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Abstract

The goal of this work is to compute the number density of far-infrared selected galaxies

in both the comoving frame and along the observer’s past lightcone of a “giant void”

Lemâıtre-Tolman-Bondi dust model and to compare those results with their counterparts

in the standard model of Cosmology, that is, the Friedmann-Lemâıtre-Robertson-Walker

metric with a perfect fluid energy-momentum tensor and a non-vanishing cosmological

constant Λ.

We use the blind-selected far-infrared catalogues built on the observations performed

with the PACS (Photodetector Array Camera & Spectrometer) instrument, onboard the

Herschel space telescope, as part of the PEP (PACS evolutionary probe) survey. Schechter

profiles were obtained in redshift bins up to z ≈ 4, assuming comoving volumes in both

the standard and void models, parametrised to fit the current combination of results stem-

ming from the observations of supernovae Ia, the cosmic microwave background radiation,

and baryonic acoustic oscillations. We obtained selection functions and defined “consis-

tency functions”, from which we computed the differential and integral densities assuming

various cosmological distances. We used the Kolmogorov-Smirnov statistics to study the

evolution of the consistency functions and its connection to that of the comoving density

of sources.

We found that the luminosity functions computed assuming both the standard and

void models show in general good agreement. However, the faint-end slope in the void

models shows a significant departure from the standard model up to redshift 0.4. We

demonstrate that this result is not artificially caused by the LF estimator used, which turns

out to be robust under the differences in matter-energy density profiles of the models. The

differences found in the LF slopes at the faint-end are due to the variation in the source

luminosities, which depend on the geometrical part of the model. It follows that there is

a discrepancy between the results found in the standard cosmological model and those in

the vold models studied here, with the comoving number density of faint sources smaller

in these latter ones then in the former.

Also, we observed similar power-law patterns in the number densities along the past

light cone in the void models as the ones found in past works assuming the standard model

line element. This could indicate that the observational inhomogeneities found in the past

lightcone of both cosmologies are a very general feature, closely related to the expanding

spacetimes.
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Resumo

O objetivo desse trabalho é calcular a densidade numérica de galáxias selecionadas no

infravermelho distante, tanto no referencial comóvel quanto ao longo do cone de luz passado

em um modelo de poeira em uma cosmologia de Lemâıtre-Tolman-Bondi do tipo “vazio

gigante”, e comparar tais resultados com seus análogos no modelo padrão da cosmologia.

Usamos os catálogos de objetos selecionados por fluxo no infravermelho profundo con-

strúıdos a partir de observações feitas com o instrumento PACS (Photodetector Array Cam-

era & Spectrometer) a bordo do telescópio espacial Herschel, como parte do levantamento

PEP (PACS evolutionary probe). Perfis de Schechter foram obtidos em intervalos de desvio

para o vermelho até z ≈ 4, assumindo volumes comóveis em ambos os modelos padrão e

de vazio, parametrizados para ajustar a presente combinação de resultados advindos de

observações de supernovas Ia, da radiação cósmica de fundo, e das oscilações acústicas

bariônicas. Nós obtemos funções de seleção e definimos “funções de consistência”, a par-

tir das quais computamos as densidades diferenciais e integrais supondo várias distâncias

cosmológicas. Usamos a estat́ıstica de Kolmogorov-Smirnov para estudar a evolução das

funções de consistência e sua conexão com a evolução da densidade comóvel.

Conclúımos que as funções de luminosidade (FL) calculadas supondo ambos o modelo

padrão e o modelo de vazio demostram uma boa concordância em geral. No entanto, a

inclinação da parte de baixa luminosidade nos modelos de vazio mostram um significativo

descolamento daquela obtida com o modelo padrão, até o desvio para o vermelho 0.4. Nós

demonstramos que esse resultado não é causado artificialmente pelo estimador da FL uti-

lizado, que se mostrou robusto quando às diferenças nos perfis de matéria-energia presentes

nos modelos. As diferenças encontradas nas inclinações das FL em baixas luminosidades

são devidas a variações na luminosidade das fontes, que depende da parte geométrica do

modelo. Sendo assim, há uma discrepância entre os resultados encontrados com o modelo

padrão e aqueles usando os modelos de vazio estudados aqui, com a densidade numérica

comóvel de fontes de baixa luminosidade menores nos segundos, em relação ao primeiro.

Também observamos padrões de lei de potência nas densidades numéricas ao longo

do cone de luz passado dos modelos de vazio similares àqueles encontrados em trabalhos

passados supondo o elemento de linha do modelo padrão. Isso poderia indicar que as não-

homogeneidades encontradas no cone de luz passado em ambas as cosmologias são uma

caracteŕıstica bastante geral, intimamente relacionadas aos espaço-tempos em expansão.
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Introduction

It is often said that the development of General Relativity (GR) was the starting

point for modern cosmology. The discovery of the radial recession velocity of ex-

tragalactic objects (Hubble 1929) is understood in the context of GR as caused by

the expansion of spacetime itself. That is, in this picture the Universe’s underlying

geometry evolves with cosmic time, changing the way incoming light travels through

the null geodesics connecting the sources to our telescopes.

The aim of many studies in observational cosmology is to infer to what extent

the geometry of the spacetime contributes to the formation and evolution of the

galaxies, the building blocks of the luminous Universe. In practical terms, most of

what we can infer about galaxy formation and evolution comes from analyses of red-

shift surveys. Although the redshift is an observable quantity related to the energy

content and geometry of the Universe – regardless of how we model it – translating

these measurements into distance estimations cannot be performed without assum-

ing a cosmological model. As a consequence, it is clear that any study that involves

galaxy distances will be model dependent. This dependency cannot be overcome as

long as the distance estimators used in these studies are not directly obtained, but

instead derived from redshift measurements.

Results from many independent observations – Hubble parameter estimations

from the distances to Cepheids (Freedman et al. 2001), or to massive, passively

evolving early-type galaxies (Moresco et al. 2012; Liu et al. 2012), or to extragalactic

HII regions (Chávez et al. 2012); luminosity distance-redshift relation stemming

from supernovae type Ia (henceforth, simply SNe) surveys, e.g. Riess et al. (1998);

Perlmutter et al. (1999); the power spectrum of the cosmic microwave background

radiation (CMB), e.g. Komatsu et al. (2011); and the angular size scale obtained

from baryonic accoustic oscillation (BAO) studies, e.g. Percival et al. (2010) – fit

together in a coherent picture under the cold dark matter model with a non-vanishing

cosmological constant (ΛCDM); (e.g. Komatsu et al. 2009), which is now adopted

as the standard cosmological model.

The standard model is relatively simple in comparison to other cosmologies, and

yields one of the best fits to the combined body of observations (Sollerman et al.

2009). The establishment of it allowed the above-mentioned model-dependency of
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galaxy formation and evolution to be reduced to an unavoidable but otherwise less

consequential fact: even if the observations depend on the cosmology, because the

standard model is so precisely well-defined, it follows that the conclusions about

galaxy formation and evolution that we can draw from the data by assuming this

cosmology should also be accurate.

One of the observational results, arguably key in selecting the ΛCDM parametri-

sation for a Friedmann-Lemâıtre-Robertson-Walker (FLRW) perfect fluid model is

the dimming in the redshift-distance relation of supernovae Ia, first obtained inde-

pendently by Riess et al. (1998) and Perlmutter et al. (1999). In the standard model

picture, the extra dimming observed in these standard candles’ absolute magnitudes

is understood as being caused by the sources being farther away then they would

be if the Universe was simply expanding like in the Einstein-de Sitter model. These

hypothetical larger distances could then easily be explained by an acceleration of the

expansion of the Universe, which has led to the re-introduction of the cosmological

constant Λ in the Einstein’s field equations, and the further interpretation of it as

an exotic fluid, Dark Energy, driving this acceleration.

The ΛCDM model still faces a few difficulties though: the coincidence problem,

which stems from the lack of explanation to why the best-fit value for the cosmo-

logical constant is such that its associated energy density is presently at the same

order of magnitude of the rest of the Universe’s energy density; the vacuum-energy

or the cosmological constant problem (Weinberg 1989), which represents a difference

of 120 orders of magnitude between the value for the cosmological constant energy

density predicted by the standard model of particles and the one predicted by the

standard model of cosmology; a few over-predictions of galaxy counts, like the miss-

ing satellites problem (Klypin et al. 1999; Moore et al. 1999), or the more recent

dynamical inconsistency in the predictions for the dark matter halo mass of the

Galaxy’s dwarf spheroidals (Boylan-Kolchin et al. 2012); the baryon fraction of low-

mass haloes (Papastergis et al. 2012); the under-density of the local void (Tikhonov

& Klypin 2009; Peebles & Nusser 2010); and the uncertainties in the characteriza-

tion of the equation-of-state parameter w of Dark Energy (Sollerman et al. 2009).

In addition, results from Flender & Schwarz (2012) dispute the general validity of

the Newtonian perturbation theory over large cosmological volumes, with possible

implications for the results obtained from the dark matter halo hierarchical trees

of the N-body simulations and its application to explain the observed luminosity

functions of galaxies.

Such difficulties have encouraged many authors to investigate viable alternatives

to the Dark Energy scenario, like modified gravity (Tsujikawa 2010), the effect of

small-scale spatial non-homogeneities of the matter content in the estimation of the

cosmological model parameters (Busti & Lima 2012), often called the backreaction
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effect on cosmology (Clarkson et al. 2011; Clarkson & Umeh 2011; Clifton et al. 2012;

Wiegand & Schwarz 2012), or non-homogeneous cosmological models (Célérier 2007;

Bolejko et al. 2011a; Ellis 2011).

Many recent works have advanced our understanding of non-homogeneities and,

particularly, within the Lemâıtre-Tolman-Bondi (LTB) models. From practical ques-

tions like those related to possible dimming or brightening of point-like sources due

to the narrowness of their observed beams, compared to the typical smoothing scales

in standard model simulations (Clarkson et al. 2012), or the possibility of accounting

for the anomalous primordial Lithium abundances (Regis & Clarkson 2012), passing

through the development of the models themselves (e.g. Hellaby & Alfedeel 2009;

Alfedeel & Hellaby 2010; Meures & Bruni 2012; Humphreys et al. 2012; Nishikawa

et al. 2012; Bull & Clifton 2012; Valkenburg et al. 2012; Wang & Zhang 2012; Hellaby

2012; Fleury et al. 2013), to several tests and fits to different observations (e.g. Febru-

ary et al. 2010; Bolejko et al. 2011b; Hoyle et al. 2013; Bull et al. 2012; de Putter

et al. 2012), much has been done to establish non-homogeneity as a well-grounded

modification of the standard cosmology.

The simplest non-homogeneous model assumes an LTB metric having a pressure-

less (dust) energy-momentum tensor. LTB dust models yield analytical solutions

to the Einstein’s field equations, e.g. Bonnor (1972), that can be reduced by an

appropriate parametrisation to the standard model ones. It is, for example, quite

usual to set the free equations allowed in this model in a way that it reduces to the

usual Einstein-de Sitter solution at large enough redshifts, enabling the model to

naturally fit many CMB constraints. Regardless of the many problems this alterna-

tive model shows (Marra & Pääkkönen 2010; Moss et al. 2011; Zhang & Stebbins

2011; Zibin 2011; Planck Collaboration et al. 2013), arguably it remains the simplest

and best-studied way to allow for non-homogeneities in the cosmological model.

Garcia-Bellido & Haugbølle (2008, hereafter GBH) proposed a “giant void”

parametrisation for the LTB dust model that was able to simultaneously fit the

SNe Ia Hubble diagram and some general features of the CMB. The GBH void

model is characterised by an under-dense region of Gpc scale around the Galaxy. In

it, both the matter density profile ΩM and the transverse Hubble constant H0 are

functions of the radial coordinate r. 1

Despite the recent interest in these models, to date no work has aimed at studying

galaxy evolution in non-homogeneous cosmologies. One of the main quantities used

in Astronomy to trace the evolution of sources with cosmic time is the luminosity

function (LF). The luminosity function is a statistical tool to infer the formation and

evolution of galaxies, usually computed with complete sets of photometric and/or

spectroscopic data. To compute the luminosities of the sources from their observed

1See, for example, figure 1 of Zumalacárregui et al. (2012)
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fluxes, a luminosity distance must be obtained from the redshift estimation, a step

that requires the adoption of a cosmological model. To deal with the incompleteness

due to the flux limits, the assumption of spatial homogeneity in the distribution is

usually made. Spatial homogeneity is defined on hypersurfaces of constant time

coordinate, not to be confused with observational homogeneity that is defined on

the observer’s past lightcone.

The spatial homogeneity assumption does not hold for non-homogeneous cos-

mologies in general. On the other hand, the precision of the current constraints on

the cosmological model might be enough to yield an LF that has the same shape in

all models allowed by the observations. To investigate this assertion, it is necessary

to compute the LF considering one such alternative model, and perform a statistical

comparison with the LF obtained assuming the standard model.

Moreover, it has been well-established by observations made at many different

wavelengths (some recent examples include van der Burg et al. 2010; Ramos et al.

2011; Cool et al. 2012; Simpson et al. 2012; Patel et al. 2013; and Stefanon & March-

esini 2013), and particularly in the infrared (Babbedge et al. 2006; Caputi et al. 2007;

Rodighiero et al. 2010; Magnelli et al. 2011; Heinis et al. 2013), that the LF shows

significant evolution with redshift. The currently favoured theory for explaining the

shape and redshift evolution of the LF is that the dark matter haloes grow up hier-

archically by merging, and that baryonic matter trapped by these haloes condense

to form galaxies. Astrophysical processes (gas cooling, high redshift photoioniza-

tion, feedbacks), are then responsible for reproducing the shape of the luminosity

function of galaxies starting from the dark matter halo mass function (Benson et al.

2003). The usual approach in the context of the standard model is either to use

semi-analytical models to parameterize these (e.g. Neistein & Weinmann 2010), or

to use empirical models (e.g. Yang et al. 2003; Skibba & Sheth 2009; Zehavi et al.

2011) to allocate galaxies as a function of the halo mass, both built on a dark mat-

ter hierarchical merger tree created by simulations, like the Millennium simulation

(Springel et al. 2005; Boylan-Kolchin et al. 2009).

The total luminosity density, stemming directly from the LF, is a very important

tool for assessing star formation rates and the global star formation history of the

Universe (Kennicutt 1998; Chary & Elbaz 2001; Franceschini et al. 2001; Xu et al.

