso dos condritos enstatitas- são os mais pobres nesse elemento.

Figura 1.6: Diagrama com os tipos petrólogicos para cada grupo de condritos (Weisberg et al., 2006).

Figura 1.7: Etapas para diferenciação de um corpo. Os meteoritos acondritos, pallasitas e ferrosos podem ser fragmentos de partes distintas de um corpo diferenciado [Smithsonian-national Museum of Natural History].

Capítulo 2

A Família de Eos

O primeiro a detectar aglomerados no espaço dos elementos próprios^{*} foi o astrônomo Kiyotsugu Hirayama em 1918. Hirayama os chamou de "famílias" acreditando que os corpos fossem remanescentes de um mesmo corpo que se fragmentou em um processo semelhante ao que ocorre em núcleos cometários. Tal teoria foi rejeitada por Kuiper (1950), propondo que a fragmentação se daria por colisão, hipótese plausível dada a população de asteroides no cinturão principal. Atualmente acredita-se que famílias de asteroides são o resultado de colisões energéticas entre asteroides.

A família de Eos é uma das quatro identificadas por Hirayama (Hirayama, 1918). Seu maior (221 Eos) possui aproximadamente 104 km de diâmetro. Localizada na parte externa do cinturão ($2.95 \leq a_p \leq 3.13, 0.03 \leq e_p \leq 0.11$ e $0.155 \leq sin(i_p) \leq 0.2$ onde $a_p, e_p \in i_p$ são respectivamente os parâmetros orbitais: semi-eixo maior, excentricidade e inclinação próprios), a família é dividida pela ressonância 9:4 localizada em ~ 3.03 UA. As regiões de ressonância são resultado da influência gravitacional de Júpiter. No cinturão principal é possível identificar quatro dessas regiões chamadas de "Lacunas de Kirkwood". A ressonância 9:4 pode ser responsável pelo decréscimo de 50 a 75% da população original da família (Morbidelli et al., 1995). Pela análise espectral de sete objetos localizados nessa região de ressonância, Zappalà et al. (2000) identificou cinco com espectros semelhantes ao observado em membros de Eos. Quanto ao seu corpo progenitor estima-se um diâmetro de ~218 km (Tanga et al., 1999).

^{*}Elementos próprios são quantidades dinâmicas próximas as integrais do movimento de um sistema que varia pouco em grandes escalas de tempo. Assim, eles guardam uma "memória "dinâmica das órbitas asteroidais quando da quebra do corpo progenitor.

Eos é uma família dinamicamente bem identificada e seus membros são espectroscopicamente bem distintos dos asteroides da vizinhança. Entretanto a classificação de seus objetos e a associação com meteoritos é um problema desde o final da década de 1970. Apresentamos a seguir três métodos utilizados na análise espectral de membros dessa família: a comparação direta com espectros de meteoritos, o Modelo Gaussiano Modificado e o Método das Misturas Íntimas de Hapke.

2.1 Comparação de espectros

Um dos objetivos ao realizar espectroscopia de asteroides é buscar inferir a sua composição mineralógica. Uma vez adquirido o espectro, podemos comparar com o de um meteorito com o objetivo de identificar sua origem. Uma relação é estabelecida quando o espectro de um meteorito obtido em laboratório é semelhante ao espectro de um asteroide observado com um telescópio. Pequenos corpos e planetas refletem a luz do Sol em sua superfície. Logo, para corpos do sistema solar temos o espectro de reflectância, isto é, o espectro obtido pela reflexão da luz em suas superfícies. Da mesma forma que diferentes elementos químicos em uma estrela absorvem em uma dada faixa de energia e por conseqüência observamos as linhas espectrais de absorção, os minerais constituintes de uma rocha absorvem e refletem em diferentes comprimentos de onda. O comprimento de onda específico depende da composição e estrutura do mineral. A partir espectro de reflectância podemos ter uma ideia dos minerais que compõem os asteroides e planetas. Um exemplo de espectro é apresentado na figura 2.1.

Membros da família de Eos constituem um desafio ao cenário de classificação espectral. O primeiro a classificar a família foi Degewij et al. (1978) usando os índices de cor U-B e B-V para discernir a classe de 31 objetos. Estudos fotométricos pouco contribuíram para determinar uma classe para esses objetos: Gradie and Zellner (1977) os classificam entre o tipo S e C (Figura 2.2). Nos trabalhos de Tholen (1984) e Zellner et al. (1985) grande parte de membros da família são classificados como S e pelo índice de cor JHK, Veeder et al. (1995) reforça essa classificação ainda que alguns objetos estejam no limite da região S (figura 2.3).

O espectro no visível possui algumas limitações. Algumas bandas de minerais estão presentes apenas em comprimento de ondas maiores, como o infravermelho

Figura 2.1: Espectro do asteroide 5622 obtido no SMASS II (Bus, 1999) versus o espectro do meteorito Cynthiana do banco de dados RELAB (Pieters and Hiroi, 2004) (em vermelho)(Mothé-Diniz et al., 2010)

próximo (NIR do inglês Near Infrared). Espectros nesse comprimento de onda são importantes para discernir a mineralogia do asteroide. O primeiro espectro no infravermelho de membros da família foi obtido por Bell et al. (1987). Com os espectros e albedos Bell (1988) concluiu que o corpo progenitor de Eos não era um membro da classe C ou S, as classes dominantes na região do cinturão onde a família se localiza. A comparação entre espectros e albedos calculados e do banco de dados de meteoritos da época indicaram semelhanças com meteoritos CO e CV. Os meteoritos carbonáceos são associados à asteroides da classe C enquanto que a asteróides da família de Eos foram classificados como S (Tholen (1984), Gradie and Zellner (1977), Zellner et al. (1985) e Veeder et al. (1995)). A associação com CO/CV e o fato de Eos apresentar características distintas do tipo S tornavam difícil sua classificação. Dada todas as propriedades únicas observadas em membros da família, Bell (1988) sugere a criação de nova classe espectral K, a princípio apenas com esses objetos. Essa classe seria caracterizada por um espectro no visível típico da classe S e espectro no IR semelhante ao do tipo C. Apresentam a banda rasa de piroxênio em $1\mu m$ que não é observada em

Figura 2.2: Diagrama de cores U-B x B-V para as famílias de Eos (•) e Koronis (\blacktriangle). Os objetos do campo são representados por (°). Os limites para a classe S e C usados são os definidos por Bowell et al. (1978).(Degewij et al., 1978)

asteroides tipo C sem entretanto exibir a segunda banda em 2 μm ,esperada em espectros de objetos do tipo S. Atualmente são observados asteroides do tipo K em todo o cinturão e também dentre a população de objetos próximo a Terra (população NEA do inglês *Near Earth Asteroids*)(Bus, 1999).

A tentativa de classificar Eos continuaria por toda a década de 1990. A primeira grande campanha observacional com objetos da família foi realizada em 1998 com a observação de 45 membros na faixa espectral de $0.48 \mu m < \lambda < 0.92 \mu$ m. Nos resultados de Doressoundiram et al. (1998) os espectros apresentam mesma curvatura espectral. O máximo espectral localiza-se por volta de 0.8- 0.85μ m. Pelos espectros é possível distinguir aproximadamente dois segmentos lineares: um de 0.5 a $0.75 \mu m$ e um segundo entre $0.85 e 0.92 \mu m$. Entre os dois segmentos temos uma curva onde se localiza o máximo espectral como podemos

Figura 2.3: Índice de cor (infravermelho) J-H versus H-K para 56 membros da família de Eos. As regiões são limitidas pelos índices de cor observados em asteroides do tipo C e S (Chapman and Morrison (1976),Leake et al. (1978),Veeder et al. (1982) e Hahn and Lagerkvist (1988))(Veeder et al., 1995).

ver na figura 2.4.

A série de curvas espectrais obtidas para Eos pode ser explicadas por três hipóteses (Doressoundiram et al., 1998):

- 1. O corpo progenitor de Eos era parcialmente diferenciado;
- Corpo progenitor era homogêneo, mas fragmentos derivados da superfície foram alterados pelo intemperismo espacial (do inglês "space weathering");
- Membros dessa família sofreram envelhecimento por intemperismo espacial desde sua formação, mas por outro lado uma segunda colisão poderia ter rejuvenescido uma parte da família.

O intemperismo espacial é um processo que altera a superfície dos asteroides ao longo do tempo. A superfície torna-se escura e seu espectro de refletância mais avermelhado. Uma análise nos parâmetros espectrais observados em membros da

Figura 2.4: Espectros de asteroides pertencentes a família Eos. Vemos uma tendência comum entre os espectros e um máximo espetral em $\sim 0.8 \mu m.$ (Doressoundiram et al., 1998)

família (isto é, o máximo espectral e os dois segmentos lineares) evidencia uma variação composicional entre os objetos e sugere a não-homogeneidade entre os membros da família, o que poderia representar uma diferenciação parcial do corpo progenitor. O intemperismo espacial também seria responsável pela diversidade.

A comparação de espectros no visível em Doressoundiram et al. (1998) com os espectros de Gaffey (1976) confirma que os melhores análogos são os meteoritos CO e CV. Para quatro membros (221 Eos, 639 Latona, 653 Berenike e 661 Cloelia) juntando as observações de outra campanha observacional, conseguiu-se o intervalo espectral de $0.34 \ \mu m$ a $2.4 \ \mu m$ e para esses objetos foi realizada uma nova comparação com os meteoritos de Gaffey (1976). O 221 Eos, 653 Berenike e 661 Cloelia possuem espectros semelhantes aos condritos CO/CV mas para 639 Latona o melhor correspondente seria o mesosiderito Veramim (Figura 2.5). 639 Latona parece ser uma palasita ou um condrito CV ou CO extremamente metamorfoseado.

Novos espectros para os objetos 221 Eos e 653 Berenike foram obtidos no intervalo espectral de 0.44 a 1.65 μm e apresentados em Burbine et al. (2001). O objetivo era analisar a relação entre asteroides K e meteoritos CO/CV. Acreditase que ~ 2% de todos os meteoritos CO/CV podem ser originários da família de Eos dada a grande quantidade de material que pode ter entrado na ressonância 9:4

Figura 2.5: Comparação dos espectros obtidos em Doressoundiram et al. (1998) e meteoritos CV, CO e o mesosiderito Veramin observados por Gaffey (1976). A comparação reforça os meteoritos CO e CV como melhores análogos.(Doressoundiram et al., 1998)

durante o evento de fragmentação que criou a família (di Martino et al., 1997). Pelos espectros obtidos por Burbine et al. (2001), os dois membros de Eos se assemelham tanto no visível quanto no NIR e são bons análogos ao meteorito CO Warrenton (Figura 2.6). Pela classificação petrológica de Scott and Jones (1990), Warrenton é do tipo 3.6 o que significa que o meteorito sofreu maior grau de metamorfismo térmico comparado aos demais tipo CO. O albedo calculado para 221 Eos (0.14 ± 0.01) está entre o albedo de Warrenton ($0.10 \ e \ 0.16$) enquanto Berenike (0.24 ± 0.03) é mais brilhante. O terceiro asteroide K observado, 599 Luisa, possui espectro parecido com o do meteorito CV Mokoia.

Apesar de constatada as similaridades espectrais entre asteroides K e meteoritos CO/CV e da simulação realizada por di Martino et al. (1997), o fato de encontrarmos tipo K em diferentes regiões do cinturão e até mesmo entre a população de objetos NEA não nos permite descartar a possibilidade do corpo progenitor dos condritos CO/CV não ser um tipo K.

Uma comparação mais abragente foi realizada em Mothé-Diniz and Carvano

Figura 2.6: Espectro de reflectância dos asteroides 221 Eos(\Box), 653 Berenike(×) e 599 Luisa(\circ) versus os espectros dos condritos CV3 Mokoia e CO3 Warrenton (Gaffey, 1976). Eos e Berenike possuem espectros semelhantes ao CO Warrenton enquanto que Luisa é semelhante ao CV Mokoia. O espectro no visível (0.44 a 0.92 μ m) dos asteroides são do SMASS II (Bus, 1999) e no IR (~ 0.90 a 1.65 μ m) são do SMASSIR (Burbine et al., 2000).(Burbine et al., 2001)

(2005) entre o espectro de 221 Eos e os disponíveis no banco de dados RELAB. No intervalo de 0.5 - 1.6 μm o acondrito anômalo Divnoe é o melhor análago para os asteroides 221 Eos e 653 Berenike (figura 2.7). No entanto, o meteorito não apresenta a abrupta mudança de inclinação em ~ 1.6 μm presente na espectro da maioria dos membros da família. No trabalho de Mothé-Diniz et al. (2008) para uma análise da mineralogia da família foram obtidos espectros no IR próximo de 30 membros no intervalo espectral de 0.8 - 2.5 μm . A comparação foi feita entre os espectros obtidos para os asteroides, combinados com espectros no visível sempre que estes estavam disponíveis. Os meteoritos CK são bons análogos no IR próximo mas são bem distintos no visível. Acrescenta-se à lista os ordinários R e carbonáceos CO/CV.

Estabelecer uma relação entre asteroides e meteoritos baseados apenas na comparação de espectros não produziu resultados satisfatórios quando aplicados à família de Eos. Nos trabalhos apresentados até aqui os condritos CO/CV são os melhores análogos, mas alguns membros possuem espectros semelhantes a acon-

Figura 2.7: Espectro de reflectância para 221 Eos (\Box) , 653 Berenike (\times) versus condrito CO Warrenton e acondrito anômalo Divnoe.O espectro no visível de Eos e Berenike foram obtidos do SMASS II (Bus and Binzel, 2002) e espectro no IR próximo de SMASSIR (Bus and Binzel, 2002).(Mothé-Diniz and Carvano, 2005)

dritos (Mothé-Diniz and Carvano (2005)). A proposta do corpo progenitor ter sido um corpo diferenciado (Doressoundiram et al., 1998) explicaria a diversidade apresentada no espectro de objetos da família mas há também a hipótese de intemperismo espacial cujo efeito em condritos carbonáceos ainda é pouco conhecido.

2.2 Mineralogia da família: Método de Misturas Intimas e Modelo Gaussiano Modificado (MGM)

Cada mineral que constitui um corpo rochoso possui uma "assinatura" espectral, isto é, bandas de absorção característica em determinados comprimentos de onda. Minerais como a olivina ([Mg,Fe]₂SiO₄) e o piroxênio ([Mg,Fe,Ca]SiO₃) são os principais componentes na maior parte dos meteoritos. O espectro no NIR da olivina é caracterizado pela presença de uma absorção em 1 μm resultado da sobreposição de três bandas com centros em ~ 0.85, 1.0 e 1.1 μm . Já o piroxênio possui duas grandes bandas em ~ 1 e 2 μm e algumas absorções menores. Na figura 2.10 temos um exemplo do espectro da olivina com diferentes taxas de magnésio, que é dado pelo índice forsterístico (Fo).

Figura 2.8: Conjunto de espectros de reflectância do mineral olivina. Os espectros foram obtidos do banco de dados RELAB. Os índices Fo (forsterita) são relativos a presença de magnésio nas olivinas. Quanto maior o índice maior a quantidade de magnésio. Deste modo, na figura os espectros estão organizados em ordem decrescente quanto ao conteúdo de Mg nas olivinas. (Sunshine and Pieters, 1998)

Com base na análise do espectro foram desenvolvidos dois métodos para inferir a mineralogia da superfície de um asteroide: o Modelo Gaussiano Modificado (MGM) e Método de Misturas Íntimas de Hapke.