2001; Elbaz et al. 2002; Metcalfe et al. 2003; Lagache et al. 2004; Pérez-González

et al. 2005; Caputi et al. 2007; Magnelli et al. 2009). It has become increasingly

clear in the past few years that in order to account for the rest-frame ultra-violet

light absorbed by the dust in the star formation regions it is essential to observe

the rest-frame far-infrared (FIR) and sub-mm wavelengths, at which the absorbed

light is re-emitted. Only by combining data from the ultra-violet to the FIR can we

have a complete view of the energy budget at different epochs, and thus an unbiased

15



understanding of galaxy evolution. For this reason, it is very important to ascertain

that any results stemming from the IR LFs are indeed independent of the underlying

cosmology, and how would such results change under cosmologies still allowed by

the full set of observations.

In practice the LF is traditionally computed using the comoving volume, which

does not stem directly from the observations, but rather is derived from it assum-

ing a cosmological model with a well-defined metric that translates redshifts into

distances. The effects of the expanding space-like hypersurfaces can, therefore, be

successfully factored out of the observations up to the limits where the assumed

cosmological model holds.

The last remark is of special importance, because Mustapha et al. (1997) proved

that any spherically symmetric set of observations, like redshift surveys, can be fitted

simply by the spatial non-homogeneities in a more general cosmological model that

assumes an LTB line element and a dust-like energy-momentum tensor, regardless

of any evolution of the sources. As a consequence, the reported redshift evolution

of the LF could, in principle, be caused by a non-homogeneity on the cosmology at

the scale of the observations.

The original contribution of this work is based on three papers: Iribarrem et al.

(2012, henceforth Paper I), Iribarrem et al. (2013b, henceforth paper II), and Irib-

arrem et al. (2013a, henceforth Paper III). The first part, Chapter 1, comprises a

review of the key theoretical concepts in obtaining the number densities in the past

lightcone of the standard model presented in the dissertation for the MSc. degree

of Iribarrem (2009), and of the LTB/GBH models presented in Paper II. The text

of Section 1.1 is drawn from Paper I, which is the final, published revision of the

original paper resulting from that dissertation. This revision was done during the

initial months of the Ph.D. and led to advances later included in the other two

papers that form the basis of this thesis. The second part, Chapter 2, is based on

Paper II, and is about computing FIR Luminosity Functions in both standard and

giant void cosmologies. The LFs for the standard model were computed indepen-

dently and served to check all the LF results in (Gruppioni et al. 2013). The third

part, Chapters 3 and 4, is drawn from Paper III. The third part establishes the

link between the first two chapters, extending the formalism in the first part to the

LTB dust models, and then applying it to the LFs computed in the second part.

Two natural follow-ups of this work are foreseen. The first one extends the analysis

characterising the fractal dimension of the high redshift relativistic number densi-

ties in Conde-Saavendra et al. (2013), to which I contributed the detailing about

the use of the LF, to the power-law behavior fit here. The second follow-up entails

extending the relativistic mass function analysis in Lopes et al. (2013), to which I

contributed in the discussions about the content and format, to the LTB selection
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functions obtained in this work.

In Paper II we focused on two questions by restricting the available models to

those which are well constrained by a wealth of observations: given that the current

observations still allow a certain degree of freedom for the cosmological model, are

these constraining enough to yield a robust LF estimation, or are our statistical

conclusions still dependent on the model? And how?

To address these questions, one needs at least two different cosmological models,

in the sense of a set of equations that are a solution to the Einstein field equations,

both parametrised to fit the whole set of available observations. Therefore, for the

purpose stated above, the GBH parametrisation of the LTB dust model is sufficient.

We started from the FIR LF which has been recently established by Gruppioni

et al. (2013), using combined data obtained on the PACS (Poglitsch et al. 2010), and

SPIRE (Griffin et al. 2010) instruments aboard the Herschel (Pilbratt et al. 2010)

space telescope, as part of two surveys, the PACS Evolutionary Probe (PEP; Lutz

et al. 2011), and the Herschel Multi-tiered Extragalactic Survey (HerMES; Oliver

et al. 2012). We used this sample because of its wide range of observations spanning

from UV to the far-IR and because it is the most complete one in terms of wavelength

coverage. In future works we intend to investigate the effect on LF when changing

the underlying cosmology as a function of wavelength. The depth of the survey, or

the relative depths at different wavelengths may also play a role.

In Gruppioni et al. (2013) we have used the PEP datasets to derive the evolution-

ary properties of the FIR sources in the standard cosmology. In Paper II, we aimed

at using the same catalogues and methodology used by Gruppioni et al. (2013) to

assess them in alternative cosmologies. We computed the rest-frame monochromatic

100 µm and 160 µm, together with the total IR LFs in the void models described

in Zumalacárregui et al. (2012). We then compared the redshift evolution of the

luminosity functions in both standard and void models.

Although Paper II used both the standard and alternative cosmological models,

it did not aim at model selection, that is, making a comparison of the models them-

selves. It is common to assume that works which deal with alternative cosmologies

always have the goal of testing the models directly.

This work is not about testing alternative cosmologies. Since the beginning of

observational cosmology it has been clear that testing a cosmological model using

galaxy surveys is extremely difficult because of the degeneracy between the intrinsic

evolution of the sources and the relativistic effects caused by the underlying cos-

mology. Our understanding of galaxies is still far from allowing us to treat them

as standard candles. The luminosity functions computed on Paper II depend, by

definition, on the cosmological model assumed in its computation, and therefore

cannot yield any independent conclusion about which model is the best fit.
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Instead, by acknowledging that the computation of the luminosity functions

depends on the cosmological model, in Paper II we aimed to assess how robust

the luminosity function results are if the effective constraints on the cosmological

model, like the Hubble diagram of a survey of standard candles like the SNe Ia, or

the power spectrum of the cosmic microwave background (CMB), were imposed. In

other words, the main interest of Paper II is on galaxy evolution models, and their

possible dependency on the cosmological model but, not on the cosmological models

themselves.

Whereas the motivation of Paper II was to probe the implications of the un-

derlying cosmology on the redshift evolution of observable properties of the sources

like number count and luminosity, on Paper III we aimed at further studying these

implications, specifically, on the characterization of the number density of sources

along the past lightcone of the assumed cosmology.

The past lightcone is a direct observable: it is the only region of the Universe’s

manifold that galaxy redshift surveys probe directly. In computing the densities

in the lightcone, we remove the model assumption intrinsic to the usual comov-

ing frame computations. The empirical approach of it, if not as ambitious, shares

the same philosophy of the ideal observational cosmology programme of Ellis et al.

(1985), which aimed at determining the spacetime geometry of the Universe without

assuming a cosmological model a priori.

This line of work was started by Ribeiro & Stoeger (2003), which connected

the relativistic cosmology number counts results summarized in Ellis (1971) to the

practical LF results from galaxy redshift surveys. Ribeiro (2005) considered the

effect of the expansion of the spacetime in the number densities along the past light-

cone leading to the observational non-homogeneities in the spatially homogeneous

FLRW model. Rangel Lemos & Ribeiro (2008) expanded on those theoretical re-

sults, showing that homogeneous distributions in the past lightcone would lead to

spatial non-homogeneity, which contradicts the Cosmological Principle.

Albani et al. (2007) combined the results of the first two previous papers to com-

pute such lightcone distributions using the luminosity functions for the CNOC2 sur-

vey Lin et al. (1999), confirming the presence of such light cone non-homogeneities.

In Paper I we discussed further ways to compare the relativistic effect of the expand-

ing spacetime to the evolution of the sources in the FLRW past lightcone, using the

much bigger redshift range in the luminosity functions for the FORS Deep Field

survey Gabasch et al. (2004, 2006).

The goal of Paper III was to include non-FLRW spacetimes in the past lightcone

studies described above. We specialized the general equations of Ribeiro & Stoeger

(2003) to the LTB metric, combining the results from both Ribeiro (1992), and

Garcia-Bellido & Haugbølle (2008). Finally, we used the luminosity functions in
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Iribarrem et al. (2013b), which were computed assuming the LTB/GBH model from

their build-up.

The question we aimed to address in Paper III was the following: are the num-

ber densities along the past lightcone, and the characterisation of their power-law

behaviour, robust among the standard and void cosmological models cited above?

In addition, we discussed the comoving number density in the void models, with

possible implications for empirical models like that in, e.g., Gruppioni et al. (2011);

Béthermin et al. (2012).

The plan of the thesis is the following: in Chapter 1 we present the theoretical

results for computing number densities in both FLRW and LTB models; in Chapter

2 we compute the PEP LFs; in Chapter 3 we compute the FIR comoving densities in

both cosmologies, and show that source evolution is also needed on the more general

LTB models to fit the observations; in Chapter 4 we compute the relativistic den-

sities, and discuss their power-law behavior as a function of wavelength, cosmology,

and density estimator; we summarize our findings in the Conclusions. Appendix A

describe the mock catalogues created to test the validity of the LF estimator used

in this work.
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Chapter 1

Relativistic cosmology number

densities in the past light-cone

In this chapter some basic results of relativistic cosmology theory required in

this thesis are discussed. Starting from the general results, specialized equations

are obtained for both standard and void cosmologies. We start with the general

formalism in the context of the ΛCDM model.

1.1 Standard Cosmology: FLRW / ΛCDM model

As far as General Relativity is concerned, the standard model is consists of the

FLRW metric having a perfect fluid energy-momentum tensor, and a non-vanishing

cosmological constant Λ. An early inflationary phase, together with a hierarchical

build-up of dark matter haloes are additions, with varying degrees of observational

evidence, necessary to make the model fit all the available data. In this section we

aim to obtain the relativistic number densities in the past light-cone defined in this

cosmology.

1.1.1 Differential number counts

We begin by writing the FLRW line element as follows,

ds2 = − c2dt2 + S2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (1.1)

where the time-dependent function S = S(t) is the cosmic scale factor, k is the

curvature parameter (k = +1, 0,−1) and c is the light speed. As it is well known,

the Einstein’s field equations with the metric corresponding to this line element

yields the Friedmann equation, which, if the cosmological constant Λ is included,

20



may be written as below, e.g. Roos (1994),

H2 =
8πGρm

3
+

Λ

3
− kc2

S2
, (1.2)

where ρm is the matter density and we have assumed the usual definition for the

Hubble function in terms of the scale factor, as follows,

H(t) ≡ 1

S(t)

dS(t)

dt
. (1.3)

Let us now define the vacuum energy density in terms of the cosmological constant

as follows,

ρΛ ≡ Λ

8πG
. (1.4)

Remembering that the critical density is given by

ρ0,c ≡
3H0

2

8πG
, (1.5)

where H0 is the Hubble constant, the following relative-to-critical density parameters

relations hold,

Ω0 ≡ Ωm0 + ΩΛ0 =
ρ0
ρ0,c

=
ρm0

ρ0,c
+
ρΛ0

ρ0,c
. (1.6)

We have used the zero index to indicate observable quantities at the present time.

Notice that since Λ is a constant, then ρΛ = ρΛ0 . Considering the definitions (1.6),

we can rewrite the Friedmann equation (1.2) at the present time as follows,

kc2 = H0
2S0

2(Ω0 − 1). (1.7)

In addition, from the law of conservation of energy applied to the zero pressure era

we know that,

ρm ∝ S−3 ⇒ ρm0 ∝ S0
−3, (1.8)

which leads to,
ρm
ρm0

=
S0

3

S3
⇒ Ωm = Ωm0

S0
3

S3
. (1.9)

The matter density parameter can also be written in terms of the critical density

as,

Ωm =
ρm
ρc

=
8πG

3H2
ρm. (1.10)
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We can rewrite equation (1.2) as a first order ordinary differential equation in terms

of the scale factor S(t), by using the results in equations (1.3) to (1.10), yielding,

dS

dt
= H0

[
Ωm0S0

3

S
+ ΩΛ0S

2 − (Ω0 − 1)S0
2

]1/2
. (1.11)

This equation can be analytically solved in terms of elliptic integrals or equivalently

Jacobi elliptic functions, but since this is not the only differential equation needed

in this work, the scale factor S is not obtained directly from it, but as part of a

numerical solution for the two coupled equations needed for the analyses presented

in this work, namely dS/dr and dN/dr. Next we shall obtain the second differential

equation of this system, the one for the cumulative number count N .

Let us write the completely general, cosmological model independent, expression

derived by Ellis (1971) for the number counts of cosmological sources which takes

fully into account relativistic effects, as follows,

dN = (dA)
2dΩ[n(−kaua)]P dy, (1.12)

where dN is the number of cosmological sources in a volume section at a point P down

the incoming null geodesic, n is the number density of radiating sources per unit of

proper volume in a section of a bundle of light rays converging towards the observer

and subtending a solid angle dΩ at the observer’s position, dA is the area distance of

this section from the observer’s viewpoint (also known as angular diameter distance,

observer area distance and corrected luminosity distance), ua is the observer’s 4-

velocity, ka is the tangent vector along the light rays and y is the affine parameter

distance down the light cone constituting the bundle (see Ribeiro & Stoeger 2003,

§2.1, figure 1). The number density, that is, the number of cosmological sources per

proper volume unit can be related to matter density ρm by means of,

n =
ρm
Mg

. (1.13)

where, Mg is simply the average galaxy rest mass, dark matter included.

One should point out that the details of the galaxy mass function and how it

evolves with the redshift are imprinted in the observed number density probed by

the LF itself.This result implies that for the empirical purposes of the present work

this equation is correct to the order of magnitude and must be regarded only as

an estimation, meaning that equation (1.13) enables us to connect the theoretical

relativistic quantities to the LF data and thus include the redshift evolution of the

mass function empirically. However, to actually extract from the LF its implicit

galaxy mass function requires some assumption about the function Mg(z).
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For the empirical approach of this paper it is enough to assume a constant average

galaxy rest mass with the working value of Mg ≈ 1011M⊙ based on the estimate

by Sparke & Gallagher (2000). Hence, if we use equations (1.9) and (1.10) we can

rewrite equation (1.13) as,

n =

(
3Ωm0H0

2S0
3

8πGMg

)
1

S3
. (1.14)

The past radial null geodesic in the geometry given by metric (1.1) may be

written as below,
dt

dr
= −

(
S

c
√
1− kr2

)
. (1.15)

Since both coordinates t and r are function of the affine parameter y along the past

null cone, we have that

dt

dy
=
dt

dr

dr

dy
= −

(
S

c
√
1− kr2

)
dr

dy
. (1.16)

Assuming now that both source and observer are comoving, then ua = c δ0
a and the

following results hold,

−kaua = −c kag0a = −c k0 = −c dt
dy

=

(
S√

1− kr2

)
dr

dy
. (1.17)

Noticing that the area distance dA is defined by means of a relation between the

intrinsically measured cross-sectional area element dσ of the source and the observed

solid angle dΩ0 (Ellis 1971, 2007; Plebański & Krasiński 2006), we have that

(dA)
2 =

dσ

dΩ
=
S2r2(dθ2 + sin2 θ dϕ2)

(dθ2 + sin2 θ dϕ2)
= (Sr)2. (1.18)

We note that for this metric the area distance, a strictly observational distance

definition, equals the proper distance dPr, a relativistic one. Considering equation

(1.7) and substituting equations (1.14), (1.17) and (1.18) into equation (1.12), in

addition to remembering that for radial only dependence dΩ0 = 4π, we are then

able to write the number of sources along the past light cone in terms of the radial

coordinate r. This quantity is given by the following expression,

dN

dr
=

(
3 c Ωm0H0

2S0
3

2GMg

) r2√
c2 −H0

2S0
2(Ω0 − 1)r2

 . (1.19)

We want to solve the differential equations for the scale factor S and the cumu-

lative number counts N , equations (1.11) and (1.19) respectively. A straightforward
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approach is to take the radial coordinate r as the independent variable. Since equa-

tion (1.11) has its time coordinate implicitly defined in the scale factor, to solve

it numerically we need to rewrite that differential equation in such a way that the

independent variable becomes explicit. Considering equation (1.7), the null geodesic

(1.15) becomes,

dt

dr
= −

[
S2

c2 −H0
2S0

2(Ω0 − 1)r2

] 1
2

. (1.20)

Along the past light cone, we can write the scale factor in terms of the radial

coordinate as,
dS

dr
=
dS

dt

dt

dr
, (1.21)

and, thus, we are able to rewrite equation (1.11) in terms of the radial coordinate,

as shown below,

dS

dr
= −H0

[
(ΩΛ0)S

4 − S0
2(Ω0 − 1)S2 + (Ωm0S0

3)S

c2 −H0
2S0

2(Ω0 − 1)r2

] 1
2

. (1.22)

To find solutions for S(r) we must assume numerical values for Ωm0 , ΩΛ0 and H0.

The two differential equations (1.19) and (1.22) comprise our numerical problem

since they are written in terms of the radial coordinate and can be numerically solved

simultaneously, thus enabling us to generate tables for r, S and N . A computer code

using the fourth-order Runge-Kutta method is good enough to successfully carry out

the numerical tasks. The initial conditions r0 and N0 are set to zero, whereas S0

can be derived considering that as r → 0 the spacetime is approximately Euclidean,

that is, k ≈ 0. This leads, from equation (1.15), to ct = −r and, finally, S0 = 1.

The redshift z can be written as

1 + z =
S0

S
, (1.23)

where it is clear that a numerical solution of the scale factor S(r) immediately gives

us the numerical solution for z(r). We can derive the differential number counts

dN/dz by means of the following expression,

dN

dz
=
dr

dz

dN

dr
, (1.24)

with the help of the useful relation,

dr

dz
=
dr

dS

dS

dz
. (1.25)

Numerically, since we build all our quantities using N(r) and S(r), any redshift

derivative we wish to evaluate will be similarly written in terms of the radial coor-
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dinate derivative of that quantity. The derivatives in equation (1.25) can be taken

from definition (1.23) and equation (1.22), enabling us to write,

dr

dz
=

S2

S0H0

[
(ΩΛ0)S

4 − S0
2(Ω0 − 1)S2 + (Ωm0S0

3)S

c2 −H0
2S0

2(Ω0 − 1)r2

]− 1
2

, (1.26)

which, together with equation (1.19), allows us to write equation (1.24) as follows,

dN

dz
=

(
3 c Ωm0H0S0

2

2GMg

) r2a2√
(ΩΛ0)S

4 − S0
2(Ω0 − 1)S2 + (Ωm0S0

3)S

 . (1.27)

1.1.2 Number densities

So far we have used only the area distance dA as distance definition. However,

other cosmological distances can, and will, be used later. They can be easily obtained

from the area distance by invoking the Etherington’s reciprocity law (Etherington

1933; Ellis 1971, 2007), which reads as follows,

dL = (1 + z)2dA = (1 + z) dG. (1.28)

Here dL is the luminosity distance and dG is the galaxy area distance (also known

as angular size distance, transverse comoving distance or proper motion distance).

A fourth distance will also be useful later, the redshift distance dz, defined by the

following equation,

dz =
c z

H0

. (1.29)

Although the reciprocity law is independent of any cosmological model, the detailed

calculations presented in the previous sections are for FLRW cosmology only, which

means that in deriving dA, dL, dG and dz we write the FLRW expression for dA and

derive the others using the general, model independent, expression (1.28), as well as

equation (1.29). Thus, considering equation (1.18) for dA, together with equation

(1.23) and the reciprocity theorem (1.28), it is straightforward to write the other

cosmological distances in terms of the scale factor, as follows,

dL = S0
2
(
r

S

)
, (1.30)

dG = S0 r, (1.31)

dz =
c

H0

(
S0

S
− 1

)
. (1.32)

Let us now generically call by di a certain observational distance, which can be any

one of the four cosmological distances defined above (i = A, G, L, Z). The differential
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density γi, gives the number of sources per unit volume located at a certain distance

di, being defined as follows (Ribeiro 2005),

γi =
1

4π(di)2
dN

d(di)
, (1.33)

while the integrated differential density, or simply integral density, gives the number

of sources per unit volume located anywhere inside the observer’s past light cone

down to a distance di, being written as,

γ∗i =
1

Vi

∫
Vi

γi dVi. (1.34)

Here Vi is the observational volume, defined as,

Vi =
4

3
π(di)

3. (1.35)

These quantities are useful in the determination of whether or not, and at what

ranges, a spatially homogeneous cosmological model can or cannot be observationally

homogeneous as well (Rangel Lemos & Ribeiro 2008). This is so because these

densities behave very differently depending on the distance measurement used in

their expressions, that is, they show a clear dependence on the adopted cosmological

distance definition. Therefore, as discussed in Rangel Lemos & Ribeiro (2008), these

measures are the ones required for the focus of this thesis, that is, they are capable of

probing the possible observational inhomogeneity of the number counts, since they

were devised to specifically deal with this problem.

From a numerical viewpoint it is preferable to write these two densities above in

terms of the redshift. Thus, the differential density may be written as,

γi =
dN

dz

{
4π(di)

2 d(di)

dz

}−1

. (1.36)

Up to this point, our approach has been completely general. We now specialise the

equations to the FLRW model. What remains to be determined are the derivatives

of each distance against the redshift. Starting with the area distance dA, they can

be easily obtained from equations (1.18) and (1.23). Then it follows that,

d(dA)

dz
=
dS

dz

dr

dS

d(dA)

dr
= −S

2

S0

r + S

(
dS

dr

)−1
 , (1.37)
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and, considering equation (1.22), this expression may be rewritten as below,

d(dA)

dz
=
S2

S0

 S
H0

√√√√ c2 −H0
2S0

2(Ω0 − 1)r2

(ΩΛ0)S
4 − S0

2(Ω0 − 1)S2 + (Ωm0S0
3)S

− r

 . (1.38)

The other observational distances can be numerically calculated from equation (1.37)

if we consider the reciprocity law (1.28). Therefore, we have that,

d(dL)

dz
= 2(1 + z)dA + (1 + z)2

d(dA)

dz
, (1.39)

d(dG)

dz
= dA + (1 + z)

d(dA)

dz
. (1.40)

These two equations can also be rewritten in terms of the scale factor if we consider

equations (1.23) and (1.38), yielding,

d(dL)

dz
= S0

 S
H0

√√√√ c2 −H0
2S0

2(Ω0 − 1)r2

(ΩΛ0)S
4 − S0

2(Ω0 − 1)S2 + (Ωm0S0
3)S

+ r

 , (1.41)

d(dG)

dz
=

a2

H0

√√√√ c2 −H0
2S0

2(Ω0 − 1)r2

(ΩΛ0)S
4 − S0

2(Ω0 − 1)S2 + (Ωm0S0
3)S

. (1.42)

A final point still needs to be discussed. The integral density (1.34) is a result

of integrating γi over a radial volume. The simplest way of numerically deriving it

is shown in what follows. Let us differentiate γ∗i in terms of the volume, so that,

d (γ∗i Vi)

dVi

= γi. (1.43)

Considering equation (1.33), this result leads to the following expression,

d (γ∗i Vi)

dz
=
d (γ∗i Vi)

dVi

dVi
dz

= γi

dVi
dz

=
dN

dz
. (1.44)

Similarly, it is simple to conclude that,

d (γ∗i Vi)

dr
=
dN

dr
. (1.45)

Finally, from the definitions of γi and γ∗i , it is easy to show that the following

expression holds,

γ∗i =
N

Vi

. (1.46)

The numerical solution of equation (1.19) together with the numerical determination

of all distances, as given by equations (1.18), (1.30), (1.31), (1.32), allow us to
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calculate the volume (1.35) and evaluate γ∗i . These results fully determine the

numerical problem for the cosmological model under study.

1.1.3 Volumes

Most cosmological densities obtained from astronomical observations assume the

comoving volume, whereas densities derived from theory often assume the local, or

proper, volume. The luminosity function, for instance, is nowadays always obtained

from galaxy catalogues by assuming the comoving volume in its calculation. So, we

are only able to compare those observationally derived parameters with theory if we

carry out a conversion of volume units. From metric (1.1) it is obvious that,

dVPr =
S3

√
1− kr2

r2 dr sin θ dθ dϕ = S3dVC, (1.47)

This equation clearly defines the conversion factor between these two volume defi-

nitions in terms of the numerical scheme developed above.

1.2 Giant void Cosmology: LTB / CGBH model

Garcia-Bellido & Haugbølle (2008, hereafter GBH) have shown that an LTB

dust model could be parametrised to fit successfully and simultaneously many inde-

pendent observations without the inclusion of a cosmological constant. The extra

dimming of distant SNe Ia, compared to their expected observed fluxes in a flat,

spatially homogeneous Einstein-de Sitter (EdS) universe is then understood not

as being caused by an acceleration of the expansion rate, but rather as an extra

blueshift of the incoming light caused by a non-homogeneous matter distribution in

the line of sight.

This so-called void model is characterised by an effective under-dense region of

Gpc scale around the Milky Way, as opposed to the average spatial homogeneity

supposed to hold at that scale by the standard model. In this under-dense region,

both the matter density profile ΩM and the transverse Hubble constant H0 are

functions of the radial coordinate r.

At high enough redshifts however, the model is made to converge to an EdS-

like solution, making the non-homogeneity a localized property of the model and

naturally reconciling it with the observed degree of isotropy in the cosmic microwave

background radiation. The use of a pressure-less (dust) energy-momentum tensor,

as opposed to the perfect fluid one allowed in the standard model, is required in

order to obtain an exact solution for Einstein’s field equations assuming the LTB line

element. At early epochs (high redshifts), the radiation dominated the Universe’s
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energy budget, and the pressure term was relevant, but as discussed before, at

these scales, the LTB model is made to converge to the EdS solution by the GBH

parameterization. At later epochs (low redshifts), radiation pressure is negligible,

and so the use of a dust energy-momentum tensor is well justified. Geometrically,

the LTB dust model is an analytical solution for Einstein’s field equations, and

arguably the simplest way to release the spatial homogeneity assumption present in

the standard model of cosmology.

Spatial homogeneity is, nevertheless, a symmetry assumption that greatly sim-

plifies the model. Removing it will unavoidably increase the degrees of freedom

of the model. Because of this, even the most constrained parametrisations of the

LTB models still show an increased number of free parameters compared to the

standard model. Since the quality of the combined fits to the observations these

alternative models can produce is similar to that produced by the standard model,

any analysis that penalizes a greater degree of freedom of a model, like those used

in Zumalacárregui et al. (2012) and de Putter et al. (2012), will disfavour such

parameterization of the LTB model in comparison to ΛCDM.

In the empirical approach of Albani et al. (2007), the number densities along the

observer’s past lightcone were computed from the LF data using different relativistic

cosmology distance definition. These distances are defined in the same cosmological

model as the one assumed to build the LF. In this sense no assumption on the

redshift evolution of the sources is made. The methodology is completely empirical.

The number densities used in this work, as defined in Ribeiro (2005), are able to

probe the geometrical effect of the expansion of Universe on the homogeneity of the

distribution of the sources along the observer’s past lightcone. This effect depends

on the distance definition used in computing these densities, which in turn depends

on the line element of the cosmological model assumed.

In this section we connect the key results from Ribeiro (1992, henceforth R92) for

the number count of sources in the LTB metric to the parametrisation advanced by

Garcia-Bellido & Haugbølle (2008) for that cosmology. The goal here is to compute

the above mentioned number densities in the giant void parametrisation of the LTB

model. Dotted quantities refer to time-coordinate derivatives and primed ones refer

to radial-coordinate derivatives.

1.2.1 Differential number counts

We started by writing the line element for the LTB model following Bonnor

(1972)

ds2 = −c2dt2 + A′2(r, t)

f 2(r)
dr2 + A2(r, t)dΩ2, (1.48)
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where dΩ2 = dθ2 + sin2 θ dϕ2, with f(r) an arbitrary function, and A(r, t) being

analogous to the scale factor in the FLRW metric. Assuming a pressure-less (dust)

matter content with ρM proper density, it can be shown that the Einstein’s field

equations for that line element can be combined to yield (R92)

8πGρM =
F ′

2A′A2
, (1.49)

where F (r) is another arbitrary function, and G is the gravitational constant. Start-

ing from the general expression for the number count of sources derived by Ellis

(1971), R92 obtained

dN = 4π n
A′A2

f
dr, (1.50)

where n is the number density per unit proper volume, and N the total number of

sources on the past lightcone. Following R92 we wrote,

n =
F ′

16πGMg A′A2
. (1.51)

Combining the last two equations we obtained,

dN

dr
=

1

4GMg

F ′

f
. (1.52)

The last equation is essentially a version of the result of Ellis (1971), specialized

to the LTB past null geodesic. Next, we further specialized it to use the GBH

parametrisation for their constrained model, and the best fit values obtained by

Zumalacárregui et al. (2012) in a simultaneous analysis of SNe Ia, CMB and BAO

data.