O Modelo Gaussiano Modificado (MGM), originalmente desenvolvido por Sunshine et al. (1989), baseia-se na descrição física da absorção por transição eletrônica. A proposta do método é a modelagem do espectro de reflectância em função das bandas de absorção que são descritas pelos parâmetros: centro, profundidade e intensidade. O espectro é dado pela soma de bandas (cada uma representada por uma distribuição gaussiana modificada) superpostas em um contínuo.

Segundo a teoria apresentada por Hapke (1993), o espectro no visível e no NIR de uma mistura de minerais pode ser obtido através de suas constantes ópticas como albedo e reflectância. No modelo de misturas de Hapke os espectros dos minerais são baseados na equação de transporte radiativo.

2.2. MINERALOGIA DA FAMÍLIA: MÉTODO DE MISTURAS ÍNTIMAS E MODELO GAUSSIANO MODIFICADO (MGM)

Ambos os métodos foram aplicados na análise de espectros da família de Eos (Mothé-Diniz et al., 2008). Pelo MGM, composições cujos minerais olivina e piroxênio (ortopiroxênio) estão presentes são as que mais se aproximam dos espectros de Eos. Quanto ao conteúdo de ferro nas olivinas [†] o melhor ajuste foi para valores de ~20, isto é, olivinas muito ricas em magnésio. O método de misturas íntimas fornece resultados semelhantes com grande parte da amostra ajustada a composições com olivinas de conteúdo Fa ~ 8 e pequenas quantidades de ortopiroxênio. De forma geral a maioria dos membros de Eos apresentam superfície com olivinas ricas em magnésio (Fa ~ 8 a 20) e traços de ortopiroxênio. Um exemplo dos resultados obtidos pelo MGM e Misturas íntimas é apresentado nas figuras 2.9 e 2.10 respectivamente.

Figura 2.9: Exemplo da aplicação do método MGM. O resultado mostrado é para o asteroide 1416 Renauxa, pertencente a família de Eos. A primeira curva na figura são as bandas usadas no ajuste onde as linhas tracejadas representam bandas de piroxênios e as linhas sólidas são bandas de olivinas. No centro temos o espectro do asteroide (linha cheia) e os pontos do espectro usados no ajuste. Na última curva temos o resíduo. Na figura acima foi utilizado para o ajuste os minerais olivina e ortopiroxênio. (Mothé-Diniz et al., 2008)

[†]Os índices que indicam a presença de ferro e magnésio em olivinas são o conteúdo faialítico (fa) e forsterístico (fo) respectivamente. A relação entre os índices é : fa = 100 - fo.

Figura 2.10: Resultado do Método de misturas íntimas de Hapke para o asteroide 661 Cloelia. Para esta modelagem também foi usado os minerais olivina e piroxênio(Mothé-Diniz et al., 2008).

A análise composicional realizada em Sunshine et al. (2007) entre as classes de meteoritos indica que quanto maior a abundância de olivinas, maior a presença de ferro nesses minerais. Segundo os autores essa correlação pode sugerir que processos nebulares são incapazes de produzir condritos ricos em olivinas com alto conteúdo de magnésio. Pela simulação de derretimento parcial realizada no mesmo trabalho, olivinas de Fa_{10-12} e traço de ortopiroxênio podem ser produzidos com aproximadamente 45-70% de derretimento de condrito do tipo H (T ~ 1400-1500°C). Com base nesses resultados e nos obtidos pelos métodos MGM e Hapke, a família de Eos pode ser formada por fragmentos do manto de um corpo de composição condrítica ordinária e que sofreu derretimento parcial.

A hipótese de um corpo progenitor de composição ordinária e diferenciada implica que a formação do mesmo ocorreu em outra parte do sistema solar. A região onde a família se localiza agora é dominada por asteroides do tipo C e estes são caracterizados por não sofrer metamorfismo térmico. Segundo a teoria clássica para formação do Sistema solar, se este corpo possuía composição condrítica ordinária é provável que tenha se formado mais próximo do Sol.

2.2. MINERALOGIA DA FAMÍLIA: MÉTODO DE MISTURAS ÍNTIMAS E MODELO GAUSSIANO MODIFICADO (MGM)

Condritos carbonáceos, quando aquecidos, também podem produzir olivinas forsterísticas como indicam os experimentos realizados por Jurewicz et al. (1993). Amostras dos meteoritos Allende (tipo CV3) e Murchison (CM) foram aquecidas a baixas temperaturas (de 1150 a 1325°C) e pressão (1 atm). Tanto o CV3 quanto o CM produziram olivinas com conteúdo forsterístico entre 60-75 em condições redutoras e oxidantes. Em estágios iniciais na condição redutora temos presença do piroxênio de pouco cálcio (ortopiroxênio) para ambas as composições. Extrapolando os resultados de Jurewicz et al. (1993) podemos considerar a hipótese de que o corpo progenitor da família de Eos foi uma composição carbonácea que sofreu aquecimento parcial.

Quanto a hipótese do intemperismo espacial, seus efeitos em condritos carbonáceos ainda são pouco conhecidos. A simulação feita em laboratório com amostras do meteorito Allende (CV3) sugere que as propriedades ópticas sofrem algum grau de alteração o que poderia justificar a variação de albedo.

O corpo progenitor da família de Eos deve possuir uma composição que justifique a variação em albedo e curva espectral que observamos em seus fragmentos. Quanto à hipótese de um corpo progenitor diferenciado, o aquecimento parcial de condritos ordinários R e condrito Allende (CV) são capazes de reproduzir composições semelhantes à inferida pelos métodos MGM e de mistura íntimas (Mothé-Diniz et al., 2008).

Em nosso projeto tratamos da hipótese do corpo progenitor ter sido um condrito carbonáceo do tipo CO ou CV que sofreu aquecimento parcial. Com a realização de simulações dessas composições contamos obter uma melhor compreensão dos efeitos térmicos em carbonáceos e averiguar se é possível produzir uma composição semelhante à deduzida para membros de Eos.

Capítulo 3

Análise

Este capítulo é destinado à descrição da metodologia empregada no projeto. Com o objetivo de uma melhor compreensão dos efeitos do aquecimento em composições carbonáceas e sua possível aplicação ao corpo progenitor da família de Eos, realizamos simulações com os programas METEOMOD (Ariskin et al. (1997)) e Rhyolite-Melts (Gualda et al. (2012)). Com o intuito de validar a utilização dos programas tentamos primeiramente reproduzir os resultados de laboratório de Jurewicz et al. (1993) para o derretimento de uma amostra do meteorito Allende (CV3). Ambos os programas são amplamente utilizados em geologia, na modelagem termodinâmica de processos ígneos.

3.1 Programas

Tanto o Rhyolite-MELTS (Gualda et al., 2012) quanto o METEOMOD (Ariskin et al., 1997), uma vez fornecido a composição e parâmetros termodinâmicos, permitem calcular as fases minerais estáveis bem como sua composição. Também são fornecidos as propriedades da fase líquida produzida.

Rhyolite-MELTS é uma versão aprimorada do programa MELTS sendo ambas as versões desenvolvidas por Mark Ghiorso para a modelagem de processos magmáticos. É possível simular processos a temperaturas de 500-2000 e pressão de 0 - 2 GPa. O METEOMOD não possui um limite de temperatura, mas é usado para baixas pressões (corpos pequenos). Foi elaborado por Alexey Ariskin para composições similares à de condritos ordinários e à de balsaltos mas seu uso se estende a demais composições de meteoritos.

Os programas diferem entre si principalmente quanto à sua base de cálculo.

Figura 3.1: Tela inicial do METEOMOD. O programa foi desenvolvido para o ambiente DOS.

Figura 3.2: Tela inicial do programa MELTS.

Para que sistemas com multi-componentes atinjam o equilíbrio termodinâmico, as componentes devem estar distribuídas em fases de tal modo que a energia livre de Gibbs (Δ G) seja a menor possível. O Δ G é a quantia que descreve a energia liberada ou consumida na formação de uma fase. Não assume valores absolutos e sim relativos tendo sentido físico somente quando usada na comparação de energia entre diferentes fases. O Δ G de uma reação é dada pela diferença da energia do produto (ou lado direito da reação) e a energia do reagente. Deste modo, Δ G nos indica para qual lado a reação ocorre: se Δ G <0, a reação acontecerá para o lado dos produtos (direito da reação); Para Δ G >0, a reação ocorre no sentido dos reagentes (esquerdo da reação). Sistemas químicos tentam minimizar a energia e com isso as fases onde a energia livre de Gibbs é maior são mais instáveis do que aquelas onde Δ G é menor. Essa variável termodinâmica depende da temperatura

Programas de model	agem termodinâmica
MELTS	METEOMOD
Variação da pressão de	Desenvolvido para P=
0-2 Gpa.	10^5 Pa.
Para temperaturas en-	Sem limites de temper-
tre 500-2000°C	atura. Calcula auto-
	maticamente a temper-
	atura onde o corpo está
	100% líquido
Disponibiliza 5 fugaci-	São 12 fugacidades e
dades (fO_2) e mais 9	possibilidade de assumir
variações da fO_2 QFM.	valores positivos e nega-
Não há possibilidade de	tivos.
alterar o delta para val-	
ores positivos e nega-	
tivos.	
Simulação de processo	Simulação de processos
de derretimento, cristal-	de derretimento, cristal-
ização, cristalização fra-	ização e cristalização
cionada e assimilação.	fracionada.

Tabela 3.1: Principais características dos programas METEOMOD e MELTS.

e pressão. Mais detalhes sobre a energia livre de Gibbs são apresentados no Apêndice A.

Tanto o Rhyolite-MELTS quanto o METEOMOD calculam a energia mínima de Gibbs, porém de formas distintas. O METEOMOD a encontra pela resolução de um sistema não-linear de equações de equilíbrio chamadas de geotermômetros. Elas descrevem a relação de equilíbrio entre silicatos e minerais em função da pressão, temperatura e composição. Em seu núcleo, MELTS calcula o ΔG mínimo de forma direta através da modelagem desenvolvida por Ghiorso (1985). As principais propriedades dos programas estão na tabela 3.1.

Os parâmetros de entrada necessários para realizar uma modelagem são a fugacidade, composição, pressão e temperatura. O METEOMOD necessita também do grau de derretimento (dado pelo inverso do grau de cristalização).

3.2 Fugacidade do Oxigênio

O ferro é o quarto elemento mais abundante na crosta terrestre e também é muito presente em meteoritos. Ele possui três estados de oxidação:

• Fe⁰ seu estado neutro;

- Fe⁺² esse estado é chamado de ferroso;
- Fe⁺³ estado de oxidação máxima chamado de férrico.

A fugacidade do oxigênio (fO_2) é a variável usada em sistemas geológicos para indicar o potencial do ferro estar presente em um estado mais redutor ou oxidado. Para fO_2 mais baixas como no núcleo terrestre e meteoritos o ferro encontra-se no estado Fe⁰ e ocorre a reação:

$$2$$
FeO (Wustita) = 2 Fe + O_2

Em fugacidades altas o ferro torna-se um cátion divalente e é incorporado nos silicatos. A reação que modela essa alteração é:

$$Fe_2SiO_4$$
 (Faialita) = $2Fe^0$ (Ferro) + SiO_2 (Quartzo) + O_2

Aumentando a fO_2 , podemos encontrar o ferro tanto no estado férrico como no ferroso passando a fazer parte da magnetita:

$$2 \text{ Fe}_3 \text{O}_4 \text{ (Magnetita)} + 3 \text{ SiO}_2 \text{ (Quartzo)} = 3 \text{ Fe}_2 \text{SiO}_4 \text{ (Faialita)} + \text{O}_2$$

Para fugacidades muito altas temos o ferro no estado férrico na hematita. A formação de hematita a partir da magnetita é dada pela reação:

$$6 \text{ Fe}_2\text{O}_3 \text{ (Hematita)} = 4 \text{ Fe}_3\text{O}_4 \text{ (Magnetita)} + \text{O}_2$$

Podemos dizer que a fO_2 é a variável que indica se encontraremos o ferro em seu estado nativo, como um íon divalente em silicatos ou como íon trivalente em óxidos (Figura 3.3). Ela também possui papel importante na determinação da composição de qualquer fase líquida associada a rochas ígneas e metamórficas.

As reações acima são conhecidas como fugacidade IW (do inglês para Ferro e Wustita), IQF (Ferro, Quartzo e Faialita), FMQ (Faialita, Magnetita e Quartzo) e MH (Magnetita, Hematita) respectivamente. Em alguns programas ou publicações a ordem da sigla é diferente mas a reação é sempre a mesma. Temos na figura 3.4 as principais fO_2 em função da temperatura e na tabela 3.1 um resumo das equações redox. É importante notar nas figuras 3.4 e 3.3 que a fugacidade aumenta com a temperatura. Isso ocorre porque um aumento de temperatura acarreta a liberação de oxigênio.

A distribuição de Fe nos minerais das várias classes de condritos é um registro das condições de fO_2 nas quais os minerais foram formados. Em meteoritos

Figura 3.3: Diagrama do log da fO_2 versus a temperatura mostrando as estabilidades relativas para vários estados de oxidação no sistema Fe-Si-O.[Frost (1991)]

Figura 3.4: Curvas que representam distintas fugacidades do oxigênio em um sistema contendo O-Si-Fe e em função da temperatura. O lado direito de cada reação na figura é estável abaixo da curva de fO_2 correspondente. No gráfico a fugacidade Ferro-Wustita (IW) é chamada de WI. (Best, 2003)

Tabela 3.2: Equações redox para as fugacidades mais usadas: hematitamagnetita (HM), ferro-wustita (IW), ferro-quartzo-faialita (IQF) e quartzofaialite-magnetita (QFM). As fO_2 estão em ordem decrescente de grau de oxidação (fO_2 HM é a mais oxidante).

	Equações redox para fugacidades do oxigênio.
fO_2	Redox
HM	$4\text{Fe}_3\text{O}_4 \text{ (magnetita)} + \text{O}_2 = 6\text{Fe}_2\text{O}_3 \text{ (hematita)}$
$\rm QFM$	$2Fe_3O_4 + 3SiO_2 (quartzo) = 3Fe_2SiO_4 (faialita) + O_2$
IQF	Fe_2SiO_4 (Faialita) = $2Fe^0$ (Ferro) + SiO_2 (Quartzo) + O_2
IW	$2\text{Fe} + \text{O}_2 = 2\text{FeO} \text{ (wustita)}$

encontramos o ferro principalmente em seu estado neutro e por isso usamos a fugacidade IW. Pela relação entre ferro reduzido (Fe+Fes) e ferro oxidado (FeO) mostrado primeiramente por Harold C. Urey e Harmon Craig em um diagrama (figura 3.5) temos que dentre os condritos os mais oxidados são os carbonáceos CI (IW -1 a IW -3) e os mais reduzidos são as enstatitas EH (IW-5). Os índices positivos ou negativos de uma fugacidade referem-se a valores acima (positivo) ou abaixo (negativo) das curvas mostradas na figura 3.4. Valores positivos são condições mais oxidantes enquanto que valores negativos mais reduzora de uma fO_2 .

Em nossas simulações com composições carbonáceas usamos variações da fO_2 IW mais redutora (valores negativos: IW -1 e IW-2). No programa MELTS dada a limitação na variação de IW usamos a fugacidade QFM -4 que demonstrou ser a fugacidade que mais se aproxima da desejada (Figura 3.4).