It is straightforward to relate f(r) to the spatial curvature parameter k(r) in

GBH by writing

f(r) =
√
1− k(r). (1.53)

The boundary condition equations listed in GBH read,

HT (r, t) =
Ȧ(r, t)

A(r, t)
, (1.54)

F (r) = 2ΩM(r)H
2
0 (r) r

3, (1.55)

k(r) = −[1− ΩM(r)]H
2
0 (r) r

2, (1.56)

with the gauge choice A(r, 0) = r included, HT being the transverse Hubble rate

(see below), with H0(r) = HT (r, 0), and ΩM(r) the dimensionless matter density
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parameter, defined relative to the integrated critical density in the comoving volume,

ρ̄C(r) =
3H2

0 (r)

8π G
, (1.57)

as ΩM(r) = ρM(r)/ρ̄C(r). Note that the curvature parameter k(r) is not constant in

the GBH parametrisation, but depending on the radial coordinate r and the shape

of the matter density parameter ΩM(r), it can assume positive, negative or zero

values.

Because of its dependence on the cosmic time, the LTB geometry possesses radial

expansion rate and scale factor that are in general different from their transverse

counterparts. The present-time transverse Hubble parameter, H0(r), in the con-

strained version of the GBH model is parametrised as,

H0(r) = Hin

∞∑
j=0

2 [1− ΩM(r)]
j

(2j + 1)(2j + 3)
, (1.58)

where Hin is the transverse Hubble constant at the center of the void. Equations

(1.53), (1.56), and (1.58) can be readily combined to yield

f(r) =

√√√√√1 + [1− ΩM(r)]


∞∑
j=0

2 [1− ΩM(r)]j

(2j + 1)(2j + 3)


2

Hin
2r2. (1.59)

Combining Eqs. (1.55), and (1.58) we can write the F (r) function for the con-

strained model as

F (r) = Hin


∞∑
j=0

2 [1− ΩM(r)]
j

(2j + 1)(2j + 3)

ΩM(r) r
3, (1.60)

where the dimensionless matter density parameter ΩM(r) in the GBH model becomes

ΩM(r) = Ωout + (Ωin − Ωout)

{
1− tanh[(r −R)/2∆R]

1 + tanh[R/2∆R]

}
. (1.61)

Here Ωin is the density parameter at the center of the void, Ωout the asymptotic

density parameter at large comoving distances, R is the size of the underdense

region, and ∆R the width of the transition between the central void and the exterior

homogeneous region. These parameters completely determine the model. In the

standard model both the matter density parameter and the Hubble parameter do

not depend on the radial coordinate. In all the standard model computations done

in this work we use ΩM = 0.27, ΩΛ = 0.73, and H0 = 71 km s−1 Mpc−1 as obtained

in Komatsu et al. (2011). Figure 1.1 shows the comparison of the evolution of the

matter density parameter in the standard and in the void cosmologies.
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Figure 1.1: Present-time (t=t0) matter density parameters in the standard (ΛCDM,
black line) and the void (GBH) cosmological models (red and cyan lines).
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Table 1.1: Best fit values for the LTB/CGBH models (Zumalacárregui et al. 2012).

Model parameter CGBH OCGBH
Hin 66.0 ± 1.4 71.1 ± 2.8
Ωin 0.22 ± 0.4 0.22 ± 0.4
R [Gpc] 0.18 +0.64

−0.18 0.20 +0.87
−0.19

∆R [Gpc] 2.56 +0.28
−0.24 1.33 +0.36

−0.32

Ωout 1 0.86 ± 0.03

Because of the generality of the evolution of A(r, t) in the LTB models, the time

coordinate tbb, at which A(r, tbb) reduces to zero, can, in general, assume different

values for different comoving distances from the center of the under-dense region, r.

This leads to different measurements for the elapsed time since the Big Bang, tbb(r),

depending on the position of the observer in the void. Setting this extra degree of

freedom for the big-bang time in order to make it simultaneous (same value for all

observers) yields the constrained version of the GBH model, or CGBH model.

The best fit values we use in this work were obtained in Zumalacárregui et al.

(2012), considering both an asymptotically flat CGBH model with Ωout = 1 and an

open CGBH model (OCGBH) with Ωout = 0.87 which the authors show to better fit

the CMB constraints. Table 1.1 reproduces these values.

With these values, f(r), F (r), and ΩM(r) can be computed through Eqs. (1.59)

- (1.61) for each comoving distance r. The radial derivative F ′(r) can be obtained

numerically through central difference quotients, F (r) ≈ lim∆r≪r ∆F/∆r, which in

turn allow the values of dN/dr to be computed through Eq. (1.52).

The generalized scale factor A(r, t) can be computed in parametric form as

A(r, t) =
ΩM(r)

2[1− ΩM(r)]3/2
[cosh(η)− 1]A0(r), (1.62)

where A0(r) is its value at t = t0, and the parameter η advances the iteration of the

numerical solution given r, t, H0(r), and ΩM(r) as follows:

sinh(η)− η = 2
[1− ΩM(r)]

3/2

ΩM(r)
H0(r) t. (1.63)

To obtain the r(z) and t(z) relations in this cosmology, we start with the radial

null-geodesic equation, which can be written by making ds2 = dΩ2 = 0, yielding

dt

dr
= − A′(r, t)√

1− k(r)
, (1.64)

where the minus sign is set for incoming light. The redshift can be related to the

radial coordinate in this model following Bondi (1947); Ribeiro (1992); Plebański &
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Krasiński (2006); Enqvist & Mattsson (2007),

dr

dz
=

1

1 + z

f

Ȧ′
, (1.65)

which combined with Eq. (1.64) yields,

dt

dz
= − 1

1 + z

A′

Ȧ′
. (1.66)

All the first and second order derivatives of A(r, t) can computed from Eq. (1.62)

by means of central difference quotients, allowing Eqs. (1.65) and (1.66) to be solved

numerically. This yields the look-back time and radial distance tables: t(z) and r(z).

We then combined Eqs. (1.52) and (1.65) as,

dN

dz
=

1

4GMg

F ′[r(z)]

(1 + z) Ȧ′[r(z), t(z)]
, (1.67)

and computed the differential number count dN/dz for each value of z in the r(z),

and t(z) tables. A comparison between the estimates for this quantity in the ΛCDM

and both CGBH parametrisations in Zumalacárregui et al. (2012) can be found in

figure 1.2.

1.2.2 Volumes

Starting from the definition given in Eq. (1.18), it is straightforward to show

that for the LTB metric in Eq. (1.48) the angular diameter distance is given by

dA(z) = A[r(z), t(z)]. With this result, we can use Eq. (1.28) to compute the

luminosity distance dL(z), and galaxy area distance dG(z). It is worth noting that

the comoving distance r is not, in general, equal to the galaxy area distance dG, as

it is in FLRW models, see Eq. (1.31). As a consequence, an LTB model with its

luminosity distance-redshift relation constrained to fit the Hubble diagram for SNe

Ia could still yield comoving distances, and therefore volumes, significantly different

from those obtained in the standard model.

The additional constraint imposed by the measurements of the BAO(e.g. Percival

et al. 2010; Reid et al. 2012) appears to pin down the comoving distance quite

effectively up to intermediate redshifts, and it turns out that the difference in these

distances computed in the ΛCDM and the GBH models is never larger than 10% at

z = 1. However, r computed in the CGBH model at z = 5 is approximately 12%

smaller, and ≈ 17% in the open CGBH model.

The non-linear nature of the equations relating distances to volumes and lumi-

nosities, in particular for high-redshift sources, must also be considered. At redshift

z = 0.4, for example, the luminosity distances computed in the void models CGBH
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Figure 1.2: Differential number count estimates within the past lightcone of the
three cosmological models used in the present work, with respect to the values for
the ΛCDM model.
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Figure 1.3: Luminosity (solid lines) and comoving distances (dotted lines) versus
the redshift in the standard (ΛCDM) and the void (GBH) cosmological models.
Up to redshift z ≈ 1 distances in the constrained, flat void model (CGBH) follow
very closely their standard model counterparts, but even in the case of the best-
fit parameters in Zumalacárregui et al. (2012) yield increasingly different distances
with the redshift.

and OCGBH respectively, are 4.90% and 0.92% shorter then the standard model

distances, whereas the comoving distances in the void models are 4.88% and 0.96%

shorter when compared to the standard model value. Such differences correspond to

an extra dimming in luminosities equal to 10.04% in the CGBH model and 1.85% in

the OCGBH model. The corresponding reduction in volumes is 15.35% and 2.84%

for the CGBH and OCGBH models.

When compared to the standard model, these non-linearities can make small dis-

crepancies in luminosity and comoving distances caused by the central underdensity

in GBH models and can result in non-negligible differences in the shape of the LF.

This can be understood by looking at Fig. 1.3, where the luminosity distance

and the comoving distance are plotted against the redshift. For any given redshift

z′, consider the differences ∆dL(z
′) and ∆r(z′) between the distances computed

in the standard model and those in the void models. Both differences depend on
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Figure 1.4: Comoving volume elements in the standard (ΛCDM) and the void (GBH)
cosmological models. The quantities in the void models adopted here evolve with
the redshift in a similar way to the standard model up to redshift approximately
0.6, then their values become consistently lower than in the ΛCDM model.

the redshift and do not, in general, cancel out or even yield a constant volume-to-

luminosity ratio as a function of the redshift. As a result, the number of sources in

each luminosity bin might change because of differences in the luminosities.

Additionally, the weight 1/Vmax that each source adds to the LF in that bin will

not be the same, leading to a LF value in that luminosity bin in the void model

that is different from the one in the standard model, even if the sources inside the

bin are the same. Figure 1.4 shows the comoving volume element in the different

cosmologies adopted here.

Such differences in the estimated value for the LF in each luminosity bin will

not, in general, be the same. As a consequence, not only the normalization but also

the shape of the LF might change from one cosmology to another.
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1.2.3 Number densities

With the differential number counts dN/dz computed in §1.2.1, we can compute

the relativistic differential number densities γi, the number of sources per unit vol-

ume in a spherical shell at redshift z, for each distance di in i = [A,G,L, z] discussed

in §1.2.2, in the LTB/CBG models using the general result in Eq. 1.36.

The integral number densities γ∗
i , i.e. the number of sources per unit volume

located inside the observer’s past lightcone down to redshift z, can be computed for

each distance definition di using Eq. 1.46.

Results for the various γi and γ
∗
i in the different cosmologies considered in this

work are plotted in figures 1.5 and 1.6. We note that even among the feasible

cosmological models the differential and integral number densities show noticeable,

even if apparently small to the eye, differences in all distance definitions used. These

differences may actually be observed, depending on the precision achieved by a

galaxy survey. It follows to check whether this purely geometrical effect can be

detected on the LF for the PEP survey computed next.
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Figure 1.5: Redshift evolution of the relativistic differential densities for the three
cosmological models used in the present work. Different curves correspond to the
computations performed with respect to different distance estimators along the ob-
server’s past cone (dA, dL, dG, and dz).
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Figure 1.6: Integral of the functions shown in Fig. 1.5. The curves show the
evolution of the relativistic integral densities for the three cosmological models used
in the present work as a function of the different distances.
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Chapter 2

Luminosity functions

In this chapter we present and discuss the main results and equations in deriving

the LFs, which are susceptible to a change in the underlying cosmology.

2.1 The Herschel/PACS Evolutionary Probe (PEP)

multi-wavelength samples

We use from the multi-wavelength catalogues described in (Berta et al. 2011).

The sources in these catalogues were blindly selected in the following fields (effective

areas): GOODS-N (300 arcmin2), GOODS-S (300 arcmin2), COSMOS (2.04 deg2),

and ECDF-S (700 arcmin2), as part of the PEP survey in the 100 and 160 µm filters

of Herschel/PACS. The number of sources detected and the 3-σ flux limits of this

dataset are, in the 100 and 160 µm passbands, respectively: 291 sources down to

3.0 mJy, and 316 sources down to 5.7 mJy for GOODS-N; 717 down to 1.2 mJy,

and 867 sources down to 2.4 mJy for GOODS-S; 5355 sources down to 5.0 mJy, and

5105 sources down to 10.2 mJy for COSMOS; and finally, 813 sources down to 4.5

mJy, and 688 sources down to 8.5 mJy for ECDF-S. For each of these fields, in each

band individually, incompleteness corrections for the number counts were computed

by the authors using simulations.

The semi-empirical spectral energy distribution (SED) models of Gruppioni et al.

(2010) that expand on the models of Polletta et al. (2007) were used to fit the

photometry of the objects using the LePhare code (Arnouts et al. 1999; Ilbert et al.

2006). The code has an output for each successfully fit source of a file with synthetic

AB magnitudes mν in the wavelength range of the combined optical/NIR + FIR

models. From this, we compute the spectral density of flux f(ν) as

f(ν) = 10(23.9−mν)/2.5. (2.1)
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Sources without a redshift determination were removed from the catalogues,

but no further redshift-based selection rule have been applied. In the GOODS-N

redshift completeness is 100% within the ACS area (Berta et al. 2010), of which 70%

of the redshifts being spectroscopic. These figures are 100 (80)% for the GOODS-S,

within the MUSIC (Grazian et al. 2006; Santini et al. 2012) area; 93 (40)% for the

COSMOS; and 88 (25)% for the ECDF-S fields. Non-detections in the 100 and 160

µm filters were also removed. Our final combined samples have 5039 sources in the

100 µm band (183 in the GOODS-N, 468 in the GOODS-S, 3817 in the COSMOS,

and 578 in the ECDF-S fields); and 5074 sources in the 160 µm band (197 in the

GOODS-N, 492 in the GOODS-S, 3849 in the COSMOS, and 547 in the ECDF-S

fields). Approximately 40% of these sources were best fit by typical spiral SED

templates, 7% of those were best fit by starburst templates, another 7% were found

to be luminous IR galaxies, and 46% were best fit by obscured, or low-luminosity

AGN templates. For a more complete description of the dataset used in this work,

see Gruppioni et al. (2013).

We computed the rest-frame total IR luminosity of each source using its best fit

SED f(ν) by means of

LIR = 4π (1 + z) dL(z)
2
∫ 1000µm

8µm
f(ν)dν , (2.2)

Whereas, the rest-frame luminosity related to the observed flux fR at a given

band R can be obtained with

LR = 4π νR kR fR dL(z)
2, (2.3)

where dL is the luminosity distance in a particular cosmological model, νR is the

effective frequency of the filter at the observer’s frame (corresponding to wavelengths

approximately 100 and 160 µm for the PACS bands considered in the present work),

and kR is the k correction between the observed frame flux fR in the R band and its

rest-frame flux, at redshift z.

Because this paper deals with more than one underlying metric, it is impor-

tant to note that, even though the relation between the cosmological redshift and

the cosmological distances depend on the metric, thus affecting, for example, maxi-

mum redshift estimates, the redshift itself, and its effect on the SED of the sources,

is directly measurable. Therefore, even though the rest-frame luminosities them-

selves depend on the cosmological model, the k-correction values depend only on

the redshift measurements. It is when translating the measured redshift to an ac-

tual distance that a metric for the underlying spacetime is needed.
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2.2 k corrections

In the following discussion, all quantities are written in frequency units. Primes

are used to mark quantities evaluated at the source’s rest frame. We follow closely

the derivation in Hogg et al. (2002), but write the resulting k correction in terms of

fluxes instead of magnitudes.

The effect of the expansion of the metric over the frequencies of the light arriving

from each source is

ν ′ = (1 + z)ν, (2.4)

where ν ′ are rest-frame frequencies measured by an observer in a comoving frame

with the source and ν are observed frequencies measured by an observer that is

receding in relation to the source at a redshift z.

Fitting a SED template to the measured photometry for a given source yields

a model for its observed spectral density of flux f(ν) over a range of observed-

frame frequencies. With that in hand, one can then compute the spectral density

of flux fR as measured by a given filter R(ν) in the observed-frame by means of the

dimensionless convolution to ensure f(ν) and fR are both written in the same units,

fR =
∫
f(ν)R(ν)

dν

ν
. (2.5)

To correctly account for the expansion effects when computing the rest-frame

spectral density of flux f ′
R on the same passband R, one must first redshift the filter

function R(ν) f(ν) in the observed-frame back to the source’s rest-frame frequencies

f(ν ′). Given the source’s measured redshift z, this can be done by means of Eq.

(2.4), which yields R(ν ′) = R[(1+z)ν]. The rest frame R(ν ′), can then be convolved

with the observed frame f(ν) to yield the spectral density of flux measured by the

passband R at the source’s rest frame as

f ′
R =

∫
f(ν)R[(1 + z)ν]

dν

ν
. (2.6)

Once f ′
R is obtained, the k correction expressed in terms of densities of fluxes is then

kR =
fR

f ′
R

. (2.7)

We note that a similar expression is used by Blanton & Roweis (2007), based on

the derivation for the k correction expressed in terms of magnitudes given in Hogg

et al. (2002).

Next, we describe the use of the 1/Vmax estimator, (Schmidt 1968), in the com-

putation of the LF of the samples.
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2.3 1/Vmax estimator

The 1/Vmax (Schmidt 1968; Johnston 2011) estimator for the LF has the advan-

tage of not assuming a parametric form in its calculation. It also yields directly the

comoving number density normalisation. Recent results from Smith (2012) show

that large-scale density variations can introduce systematic errors in the subsequent

fitting of the parameters. Since we are dealing with different cosmological models

that predict different density parameter evolutions, it is important to check how

dependent the method itself is on the cosmology. We report in Appendix A how

we built mock catalogues to check the effects of density variation, similar to what is

done in Takeuchi et al. (2000), and check that this methodology is adequate for the

purpose of the paper.

To compute the LF values using this method, we started by dividing each sample

in redshift intervals ∆z with centre values z̄, and in luminosity bins ∆L with centre

values L̄. For each source in each (z̄,L̄) bin, we computed the maximum redshift at

which it would still be included in the survey. Given the corresponding flux limit for

the field where the source was detected (fR,lim; Berta et al. 2011), its measured flux

at that filter R (fR) and its redshift (z) the highest redshift at which that source

would still be included (ζ) can be obtained by means of the following relation1,

fR,lim =

[
dL(z)

dL(ζ)

]2
fR. (2.8)

If the maximum redshift for a given source is outside the redshift interval it

originally belongs to, we use the upper limit of this interval zh as the maximum

redshift instead. That is,

zmax = min(zh, ζ). (2.9)

The maximum comoving volume Vmax enclosing each source is then

Vmax =
∑
k

Sk

3

∫ zmax

zl

wk(z) r(z)
2 dr

dz
dz, (2.10)

where the sum is over the k fields where the source would have been included; Sk is

the area of the field where the source was detected, zl the lower limit of the redshift

interval at which the source is located, and wk(z) the incompleteness correction for

the effective area of the source, corresponding to its computed flux, as a function of

the redshift.

Although these corrections are computed from local simulations (z=0), and,

therefore, they do not assume any cosmological model, the computed flux of each

1Since we are dealing with two observed-frame quantities, there is no need to include any
k-corrections in the Eq. (2.8).
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source as a function of the redshift depends on its luminosity distance, which may

change with the cosmological model assumed. In addition to this implicit effect, the

radial comoving distance r and its redshift derivative dr/dz also depend explicitly

on the cosmology.

For each luminosity bin centred around L̄ in each redshift interval centred around

z̄, we computed the 1/Vmax estimator for the luminosity function in that bin ϕz̄,L̄ as

ϕz̄,L̄ =
1

(∆L)L̄

Nz̄,L̄∑
i=1

1

V i
max

, (2.11)

where (∆L)L̄ is the length of the luminosity bin centred on L̄, and Nz̄,L̄ the number

of sources inside that luminosity bin and redshift interval.

Assuming Poisson uncertainties, the error bars δϕ can be estimated simply by

δϕz̄,L̄ =
1

(∆L)L̄

√√√√√Nz̄,L̄∑
i=1

(
1

V i
max

)2

. (2.12)

2.4 Redshift evolution of the Schechter parame-

ters

We computed the rest-frame monochromatic and total IR luminosity LF for

sources in the combined fields, blind selected in the 100 µm and 160 µm bands,

using the non-parametric 1/Vmax method, both in the standard model and the GBH

void models. The LF values are listed in Tables 2.1-2.12, up to redshifts z ≈ 3 for

the monochromatic LFs and up to z ≈ 4 for the total IR ones.

We use the same binning in luminosity and redshift as in Gruppioni et al. (2013).

The average values for the redshift intervals are 0.2, 0.6, 1.0, 1.5, 2.1, and 3.0, for

the monochromatic LFs, and 0.2, 0.4, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9, 2.2, 2.8, and 3.6 for

the total IR LFs. The effective wavelengths will be 60 and 90 µm in the rest-frame

LF. Because of the lack of enough 1/Vmax LF points to fit a Schechter function in

the higher redshift bins, our analyses of the monochromatic luminosity functions are

limited to intervals z̄ ≤ 3. As a consistency check we compared our results for the

standard model with those of Gruppioni et al. and the agreement is excellent.

The monochromatic and the total luminosity LFs are shown in Figs. 2.1-2.4 for

the three cosmologies considered in this paper. When comparing the values in each

luminosity bin it is clear that in void cosmologies the density is lower at the lowest

luminosities. While at redshift larger than 0.8 the incompleteness at low luminosities

does not allow any firm conclusion to be drawn, in the two lowest redshift bins the

void models show LF values up to an order of magnitude lower than their ΛCDM
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counterpart at L≤1010L⊙.

The resulting differences in the LF computed in the different models show up at

the faint luminosity end of the luminosity functions. We use the Schechter analytical

profile (Schechter 1976),

φ(L) =
ϕ∗

L∗

(
L

L∗

)α

e−L/L∗
= φ∗

(
L

L∗

)α

e−L/L∗
, (2.13)

and fit it to the 1/Vmax points over the (z̄,L̄) bins, where ϕ∗ is the comoving number

density normalisation, L∗ the characteristic luminosity and α the faint-end slope,

using the IDL routine MPFITFUN (Markwardt 2009) based on the Levenberg-

Marquardt algorithm (Moré 1978). For each best-fit parameter, its formal 1-σ un-

certainty is obtained by taking the square root of its corresponding element in the

diagonal of the 3x3 covariance matrix of the fitting procedure, e.g., Richter (1995).

Since we are primarily interested in checking possible changes in the LF caused by

the underlying cosmologies, we chose to use the classical Schechter function instead

of the double exponential function (Saunders et al. 1990). The latter fits the FIR

LF bright-end better, but the Schechter function has fewer free parameters that

allows it to fit higher redshift intervals where the number of data points is small.

First we check for any variation of the α parameter with redshift, and find that

it is consistent with no evolution. We test the incompleteness using the Ve/Va tests

(Avni & Bahcall 1980). A given (z̄,L̄) bin is considered complete by this test if its

Ve/Va value is 1/2. We find that the 1/Vmax LF points do not suffer from significant

incompleteness at z̄ = 0.2, where the Ve/Va values in the lowest luminosity bins of

the monochromatic luminosity functions are 0.6 ± 0.1 and 0.5 ± 0.1 for the rest-

frame 100 and 160 µm, respectively. These values become 0.15 ± 0.09 and 0.22 ±
0.03 at z̄ = 1, and 0.12 ± 0.05 and 0.11 ± 0.04 at z̄ = 3.

This is because at higher redshifts the flux limit of the observations corresponds

to increasingly different luminosity limits, depending on the SED of the sources,

leading to an incompleteness in the lower luminosity bins that is dependent on the

galaxy type (Ilbert et al. 2004). Because of this we chose to fix the α parameter to

its value in the lower redshift interval in the fits presented in Tables 2.13-2.16. We

plot the redshift evolution of these two parameters in Fig. 2.5.
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Figure 2.1: Luminosity functions derived in the standard (ΛCDM) (black dots) and
the void (GBH) cosmological models (red and cyan dots). We show also the best-
fit Schechter profiles to the rest-frame 100 µm 1/Vmax corresponding to effective
wavelengths of 60 µm.
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Figure 2.2: As Figure 2.1 for the rest-frame 160 µm 1/Vmax luminosity functions.
Here the effective wavelength is 90µm.
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Figure 2.3: Schechter profile fits to the rest-frame total IR luminosity functions
computed from the PACS 100 µm 1/Vmax band, assuming the standard (ΛCDM)
and the void (GBH) cosmological models.
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Figure 2.4: Schechter profile fits to the rest-frame total IR luminosity functions
computed from the PACS 160 µm 1/Vmax band, assuming the standard (ΛCDM)
and the void (GBH) cosmological models.
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Figure 2.5: Upper panel: Redshift evolution of the characteristic luminosity L∗

on the four datasets of the present work. Lower panel: Redshift evolution of the
characteristic luminosity ϕ∗ on the same datasets.
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Figure 2.6: Upper panel: Effect of the luminosity distance - redshift relation on
the shape of the LF. The black points were computed using the 1/Vmax method,
assuming both dL(z) and r(z) relations stemming from the standard model, while
the blue and red points kept the r(z) relation for the ΛCDM model, changing only
the dL(z) relation for that in the listed void model. The effect of the dL(z) relation
on the shape of the LF is clear, especially at the lower luminosity bins. Lower
panel: Effect of the comoving distance - redshift relation on the shape of the LF.
The black points were computed using the 1/Vmax method, assuming both dL(z) and
r(z) relations stemming from the standard model, while the blue and red points kept
the dL(z) relation for the ΛCDM model, changing only the r(z) relation for that in
the listed void model. The effect of the r(z) relation on the shape of the LF is found
to be much less relevant than that of the dL(z) relation.
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Table 2.1: Rest-frame 100 µm 1/Vmax Luminosity Function assuming the ΛCDM cosmological
model. Units are dex−1 Mpc−3.

Average redshift
Luminosity [L⊙] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (4.6 ± 3.3) × 10−2

1.3E+08 (4.9 ± 3.6) × 10−2

3.2E+08 (1.3 ± 0.6) × 10−2

7.9E+08 (2.1 ± 0.6) × 10−2

2.0E+09 (1.1 ± 0.2) × 10−2

5.0E+09 (6.4 ± 0.7) × 10−3 (2.9 ± 2.9) × 10−3

1.3E+10 (4.3 ± 0.4) × 10−3 (3.7 ± 1.5) × 10−3 (1.8 ± 1.8) × 10−4

3.2E+10 (2.01 ± 0.09) × 10−3 (3.4 ± 0.4) × 10−3 (4.4 ± 1.8) × 10−4 (7.9 ± 7.6) × 10−6

7.9E+10 (8.3 ± 0.5) × 10−4 (2.3 ± 0.2) × 10−3 (1.3 ± 0.2) × 10−3 (6.5 ± 3.8) × 10−5

2.0E+11 (1.0 ± 0.2) × 10−4 (5.2 ± 0.2) × 10−4 (1.3 ± 0.2) × 10−3 (8.0 ± 1.9) × 10−4 (8.1 ± 3.9) × 10−5

5.0E+11 (1.7 ± 0.7) × 10−5 (8.2 ± 0.7) × 10−5 (3.8 ± 0.4) × 10−4 (3.9 ± 0.6) × 10−4 (6.9 ± 3.8) × 10−4 (1.2 ± 0.6) × 10−4

1.3E+12 (6.8 ± 2.0) × 10−6 (4.4 ± 0.4) × 10−5 (9.3 ± 0.9) × 10−5 (3.1 ± 1.2) × 10−4 (5.2 ± 4.1) × 10−4

3.2E+12 (1.9 ± 0.8) × 10−6 (1.1 ± 0.2) × 10−5 (7.7 ± 2.6) × 10−5 (4.8 ± 1.5) × 10−5

7.9E+12 (3.7 ± 2.6) × 10−7 (4.8 ± 1.3) × 10−6 (3.3 ± 1.0) × 10−6

2.0E+13 (1.7 ± 1.2) × 10−6

Table 2.2: Rest-frame 100 µm 1/Vmax Luminosity Function assuming the CGBH cosmological
model. Units are dex−1 Mpc−3.

Average redshift
Luminosity [L⊙] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.8 ± 1.6) × 10−3

1.3E+08 (3.6 ± 3.1) × 10−3

3.2E+08 (1.8 ± 0.8) × 10−3

7.9E+08 (3.8 ± 1.3) × 10−3

2.0E+09 (3.6 ± 0.9) × 10−3

5.0E+09 (2.7 ± 0.4) × 10−3 (2.2 ± 2.2) × 10−4

1.3E+10 (2.3 ± 0.2) × 10−3 (8.1 ± 2.5) × 10−4 (3.8 ± 3.8) × 10−5

3.2E+10 (1.4 ± 0.1) × 10−3 (2.6 ± 0.4) × 10−3 (4.3 ± 2.6) × 10−4 (7.6 ± 7.1) × 10−6

7.9E+10 (5.6 ± 0.4) × 10−4 (1.8 ± 0.2) × 10−3 (1.1 ± 0.2) × 10−3 (1.2 ± 0.8) × 10−4

2.0E+11 (5.7 ± 0.9) × 10−5 (5.1 ± 0.3) × 10−4 (1.1 ± 0.1) × 10−3 (7.2 ± 2.1) × 10−4 (1.5 ± 0.6) × 10−4 (1.6 ± 1.6) × 10−5

5.0E+11 (1.0 ± 0.4) × 10−5 (8.2 ± 0.7) × 10−5 (3.5 ± 0.4) × 10−4 (3.6 ± 0.5) × 10−4 (5.8 ± 2.1) × 10−4 (7.5 ± 5.3) × 10−4

1.3E+12 (5.9 ± 1.7) × 10−6 (4.7 ± 0.4) × 10−5 (7.8 ± 0.6) × 10−5 (2.2 ± 0.8) × 10−4 (7.2 ± 2.7) × 10−5

3.2E+12 (2.2 ± 0.9) × 10−6 (1.2 ± 0.2) × 10−5 (7.0 ± 2.1) × 10−5 (5.3 ± 2.2) × 10−5

7.9E+12 (3.8 ± 1.4) × 10−6 (2.4 ± 1.2) × 10−6

2.0E+13 (5.4 ± 3.9) × 10−7

Table 2.3: Rest-frame 100 µm 1/Vmax Luminosity Function assuming the OCGBH cosmological
model. Units are dex−1 Mpc−3.