3.3 Composições

As composições dos condritos CO, CV e CK foram obtidas do banco de dados *Metbase* de Jörn Koblitz [www.metbase.de]. Selecionamos apenas as análises de amostras classificadas como *finds* para minimizar os efeitos do intemperismo terrestre.

Para as simulações usamos as composições dos meteoritos: Allende (CV), Vigarano (CV), Ornans (CO), Lancé (CO) e Karoonda (CK). Os meteoritos selecionados são os principais representantes de suas classes. A composição encontrase na tabela 3.3.

Figura 3.5: Versão modificada do Diagrama de Urey-Craig. O total de Fe é constante ao longo da diagonal e aumenta da esquerda inferior à direita superior. Os condritos CI não possuem metais enquanto que as enstatitas EH possuem mais Fe. (Zanda, 2004)

Tabela 3.3: Composições dos meteoritos Allende, Vigarano, Ornans, Lancé e Karoonda usadas nas simulações de derretimento parcial. Foram excluídas as composições dos meteoritos "achados" de cada grupo estudado. Composições retiradas do banco de dados *Metbase*.

	Composições Condritos CV, CO e CK							
	(wt%)							
Óxidos	Allende	Vigarano	Ornans	Lancé	Karoonda			
SiO_2	33.86	35.51	35.39	35.81	34.95			
TiO_2	0.15	0.14	0.14	0.14	0.16			
Al_2O_3	3.41	3.84	3.68	2.82	3.31			
$\mathrm{Cr}_2\mathrm{O}_3$	0.50	0.50	0.41	0.43	0.42			
FeO	28.05	31.48	31.97	30.53	26.30			
MnO	0.19	0.25	0.22	0.19	0.18			
MgO	24.63	23.54	22.83	24.48	26.41			
CaO	2.69	2.32	2.73	2.46	2.31			
Na_2O	0.44	0.83	0.74	0.69	0.57			
K_2O	0.04	0.07	0.05	0.05	0.04			
P_2O_5	0.25	0.31	0.31	0.28	0.22			

3.4 Variáveis Intensivas

No METEOMOD para obtermos o resultado de um processo de derretimento, simulamos uma cristalização e consideramos seu inverso. Logo, os resultados do programa começam na temperatura máxima (corpo 100% líquido) até a temperatura que corresponde ao grau de cristalização escolhido (o quão sólido desejamos nossa amostra). Esse intervalo de temperatura é calculado automaticamente. Para as simulações no MELTS, onde é possível escolher diretamente o processo de derretimento, usamos o limite de temperatura calculado pelo METEOMOD.

Quanto à pressão, obtivemos seu valor pela resolução da equação de equilíbrio hidrostático:

$$P_C = \frac{2\pi G}{3} \rho^2 R^2$$
 (3.1)

Onde ρ é a densidade, R é o raio do corpo, G é a constante da gravidade e P_G é a pressão central dada em pascal (Pa).

Pela a estimativa de Tanga et al. (1999) o corpo progenitor de Eos teria um diâmetro de 218 km. Substituindo esse valor e as densidades dadas por Britt and Consolmagno (2004) (tabela 3.4) temos os valores de pressão utilizados na modelagem (tabela 3.5). No METEOMOD a variável responsável pela variação de pressão (DT(C)) baseia-se em valores experimentais da taxa de aumento da pressão em relação a temperatura (dT/dP). Para os minerais, a pressão deve ser muito alta (da ordem de Kbar) para que essa taxa seja significativa. A pressão calculada para nossas simulações são baixas e por isso a variável DT(C) (dT/dP) torna-se desprezível. Deste modo, foi mantida a pressão padrão do METEOMOD (P= 1 atm \approx 1 bar).

Tabela 3.4: Densidade dos meteoritos do tipo CO, CV e CK usados na modelagem. Os valores foram tirados de Britt and Consolmagno (2004) e usados no cálculo da pressão (Eq 3.1). Para Karoonda utilizamos o valor médio para a composição CO e CV já que o mesmo não possui densidade determinada.

idades
cm^3)
2.88 ± 0.05
3.25 ± 0.06
2.98 ± 0.32
3.09 ± 0.13
2.95 ± 0.11

Valores de j	pressão
Composição	Pressão
	(bar)
Allende	144.5
Vigarano	175.3
Ornans	147.5
Lancé	158.5
Karoonda	144

Tabela 3.5: Valores de pressão usados na modelagem de derretimento parcial calculados pela Eq3.1.

3.5 Teste: Reprodução de resultados experimentais

Para adquirir um conhecimento maior da petrogênese de eucritas e angritas, Jurewicz et al. (1993) realizou em laboratório o derretimento parcial do meteorito Allende (CV3) a baixa pressão e variando a fO_2 para análise do efeito da mesma na composição resultante. As temperaturas e fugacidades do experimento são as estimadas para a formação dos acondritos. Acredita-se que a eucrita formase em uma condição redutora (fO_2 IW-1) enquanto que a angrita em condições oxidantes (fO_2 IW +2, baseado na análise do meteorito Angra dos Reis).

Nos resultados de Jurewicz et al. (1993) para a fugacidade IW-1, a composição é saturada em olivinas em todas as temperaturas mas conta também com a presença de plagioclase (até 1180°C) e ortopiroxênio (até 1170°C). Para temperaturas acima de 1200°C, olivinas e o magma resultante do aquecimento são as únicas fases de silicato presentes. Em nossa simulação-teste ambos os programas não reproduziram a fase de piroxênio. Segundo os resultados do METEOMOD, plagioclase é presente para temperaturas de 1155.9°C a 1215.9°C enquanto que o MELTS o produz apenas para temperaturas menores que 1150°C.

Para condições oxidantes (IW+2) o experimento produziu fases sólidas de olivina e plagioclase . A plagioclase permanece de 1140 a 1150°C deixando apenas olivina e magma para maiores temperaturas. Também para essa fO_2 , observamos saturação de olivina em todas as temperaturas. MELTS e METEOMOD reproduziram as fases corretamente porém como o METEOMOD calcula o seu próprio intervalo de temperatura, a simulação não chegou a temperaturas mais baixas que 1200°C. No entanto, a plagioclase permanece até 1213°C ao passo que no MELTS até 1140°C. Além da comparação de fases sólidas presentes, comparamos também a composição do magma aquecido. Notamos que para ambas as condições (IW-1 e IW+2) os óxidos de titânio (TiO₂), fósforo (P₂O₅) e manganês (MnO) são os que mais se aproximam do resultado experimental. Já o dióxido de silício (SiO₂ também chamado de sílica) e os óxidos de alumínio (Al₂O₃) e ferro (FeO) são os que apresentam valores mais distintos dos apresentados por Jurewicz et al. (1993). Uma possível justificativa é que elementos como ferro e silício são usados na formação de fases minerais presentes na simulação (como as olivinas). O programa MELTS produziu magma cuja composição é muito próxima da encontrada em laboratório. Nas tabelas 3.6 e 3.7 temos as composições do magma encontrado experimentalmente e pela modelagem. Um exemplo para T=1325°C e ambas as fugacidades é mostrado nas Figuras 3.6 e 3.7. Os demais gráficos encontram-se no Apêndice B.

Figura 3.6: Comparação da composição do magma obtido no experimento e programas de modelagem para aquecimento do meteorito Allende (CV3) e fugacidade redutora IW-1. Para alguns óxidos como TiO₂ e MnO os valores obtidos são bem próximos. O programa METEOMOD não fornece valores para Cr_2O_3 e para essa temperatura Jurewicz et al. (1993) não detectou Na₂O. Comparação para T= 1325°C e para resultados de METEOMOD a temperatura mais próxima (T = 1325.5°C) já que o próprio determina o intervalo de temperatura.

De modo geral, considerando todos as limitações da modelagem os programas apresentaram resultados satisfatórios quando comparados com os obtidos

Figura 3.7: Comparação da composição do magma agora para a condição oxidante (IW+2) e mesma temperatura (T=1325°C). Para essa fugacidade os óxidos TiO₂, MnO e FeO apresentam valores bem próximos dos obtidos experimentalmente.

experimentalmente.

H	Fonte	SiO2	TiO2	A12O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	P2O5
1325	Jurewicz	45.1	0.34	10.1	0.71	22.8	0.23	12.6	7.57	I	0.04
	Melts	33.78	0.32	6.11	0.45	38.81	0.18	12.64	5.48	1.03	0.56
	Meteomod	32.39	0.62	13.96	ı	31.75	0.23	8.07	10.2	1.91	0.87
1275	Jurewicz	48.7	0.39	11.5	0.7	18.3	0.22	11.1	8.83	I	0.07
	Melts	34.17	0.40	7.05	0.32	37.53	0.16	10.92	6.74	1.32	0.72
	Meteomod	32.24	0.75	17.04	I	27.76	0.2	6.49	12.13	2.33	1.06
1200	Jurewicz	46.9	0.83	13.7	0.27	18.7	0.19	7.18	12	0.14	0.18
	Melts	36.00	0.60	9.43	0.14	32.31	0.13	8.51	9.24	2.09	0.83
	Meteomod	32.85	1.31	18.54	I	21.94	0.17	5.18	14.96	3.19	1.85
1180	Jurewicz	49.5	0.75	13.3	0.34	17.2	0.18	7.44	11.4	0.08	0.18
	Melts	36.78	0.68	10.22	0.10	30.34	0.12	7.88	9.96	2.36	0.83
	Meteomod	33.21	2.05	15.93	ı	20.31	0.17	5.16	16.93	3.34	2.9
1170	Jurewicz	49.4	0.93	13	0.31	17.4	0.18	7.26	11.8	I	0.24
	Melts	37.21	0.71	10.63	0.09	29.27	0.12	7.57	10.33	2.51	0.84
	Meteomod	33.25	2.39	14.78	ı	19.86	0.17	5.16	17.8	3.22	3.38
1160	Jurewicz	49.8	-	12.8	0.33	17.2	0.18	6.7	11.9	0.57	0.67
	Melts	37.66	0.75	11.04	0.08	28.15	0.11	7.26	10.69	2.67	0.84
	Meteomod	33.24	2.85	13.23	I	19.4	0.16	5.19	18.96	2.95	4.03
	Melts	38.15	0.79	11.46	0.07	26.99	0.11	6.95	11.06	2.84	0.85

Tabela 3.6: Tabela com a composição do magma obtido em laboratório (Jurewicz et al. (1993)) e através da modelagem termodinâmica dos programas MELTS e METEOMOD para condições redutoras (IW -1). Para o último usamos a temperatura mais próxima das demais.

H	Fonte	SiO2	TiO2	A12O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	P2O5
1325	Jurewicz	34.2	0.31	9.86	0.18	36	0.31	10.2	8.27	I	0.54
	Melts	33.9853	0.2595	5.1728	0.2451	38.0539	0.1751	13.5311	4.8553	0.8699	0.4745
	Meteomod	32.4	0.59	13.34	ı	32.73	0.23	8.26	9.8	1.82	0.83
275	Jurewicz	36.6	0.46	10.6	0.1	31.1	0.19	8.55	10.7	I	0.9
	Melts	34.1936	0.3012	5.7781	0.1871	37.8096	0.1564	11.8106	5.6848	1.0407	0.5677
	Meteomod	32.24	0.71	16.13	ı	29.16	0.21	6.75	11.6	2.2	1
200	Jurewicz	37.7	0.76	12	0.1	24.7	0.16	6.43	14.4	0.51	1.48
	Melts	35.2035	0.4078	7.2174	0.0988	34.9527	0.1272	9.3882	7.6631	1.4841	0.8095
	Meteomod	16.45	2.4	25.15	ı	22.34	0.11	2.48	22.29	5.33	3.45
180	Jurewicz	39.4	0.67	12.4	0.1	23.6	0.15	6.1	15	0.62	1.37
	Melts	35.6741	0.4479	7.7413	0.0785	33.5426	0.1198	8.7711	8.3657	1.6566	0.9036
170	Jurewicz	40.1	0.7	12.6	0.1	22.5	0.16	6.01	15.5	0.58	1.68
	Melts	35.9483	0.4698	8.0273	0.0693	32.727	0.1162	8.4666	8.7428	1.7531	0.9563
160	Jurewicz	39.6	0.69	12.8	I	22.4	0.14	5.78	15.5	1.09	1.71
	Melts	36.2506	0.4929	8.3296	0.0608	31.8374	0.1127	8.1644	9.1357	1.8568	1.0128
150	Jurewicz	39.9	1.01	12.3	I	21.9	0.1	5.68	16.9	0.71	1.93
	Melts	36.5826	0.5171	8.6481	0.053	30.8736	0.1092	7.8644	9.5432	1.9681	1.0736
140	Jurewicz	39.1	1.08	12.1	I	21.2	0.15	5.46	16.4	1.43	2.11
	Melts	36 3704	0.5649	8 2089	0 0464	31 2007	0 1015	7 5047	0 6002	9 9356	1 1038

Tabela 3.7: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende para IW+2. A menor temperatura calculada por METEOMOD é de 1201 e para T mais baixas apresentamos apenas a comparação dos resultados de Jurewicz et al. (1993) e MELTS. 39

Capítulo 4

Discussão e Resultados

Neste capítulo são apresentados os resultados obtidos pela modelagem do derretimento parcial das composições CO (meteoritos Ornans e Lancé), CV (Vigarano e Allende) e CK (Karoonda) realizada nos programas Rhyolite-MELTS e METEOMOD. Investigamos a possibilidade da família de Eos ser uma família diferenciada, resultado da quebra de um corpo carbonáceo que sofreu processo térmico.

As composições escolhidas para a modelagem foram os melhores análogos pela comparação de espectros. Inicialmente, os meteoritos possuem conteúdo faialítico entre ~ 31 e ~ 6 . O Karoonda é a composição com olivinas mais ricas em Fe enquanto que os dois meteoritos do tipo CV apresentam o menor índice Fa, como pode ser visto na tabela 4.1.

Tabela 4.1: Conteúdo faialítico inicial das composições usadas em nosso projeto. O meteorito Karoonda (CK) possui as olivinas mais ricas em ferro (Fa_{~31}) de nossa seleção enquanto que os condritos do tipo CV possuem olivinas mais pobres do mesmo elemento (Fa_{~6-10}).

Conteúdo failític	o inicial
Composição	Fa
Vigarano (CV)	~ 5.6
Allende (CV)	~ 10.0
Ornans (CO)	~ 19
Lancé (CO)	~ 21
Karoonda (CK)	~ 31

Em ambos os programas, a fase de ortopiroxênio foi produzida para a fO_2 IW-

2. O plagioclásio, mineral da série do feldspato muito comum em rochas ígneas,

			Fa	ses minerais
Composição	fO_2	Temperatura	METEOMOD	MELTS
Allende	IW-1	1200-1595	Ol- Pl	Ol- Sp
	IW-2	1160-1760	Ol- Pl - Opx	Ol- Sp-Pl-Cpx
Vigarano	IW-1	1145-1570	Ol - Pl	Ol - Sp- Pl
	IW-2	1135-1835	Ol- Pl- Opx	Ol- Sp- Pl-Opx
Ornans	IW-1	1140-1560	Ol- Pl	Ol- Sp- Pl
	IW-2	1140-1850	Ol- Pl- Opx	Ol - Sp - Pl- Opx - Cpx *
Lancé	IW-1	1130-1570	Ol- Pl	Ol - Pl- Sp
	IW-2	1130-1800	Ol- Pl- Opx	Ol- Sp-Pl-Opx- Cpx^\dagger
Karoonda	IW-1	1190-1610	Ol- Pl	Ol- Sp
	IW-2	1155-1690	Ol- Pl- Opx	Ol- Pl-Sp

Tabela 4.2: Fases minerais produzidas pelos programas METEOMOD e Rhyolite-MELTS para cada fugacidade e composição. As fases são: ol = olivina, pl=plagioclásio, opx=ortopiroxênio, cpx=clinopiroxênio e sp=espinela.

está presente tanto nas simulações com fO_2 IW-1 quanto para IW-2 em temperaturas mais baixas (até ~1150 -1200°C). A exceção é a composição Karoonda e Allende mas apenas na simulação realizada no Rhyolite-Melts onde plagioclásio é produzido para IW-2 estando ausente para IW-1. As temperaturas e fases encontradas estão resumidas na tabela 4.2.