Average redshift
Luminosity [L⊙] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.2 ± 1.6) × 10−3

1.3E+08 (4.8 ± 3.8) × 10−3

3.2E+08 (1.9 ± 1.0) × 10−3

7.9E+08 (6.0 ± 1.8) × 10−3

2.0E+09 (3.2 ± 0.5) × 10−3

5.0E+09 (3.1 ± 0.4) × 10−3 (3.1 ± 2.6) × 10−4

1.3E+10 (2.7 ± 0.2) × 10−3 (1.6 ± 0.4) × 10−3 (4.7 ± 4.7) × 10−5

3.2E+10 (1.5 ± 0.2) × 10−3 (2.8 ± 0.4) × 10−3 (7.1 ± 3.4) × 10−4 (9.7 ± 9.1) × 10−6

7.9E+10 (5.4 ± 0.4) × 10−4 (2.0 ± 0.2) × 10−3 (1.5 ± 0.3) × 10−3 (2.0 ± 1.1) × 10−4 (4.0 ± 2.4) × 10−5

2.0E+11 (5.4 ± 0.9) × 10−5 (5.1 ± 0.3) × 10−4 (1.3 ± 0.2) × 10−3 (1.0 ± 0.3) × 10−3 (5.6 ± 2.5) × 10−4 (9.1 ± 6.0) × 10−5

5.0E+11 (1.1 ± 0.5) × 10−5 (7.2 ± 0.7) × 10−5 (2.9 ± 0.3) × 10−4 (3.3 ± 0.5) × 10−4 (3.7 ± 0.9) × 10−4 (8.5 ± 6.5) × 10−4

1.3E+12 (6.0 ± 1.9) × 10−6 (4.3 ± 0.5) × 10−5 (7.5 ± 0.6) × 10−5 (2.7 ± 0.9) × 10−4 (1.2 ± 0.4) × 10−4

3.2E+12 (1.4 ± 0.8) × 10−6 (8.8 ± 1.7) × 10−6 (4.2 ± 1.3) × 10−5 (3.3 ± 1.6) × 10−5

7.9E+12 (1.1 ± 0.7) × 10−6 (3.2 ± 1.5) × 10−6

2.0E+13
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Table 2.4: Rest-frame 160 µm 1/Vmax Luminosity Function assuming the ΛCDM cosmological
model. Units are dex−1 Mpc−3.

Average redshift
Luminosity [L⊙] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (4.9 ± 2.8) × 10−2

1.3E+08 (6.6 ± 4.3) × 10−2

3.2E+08 (6.7 ± 3.2) × 10−3

7.9E+08 (1.7 ± 0.5) × 10−2

2.0E+09 (1.2 ± 0.2) × 10−2

5.0E+09 (5.2 ± 0.6) × 10−3 (6.8 ± 3.3) × 10−3 (5.4 ± 5.4) × 10−5

1.3E+10 (3.0 ± 0.3) × 10−3 (2.7 ± 0.4) × 10−3 (1.8 ± 0.8) × 10−4 (1.8 ± 1.3) × 10−5 (1.5 ± 1.5) × 10−5

3.2E+10 (1.45 ± 0.07) × 10−3 (2.1 ± 0.2) × 10−3 (8.4 ± 1.5) × 10−4 (5.9 ± 2.3) × 10−4 (3.5 ± 1.8) × 10−5 (2.2 ± 1.8) × 10−5

7.9E+10 (2.3 ± 0.3) × 10−4 (7.0 ± 0.4) × 10−4 (1.1 ± 0.1) × 10−3 (9.6 ± 3.7) × 10−4 (1.2 ± 0.3) × 10−4 (3.5 ± 1.3) × 10−5

2.0E+11 (2.6 ± 0.9) × 10−5 (1.13 ± 0.08) × 10−4 (3.4 ± 0.4) × 10−4 (2.8 ± 0.4) × 10−4 (2.0 ± 0.5) × 10−4 (1.2 ± 0.7) × 10−4

5.0E+11 (3.0 ± 1.3) × 10−6 (5.0 ± 0.6) × 10−5 (8.6 ± 1.1) × 10−5 (1.2 ± 0.5) × 10−4 (6.1 ± 2.2) × 10−5

1.3E+12 (2.1 ± 0.9) × 10−6 (9.7 ± 1.6) × 10−6 (6.3 ± 1.9) × 10−5 (2.2 ± 0.6) × 10−5

3.2E+12 (5.8 ± 3.4) × 10−7 (6.0 ± 1.6) × 10−6 (5.5 ± 3.0) × 10−6

7.9E+12 (7.8 ± 3.5) × 10−7 (1.1 ± 0.5) × 10−6

2.0E+13

Table 2.5: Rest-frame 160 µm 1/Vmax Luminosity Function assuming the CGBH cosmological
model. Units are dex−1 Mpc−3.

Average redshift
Luminosity [L⊙] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.3 ± 1.4) × 10−3

1.3E+08 (3.5 ± 2.6) × 10−3

3.2E+08 (7.8 ± 2.8) × 10−4

7.9E+08 (2.6 ± 1.0) × 10−3

2.0E+09 (5.3 ± 1.4) × 10−3

5.0E+09 (2.7 ± 0.4) × 10−3 (4.4 ± 1.8) × 10−4 (4.5 ± 4.5) × 10−5

1.3E+10 (2.4 ± 0.2) × 10−3 (2.3 ± 0.3) × 10−3 (2.9 ± 1.4) × 10−4 (1.5 ± 1.1) × 10−5 (2.0 ± 2.0) × 10−5

3.2E+10 (1.0 ± 0.1) × 10−3 (1.6 ± 0.2) × 10−3 (7.2 ± 1.2) × 10−4 (3.5 ± 1.2) × 10−4 (7.1 ± 2.9) × 10−5 (5.3 ± 2.8) × 10−5

7.9E+10 (1.8 ± 0.2) × 10−4 (6.5 ± 0.4) × 10−4 (1.1 ± 0.1) × 10−3 (5.7 ± 1.4) × 10−4 (1.5 ± 0.4) × 10−4 (2.8 ± 1.2) × 10−5

2.0E+11 (1.6 ± 0.5) × 10−5 (1.18 ± 0.08) × 10−4 (3.3 ± 0.4) × 10−4 (2.3 ± 0.3) × 10−4 (2.9 ± 0.7) × 10−4 (1.0 ± 0.4) × 10−4

5.0E+11 (4.1 ± 1.5) × 10−6 (5.1 ± 0.6) × 10−5 (7.2 ± 1.0) × 10−5 (1.2 ± 0.6) × 10−4 (5.6 ± 1.7) × 10−5

1.3E+12 (2.4 ± 1.0) × 10−6 (1.0 ± 0.2) × 10−5 (7.8 ± 2.6) × 10−5 (1.6 ± 0.5) × 10−5

3.2E+12 (2.9 ± 2.9) × 10−7 (4.3 ± 1.1) × 10−6 (2.2 ± 0.8) × 10−6

7.9E+12 (8.8 ± 4.4) × 10−7 (8.1 ± 4.1) × 10−7

2.0E+13

Table 2.6: Rest-frame 160 µm 1/Vmax Luminosity Function assuming the OCGBH cosmological
model. Units are dex−1 Mpc−3.

Average redshift
Luminosity [L⊙] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.9 ± 1.8) × 10−3

1.3E+08 (4.7 ± 3.1) × 10−3

3.2E+08 (5.3 ± 2.4) × 10−4

7.9E+08 (3.7 ± 1.2) × 10−3

2.0E+09 (6.3 ± 1.6) × 10−3

5.0E+09 (3.0 ± 0.4) × 10−3 (9.7 ± 2.8) × 10−4 (2.0 ± 1.5) × 10−4

1.3E+10 (2.6 ± 0.2) × 10−3 (2.6 ± 0.4) × 10−3 (3.3 ± 1.2) × 10−4 (1.9 ± 1.4) × 10−5 (2.5 ± 2.5) × 10−5

3.2E+10 (1.08 ± 0.06) × 10−3 (2.0 ± 0.2) × 10−3 (1.1 ± 0.2) × 10−3 (6.2 ± 1.8) × 10−4 (1.0 ± 0.4) × 10−4 (8.2 ± 3.6) × 10−5

7.9E+10 (1.3 ± 0.2) × 10−4 (6.6 ± 0.4) × 10−4 (1.1 ± 0.1) × 10−3 (5.7 ± 1.5) × 10−4 (2.2 ± 0.5) × 10−4 (4.9 ± 2.2) × 10−5

2.0E+11 (1.5 ± 0.5) × 10−5 (1.07 ± 0.09) × 10−4 (3.4 ± 0.4) × 10−4 (3.0 ± 0.4) × 10−4 (4.1 ± 1.1) × 10−4 (1.2 ± 0.4) × 10−4

5.0E+11 (6.8 ± 6.8) × 10−7 (4.0 ± 0.5) × 10−5 (7.0 ± 0.7) × 10−5 (7.2 ± 1.3) × 10−5 (5.0 ± 1.5) × 10−5

1.3E+12 (1.1 ± 0.2) × 10−5 (9.5 ± 3.2) × 10−5 (1.7 ± 0.6) × 10−5

3.2E+12 (2.9 ± 1.0) × 10−6 (2.5 ± 0.9) × 10−6

7.9E+12 (5.5 ± 3.9) × 10−7 (7.8 ± 4.5) × 10−7

2.0E+13

54



T
ab

le
2.
7:

R
es
t-
fr
am

e
to
ta
l
IR

1/
V

m
a
x
L
u
m
in
os
it
y
F
u
n
ct
io
n
in

th
e
P
A
C
S
10
0
µ
m

b
an

d
,
as
su
m
in
g
th
e
Λ
C
D
M

co
sm

ol
og
ic
al

m
o
d
el
.
U
n
it
s
ar
e
d
ex

−
1
M
p
c−

3
.

A
v
e
ra

g
e
re

d
sh

if
t

L
u
m
in

o
si
ty

[L
⊙
]

0
.2

0
.4

0
.5

0
.7

0
.9

1
.1

1
.5

1
.9

2
.2

2
.8

3
.6

1
.8
E
+
0
8

(3
.7

±
2
.8
)
×

1
0
−

2

5
.6
E
+
0
8

(1
.3

±
0
.5
)
×

1
0
−

2

1
.8
E
+
0
9

(1
.9

±
0
.5
)
×

1
0
−

2

5
.6
E
+
0
9

(9
.3

±
1
.3
)
×

1
0
−

3
(1

.0
±

0
.8
)
×

1
0
−

3

1
.8
E
+
1
0

(3
.7

±
0
.3
)
×

1
0
−

3
(4

.7
±

1
.1
)
×

1
0
−

3
(5

.8
±

3
.4
)
×

1
0
−

4
(1

.0
±

1
.0
)
×

1
0
−

6

5
.6
E
+
1
0

(1
.4
6
±

0
.0
9
)
×

1
0
−

3
(2

.8
±

0
.2
)
×

1
0
−

3
(2

.9
±

0
.5
)
×

1
0
−

3
(1

.3
±

0
.9
)
×

1
0
−

2
(5

.6
±

2
.2
)
×

1
0
−

4

1
.8
E
+
1
1

(2
.8

±
0
.4
)
×

1
0
−

4
(6

.6
±

0
.4
)
×

1
0
−

4
(1

.2
±

0
.1
)
×

1
0
−

3
(2

.1
±

0
.2
)
×

1
0
−

3
(1

.3
±

0
.2
)
×

1
0
−

3
(1

.9
±

0
.5
)
×

1
0
−

3
(2

.2
±

1
.2
)
×

1
0
−

4

5
.6
E
+
1
1

(2
.0

±
1
.0
)
×

1
0
−

5
(4

.6
±

1
.1
)
×

1
0
−

5
(1

.2
±

0
.1
)
×

1
0
−

4
(2

.7
±

0
.2
)
×

1
0
−

4
(5

.3
±

0
.5
)
×

1
0
−

4
(6

.6
±

1
.1
)
×

1
0
−

4
(6

.7
±

1
.0
)
×

1
0
−

4
(2

.2
±

0
.9
)
×

1
0
−

4
(2

.3
±

0
.9
)
×

1
0
−

4

1
.8
E
+
1
2

(4
.9

±
4
.9
)
×

1
0
−

6
(2

.4
±

2
.4
)
×

1
0
−

6
(2

.9
±

2
.1
)
×

1
0
−

6
(1

.7
±

0
.4
)
×

1
0
−

5
(5

.0
±

0
.5
)
×

1
0
−

5
(8

.9
±

0
.7
)
×

1
0
−

5
(1

.8
±

0
.2
)
×

1
0
−

4
(2

.1
±

0
.5
)
×

1
0
−

4
(3

.9
±

1
.2
)
×

1
0
−

4
(4

.6
±

3
.3
)
×

1
0
−

4

5
.6
E
+
1
2

(1
.5

±
1
.1
)
×

1
0
−

6
(1

.7
±

1
.0
)
×

1
0
−

6
(6

.1
±

1
.7
)
×

1
0
−

6
(1

.2
±

0
.1
)
×

1
0
−

5
(3

.9
±

0
.8
)
×

1
0
−

5
(6

.8
±

1
.4
)
×

1
0
−

5
(9

.8
±

2
.7
)
×

1
0
−

5
(2

.8
±

1
.4
)
×

1
0
−

5

1
.8
E
+
1
3

(3
.0

±
2
.1
)
×

1
0
−

7
(9

.5
±

4
.7
)
×

1
0
−

7
(1

.7
±

0
.5
)
×

1
0
−

6
(6

.6
±

1
.6
)
×

1
0
−

6
(1

.9
±

0
.7
)
×

1
0
−

6

55



T
ab

le
2.
8:

R
es
t-
fr
am

e
to
ta
l
IR

1/
V

m
a
x
L
u
m
in
os
it
y
F
u
n
ct
io
n
in

th
e
P
A
C
S
16
0
µ
m

b
an

d
,
as
su
m
in
g
th
e
Λ
C
D
M

co
sm

ol
og
ic
al

m
o
d
el
.
U
n
it
s
ar
e
d
ex

−
1
M
p
c−

3
.