Nas próximas seções apresentamos com mais detalhes os resultados obtidos em cada um dos programas.

4.1 Resultados do METEOMOD

Para todas as composições e fO_2 IW-1 foram produzidas as fases minerais de olivinas e plagioclásio. As olivinas são ricas em Mg (Fo_{~90-60}) e o plagioclásio é rico em cálcio como demonstra o índice de anortita (An)(tabela 4.3). A anortita é o mineral representado pela fórmula CaAl₂Si₂O₃ e representa um dos membros finais da série sólida do feldspato- plagioclásio (figura 4.1).

Para a fugacidade mais redutora IW-2, além de olivina e plagioclásio, é produzido o ortopiroxênio em estágios iniciais do aquecimento (até ~ 1300°C). Assim como as olivinas, o ortopiroxênio formado é rico em Mg fato que é denotado pela porcentagem de enstatita (En)(tabela 4.3). A enstatita (MgSiO₃) é um dos limites da série sólida do ortopiroxênio. O outro extremo é a ferrosilita (FeSiO₃) que é o ortopiroxênio rico em Fe. Na figura 4.2 temos a série sólida do piroxênio

Figura 4.1: Diagrama ternário da série sólida do feld
spato. O feld
spato é um mineral muito comum na crosta terrestre e presente em rochas ígne
as. O plagioclásio, por sua vez,
pertence à da família do feld
spato e possui como extremos a albita (rica em sódio- Na
AlSi $_3O_8$) e Anortita (Ca
Al $_2Si_2O_8$). A presença dos elementos Na e Ca nesses minerais são medidos pelos índices dados pela porcentagem total de albita e anortita respectivamente.

(orto e clinopiroxênio).

Figura 4.2: Diagrama ternário para a série sólida do ortopiroxênio e clinopiroxênio.

O intervalo de temperatura, as fases minerais e seus índices quanto a presença de magnésio encontram-se na tabela 4.3. Os resultados completos são listados no apêndice C.

	Resultados ol	otidos no METEOMOI).
Composição	Fugacidade	Fases minerais	Índices
			(Fo, An e En)
Allende	IW-1	Ol (1192.8-1593.8)	Fo ₆₃₋₈₄
		Pl (1192.8-1214.2)	An_{76-81}
	IW-2	Ol (1163.8-1603.1)	Fo_{82-87}
		Pl (1195.2-1163.8)	An_{76-84}
		Opx (1163.8-1266.9)	En ₈₀₋₈₃
Vigarano	IW-1	Ol (1147.4-1569.6)	Fo_{60-82}
		Pl (1144.7-1172.2)	An_{61-69}
	IW-2	Ol (1135.4-1585.3)	Fo_{79-87}
		Pl (1135.4-1175.4)	An_{61-74}
		Opx (1135.4-1289.7)	En_{79-83}
Ornans	IW-1	Ol (1138.5-1556.7)	Fo_{60-81}
		Pl (1138.5-1172)	An_{60-70}
	IW-2	Ol (1137.2-1573.5)	Fo ₈₀₋₈₇
		Pl (1137.2-1178.8)	An_{64-77}
		Opx (1137.2-1301)	En ₈₀₋₈₃
Lancé	IW-1	Ol (1129.7-1569.5)	Fo_{60-83}
		Pl (1129.7-1156.3)	An_{57-65}
	IW-2	Ol (1132.3-1583.3)	Fo_{80-87}
		Pl (1132.2-11642)	An_{62-72}
		Opx (1132.2-1329.5)	En_{79-84}
Karoonda	IW-1	Ol (1188.5-1610.4)	Fo ₆₅₋₈₆
		Pl (1188.5-1198.2)	An_{73-76}
	IW-2	Ol (1155.4-1615.3)	Fo ₈₁₋₈₇
		Pl (1155.4-1186.7)	An_{72-80}
		Opx (1155.4-1256.6)	En_{80-87}

Tabela 4.3: Tabela com os resultados obtidos no programa METEOMOD (ol = olivina, pl=plagioclásio e opx= ortopiroxênio).

De forma geral, para temperaturas acima de 1600 °C não encontramos mais fases sólidas, sendo a última a olivina (até ~ 1600°C). Para fO_2 IW-1 a temperatura não ultrapassa 1600°C mas para IW-2 pode chegar a 1800°C. O programa calcula automaticamente a temperatura para o qual a composição está 100% líquida e começa a modelagem a partir dela.

4.2 Resultados do Rhyolite-MELTS

No programa Rhyolite-MELTS usamos as fugacidades QFM-4 e QFM-5, que se aproximam da desejada (IW-1 e IW-2) para nossas simulações. Desta forma, nossos resultados apresentam uma variação do Δ IW. Em sistemas ígneos a variação de fO_2 é normal já que as taxas de Fe presente se alteram com as fases minerais que são formadas ao longo do processo de derretimento. O Δ IW final e inicial é dado na tabela 4.4.

Tabela 4.4: Fugacidades no Rhyolite-MELTS. Como o programa não permite variações da fugacidade IW usamos as fO_2 QFM -4 e -5 que são as próximas da IW-1 e IW-2 respectivamente. As melhores aproximações são quando o Δ IW aproxima-se dos valores desejados (-1 e -2). Nota-se que isso ocorre para temperaturas mais altas.

Variação da j	Variação da f_2 IW no Rhyolite-MELTS.				
Composição	fO_2	ΔIW			
Allende	QFM -4	-0.55 (1200°C)			
		$-0.89 (1595^{\circ}C)$			
	QFM -5	-1.50(1160°C)			
		$-2.00(1760^{\circ}C)$			
Vigarano	QFM-4	-0.48(1145°C)			
		$-0.87(1570^{\circ}C)$			
	QFM -5	$-1.47(1135^{\circ}C)$			
		-2.04(1835°C)			
Ornans	QFM -4	$-0.48(1140^{\circ}C)$			
		$-0.87(1570^{\circ}C)$			
	QFM -5	$-1.48(1140^{\circ}C)$			
		$-2.05(1850^{\circ}C)$			
Lancé	QFM -4	$-0.46(1130^{\circ}C)$			
		$-0.87(1570^{\circ}C)$			
	QFM -5	$-1.46(1130^{\circ}C)$			
		-2.02(1800°C)			
Karoonda	QFM -4	$-0.53(1190^{\circ}C)$			
		-0.90(1610°C)			
	QFM -5	$-1.49(1155^{\circ}C)$			
		$-1.95(1690^{\circ}C)$			

Para todas as composições e fugacidades foram produzidas olivinas forsterísticas $(Fo_{\sim 60-90})$ e a fase mineral de espinélio $(MgAl_2O_4)$. O plagioclásio não foi formado para as composições Allende e Karoonda e IW-1.

Nas composições do tipo CO (Ornans e Lancé), Rhyolite-MELTS forma o

	Resultados o	btidos no Rhyolite-MI	ELTS
Composição	Fugacidade	Fases minerais	Índices
	_		(Fo, An, Sp e En)
Allende	IW-1	Ol (1200-1595 °C)	Fo ₆₃₋₈₉
		Sp (1200-1445 °C)	$\operatorname{Sp}_{58-71}$
	IW-2	Ol (1160-1660 °C)	Fo ₆₉₋₉₄
		Sp (1160-1590 °C)	$\operatorname{Sp}_{42-84}$
		Cpx (1160 °C)	En _{31.69}
Vigarano	IW-1	Ol (1145-1570 °C)	Fo ₅₈₋₈₈
		Sp (1145-1360 °C)	$\operatorname{Sp}_{53-61}$
		Pl (1145 °C)	An _{74.41}
	IW-2	Ol (1135-1635 °C)	Fo_{64-94}
		Sp (1135-1575 °C)	$\operatorname{Sp}_{35-82}$
		Pl (1135-1170 °C)	An53 - 62
		Opx (1240-1250 °C)	En96 - 95
Ornans	IW-1	Ol (1140-1560 °C)	Fo_{57-87}
		Sp (1140-1320 $^{\circ}$ C)	$\operatorname{Sp}_{52-57}$
		Pl (1140-1150 °C)	An_{78-79}
	IW-2	Ol (1140-1625 °C)	Fo_{65-94}
		Sp (1140-1535 °C)	Sp_{35-80}
		Pl (1140-1170 °C)	An_{57-66}
		Opx (1200-1285 °C)	En_{93-96}
		Cpx (1140-1160 °C)	En ₆₈₋₈₀
Lancé	IW-1	Ol (1130-1570 °C)	Fo_{58-88}
		Sp (1130-1315 °C)	$\operatorname{Sp}_{45-50}$
		Pl (1130-1150 °C)	An_{73-75}
	IW-2	Ol (1140-1625 °C)	Fo_{65-94}
		Sp (1140-1535 °C)	Sp_{35-79}
		Pl (1140-1160 °C)	An_{57-63}
		Opx (1180-1350 °C)	En_{93-36}
		Cpx (1140-1160 °C)	En ₆₈₋₈₀
Karoonda	IW-1	Ol (1190-1610 °C)	$\operatorname{Fo}_{66-90}$
		Sp (1190-1400 °C)	$\operatorname{Sp}_{60-67}$
	1W-2	OI (1155-1675 °C)	Fo_{70-94}
		Sp (1155-1570 °C)	Sp_{43-82}
		Pl (1155-1185 °C)	An_{63-70}

Tabela 4.5: Tabela com os resultados obtidos pelo Rhyolite-MELTS (ol = olivina, pl = plagioclásio, sp= espinélio, opx= ortopiroxênio e cpx= clinopiroxênio)

clinopiroxênio(Cpx) e ortopiroxênio (Opx) para condições mais redutoras (IW-2). O clinopiroxênio ocorre em temperaturas mais baixas (até ~ 1160 °C) e é seguido pela formação de ortopiroxênio (até ~ 1300 °C).

Um resumo dos resultados das simulações no Rhyolite-MELTS encontra-se na tabela 4.5. Tabelas e gráficos com os resultados completos encontram-se no apêndice C.

4.3 Discussão e Conclusão

Nosso projeto consiste em uma abordagem inicial ao estudo de processos de aquecimento e cristalização em meteoritos condritos carbonáceos, visando um melhor entendimento dos processos térmicos que possam ter ocorrido no cinturão principal. Em especial, focamos nossas modelagens e aplicamos nossos resultados ao estudo da Família de Eos, averiguando a possibilidade desta família ser formada por fragmentos de uma composição carbonácea que sofreu processo térmico. A hipótese de um corpo diferenciado explicaria a variação no albedo e curvas espectrais de membros da família. O intemperismo espacial também pode ser o responsável pelas variações mas, seus efeitos em carbonáceos são pouco conhecidos.

Um estudo detalhado da literatura indica que, pela comparação de espectros, os condritos que possuem espectros mais semelhantes aos dos membros de Eos são os carbonáceos do tipo CO, CV e CK (Bell (1988); Burbine et al. (2001); Doressoundiram et al. (1998); Mothé-Diniz et al. (2008)). Quando esta comparação estende-se a acondritos, o espectro do meteorito Divnoe é o melhor análogo ao espectro do fragmento 221 Eos (Mothé-Diniz and Carvano (2005)). Utilizando os métodos MGM e Misturas Íntimas de Hapke para inferir a mineralogia da família, os melhores ajustes foram para composições com olivinas ricas em magnésio (Fa_{~8-20}) e presença de ortopiroxênio (Mothé-Diniz et al. (2008)).

Utilizamos os programas Rhyolite-MELTS e METEOMOD para testar a possibilidade de composições primitivas que estariam presentes na região de Eos terem originado, através de aquecimento, as composições inferidas para a família através dos métodos MGM e Hapke.

Nossos resultados indicam que é possível produzir a mineralogia estimada em Mothé-Diniz et al. (2008) pelo aquecimento das composições Allende (CV), Vigarano (CV), Lancé (CO), Ornans (CO) e Karoonda (CK).

Na modelagem as olivinas formadas são ricas em Mg (Fo_{~85-70} para METEO-MOD e Fo_{~90-60} para Rhyolite-MELTS). Para condições mais redutoras (IW-2), a fase de ortopiroxênio é formada em estágios iniciais do aquecimento (até ~ 30% de aquecimento) exceto para composição Allende e programa Rhyolite-MELTS no qual a fase não é formada. Em ambos os programas o ortopiroxênio não é produzido para fO_2 IW-1. Um exemplo dos resultado é mostrado na 4.3 e 4.4.

A porcentagem de aquecimento na qual olivinas com $Fa_{\sim 20}$ são formadas varia

Figura 4.3: Fases minerais formadas no derretimento da composição Ornans em função da temperatura e obtidos pelo programa Rhyolite-MELTS para fO_2 IW-2. A porcentagem de resíduo, são as fases sólidas que permanecem presentes em um determinado estágio do derretimento.

Figura 4.4: Resultados produzidos pelo METEOMOD para a composição Ornans e fugacidade fO_2 em função da temperatura.

Figura 4.5: Conteúdo failítico para composição Vigarano e fO_2 IW-1 em função da temperatura e aquecimento (segundo gráfico). Resultados da simulação no programa Rhyolite-MELTS.

Figura 4.6: Conteúdo faialítico ao longo do processo de derretimento da composição Vigarano e fO_2 IW-1 obtido pelo programa METEOMOD.

com o programa e encontram-se na 4.6 e nas figuras 4.5 e 4.6.

A diferença entre as porcentagens de aquecimento nos quais olivinas com $Fa_{\sim 20}$ são produzidas pode ser explicada pela variação de fugacidade no programa Rhyolite-MELTS. Usamos as fO_2 que mais se aproximam da IW -1 e IW-2 mas ao longo da simulação o Δ IW chegava a valores muito mais baixos (tabela 4.4). A fugacidade depende também da temperatura. As temperaturas para as quais as composições encontravam-se 100% líquidas são diferentes para cada programa. Para o Karoonda e IW-2, por exemplo, a T=1610 °C que corresponde a 100% líquido no METEOMODO são apenas 80% para Rhyolite-MELTS. Essas diferenças na modelagem são refletidas em nossos resultados.

Tabela 4.6: Tabela com a porcentagem de aquecimento e temperatura na qual foi encontrado olivinas com Fa_{~20}. Esse é o valor estimado pela aplicação do método MGM e de Misturas Íntimas de Hapke para as olivinas presentes em membros da família de Eos (Mothé-Diniz et al. (2008)). A diferença entre os programas é por conta da aproximação de fugacidade utilizada no Rhyolite-MELTS.