A
v
e
ra

g
e
re

d
sh

if
t

L
u
m
in

o
si
ty

[L
⊙
]

0
.2

0
.4

0
.5

0
.7

0
.9

1
.1

1
.5

1
.9

2
.2

2
.8

3
.6

1
.8
E
+
0
8

(4
.9

±
3
.5
)
×

1
0
−

2

5
.6
E
+
0
8

(7
.7

±
4
.1
)
×

1
0
−

3

1
.8
E
+
0
9

(1
.6

±
0
.4
)
×

1
0
−

2

5
.6
E
+
0
9

(9
.0

±
1
.3
)
×

1
0
−

3
(1

.8
±

1
.8
)
×

1
0
−

3

1
.8
E
+
1
0

(3
.6

±
0
.3
)
×

1
0
−

3
(4

.0
±

1
.0
)
×

1
0
−

3
(5

.8
±

2
.7
)
×

1
0
−

4

5
.6
E
+
1
0

(1
.5
1
±

0
.0
9
)
×

1
0
−

3
(2

.5
±

0
.3
)
×

1
0
−

3
(2

.8
±

0
.4
)
×

1
0
−

3
(4

.2
±

1
.3
)
×

1
0
−

3
(1

.1
±

0
.8
)
×

1
0
−

4

1
.8
E
+
1
1

(3
.1

±
0
.4
)
×

1
0
−

4
(7

.3
±

0
.5
)
×

1
0
−

4
(1

.0
±

0
.1
)
×

1
0
−

3
(1

.5
±

0
.2
)
×

1
0
−

3
(9

.0
±

1
.5
)
×

1
0
−

4
(1

.4
±

0
.3
)
×

1
0
−

3
(8

.5
±

3
.4
)
×

1
0
−

4

5
.6
E
+
1
1

(2
.1

±
1
.0
)
×

1
0
−

5
(4

.9
±

1
.1
)
×

1
0
−

5
(1

.3
±

0
.1
)
×

1
0
−

4
(2

.9
±

0
.2
)
×

1
0
−

4
(6

.1
±

0
.6
)
×

1
0
−

4
(7

.4
±

1
.0
)
×

1
0
−

4
(5

.2
±

0
.7
)
×

1
0
−

4
(1

.6
±

0
.5
)
×

1
0
−

4
(1

.6
±

0
.7
)
×

1
0
−

4

1
.8
E
+
1
2

(5
.4

±
5
.4
)
×

1
0
−

6
(2

.5
±

2
.5
)
×

1
0
−

6
(3

.0
±

2
.1
)
×

1
0
−

6
(1

.7
±

0
.4
)
×

1
0
−

5
(5

.7
±

0
.6
)
×

1
0
−

5
(9

.6
±

0
.7
)
×

1
0
−

5
(1

.7
±

0
.2
)
×

1
0
−

4
(1

.3
±

0
.3
)
×

1
0
−

4
(2

.9
±

0
.5
)
×

1
0
−

4
(1

.4
±

0
.6
)
×

1
0
−

4
(2

.5
±

1
.6
)
×

1
0
−

5

5
.6
E
+
1
2

(1
.5

±
1
.1
)
×

1
0
−

6
(1

.7
±

1
.0
)
×

1
0
−

6
(6

.3
±

1
.7
)
×

1
0
−

6
(1

.4
±

0
.2
)
×

1
0
−

5
(3

.6
±

0
.3
)
×

1
0
−

5
(4

.4
±

0
.6
)
×

1
0
−

5
(7

.7
±

1
.8
)
×

1
0
−

5
(2

.5
±

0
.8
)
×

1
0
−

5

1
.8
E
+
1
3

(3
.2

±
2
.3
)
×

1
0
−

7
(9

.6
±

4
.8
)
×

1
0
−

7
(1

.6
±

0
.5
)
×

1
0
−

6
(7

.1
±

1
.1
)
×

1
0
−

6
(1

.6
±

0
.5
)
×

1
0
−

6

56



T
ab

le
2.
9:

R
es
t-
fr
am

e
to
ta
l
IR

1/
V

m
a
x
L
u
m
in
os
it
y
F
u
n
ct
io
n
in

th
e
P
A
C
S
10
0
µ
m

b
an

d
,
as
su
m
in
g
th
e
C
G
B
H

co
sm

ol
og
ic
al

m
o
d
el
.
U
n
it
s
ar
e
d
ex

−
1
M
p
c−

3
.

A
v
e
ra

g
e
re

d
sh

if
t

L
u
m
in

o
si
ty

[L
⊙
]

0
.2

0
.4

0
.5

0
.7

0
.9

1
.1

1
.5

1
.9

2
.2

2
.8

3
.6

1
.8
E
+
0
8

(3
.3

±
3
.1
)
×

1
0
−

3

5
.6
E
+
0
8

(2
.0

±
0
.9
)
×

1
0
−

3

1
.8
E
+
0
9

(5
.6

±
1
.4
)
×

1
0
−

3

5
.6
E
+
0
9

(3
.9

±
0
.5
)
×

1
0
−

3
(6

.0
±

4
.4
)
×

1
0
−

4

1
.8
E
+
1
0

(2
.3

±
0
.2
)
×

1
0
−

3
(2

.6
±

0
.6
)
×

1
0
−

3
(1

.8
±

1
.8
)
×

1
0
−

4
(5

.7
±

5
.7
)
×

1
0
−

7

5
.6
E
+
1
0

(1
.1

±
0
.1
)
×

1
0
−

3
(2

.2
±

0
.2
)
×

1
0
−

3
(2

.4
±

0
.4
)
×

1
0
−

3
(4

.2
±

1
.7
)
×

1
0
−

3
(5

.3
±

2
.4
)
×

1
0
−

4

1
.8
E
+
1
1

(2
.2

±
0
.3
)
×

1
0
−

4
(7

.1
±

0
.4
)
×

1
0
−

4
(1

.0
7
±

0
.0
9
)
×

1
0
−

3
(1

.9
±

0
.2
)
×

1
0
−

3
(1

.2
±

0
.2
)
×

1
0
−

3
(1

.8
±

0
.5
)
×

1
0
−

3
(3

.2
±

1
.7
)
×

1
0
−

4

5
.6
E
+
1
1

(1
.2

±
0
.5
)
×

1
0
−

5
(4

.8
±

1
.0
)
×

1
0
−

5
(1

.5
±

0
.1
)
×

1
0
−

4
(3

.0
±

0
.2
)
×

1
0
−

4
(5

.7
±

0
.6
)
×

1
0
−

4
(6

.8
±

1
.2
)
×

1
0
−

4
(6

.1
±

0
.9
)
×

1
0
−

4
(2

.9
±

1
.2
)
×

1
0
−

4
(2

.2
±

0
.9
)
×

1
0
−

4

1
.8
E
+
1
2

(2
.9

±
2
.9
)
×

1
0
−

6
(5

.1
±

3
.6
)
×

1
0
−

6
(4

.1
±

2
.3
)
×

1
0
−

6
(1

.7
±

0
.4
)
×

1
0
−

5
(5

.7
±

0
.6
)
×

1
0
−

5
(1

.0
2
±

0
.0
9
)
×

1
0
−

4
(1

.4
±

0
.1
)
×

1
0
−

4
(2

.7
±

0
.8
)
×

1
0
−

4
(4

.7
±

1
.2
)
×

1
0
−

4
(6

.8
±

4
.2
)
×

1
0
−

4
(9

.1
±

9
.1
)
×

1
0
−

6

5
.6
E
+
1
2

(1
.6

±
1
.1
)
×

1
0
−

6
(1

.8
±

1
.0
)
×

1
0
−

6
(7

.3
±

2
.0
)
×

1
0
−

6
(1

.2
±

0
.2
)
×

1
0
−

5
(4

.4
±

1
.1
)
×

1
0
−

5
(5

.4
±

1
.3
)
×

1
0
−

5
(8

.7
±

2
.6
)
×

1
0
−

5
(3

.0
±

1
.6
)
×

1
0
−

5

1
.8
E
+
1
3

(3
.8

±
2
.7
)
×

1
0
−

7
(6

.5
±

4
.6
)
×

1
0
−

7
(1

.7
±

0
.6
)
×

1
0
−

6
(5

.9
±

1
.6
)
×

1
0
−

6
(2

.5
±

0
.9
)
×

1
0
−

6

57



T
ab

le
2.
10
:
R
es
t-
fr
am

e
to
ta
l
IR

1/
V

m
a
x
L
u
m
in
os
it
y
F
u
n
ct
io
n
in

th
e
P
A
C
S
16
0
µ
m

b
an

d
,
as
su
m
in
g
th
e
C
G
B
H

co
sm

ol
og
ic
al

m
o
d
el
.
U
n
it
s
ar
e
d
ex

−
1
M
p
c−

3
.

A
v
e
ra

g
e
re

d
sh

if
t

L
u
m
in

o
si
ty

[L
⊙
]

0
.2

0
.4

0
.5

0
.7

0
.9

1
.1

1
.5

1
.9

2
.2

2
.8

3
.6

1
.8
E
+
0
8

(3
.3

±
2
.8
)
×

1
0
−

3

5
.6
E
+
0
8

(1
.7

±
0
.8
)
×

1
0
−

3

1
.8
E
+
0
9

(3
.8

±
1
.2
)
×

1
0
−

3

5
.6
E
+
0
9

(5
.0

±
1
.1
)
×

1
0
−

3
(2

.9
±

2
.9
)
×

1
0
−

4

1
.8
E
+
1
0

(2
.3

±
0
.2
)
×

1
0
−

3
(3

.1
±

0
.8
)
×

1
0
−

3
(4

.7
±

2
.4
)
×

1
0
−

4

5
.6
E
+
1
0

(1
.3

±
0
.1
)
×

1
0
−

3
(1

.7
±

0
.2
)
×

1
0
−

3
(2

.5
±

0
.4
)
×

1
0
−

3
(2

.3
±

0
.4
)
×

1
0
−

3
(8

.9
±

6
.4
)
×

1
0
−

5

1
.8
E
+
1
1

(2
.4

±
0
.3
)
×

1
0
−

4
(8

.0
±

0
.5
)
×

1
0
−

4
(9

.8
±

1
.2
)
×

1
0
−

4
(1

.3
±

0
.2
)
×

1
0
−

3
(9

.4
±

1
.9
)
×

1
0
−

4
(1

.3
±

0
.2
)
×

1
0
−

3
(3

.6
±

1
.3
)
×

1
0
−

4

5
.6
E
+
1
1

(1
.2

±
0
.5
)
×

1
0
−

5
(5

.1
±

1
.1
)
×

1
0
−

5
(1

.5
±

0
.2
)
×

1
0
−

4
(3

.3
±

0
.2
)
×

1
0
−

4
(5

.9
±

0
.6
)
×

1
0
−

4
(7

.6
±

1
.1
)
×

1
0
−

4
(5

.3
±

0
.7
)
×

1
0
−

4
(2

.4
±

0
.7
)
×

1
0
−

4
(2

.1
±

0
.7
)
×

1
0
−

4
(1

.9
±

1
.9
)
×

1
0
−

5

1
.8
E
+
1
2

(2
.9

±
2
.9
)
×

1
0
−

6
(5

.8
±

4
.1
)
×

1
0
−

6
(4

.2
±

2
.4
)
×

1
0
−

6
(1

.8
±

0
.4
)
×

1
0
−

5
(6

.5
±

0
.7
)
×

1
0
−

5
(1

.1
2
±

0
.0
9
)
×

1
0
−

4
(1

.4
±

0
.1
)
×

1
0
−

4
(1

.5
±

0
.4
)
×

1
0
−

4
(3

.3
±

0
.6
)
×

1
0
−

4
(1

.8
±

0
.5
)
×

1
0
−

4
(2

.7
±

1
.4
)
×

1
0
−

5

5
.6
E
+
1
2

(1
.7

±
1
.2
)
×

1
0
−

6
(1

.9
±

1
.1
)
×

1
0
−

6
(7

.4
±

2
.1
)
×

1
0
−

6
(1

.4
±

0
.2
)
×

1
0
−

5
(4

.4
±

0
.4
)
×

1
0
−

5
(4

.1
±

0
.4
)
×

1
0
−

5
(7

.7
±

1
.8
)
×

1
0
−

5
(2

.9
±

1
.0
)
×

1
0
−

5

1
.8
E
+
1
3

(4
.0

±
2
.8
)
×

1
0
−

7
(6

.7
±

4
.7
)
×

1
0
−

7
(1

.7
±

0
.6
)
×

1
0
−

6
(6

.4
±

1
.3
)
×

1
0
−

6
(1

.5
±

0
.4
)
×

1
0
−

6

58



T
ab

le
2.
11
:
R
es
t-
fr
am

e
to
ta
l
IR

1/
V

m
a
x
L
u
m
in
os
it
y
F
u
n
ct
io
n
in

th
e
P
A
C
S
10
0
µ
m

b
an

d
,
as
su
m
in
g
th
e
O
C
G
B
H

co
sm

ol
og
ic
al

m
o
d
el
.
U
n
it
s
ar
e
d
ex

−
1

M
p
c−

3
.