Conteúdo faialítico final das olivinas			
		% de Aquecimento	
Composição	Fugacidade	METEOMOD	MELTS
Allende	IW-1	$\sim 74~(1544~^\circ\mathrm{C})$	$\sim 48 \; (1410 \; ^{\circ}{\rm C})$
	IW-2	-	$\sim 22~(1240~^\circ\mathrm{C})$
Vigarano	IW-1	$\sim 88 \; (1544 \; ^{\circ}{\rm C})$	$\sim 61 \; (1410 \; ^{\circ}{\rm C})$
	IW-2	$\sim 3 \ (1149 \ ^{\circ}\text{C})$	$\sim 27~(1255~^\circ\mathrm{C})$
Lancé	IW-1	$\sim 83~($ 1537 °C)	$\sim 60 \; (1415^{\circ}{ m C})$
	IW-2	$\sim 1(1132 \ ^{\circ}\mathrm{C})$	$\sim 24 \; (1255^{\circ}{\rm C})$
Ornans	IW-1	$\sim 93~(1543~^\circ\mathrm{C})$	$\sim 66 \; (1415 \; ^{\circ}{\rm C})$
	IW-2	$\sim 1 \ (1137 \ ^{\circ}\mathrm{C})$	$\sim 27~(1255~^\circ\mathrm{C})$
Karoonda	IW-1	$\sim 63 \; (1537 \; ^{\circ}{\rm C})$	$\sim 41 \; (1395 \; ^{\circ}{\rm C})$
	IW-2	$\sim 1 \; (1155 \; ^{\circ}{ m C})$	$\sim 20 \; (1245 \; ^{\circ}{\rm C})$
Referências Bibliográficas

- Alexander, C. M. O.; Barber, D. J., and Hutchison, R. The microstructure of Semarkona and Bishunpur. *Geochimica et Cosmochimica Acta*, 53:3045–3057, November 1989. doi: 10.1016/0016-7037(89)90180-4. [citado na p. 7]
- Alexander, Frauke. Aluminium 26 decay as an astrophysical tool, January 2010. [citado na p. 8]
- Ariskin, A. A.; Petaev, M. I.; Borisov, A. A., and Barmina, G. S. METEOMOD: A numerical model for the calculation of melting- crystallization relationships in meteoritic igneous systems. *Meteoritics and Planetary Science*, 32:123–133, January 1997. doi: 10.1111/j.1945-5100.1997.tb01247.x. [citado na p. 27]
- Bell, J. F. A probable asteroidal parent body for the CO or CV chondrites. *Meteoritics*, 23:256–257, September 1988. [citado na p. 15, 47]
- Bell, J. F.; Hawke, B. R., and Owensby, P. D. Carbonaceous Chondrites From S-Type Asteroids? In Bulletin of the American Astronomical Society, volume 19 of Bulletin of the American Astronomical Society, pages 841–841, June 1987. [citado na p. 15]
- Best, M.G. Igneous and Metamorphic Petrology. Blackwell Publishing, second edition, 2003. [citado na p. viii, 31]
- Bowell, E.; Chapman, C. R.; Gradie, J. C.; Morrison, D., and Zellner, B. Taxonomy of asteroids. *Icarus*, 35:313–335, September 1978. doi: 10.1016/0019-1035(78)90085-4. [citado na p. vi, 16]
- Britt, D. T. and Consolmagno, G. J. Meteorite Porosities and Densities: A Review of Trends in the Data. In Mackwell, S. and Stansbery, E., editors, Lunar and Planetary Institute Science Conference Abstracts, volume 35 of Lunar and Planetary Inst. Technical Report, page 2108, March 2004. [citado na p. xviii, 34]
- Bunch, T. E. and Chang, S. Carbonaceous chondrites. II Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes

and surface conditions. *Geochimica et Cosmochimica Acta*, 44:1543–1577, October 1980. doi: 10.1016/0016-7037(80)90118-0. [citado na p. 7]

- Burbine, T. H.; Binzel, R. P.; Bus, S. J.; Buchanan, P. C.; Hinrichs, J. L.; MeibomHiroi, A. T., and Sunshine, J. M. Forging Asteroid-Meteorite Relationships Through Reflectance Spectroscopy. In Lunar and Planetary Institute Science Conference Abstracts, volume 31 of Lunar and Planetary Inst. Technical Report, page 1844, March 2000. [citado na p. vii, 20]
- Burbine, T. H.; Binzel, R. P.; Bus, S. J., and Clark, B. E. K asteroids and CO3/CV3 chondrites. *Meteoritics and Planetary Science*, 36:245–253, February 2001. doi: 10. 1111/j.1945-5100.2001.tb01869.x. [citado na p. vii, 18, 19, 20, 47]
- Bus, S. J. Compositional structure in the asteroid belt: Results of a spectroscopic survey. PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 1999. [citado na p. vi, vii, 15, 16, 20]
- Bus, S. J. and Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic SurveyThe Observations. *Icarus*, 158:106–145, July 2002. doi: 10.1006/icar.2002.6857. [citado na p. vii, 21]
- Chapman, C. R. and Morrison, D. J, H, K photometry of 433 Eros and other asteroids. *Icarus*, 28:91–94, May 1976. doi: 10.1016/0019-1035(76)90090-7. [citado na p. vii, 17]
- Clayton, R. N. Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21:115–149, 1993. doi: 10.1146/annurev.ea.21.050193.000555. [citado na p. 7]
- Clayton, R. N. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63:2089–2104, July 1999. doi: 10.1016/S0016-7037(99)00090-3. [citado na p. 7]
- Decampli, W. M. T Tauri winds. *ApJ*, 244:124–146, February 1981. doi: 10.1086/158691. [citado na p. 9]
- Degewij, J.; Gradie, J., and Zellner, B. Minor planets and related objects. XXV UBV photometry of 145 faint asteroids. Astrophysical Journal, 83:643–650, June 1978. doi: 10.1086/112248. [citado na p. vi, 14, 16]
- di Martino, M.; Migliorini, F.; Cellino, A., and Zappala, V. Can CO/CV Meteorites Come from the EOS Family? *Meteoritics and Planetary Science Supplement*, 32:35, January 1997. [citado na p. 19]
- Doressoundiram, A.; Barucci, M. A.; Fulchignoni, M., and Florczak, M. EOS Family: A Spectroscopic Study. *Icarus*, 131:15–31, January 1998. doi: 10.1006/icar.1997.5852. [citado na p. vii, 16, 17, 18, 19, 21, 47]

- Dufresne, E. R. and Anders, E. On the chemical evolution of the carbonaceous chondrites. *Geochimica et Cosmochimica Acta*, 26:1085–1092, November 1962. doi: 10.1016/0016-7037(62)90047-9. [citado na p. 7]
- Frost, B. R. Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25:1–9, January 1991. [citado na p. viii, 31]
- Gaffey, M. J. Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81:905–920, February 1976. doi: 10.1029/JB081i005p00905. [citado na p. vii, 18, 19, 20]
- Ghiorso, M. S. Chemical mass transfer in magmatic processes. Contributions to Mineralogy and Petrology, 90:107–120, July 1985. doi: 10.1007/BF00378254. [citado na p. 29]
- Gradie, J. and Zellner, B. Asteroid families Observational evidence for common origins. Science, 197:254, July 1977. doi: 10.1126/science.197.4300.254. [citado na p. 14, 15]
- Gualda, G .A.R.; Ghiorso, M. S.; Lemons, R. V., and Carley, T. L. Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems. *Journal of Petrology*, 53(5):875–890, 2012. [citado na p. 27]
- Hahn, G. and Lagerkvist, C.-I. Physical studies of asteroids. XVII JHK photometry of selected main-belt and near-earth asteroids. *Icarus*, 74:454–471, June 1988. doi: 10.1016/0019-1035(88)90115-7. [citado na p. vii, 17]
- Hapke, B. Theory of reflectance and emittance spectroscopy. 1993. [citado na p. 22]
- Hashimoto, A. and Grossman, L. Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite. *Geochimica et Cosmochimica Acta*, 51:1685–1704, June 1987. doi: 10.1016/0016-7037(87)90348-6. [citado na p. 7]
- Hayatsu, R. and Anders, E. Organic compounds in meteorites and their origins. In F. L. Boschke, , editor, Cosmo- and Geochemistry, pages 1-+, 1981. [citado na p. 7]
- Hirayama, K. Groups of asteroids probably of common origin. Astron. J, 31:185–188, October 1918. doi: 10.1086/104299. [citado na p. 13]
- Huss, G. R.; MacPherson, G. J.; Wasserburg, G. J.; Russell, S. S., and Srinivasan, G. 26Al in CAIs and chondrules from unequilibrated ordinary chondrites. *Meteoritics and Planetary Science*, 36:975–997, July 2001. doi: 10.1111/j.1945-5100.2001.tb01934.x. [citado na p. 8]
- Hutchison, Robert. Meteorites: A petrologic, chemical and isotopic synthesis. Cambridge Planetary Science, 2004. [citado na p. xvii, 8]

- Ichikawa, O. and Ikeda, Y. Petrology of the Yamato-8449 CR chondrite. Antarctic Meteorite Research, 8:63-+, May 1995. [citado na p. 7]
- Ikeda, Y. and Prinz, M. Petrologic study of the Belgica 7904 carbonaceous chondrite Hydrous alteration, oxygen isotopes, and relationship to CM and CI chondrites. *Geochimica et Cosmochimica Acta*, 57:439–452, January 1993. doi: 10.1016/0016-7037(93) 90442-Y. [citado na p. 7]
- Jurewicz, A. J. G.; Mittlefehldt, D. W., and Jones, J. H. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalt. *Geochimica et Cosmochimica Acta*, 57:2123–2139, May 1993. doi: 10.1016/ 0016-7037(93)90098-H. [citado na p. viii, ix, xi, xviii, 25, 27, 35, 36, 38, 39, 61, 62, 67, 68, 69]
- Keil, K. Thermal alteration of asteroids: evidence from meteorites. *Planetary and Space Science*, 48:887–903, August 2000. doi: 10.1016/S0032-0633(00)00054-4. [citado na p. xvii, 7]
- Keller, L. P. and Buseck, P. R. Calcic micas in the Allende meteorite Evidence for hydration reactions in the early solar nebula. *Science*, 252:946–949, May 1991. doi: 10.1126/science.252.5008.946. [citado na p. 7]
- Keller, L. P.; Thomas, K. L.; Clayton, R. N.; Mayeda, T. K.; Dehart, J. M., and McKay, D. S. Aqueous alteration of the Bali CV3 chondrite: Evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. *Geochimica et Cosmochimica Acta*, 58: 5589–5598, December 1994. doi: 10.1016/0016-7037(94)90252-6. [citado na p. 7]
- Krot, A. N.; Petaev, M. I.; Scott, E. R. D.; Choi, B.-G.; Zolensky, M. E., and Keil,
 K. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. *Meteoritics and Planetary Science*, 33:1065–1085, September 1998a. doi: 10.1111/j.
 1945-5100.1998.tb01713.x. [citado na p. 7]
- Krot, A. N.; Petaev, M. I.; Zolensky, M. E.; Keil, K.; Scott, E. R. D., and Nakamura, K. Secondary Ca-Fe-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. *Meteoritics and Planetary Science*, 33:623–645, July 1998b. doi: 10.1111/j.1945-5100.1998.tb01668.x. [citado na p. 7]
- Kuiper, G. P. On the origin of asteroids. Astronomical Journal, 55:164, October 1950. doi: 10.1086/106384. [citado na p. 13]
- Leake, M.; Gradie, J., and Morrison, D. Infrared /JHK/ photometry of meteorites and asteroids. *Meteoritics*, 13:101–120, March 1978. [citado na p. vii, 17]
- Lee, M. R.; Hutchinson, R., and Graham, A. L. Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. *Meteoritics and Planetary Science*, 31: 477–483, July 1996. [citado na p. 7]

Lewis, J. S. Physics and chemistry of the solar system. Elsevier, 2004. [citado na p. xvii, 3]

- Jr.McSween, H. Y. Meteorites and their Parent Planets. February 1999. [citado na p. 7]
- Morbidelli, A.; Zappala, V.; Moons, M.; Cellino, A., and Gonczi, R. Asteroid families close to mean motion resonances: dynamical effects and physical implications. *Icarus*, 118:132–, November 1995. doi: 10.1006/icar.1995.1181. [citado na p. 13]
- Mothé-Diniz, T. and Carvano, J. M. 221 Eos: a remnant of a partially differentiated parent body? Astronomy and Astrophysics, 442:727–729, November 2005. doi: 10. 1051/0004-6361:20053551. [citado na p. vii, 19, 21, 47]
- Mothé-Diniz, T.; Carvano, J. M.; Bus, S. J.; Duffard, R., and Burbine, T. H. Mineralogical analysis of the Eos family from near-infrared spectra. *Icarus*, 195:277–294, May 2008. doi: 10.1016/j.icarus.2007.12.005. [citado na p. viii, xix, 20, 23, 24, 25, 47, 50]
- Mothé-Diniz, T.; Jasmin, F. L.; Carvano, J. M.; Lazzaro, D.; Nesvorný, D., and Ramirez, A. C. Re-assessing the ordinary chondrites paradox. Astronomy and Astrophysics, 514: A86, May 2010. doi: 10.1051/0004-6361/200913842. [citado na p. vi, 15]
- Pieters, C. M. and Hiroi, T. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility. In Mackwell, S. and Stansbery, E., editors, Lunar and Planetary Institute Science Conference Abstracts, volume 35 of Lunar and Planetary Inst. Technical Report, page 1720, March 2004. [citado na p. vi, 15]
- Scott, E. R. D. and Jones, R. H. Disentangling nebular and asteroidal features of CO3 carbonaceous chondrite meteorites. *Geochimica et Cosmochimica Acta*, 54:2485–2502, September 1990. doi: 10.1016/0016-7037(90)90235-D. [citado na p. 19]
- Serio, G.; Manara, A., and Sicoli, P. Giuseppe Piazzi and the Discovery of Ceres. [citado na p. 1]
- Sonett, C. P. and Colburn, D. S. The Principle of Solar Wind Induced Planetary Dynamos. *Physics of the Earth and Planetary Interiors*, 1:326–346, August 1968. doi: 10.1016/0031-9201(68)90027-7. [citado na p. 9]
- Sunshine, J. M. and Pieters, C. M. Determining the composition of olivine from reflectance spectroscopy. *Journal of Geophysical Research*, 103:13675–13688, June 1998. doi: 10.1029/98JE01217. [citado na p. vii, 22]
- Sunshine, J. M.; Pieters, C. M., and Pratt, S. F. Mathematical Deconvolution of Mineral Absorption Bands. In Lunar and Planetary Institute Science Conference Abstracts, volume 20 of Lunar and Planetary Inst. Technical Report, page 1087, March 1989. [citado na p. 22]

- Sunshine, J. M.; Bus, S. J.; Corrigan, C. M.; McCoy, T. J., and Burbine, T. H. Olivinedominated asteroids and meteorites: Distinguishing nebular and igneous histories. *Meteoritics and Planetary Science*, 42:155–170, August 2007. doi: 10.1111/j.1945-5100. 2007.tb00224.x. [citado na p. 24]
- Tanga, P.; Cellino, A.; Michel, P.; Zappalà, V.; Paolicchi, P., and dell'Oro, A. On the Size Distribution of Asteroid Families: The Role of Geometry. *Icarus*, 141:65–78, September 1999. doi: 10.1006/icar.1999.6148. [citado na p. 13, 34]
- Tholen, D. J. Asteroid taxonomy from cluster analysis of Photometry. PhD thesis, Arizona Univ., Tucson., September 1984. [citado na p. xvii, 2, 3, 14, 15]
- Urey, H. C. Some Criticisms of "On the Origin of the Lunar Surface Features" by G. P. Kuiper. Proceedings of the National Academy of Science, 41:423–428, July 1955. doi: 10.1073/pnas.41.7.423. [citado na p. 8]
- van Schmus, W. R. and Wood, J. A. A chemical-petrologic classification for the chondritic meteorites. *Geochimica et Cosmochimica Acta*, 31:747–747, 1967. doi: 10.1016/S0016-7037(67)80030-9. [citado na p. vi, 5, 10]
- Veeder, G. J.; Matson, D. L., and Kowal, C. Infrared /JHK/ photometry of asteroids. Astrophysical Journal, 87:834–839, May 1982. doi: 10.1086/113163. [citado na p. vii, 17]
- Veeder, G. J.; Matson, D. L.; Owensby, P. D.; Gradie, J. C.; Bell, J. F., and Tedesco, E. F. Eos, Koronis, and Maria family asteroids: Infrared (JHK) photometry. *Icarus*, 114:186–196, March 1995. doi: 10.1006/icar.1995.1053. [citado na p. vii, 14, 15, 17]
- Weisberg, M. K.; McCoy, T. J., and Krot, A. N. Systematics and Evaluation of Meteorite Classification, pages 19–52. 2006. [citado na p. vi, 10, 11]
- Zanda, B. Chondrules. Earth and Planetary Science Letters, 224:1–17, July 2004. doi: 10.1016/j.epsl.2004.05.005. [citado na p. viii, 33]
- Zappalà, V.; Bendjoya, P.; Cellino, A.; Di Martino, M.; Doressoundiram, A.; Manara, A., and Migliorini, F. Fugitives from the Eos Family: First Spectroscopic Confirmation. *Icarus*, 145:4–11, May 2000. doi: 10.1006/icar.2000.6349. [citado na p. 13]
- Zellner, B.; Tholen, D. J., and Tedesco, E. F. The eight-color asteroid survey Results for 589 minor planets. *Icarus*, 61:355–416, March 1985. doi: 10.1016/0019-1035(85) 90133-2. [citado na p. 14, 15]
- Zolensky, M.; Barrett, R., and Browning, L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. *Geochimica et Cosmochimica Acta*, 57: 3123–3148, July 1993. doi: 10.1016/0016-7037(93)90298-B. [citado na p. 7]

Zolensky, M. E. Hydrothermal Alternation of CM Carbonaceous Chondrites: Implications of the Identification of Tochilinite as One Type of Meteoritic PCP. *Meteoritics*, 19:346-+, December 1984. [citado na p. 7]

Apêndice A

Termodinâmica: Energia livre de Gibbs

A termodinâmica quando aplicada no estudo da mineralogia, nos indica quais os minerais serão estáveis em uma dada condição. Podemos também usa-la na determinação das condições no qual uma rocha se formou a partir de seus minerais. Essa técnica é chamada de Termobarometria.

Um conhecimento de conceitos fundamentais de termodinâmica são necessários para uma melhor compreensão da modelagem elaborada pelos programas utilizados em nossas simulações. Em especial, o programa MELTS utilizada a minimização da energia livre de Gibss (ΔG) para cálculo de fases estáveis (tanto as minerais quanto líquidas). A seguir uma breve apresentação a esse conceito.

A.1 Energia Livre de Gibbs (Δ G)

A energia livre de Gibbs ou energia de formação livre de Gibbs (ΔG_f) é a quantidade de energia consumida ou liberada na formação de uma fase, seja ela sólida (como por exemplo um mineral) ou líquida. O ΔG de uma reação é dada pela diferença entre a ΔG dos produtos e dos reagentes.

Por exemplo, podemos escrever a reação que descreve a formação da enstatita $(MgSiO_3)$ em termos do elementos:

$$Mg + Si + 3O = MgSiO_3$$

O ΔG da reação é dado por:

 $\Delta G_r = \Delta G_f$ (enstatita)- $\Delta G_f(Mg)$ - $\Delta G_f(Si)$ - $3\Delta G_f(O)$

Dste modo, a energia de Gibbs indica a direção em que a reação ocorre. Seja o lado direito o lado do produto e o esquerdo dos reagentes temos que:

- $\Delta G_f < 0$: reação ocorre para direita;
- $\Delta G_f > 0$: reação ocorre para esquerda;

Toda reação possui um ΔG_f associado mas este valor varia com a temperatura e pressão. A relação é melhor compreendida pela seguinte definição de energia livre de Gibbs:

$$\Delta G = H - TS \tag{A.1}$$

Onde H é a entalpia, T é a temperatura e S é a entropia.

A entalpia por sua vez é dada pela relação: H = E + PV (E é a energia interna, P é a pressão e V o volume). Podemos reescrever a equação A.1:

$$\Delta G = E + PV - TS \tag{A.2}$$

A energia de Gibbs é definida de modo que as fases mais estáveis são aquelas com o menor valor de ΔG .

Apêndice B

Reprodução dos resultados experimentais: Derretimento do meteorito Allende

Apresentamos os gráficos comparativos da composição do magma resultante do aquecimento do meteorito Allende (CV3). A comparação é feita para cada temperatura e fugacidade (IW-1 e IW+2). Os dados experimentais são os obtidos por Jurewicz et al. (1993).

Figura B.1: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW -1 e T= 1325°C. Comparamos o resultado experimental (Jurewicz et al. (1993)) com os obtidos nos programas MELTS e METEOMOD. Para o último, usamos a temperatura mais próxima (T= 1325.5°C) pois o próprio calcula o intervalo de temperatura para cada simulação com base no grau de derretimento desejado. Os valores (em wt%) dos óxidos de titânio e manganês são bem próximos do obtido em laboratório. Já a sílica (SiO₂) e óxido de ferro (FeO) apresentam valores mais díspares.

Figura B.2: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW-1 e T=1275°C. Para os dados do programa METEOMOD usamos a temperatura mais próxima (T= 1273.6°C).

Figura B.3: Composição do magma resultante do aquecimento do meteorito Allende obtido em laboratório e teoricamente através dos programas MELTS e METEOMOD. O aquecimento foi realizado a uma fO_2 IW -1 e T= 1200 °C(exceto para METEOMOD cujo resultado apresentado é para T=1200.8°C).

Figura B.4: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW -1 e T= $1180^{\circ}C(T= 1177.1^{\circ}C)$ METEOMOD).

Figura B.5: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW -1 e T= 1170°C. Para os dados do programa METEOMOD usamos a temperatura mais próxima (T= 1167.9°C).

Figura B.6: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW -1 e T= 1160°C. Para os dados do programa METEOMOD usamos a temperatura mais próxima (T= 1155.9°C).

Figura B.7: Composição do magma resultante do aquecimento do meteorito Allende obtido em laboratório e teoricamente através dos programas MELTS e METEOMOD. O aquecimento foi realizado a uma fO_2 IW +2 e T= 1325 °C(exceto para METEOMOD cujo resultado apresentado é para T mais próxima (1326.3°C)).Para essa temperatura em especial os valores para SiO₂ são próximos do experimental.

Figura B.8: Composição do magma resultante do aquecimento do meteorito Allende obtido em laboratório e teoricamente através dos programas MELTS e METEOMOD. O aquecimento foi realizado a uma fO_2 IW +2 e T= 1275 °C(exceto para METEOMOD cujo resultado apresentado é para T mais próxima (1278.5°C)).

Figura B.9: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW +2 e T= 1200°C. Para os dados do programa METEOMOD usamos a temperatura mais próxima (T= 1201°C). A partir dessa temperatura o METEOMOD não produziu resultados.

Figura B.10: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW +2 e T= 1180°C. Para temperaturas mais baixas e IW +2 temos apenas a modelagem do programa MELTS.

Figura B.11: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW +2 e T= 1170°C. Comparação dos resultados obtidos por Jurewicz et al. (1993) e MELTS.

Figura B.12: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW +2 e T= 1160°C. Comparação dos resultados obtidos por Jurewicz et al. (1993) e MELTS.

Figura B.13: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW +2 e T= 1150°C. Comparação dos resultados obtidos por Jurewicz et al. (1993) e MELTS.

Figura B.14: Composição do magma obtido pelo derretimento de uma amostra do meteorito Allende a uma fugacidade IW +2 e T= 1140°C. Comparação dos resultados obtidos por Jurewicz et al. (1993) e MELTS.

Apêndice C

Gráficos e Tabelas

Tabelas e gráficos com resultados completos da simulação de derretimento parcial nas composições CK (Karoonda), CV (Vigarano e Allende) e CO (Ornans e Lancé) realizadas nos programas METEOMOD e Rhyolite-MELTS.

MELTS - Composição Allende OI Sp IW-1 . _ . 100 80 60 %Residuo 40 20 0 1200 1300 1400 1500 1600 Temperatura (C)

C.1 Composição Allende

Figura C.1: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Allende e fO_2 IW-1 em função da temperatura (°C).

Figura C.2: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Allende e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.3: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Allende e fO_2 IW-1 em função da temperatura (°C).

Figura C.4: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Allende e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.5: Conteúdo faialítico das olivinas resultante do derretimento parcial da composição Allende e fO_2 IW-1 obtidos pelo programa Rhyolite-MELTS.

Figura C.6: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Allende e fugacidade IW-1 no programa METEOMOD.

Figura C.7: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Allende e fO_2 IW-2 em função da temperatura (°C).

Figura C.8: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Allende e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.9: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Allende e fO_2 IW-2 em função da temperatura (°C).

Figura C.10: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Allende e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.11: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Allende e fugacidade IW-2 no programa METEO-MOD.

Figura C.12: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Allende e fugacidade IW-2 no programa METEO-MOD.

C.2 Composição Vigarano

Figura C.13: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Vigarano e fO_2 IW-1 em função da temperatura (°C).

Figura C.14: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Vigarano e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.15: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Vigarano e fO_2 IW-1 em função da temperatura (°C).

Figura C.16: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Vigarano e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.17: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Vigarano e fugacidade IW-1 no programa MELTS.

Figura C.18: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Vigarano e fugacidade IW-1 no programa ME-TEOMOD.

Figura C.19: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Vigarano e fO_2 IW-2 em função da temperatura (°C).

Figura C.20: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Vigarano e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.21: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Vigarano e fO_2 IW-2 em função da temperatura (°C).

Figura C.22: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Vigarano e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.23: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Vigarano e fugacidade IW-2 no programa MELTS.

Figura C.24: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Vigarano e fugacidade IW-2 no programa ME-TEOMOD.

C.3 Composição Ornans

Figura C.25: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Ornans e fO_2 IW-1 em função da temperatura (°C).

Figura C.26: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Ornans e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.27: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Ornans e fO_2 IW-1 em função da temperatura (°C).

Figura C.28: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Ornans e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.29: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Ornans e fugacidade IW-1 no programa MELTS.

Figura C.30: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Ornans e fugacidade IW-1 no programa METEO-MOD.

Figura C.31: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Ornans e fO_2 IW-2 em função da temperatura (°C).

Figura C.32: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Ornans e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.33: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Ornans e fO_2 IW-2 em função da temperatura (°C).

Figura C.34: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Ornans e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.35: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Ornans e fugacidade IW-2 no programa MELTS.

Figura C.36: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Ornans e fugacidade IW-2 no programa METEO-MOD.

C.4 Composição Lancé

Figura C.37: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Lancé e fO_2 IW-1 em função da temperatura (°C).

Figura C.38: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Lancé e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.39: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Lancé e fO_2 IW-1 em função da temperatura (°C).

Figura C.40: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Lancé e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.41: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Lancé e fugacidade IW-1 no programa MELTS.

Figura C.42: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Lancé e fugacidade IW-1 no programa METEO-MOD.

Figura C.43: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Lancé e fO_2 IW-2 em função da temperatura (°C).

Figura C.44: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Lancé e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.45: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Lancé e fO_2 IW-2 em função da temperatura (°C).

Figura C.46: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Lancé e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.47: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Lancé e fugacidade IW-2 no programa MELTS.

Figura C.48: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Lancé e fugacidade IW-2 no programa METEO-MOD.

C.5 Composição Karoonda

Figura C.49: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Karoonda e fO_2 IW-1 em função da temperatura (°C).

Figura C.50: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Karoonda e $f{\rm O}_2$ IW-1 em função da porcentagem de aquecimento.

Figura C.51: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Karoonda e fO_2 IW-1 em função da temperatura (°C).

Figura C.52: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Karoonda e fO_2 IW-1 em função da porcentagem de aquecimento.

Figura C.53: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Karoonda e fugacidade IW-1 no programa MELTS.

Figura C.54: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Karoonda e fugacidade IW-1 no programa ME-TEOMOD.

Figura C.55: Fases minerais encontradas na modelagem realizada pelo programa Rhyolite-MELTS para o derretimento da composição Karoonda e fO_2 IW-2 em função da temperatura (°C).

Figura C.56: Fases minerais formadas na modelagem do programa Rhyolite-MELTS para a composição Karoonda e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.57: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Karoonda e fO_2 IW-2 em função da temperatura (°C).

Figura C.58: Fases minerais encontradas na modelagem realizada pelo programa METEOMOD para composição Karoonda e fO_2 IW-2 em função da porcentagem de aquecimento.

Figura C.59: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Karoonda e fugacidade IW-2 no programa MELTS.

Figura C.60: Conteúdo faialítico das olivinas obtidas na simulação de derretimento parcial da composição Karoonda e fugacidade IW-2 no programa ME-TEOMOD.

C.6 Tabelas

Siglas: ol = olivina, Pl = plagioclásio, Sp= espinélio, Opx = ortopiroxênio, Cpx = clinopiroxênio e Fa=conteúdo faialítico.

Tabela C.1: Resultados do programa Rhyolite-MELTS para composição Allende e $f\mathrm{O}_2$ IW-1.

Temperatura (C)	Ol	Pl	Opx	Sp	Fa
1595	89.91	NA	NA	NA	10.31
1580	93.99	NA	NA	NA	10.92
1560	96.24	NA	NA	NA	11.77
1540	97.45	NA	NA	NA	12.66
1520	98.19	NA	NA	NA	13.61
1500	98.66	NA	NA	NA	14.61
1480	99.03	NA	NA	NA	15.66
1460	99.35	NA	NA	NA	16.77
1440	98.86	NA	NA	0.56	17.98
1420	98.71	NA	NA	1.05	19.31
1400	98.53	NA	NA	1.46	20.70
1380	98.24	NA	NA	1.75	22.10
1360	97.98	NA	NA	2.01	23.55
1340	97.74	NA	NA	2.25	25.03
1320	97.52	NA	NA	2.47	26.53
1300	97.32	NA	NA	2.67	28.01
1280	97.13	NA	NA	2.86	29.43
1260	96.97	NA	NA	3.02	30.76
1240	96.82	NA	NA	3.17	31.97
1220	96.62	NA	NA	3.30	33.04
1200	96.42	NA	NA	3.42	33.97

MELTS - Allende - IW-1

METEOMOD - Allende - IW-1							
Temperatura (C)	Ol	Pl	Opx	Fa			
1594.6	NA	NA	NA	NA			
1580.8	100.00	NA	NA	16.80			
1560.3	100.00	NA	NA	18.50			
1540.4	100.00	NA	NA	20.30			
1521.1	100.00	NA	NA	22.00			
1501	100.00	NA	NA	23.80			
1480.1	100.00	NA	NA	25.50			
1460.4	100.00	NA	NA	27.10			
1440.3	100.00	NA	NA	28.70			
1420.5	100.00	NA	NA	30.10			
1402.3	100.00	NA	NA	31.30			
1380.6	100.00	NA	NA	32.50			
1362.3	100.00	NA	NA	33.40			
1341.3	100.00	NA	NA	34.30			
1320.4	100.00	NA	NA	35.00			
1301.7	100.00	NA	NA	35.50			
1279.6	100.00	NA	NA	36.10			
1271.3	100.00	NA	NA	36.20			
1252.8	100.00	NA	NA	36.60			
1242.5	100.00	NA	NA	36.80			
1219.3	100.00	NA	NA	37.10			
1200.6	92.90	5.19	NA	36.60			

Tabela C.2: Resultados obtidos pelo programa METEOMOD para composição Allende e fugacidade IW-1.

MELTS - Allende - IW-2						
Temperatura (C)	Ol	Pl	Opx	Cpx	Sp	Fa
1760	NA	NA	NA	NA	NA	NA
1740	NA	NA	NA	NA	NA	NA
1720	NA	NA	NA	NA	NA	NA
1700	NA	NA	NA	NA	NA	NA
1680	NA	NA	NA	NA	NA	NA
1660	1.83	NA	NA	NA	NA	5.37
1640	27.54	NA	NA	NA	NA	5.79
1620	40.74	NA	NA	NA	NA	6.22
1600	48.79	NA	NA	NA	NA	6.67
1580	54.18	NA	NA	NA	0.15	7.14
1560	58.01	NA	NA	NA	0.36	7.63
1540	60.93	NA	NA	NA	0.53	8.15
1520	63.26	NA	NA	NA	0.65	8.69
1500	65.18	NA	NA	NA	0.75	9.26
1480	66.82	NA	NA	NA	0.83	9.87
1460	68.27	NA	NA	NA	0.90	10.51
1440	69.59	NA	NA	NA	0.96	11.20
1420	70.81	NA	NA	NA	1.01	11.93
1400	71.97	NA	NA	NA	1.05	12.72
1380	73.10	NA	NA	NA	1.09	13.57
1360	74.21	NA	NA	NA	1.13	14.49
1340	75.34	NA	NA	NA	1.16	15.48
1320	76.50	NA	NA	NA	1.20	16.57
1300	77.71	NA	NA	NA	1.23	17.75
1280	78.97	NA	NA	NA	1.27	19.03
1260	80.31	NA	NA	NA	1.31	20.44
1240	81.73	NA	NA	NA	1.36	21.98
1220	83.25	NA	NA	NA	1.42	23.66
1200	84.85	NA	NA	NA	1.51	25.47
1180	84.57	2.73	NA	NA	1.45	27.88
1160	81.51	7.84	NA	0.88	1.23	31.05

Tabela C.3: Resultados do programa Rhyolite-MELTS para composição Allende e $f\mathrm{O}_2$ IW-2.

METEOMOD - Allende - IW-2							
Temperatura (C)	Ol	Pl	Opx	Fa			
1757.4	NA	NA	NA	NA			
1744.1	NA	NA	NA	NA			
1717.1	NA	NA	NA	NA			
1703.3	NA	NA	NA	NA			
1689.3	NA	NA	NA	NA			
1660.6	NA	NA	NA	NA			
1645.9	NA	NA	NA	NA			
1615.8	NA	NA	NA	NA			
1600.6	17.58	NA	NA	12.90			
1580.6	53.24	NA	NA	13.10			
1560.2	60.71	NA	NA	13.40			
1540	64.30	NA	NA	13.60			
1521.2	66.36	NA	NA	13.90			
1500.6	67.84	NA	NA	14.20			
1480.1	68.91	NA	NA	14.40			
1461.8	69.64	NA	NA	14.70			
1441.9	70.47	NA	NA	15.00			
1421	71.03	NA	NA	15.30			
1403.5	71.59	NA	NA	15.60			
1380.9	71.96	NA	NA	15.80			
1364.9	72.60	NA	NA	16.20			
1344.4	72.92	NA	NA	16.50			
1321.1	73.32	NA	NA	16.80			
1305.1	73.71	NA	NA	17.10			
1286.4	73.94	NA	NA	17.30			
1261.2	73.79	NA	0.69	17.70			
1240.2	70.18	NA	4.45	17.70			
1222.4	67.50	NA	7.27	17.70			
1203	65.03	NA	9.97	17.70			
1181.1	56.49	3.80	15.92	17.50			
1163.8	53.69	6.41	17.11	18.00			

Tabela C.4: Resultados obtidos pelo programa METEOMOD para composição Allende e fugacidade IW-2.

MELTS - Vigarano - IW-1						
Temperatura (C)	peratura (C) Ol Pl Opx					
1570	100.00	NA	NA	NA	12.12	
1560	100.00	NA	NA	NA	12.57	
1540	100.00	NA	NA	NA	13.52	
1520	100.00	NA	NA	NA	14.53	
1500	100.00	NA	NA	NA	15.59	
1480	100.00	NA	NA	NA	16.71	
1460	100.00	NA	NA	NA	17.90	
1440	100.00	NA	NA	NA	19.16	
1420	100.00	NA	NA	NA	20.50	
1400	100.00	NA	NA	NA	21.91	
1380	100.00	NA	NA	NA	23.39	
1360	99.65	NA	NA	0.35	25.02	
1340	99.17	NA	NA	0.83	26.76	
1320	98.75	NA	NA	1.25	28.58	
1300	98.36	NA	NA	1.64	30.45	
1280	98.01	NA	NA	1.99	32.32	
1260	97.71	NA	NA	2.29	34.14	
1240	97.29	NA	NA	2.55	35.88	
1220	96.94	NA	NA	2.78	37.48	
1200	96.65	NA	NA	2.98	38.90	
1180	96.40	NA	NA	3.17	40.14	
1160	96.17	NA	NA	3.35	41.22	
1145	95.58	0.49	NA	3.42	41.98	

Tabela C.5: Resultados do programa Rhyolite-MELTS para composição Vigarano e $f\mathrm{O}_2$ IW-1.

METEOM	METEOMOD - Vigarano - IW-1						
Temperatura (C)	Ol	Pl	Opx	Fa			
1570.6	NA	NA	NA	NA			
1560.7	100.00	NA	NA	18.80			
1540.1	100.00	NA	NA	20.60			
1521.1	100.00	NA	NA	22.50			
1500	100.00	NA	NA	24.50			
1481.3	100.00	NA	NA	26.30			
1460.8	100.00	NA	NA	28.20			
1440.1	100.00	NA	NA	30.00			
1420.9	100.00	NA	NA	31.70			
1400.2	100.00	NA	NA	33.40			
1380.3	100.00	NA	NA	34.80			
1362.9	100.00	NA	NA	35.80			
1342.5	100.00	NA	NA	36.90			
1322.8	100.00	NA	NA	37.80			
1303.4	100.00	NA	NA	38.50			
1286.1	100.00	NA	NA	39.10			
1266.1	100.00	NA	NA	39.60			
1242	100.00	NA	NA	40.20			
1223.5	99.87	NA	NA	40.50			
1212.4	99.87	NA	NA	40.70			
1185	99.75	NA	NA	40.90			
1160.4	94.07	3.84	NA	40.50			
1144.7	89.61	6.70	NA	39.70			

Tabela C.6: Resultados obtidos pelo programa METEOMOD para composição Vigarano e fugacidade IW-1.

MEI	MELTS - Vigarano - IW-2						
Temperatura (C)	Ol	Pl	Opx	Sp	Fa		
1820	NA	NA	NA	NA	NA		
1800	NA	NA	NA	NA	NA		
1780	NA	NA	NA	NA	NA		
1760	NA	NA	NA	NA	NA		
1740	NA	NA	NA	NA	NA		
1720	NA	NA	NA	NA	NA		
1700	NA	NA	NA	NA	NA		
1680	NA	NA	NA	NA	NA		
1660	NA	NA	NA	NA	NA		
1640	NA	NA	NA	NA	NA		
1620	22.69	NA	NA	NA	5.93		
1600	35.86	NA	NA	NA	6.36		
1580	44.09	NA	NA	NA	6.79		
1560	49.64	NA	NA	0.27	7.26		
1540	53.67	NA	NA	0.47	7.75		
1520	56.77	NA	NA	0.62	8.27		
1500	59.24	NA	NA	0.73	8.81		
1480	61.30	NA	NA	0.82	9.39		
1460	63.06	NA	NA	0.89	10.01		
1440	64.63	NA	NA	0.99	10.67		
1420	66.05	NA	NA	1.00	11.38		
1400	67.38	NA	NA	1.05	12.14		
1380	68.65	NA	NA	1.09	12.97		
1360	69.89	NA	NA	1.12	13.87		
1340	71.13	NA	NA	1.15	14.86		
1320	72.39	NA	NA	1.18	15.93		
1300	73.69	NA	NA	1.21	17.11		
1280	75.06	NA	NA	1.24	18.40		
1260	76.52	NA	NA	1.27	19.82		
1240	78.03	NA	0.04	1.31	21.38		
1220	79.75	NA	NA	1.36	23.10		
1200	81.50	NA	NA	1.42	24.98		
1180	83.37	NA	NA	1.51	27.03		
1160	80.76	6.33	NA	1.29	30.29		
1140	79.33	10.63	NA	1.19	33.20		

Tabela C.7: Resultados do programa Rhyolite-MELTS para composição Vigarano e $f\mathrm{O}_2$ IW-2.

METEOMOD - Vigarano - IW-2								
Temperatura (C)	Ol	Pl	Opx	Fa				
1821.7	NA	NA	NA	NA				
1808.7	NA	NA	NA	NA				
1782.2	NA	NA	NA	NA				
1768.7	NA	NA	NA	NA				
1741	NA	NA	NA	NA				
1726.8	NA	NA	NA	NA				
1697.9	NA	NA	NA	NA				
1668	NA	NA	NA	NA				
1621.2	NA	NA	NA	NA				
1605.1	NA	NA	NA	NA				
1580.1	20.27	NA	NA	13.30				
1560	44.66	NA	NA	13.60				
1540.2	52.73	NA	NA	13.90				
1521	57.14	NA	NA	14.20				
1502.1	59.77	NA	NA	14.50				
1480.1	62.30	NA	NA	15.00				
1460.1	63.53	NA	NA	15.20				
1442.3	64.73	NA	NA	15.70				
1423.1	65.51	NA	NA	15.80				
1403.1	66.72	NA	NA	16.40				
1382.6	67.26	NA	NA	16.60				
1361.7	68.13	NA	NA	17.20				
1342.2	68.66	NA	NA	17.50				
1320.3	69.22	NA	NA	17.90				
1305.4	69.67	NA	NA	18.30				
1281	68.49	NA	2.01	18.70				
1261.8	65.08	NA	5.73	18.70				
1245.4	62.52	NA	8.48	18.70				
1220.7	59.39	NA	12.12	18.80				
1206.9	57.87	NA	13.78	18.80				
1184.6	55.60	NA	16.34	18.90				
1161.5	50.66	3.58	19.59	19.40				
1141.8	49.09	6.46	19.84	20.30				

Tabela C.8: Resultados obtidos pelo programa METEOMOD para composição Vigarano e fugacidade IW-2.

MELTS - Ornans - IW-1							
Temperatura (C)	Ol	Pl	Opx	Sp	Fa		
1560	99.99	NA	NA	NA	11.99		
1540	100.00	NA	NA	NA	12.91		
1520	100.00	NA	NA	NA	13.89		
1500	100.00	NA	NA	NA	14.92		
1480	100.00	NA	NA	NA	16.02		
1460	100.00	NA	NA	NA	17.19		
1440	100.00	NA	NA	NA	18.43		
1420	100.00	NA	NA	NA	19.74		
1400	100.00	NA	NA	NA	21.13		
1380	100.00	NA	NA	NA	22.60		
1360	100.00	NA	NA	NA	24.15		
1340	100.00	NA	NA	NA	25.75		
1320	99.57	NA	NA	0.43	27.51		
1300	99.13	NA	NA	0.87	29.34		
1280	98.73	NA	NA	1.27	31.17		
1260	98.39	NA	NA	1.61	32.99		
1240	98.05	NA	NA	1.91	34.62		
1220	97.65	NA	NA	2.16	36.13		
1200	97.33	NA	NA	2.37	37.45		
1180	97.07	NA	NA	2.57	38.56		
1160	96.84	NA	NA	2.75	39.49		
1140	94.80	2.03	NA	2.67	40.47		

Tabela C.9: Resultados do programa Rhyolite-MELTS para composição Ornans e $f\mathrm{O}_2$ IW-1.

METEOMOD - Ornans - IW-1							
Temperatura(C)	Ol	Pl	Opx	Fa			
1557.7	NA	NA	NA	NA			
1540.8	100.00	NA	NA	20.10			
1520	100.00	NA	NA	22.10			
1500.9	100.00	NA	NA	23.90			
1481.4	100.00	NA	NA	25.80			
1460.1	100.00	NA	NA	27.80			
1440.3	100.00	NA	NA	29.60			
1420.3	100.00	NA	NA	31.40			
1400.9	100.00	NA	NA	33.10			
1380.7	100.00	NA	NA	34.70			
1362.6	100.00	NA	NA	35.90			
1341.6	100.00	NA	NA	37.10			
1320.1	100.00	NA	NA	38.20			
1303.9	100.00	NA	NA	38.90			
1284.3	100.00	NA	NA	39.60			
1261.4	100.00	NA	NA	40.40			
1246.4	99.74	NA	NA	40.60			
1227.7	99.35	NA	NA	40.80			
1205.9	99.10	NA	NA	41.00			
1183.7	98.99	NA	NA	41.30			
1160.5	93.83	3.68	NA	41.10			
1142.6	89.03	6.79	NA	40.40			

Tabela C.10: Resultados obtidos pelo programa METEOMOD para composição Ornans e fugacidade IW-1.

MELTS - Ornans - IW-2							
Temperatura(C)	Ol	Pl	Opx	Cpx	Sp	Fa	
1840	NA	NA	NA	NA	NA	NA	
1820	NA	NA	NA	NA	NA	NA	
1800	NA	NA	NA	NA	NA	NA	
1780	NA	NA	NA	NA	NA	NA	
1760	NA	NA	NA	NA	NA	NA	
1740	NA	NA	NA	NA	NA	NA	
1720	NA	NA	NA	NA	NA	NA	
1700	NA	NA	NA	NA	NA	NA	
1680	NA	NA	NA	NA	NA	NA	
1660	NA	NA	NA	NA	NA	NA	
1640	NA	NA	NA	NA	NA	NA	
1620	9.91	NA	NA	NA	NA	5.92	
1600	27.45	NA	NA	NA	NA	6.34	
1580	37.91	NA	NA	NA	NA	6.78	
1560	44.87	NA	NA	NA	NA	7.24	
1540	49.86	NA	NA	NA	NA	7.72	
1520	53.57	NA	NA	NA	0.18	8.24	
1500	56.47	NA	NA	NA	0.33	8.79	
1480	58.86	NA	NA	NA	0.45	9.37	
1460	60.87	NA	NA	NA	0.54	9.99	
1440	62.63	NA	NA	NA	0.62	10.65	
1420	64.22	NA	NA	NA	0.69	11.36	
1400	65.68	NA	NA	NA	0.74	12.14	
1380	67.06	NA	NA	NA	0.79	12.97	
1360	68.40	NA	NA	NA	0.83	13.88	
1340	69.73	NA	NA	NA	0.86	14.87	
1320	71.07	NA	NA	NA	0.90	15.99	
1300	72.45	NA	NA	NA	0.93	17.14	
1280	72.89	NA	1.01	NA	0.96	18.39	
1260	73.58	NA	1.82	NA	0.99	19.77	
1240	75.01	NA	1.99	NA	1.02	21.33	
1220	77.29	NA	1.46	NA	1.05	23.11	
1200	80.63	NA	0.08	NA	1.09	25.15	
1180	82.73	NA	NA	NA	1.15	27.24	
1160	76.90	5.81	NA	3.41	1.01	30.11	
1140	74.18	9.94	NA	4.34	0.96	33.08	

Tabela C.11: Resultados do programa Rhyolite-MELTS para composição Ornans e $f\mathrm{O}_2$ IW-2.

METEOMOD - Ornans - IW-2						
Temperatura(C)	Ol	Pl	Opx	Fa		
1840.3	NA	NA	NA	NA		
1827.4	NA	NA	NA	NA		
1801.2	NA	NA	NA	NA		
1787.9	NA	NA	NA	NA		
1760.6	NA	NA	NA	NA		
1746.6	NA	NA	NA	NA		
1718.1	NA	NA	NA	NA		
1703.5	NA	NA	NA	NA		
1560.1	29.65	NA	NA	13.40		
1540.3	45.07	NA	NA	13.70		
1520.6	51.57	NA	NA	14.00		
1500.9	55.88	NA	NA	14.40		
1481.5	58.31	NA	NA	14.60		
1460	60.53	NA	NA	15.10		
1441.2	61.69	NA	NA	15.30		
1422.2	63.16	NA	NA	15.80		
1401.5	64.00	NA	NA	16.00		
1380.1	65.11	NA	NA	16.60		
1363.8	65.58	NA	NA	16.70		
1342.2	66.61	NA	NA	17.30		
1321.9	67.08	NA	NA	17.60		
1301.3	67.62	NA	0.15	18.10		
1282.4	63.56	NA	4.96	18.20		
1260.3	59.41	NA	9.55	18.20		
1245.2	57.08	NA	12.24	18.20		
1216.5	53.32	NA	16.49	18.20		
1210.4	52.71	NA	17.31	18.20		
1203.8	51.97	NA	18.11	18.20		
1183.5	49.81	NA	20.59	18.30		
1161.5	44.75	4.13	23.61	18.80		
1142.6	43.29	6.65	23.79	19.30		

Tabela C.12: Resultados obtidos pelo programa METEOMOD para composição Ornans e fugacidade IW-2.

M	MELTS - Lancé - IW-1						
Temperatura(C)	Ol	Pl	Opx	Sp	Fa		
1570	100.00	NA	NA	NA	11.66		
1560	100.00	NA	NA	NA	12.10		
1540	100.00	NA	NA	NA	13.03		
1520	100.00	NA	NA	NA	14.01		
1500	100.00	NA	NA	NA	15.04		
1480	100.00	NA	NA	NA	16.14		
1460	100.00	NA	NA	NA	17.30		
1440	100.00	NA	NA	NA	18.52		
1420	100.00	NA	NA	NA	19.82		
1400	100.00	NA	NA	NA	21.18		
1380	100.00	NA	NA	NA	22.61		
1360	100.00	NA	NA	NA	24.09		
1340	100.00	NA	NA	NA	25.61		
1320	100.00	NA	NA	NA	27.14		
1300	99.47	NA	NA	0.53	28.89		
1280	99.16	NA	NA	0.84	30.55		
1260	98.89	NA	NA	1.11	32.12		
1240	98.64	NA	NA	1.32	33.56		
1220	98.34	NA	NA	1.50	34.83		
1200	98.10	NA	NA	1.65	35.92		
1180	97.89	NA	NA	1.79	36.82		
1160	97.72	NA	NA	1.92	37.55		
1140	95.99	1.70	NA	1.86	38.31		

Tabela C.13: Resultados do programa Rhy
olite-MELTS para composição Lancé e $f\mathrm{O}_2$ IW-1.

METEOMOD - Lancé - IW-1						
Temperatura(C)	Ol	Pl	Opx	Fa		
1570.4	NA	NA	NA	17.20		
1560.7	100.00	NA	NA	17.90		
1540.8	100.00	NA	NA	19.70		
1521.1	100.00	NA	NA	21.50		
1500.6	100.00	NA	NA	23.40		
1480.9	100.00	NA	NA	25.20		
1460.8	100.00	NA	NA	27.00		
1440.5	100.00	NA	NA	28.80		
1421.7	100.00	NA	NA	30.40		
1400.8	100.00	NA	NA	32.00		
1382.2	100.00	NA	NA	33.40		
1362.5	100.00	NA	NA	34.60		
1342.5	100.00	NA	NA	35.60		
1322.7	100.00	NA	NA	36.40		
1304.3	100.00	NA	NA	37.10		
1281.3	100.00	NA	NA	37.80		
1260.4	100.00	NA	NA	38.40		
1244.1	100.00	NA	NA	38.70		
1225.2	100.00	NA	NA	39.10		
1202.8	100.00	NA	NA	39.40		
1176.1	100.00	NA	NA	39.80		
1160.6	100.00	NA	NA	39.90		
1140.3	96.13	3.19	NA	40.10		

Tabela C.14: Resultados obtidos pelo programa METEOMOD para composição Lancé e fugacidade IW-1.

Tabela C.15: Resultados do programa Rhyolite-MELTS para composição Lancé e $f\mathrm{O}_2$ IW-2.

	MILLI D	Lan	10	4		
Temperatura(C)	Ol	Pl	Opx	Cpx	Sp	Fa
1800	NA	NA	NA	NA	NA	NA
1780	NA	NA	NA	NA	NA	NA
1760	NA	NA	NA	NA	NA	NA
1740	NA	NA	NA	NA	NA	NA
1720	NA	NA	NA	NA	NA	NA
1700	NA	NA	NA	NA	NA	NA
1680	NA	NA	NA	NA	NA	NA
1660	NA	NA	NA	NA	NA	NA
1640	14.79	NA	NA	NA	NA	5.62
1620	32.70	NA	NA	NA	NA	6.04
1600	42.96	NA	NA	NA	NA	6.47
1580	49.63	NA	NA	NA	NA	6.92
1560	54.34	NA	NA	NA	NA	7.39
1540	57.81	NA	NA	NA	0.10	7.89
1520	60.48	NA	NA	NA	0.27	8.41
1500	62.65	NA	NA	NA	0.40	8.97
1480	64.48	NA	NA	NA	0.50	9.57
1460	66.08	NA	NA	NA	0.58	10.20
1440	67.52	NA	NA	NA	0.65	10.88
1420	68.84	NA	NA	NA	0.70	11.61
1400	70.10	NA	NA	NA	0.75	12.40
1380	71.32	NA	NA	NA	0.79	13.26
1360	72.52	NA	NA	NA	0.83	14.18
1340	71.42	NA	2.41	NA	0.86	15.09
1320	70.74	NA	4.35	NA	0.89	16.08
1300	70.69	NA	5.65	NA	0.92	17.18
1280	71.25	NA	6.38	NA	0.94	18.41
1260	72.42	NA	6.57	NA	0.97	19.79
1240	74.27	NA	6.21	NA	0.99	21.35
1220	76.94	NA	5.19	NA	1.01	23.13
1200	80.66	NA	3.38	NA	1.04	25.17
1180	85.59	NA	0.64	NA	1.07	27.52
1160	87.41	1.23	NA	NA	1.07	29.96
1140	82.30	6.23	NA	2.99	1.00	33.03

MELTS - Lancé - IW-2

METEOMOD - Lancé - IW-2						
Temperatuta(C)	Ol	Pl	Opx	Fa		
1801.3	NA	NA	NA	NA		
1788.4	NA	NA	NA	NA		
1762.1	NA	NA	NA	NA		
1748.7	NA	NA	NA	NA		
1721.2	NA	NA	NA	NA		
1707.1	NA	NA	NA	NA		
1678.4	NA	NA	NA	NA		
1663.7	NA	NA	NA	NA		
1648.8	NA	NA	NA	NA		
1618.1	NA	NA	NA	NA		
1602.4	NA	NA	NA	NA		
1580.4	14.75	NA	NA	13.10		
1560.7	46.61	NA	NA	13.40		
1540.8	55.42	NA	NA	13.70		
1520.3	59.74	NA	NA	14.00		
1500.3	62.64	NA	NA	14.40		
1481.7	64.69	NA	NA	14.80		
1461.1	65.97	NA	NA	15.10		
1441.3	67.14	NA	NA	15.60		
1423	67.97	NA	NA	15.80		
1400.1	69.27	NA	NA	16.40		
1380.4	69.61	NA	NA	16.70		
1360.5	70.64	NA	NA	17.30		
1341.6	71.00	NA	NA	17.60		
1322.8	69.96	NA	1.74	18.00		
1301	65.09	NA	7.23	18.10		
1283.5	61.98	NA	10.69	18.10		
1245.6	56.77	NA	16.39	18.20		
1226.1	54.68	NA	18.73	18.20		
1204.7	52.73	NA	20.97	18.30		
1181.2	50.79	NA	23.14	18.30		
1160.3	48.70	0.99	24.94	18.60		
1139.8	47.40	3.50	25.17	19.40		

Tabela C.16: Resultados obtidos pelo programa METEOMOD para composição Lancé e fugacidade IW-2.

MELTS - Karoonda - IW-1						
Temperatura (C)	Ol	Pl	Opx	Sp	Fa	
1610	100.00	NA	NA	NA	9.64	
1600	100.00	NA	NA	NA	10.02	
1580	100.00	NA	NA	NA	10.80	
1560	100.00	NA	NA	NA	11.62	
1540	100.00	NA	NA	NA	12.48	
1520	100.00	NA	NA	NA	13.38	
1500	100.00	NA	NA	NA	14.33	
1480	100.00	NA	NA	NA	15.32	
1460	100.00	NA	NA	NA	16.36	
1440	100.00	NA	NA	NA	17.44	
1415	100.00	NA	NA	NA	18.86	
1410	100.00	NA	NA	NA	19.15	
1405	100.00	NA	NA	NA	19.44	
1400	99.73	NA	NA	0.27	19.80	
1380	99.40	NA	NA	0.60	21.09	
1360	99.10	NA	NA	0.90	22.41	
1340	98.82	NA	NA	1.18	23.77	
1320	98.56	NA	NA	1.44	25.12	
1300	98.32	NA	NA	1.68	26.45	
1280	98.10	NA	NA	1.90	27.71	
1260	97.90	NA	NA	2.10	28.89	
1240	97.72	NA	NA	2.28	29.96	
1220	97.53	NA	NA	2.45	30.90	
1200	97.29	NA	NA	2.61	31.70	
1190	97.18	NA	NA	2.68	32.06	

Tabela C.17: Resultados do programa Rhyolite-MELTS para composição Karoonda e $f\operatorname{O}_2$ IW-1.

MELTS - Karoonda - IW-1
METEOMOD - Karoonda - IW-1						
Temperatura	Ol	Pl	Opx	Fa		
1610.40	100.00	NA	NA	14.10		
1600.00	100.00	NA	NA	14.80		
1580.70	100.00	NA	NA	16.40		
1561.00	100.00	NA	NA	18.00		
1540.00	100.00	NA	NA	19.80		
1520.30	100.00	NA	NA	21.40		
1501.40	100.00	NA	NA	22.80		
1480.10	100.00	NA	NA	24.50		
1462.00	100.00	NA	NA	25.80		
1441.20	100.00	NA	NA	27.10		
1421.10	100.00	NA	NA	28.40		
1402.30	100.00	NA	NA	29.40		
1383.90	100.00	NA	NA	30.20		
1362.00	100.00	NA	NA	31.10		
1341.80	100.00	NA	NA	31.80		
1323.10	100.00	NA	NA	32.30		
1300.90	100.00	NA	NA	32.80		
1283.60	100.00	NA	NA	33.20		
1263.60	100.00	NA	NA	33.50		
1240.20	100.00	NA	NA	33.90		
1226.90	100.00	NA	NA	34.10		
1212.40	100.00	NA	NA	34.30		
1188.50	95.85	4.26	NA	35.20		

Tabela C.18: Resultados obtidos pelo programa METEOMOD para composição Karoonda e fugacidade IW-1.

Temperatura(C)	Ol	Pl	Opx	Sp	Fa				
1690	NA	NA	NA	NA	NA				
1680	NA	NA	NA	NA	NA				
1660	29.77	NA	NA	NA	5.05				
1640	44.70	NA	NA	NA	5.44				
1620	53.15	NA	NA	NA	5.84				
1600	58.61	NA	NA	NA	6.25				
1580	62.46	NA	NA	NA	6.68				
1560	65.24	NA	NA	0.15	7.14				
1540	67.38	NA	NA	0.31	7.62				
1520	69.13	NA	NA	0.43	8.12				
1500	70.62	NA	NA	0.53	8.65				
1480	71.91	NA	NA	0.61	9.21				
1460	73.08	NA	NA	0.68	9.81				
1440	74.17	NA	NA	0.74	10.45				
1420	75.20	NA	NA	0.79	11.14				
1400	76.20	NA	NA	0.83	11.87				
1380	77.19	NA	NA	0.87	12.67				
1360	78.19	NA	NA	0.90	13.52				
1340	79.21	NA	NA	0.94	14.45				
1320	80.27	NA	NA	0.97	15.46				
1300	81.38	NA	NA	1.00	16.56				
1280	82.55	NA	NA	1.04	17.75				
1260	83.80	NA	NA	1.08	19.04				
1240	85.12	NA	NA	1.13	20.44				
1220	86.52	NA	NA	1.20	21.99				
1200	88.00	NA	NA	1.29	23.56				
1180	86.90	3.28	NA	1.22	25.73				
1160	84.45	7.96	NA	1.06	28.10				

Tabela C.19: Resultados do programa Rhyolite-MELTS para composição Karoonda e $f\mathrm{O}_2$ IW-2.

MELTS - Karoonda - IW-2

METEOMOD - Karoonda - IW-2									
Temperatura(C)	Ol	Pl	Opx	Fa					
1692.8	NA	NA	NA	NA					
1679	NA	NA	NA	NA					
1664.9	NA	NA	NA	NA					
1636.2	NA	NA	NA	NA					
1600.3	60.26	NA	NA	12.90					
1580.5	68.28	NA	NA	13.20					
1560.4	71.07	NA	NA	13.40					
1541.6	72.38	NA	NA	13.70					
1520.9	73.21	NA	NA	13.90					
1501.9	74.13	NA	NA	14.30					
1481.8	74.46	NA	NA	14.40					
1460.7	75.26	NA	NA	14.90					
1440.1	75.45	NA	NA	15.00					
1420.1	76.22	NA	NA	15.60					
1404	76.46	NA	NA	15.70					
1382.9	77.01	NA	NA	16.20					
1362.3	77.23	NA	NA	16.40					
1339.9	77.57	NA	NA	16.80					
1324.9	78.00	NA	NA	17.10					
1306.4	78.30	NA	NA	17.40					
1285	78.60	NA	NA	17.60					
1263.3	78.89	NA	NA	18.00					
1243.9	76.82	NA	2.25	18.20					
1201.5	71.50	NA	7.89	18.20					
1180	65.63	2.16	12.14	18.20					
1160.3	62.06	5.32	13.82	18.80					

Tabela C.20: Resultados obtidos pelo programa METEOMOD para composição Karoonda e fugacidade IW-2.

METEOMOD - Karoonda - IW-2