A
v
e
ra

g
e
re

d
sh

if
t

L
u
m
in

o
si
ty

[L
⊙
]

0
.2

0
.4

0
.5

0
.7

0
.9

1
.1

1
.5

1
.9

2
.2

2
.8

3
.6

1
.8
E
+
0
8

(4
.7

±
3
.9
)
×

1
0
−

3

5
.6
E
+
0
8

(2
.3

±
1
.1
)
×

1
0
−

3

1
.8
E
+
0
9

(6
.7

±
1
.7
)
×

1
0
−

3

5
.6
E
+
0
9

(4
.4

±
0
.6
)
×

1
0
−

3
(7

.1
±

5
.3
)
×

1
0
−

4

1
.8
E
+
1
0

(2
.6

±
0
.2
)
×

1
0
−

3
(3

.5
±

0
.8
)
×

1
0
−

3
(7

.4
±

3
.9
)
×

1
0
−

4
(9

.2
±

9
.2
)
×

1
0
−

4
(7

.3
±

7
.3
)
×

1
0
−

7

5
.6
E
+
1
0

(1
.2

±
0
.2
)
×

1
0
−

3
(2

.3
±

0
.2
)
×

1
0
−

3
(2

.6
±

0
.4
)
×

1
0
−

3
(4

.6
±

1
.9
)
×

1
0
−

3
(7

.3
±

3
.1
)
×

1
0
−

4
(9

.1
±

9
.1
)
×

1
0
−

5

1
.8
E
+
1
1

(1
.9

±
0
.3
)
×

1
0
−

4
(7

.0
±

0
.5
)
×

1
0
−

4
(1

.2
±

0
.1
)
×

1
0
−

3
(2

.2
±

0
.2
)
×

1
0
−

3
(1

.5
±

0
.2
)
×

1
0
−

3
(2

.4
±

0
.6
)
×

1
0
−

3
(4

.9
±

2
.3
)
×

1
0
−

4

5
.6
E
+
1
1

(8
.7

±
4
.4
)
×

1
0
−

6
(4

.7
±

1
.1
)
×

1
0
−

5
(1

.3
±

0
.2
)
×

1
0
−

4
(2

.9
±

0
.2
)
×

1
0
−

4
(6

.0
±

0
.6
)
×

1
0
−

4
(6

.5
±

1
.1
)
×

1
0
−

4
(7

.2
±

1
.0
)
×

1
0
−

4
(4

.1
±

1
.5
)
×

1
0
−

4
(4

.4
±

1
.6
)
×

1
0
−

4

1
.8
E
+
1
2

(3
.4

±
3
.4
)
×

1
0
−

6
(3

.0
±

3
.0
)
×

1
0
−

6
(3

.3
±

2
.3
)
×

1
0
−

6
(1

.7
±

0
.4
)
×

1
0
−

5
(4

.7
±

0
.6
)
×

1
0
−

5
(1

.0
3
±

0
.1
0
)
×

1
0
−

4
(1

.5
±

0
.1
)
×

1
0
−

4
(3

.1
±

1
.0
)
×

1
0
−

4
(4

.5
±

1
.0
)
×

1
0
−

4
(8

.8
±

5
.2
)
×

1
0
−

4
(1

.9
±

1
.4
)
×

1
0
−

5

5
.6
E
+
1
2

(9
.4

±
9
.4
)
×

1
0
−

7
(1

.5
±

1
.1
)
×

1
0
−

6
(2

.1
±

1
.2
)
×

1
0
−

6
(9

.3
±

1
.6
)
×

1
0
−

6
(4

.4
±

1
.4
)
×

1
0
−

5
(4

.5
±

1
.0
)
×

1
0
−

5
(6

.6
±

2
.1
)
×

1
0
−

5
(2

.7
±

1
.7
)
×

1
0
−

5

1
.8
E
+
1
3

(2
.3

±
2
.3
)
×

1
0
−

7
(8

.1
±

5
.7
)
×

1
0
−

7
(1

.5
±

0
.6
)
×

1
0
−

6
(5

.1
±

1
.7
)
×

1
0
−

6
(2

.9
±

1
.1
)
×

1
0
−

6

59



T
ab

le
2.
12
:
R
es
t-
fr
am

e
to
ta
l
IR

1/
V

m
a
x
L
u
m
in
os
it
y
F
u
n
ct
io
n
in

th
e
P
A
C
S
16
0
µ
m

b
an

d
,
as
su
m
in
g
th
e
O
C
G
B
H

co
sm

ol
og
ic
al

m
o
d
el
.
U
n
it
s
ar
e
d
ex

−
1

M
p
c−

3
.

A
v
e
ra

g
e
re

d
sh

if
t

L
u
m
in

o
si
ty

[L
⊙
]

0
.2

0
.4

0
.5

0
.7

0
.9

1
.1

1
.5

1
.9

2
.2

2
.8

3
.6

1
.8
E
+
0
8

(5
.1

±
3
.6
)
×

1
0
−

3

5
.6
E
+
0
8

(6
.2

±
3
.0
)
×

1
0
−

4

1
.8
E
+
0
9

(4
.9

±
1
.4
)
×

1
0
−

3

5
.6
E
+
0
9

(5
.8

±
1
.3
)
×

1
0
−

3
(3

.4
±

3
.4
)
×

1
0
−

4

1
.8
E
+
1
0

(2
.8

±
0
.3
)
×

1
0
−

3
(3

.9
±

1
.0
)
×

1
0
−

3
(6

.7
±

3
.1
)
×

1
0
−

4
(2

.1
±

1
.5
)
×

1
0
−

4

5
.6
E
+
1
0

(1
.3

±
0
.2
)
×

1
0
−

3
(1

.9
±

0
.2
)
×

1
0
−

3
(3

.1
±

0
.5
)
×

1
0
−

3
(2

.9
±

0
.5
)
×

1
0
−

3
(1

.1
±

0
.8
)
×

1
0
−

4
(7

.6
±

7
.6
)
×

1
0
−

5

1
.8
E
+
1
1

(2
.1

±
0
.3
)
×

1
0
−

4
(7

.8
±

0
.5
)
×

1
0
−

4
(1

.0
±

0
.1
)
×

1
0
−

3
(1

.4
±

0
.2
)
×

1
0
−

3
(1

.3
±

0
.2
)
×

1
0
−

3
(2

.0
±

0
.3
)
×

1
0
−

3
(5

.4
±

1
.8
)
×

1
0
−

4

5
.6
E
+
1
1

(9
.1

±
4
.6
)
×

1
0
−

6
(5

.1
±

1
.2
)
×

1
0
−

5
(1

.3
±

0
.2
)
×

1
0
−

4
(3

.1
±

0
.2
)
×

1
0
−

4
(6

.3
±

0
.5
)
×

1
0
−

4
(6

.4
±

0
.9
)
×

1
0
−

4
(6

.3
±

0
.8
)
×

1
0
−

4
(3

.4
±

1
.0
)
×

1
0
−

4
(3

.5
±

0
.9
)
×

1
0
−

4
(4

.8
±

3
.4
)
×

1
0
−

5

1
.8
E
+
1
2

(3
.5

±
3
.5
)
×

1
0
−

6
(3

.0
±

3
.0
)
×

1
0
−

6
(3

.4
±

2
.4
)
×

1
0
−

6
(1

.8
±

0
.4
)
×

1
0
−

5
(4

.8
±

0
.6
)
×

1
0
−

5
(1

.1
4
±

0
.1
0
)
×

1
0
−

4
(1

.5
±

0
.1
)
×

1
0
−

4
(1

.7
±

0
.3
)
×

1
0
−

4
(3

.4
±

0
.6
)
×

1
0
−

4
(2

.3
±

0
.6
)
×

1
0
−

4
(4

.2
±

1
.8
)
×

1
0
−

5

5
.6
E
+
1
2

(1
.0

±
1
.0
)
×

1
0
−

6
(1

.7
±

1
.2
)
×

1
0
−

6
(2

.2
±

1
.3
)
×

1
0
−

6
(1

.0
±

0
.2
)
×

1
0
−

5
(3

.8
±

0
.4
)
×

1
0
−

5
(4

.1
±

0
.4
)
×

1
0
−

5
(6

.1
±

1
.4
)
×

1
0
−

5
(2

.4
±

1
.0
)
×

1
0
−

5

1
.8
E
+
1
3

(2
.5

±
2
.5
)
×

1
0
−

7
(8

.4
±

5
.9
)
×

1
0
−

7
(1

.5
±

0
.6
)
×

1
0
−

6
(6

.0
±

1
.3
)
×

1
0
−

6
(1

.8
±

0
.5
)
×

1
0
−

6

60



Table 2.13: Best-fitting Schechter parameters for the rest-frame 100 µm 1/Vmax Luminosity func-
tions.

ΛCDM CBGH OCBGH
z̄ φ∗ L∗ φ∗ L∗ φ∗ L∗

0.2 (2.2 ± 0.2) × 10−3 (7.8 ± 0.7) × 1010 (2.7 ± 0.2) × 10−3 (5.2 ± 0.4) × 1010 (3.0 ± 0.3) × 10−3 (4.8 ± 0.4) × 1010

0.6 (1.8 ± 0.1) × 10−3 (1.81 ± 0.09) × 1011 (2.2 ± 0.1) × 10−3 (1.49 ± 0.06) × 1011 (2.5 ± 0.2) × 10−3 (1.36 ± 0.06) × 1011

1.0 (1.02 ± 0.09) × 10−3 (4.7 ± 0.2) × 1011 (1.5 ± 0.1) × 10−3 (3.7 ± 0.2) × 1011 (1.5 ± 0.1) × 10−3 (3.5 ± 0.2) × 1011

1.5 (4.1 ± 0.5) × 10−4 (9.9 ± 0.7) × 1011 (3.5 ± 0.4) × 10−4 (9.1 ± 0.8) × 1011 (4.6 ± 0.6) × 10−4 (7.4 ± 0.7) × 1011

2.1 (4.8 ± 1.4) × 10−4 (2.0 ± 0.2) × 1012 (5.6 ± 1.3) × 10−4 (1.6 ± 0.2) × 1012 (5.6 ± 1.2) × 10−4 (1.3 ± 0.1) × 1012

3.0 (2.8 ± 1.4) × 10−4 (2.0 ± 0.4) × 1012 (1.5 ± 0.5) × 10−4 (2.0 ± 0.3) × 1012 (2.2 ± 0.7) × 10−4 (1.9 ± 0.3) × 1012

Table 2.14: Best-fitting Schechter parameters for the rest-frame 160 µm 1/Vmax Luminosity func-
tions.

ΛCDM CBGH OCBGH
z̄ φ∗ L∗ φ∗ L∗ φ∗ L∗

0.2 (3.9 ± 0.4) × 10−3 (3.1 ± 0.3) × 1010 (2.4 ± 0.2) × 10−3 (3.3 ± 0.2) × 1010 (2.4 ± 0.2) × 10−3 (3.0 ± 0.1) × 1010

0.6 (2.3 ± 0.2) × 10−3 (7.2 ± 0.3) × 1010 (2.2 ± 0.2) × 10−3 (6.9 ± 0.3) × 1010 (2.5 ± 0.2) × 10−3 (6.2 ± 0.3) × 1010

1.0 (9.0 ± 0.8) × 10−4 (2.0 ± 0.1) × 1011 (1.12 ± 0.10) × 10−3 (1.65 ± 0.09) × 1011 (1.6 ± 0.1) × 10−3 (1.35 ± 0.06) × 1011

1.5 (3.9 ± 0.5) × 10−4 (3.7 ± 0.3) × 1011 (3.8 ± 0.4) × 10−4 (3.4 ± 0.2) × 1011 (3.5 ± 0.5) × 10−4 (3.4 ± 0.3) × 1011

2.1 (7.9 ± 1.5) × 10−5 (1.5 ± 0.2) × 1012 (2.1 ± 0.3) × 10−4 (8.3 ± 0.6) × 1011 (1.7 ± 0.3) × 10−4 (7.7 ± 0.8) × 1011

3.0 (3.8 ± 1.2) × 10−5 (2.1 ± 0.5) × 1012 (1.0 ± 0.2) × 10−4 (7.9 ± 1.1) × 1011 (9.3 ± 2.3) × 10−5 (8.4 ± 1.3) × 1011

Table 2.15: Best-fitting Schechter parameters for the rest-frame total IR 1/Vmax Luminosity func-
tions in the PACS 100 µm band.

ΛCDM CBGH OCBGH
z̄ φ∗ L∗ φ∗ L∗ φ∗ L∗

0.2 (9.9 ± 2.2) × 10−4 (1.6 ± 0.3) × 1011 (1.3 ± 0.2) × 10−3 (1.2 ± 0.2) × 1011 (1.9 ± 0.4) × 10−3 (8.7 ± 1.4) × 1010

0.4 (1.6 ± 0.2) × 10−3 (1.9 ± 0.2) × 1011 (2.0 ± 0.2) × 10−3 (1.7 ± 0.1) × 1011 (2.3 ± 0.2) × 10−3 (1.6 ± 0.1) × 1011

0.5 (1.4 ± 0.2) × 10−3 (2.9 ± 0.3) × 1011 (1.8 ± 0.2) × 10−3 (2.6 ± 0.2) × 1011 (2.3 ± 0.2) × 10−3 (2.2 ± 0.2) × 1011

0.7 (1.9 ± 0.3) × 10−3 (3.6 ± 0.4) × 1011 (1.5 ± 0.2) × 10−3 (4.0 ± 0.4) × 1011 (3.7 ± 0.5) × 10−3 (2.5 ± 0.2) × 1011

0.9 (6.4 ± 0.8) × 10−4 (8.7 ± 0.7) × 1011 (1.0 ± 0.1) × 10−3 (7.1 ± 0.5) × 1011 (1.5 ± 0.2) × 10−3 (5.7 ± 0.4) × 1011

1.1 (4.8 ± 1.0) × 10−4 (1.3 ± 0.2) × 1012 (9.7 ± 1.8) × 10−4 (9.1 ± 1.1) × 1011 (1.3 ± 0.2) × 10−3 (8.0 ± 0.8) × 1011

1.5 (3.9 ± 0.5) × 10−4 (2.0 ± 0.1) × 1012 (4.0 ± 0.5) × 10−4 (1.8 ± 0.1) × 1012 (5.9 ± 0.7) × 10−4 (1.5 ± 0.1) × 1012

1.9 (9.2 ± 2.1) × 10−5 (5.1 ± 0.7) × 1012 (2.4 ± 0.5) × 10−4 (3.5 ± 0.4) × 1012 (3.2 ± 0.8) × 10−4 (3.3 ± 0.5) × 1012

2.2 (8.4 ± 2.0) × 10−5 (5.9 ± 0.7) × 1012 (1.7 ± 0.4) × 10−4 (4.4 ± 0.5) × 1012 (3.1 ± 0.7) × 10−4 (3.5 ± 0.4) × 1012

2.8 (2.2 ± 0.8) × 10−4 (6.3 ± 1.1) × 1012 (2.8 ± 1.0) × 10−4 (5.2 ± 0.9) × 1012 (2.0 ± 0.8) × 10−4 (5.4 ± 1.1) × 1012

3.6 (3.8 ± 3.0) × 10−6 (2.4 ± 1.5) × 1013 (5.0 ± 5.9) × 10−6 (2.3 ± 2.6) × 1013 (1.4 ± 0.9) × 10−5 (1.2 ± 0.7) × 1013

Table 2.16: Best-fitting Schechter parameters for the rest-frame total IR 1/Vmax Luminosity func-
tions in the PACS 160 µm band.

ΛCDM CBGH OCBGH
z̄ φ∗ L∗ φ∗ L∗ φ∗ L∗

0.2 (1.1 ± 0.2) × 10−3 (1.6 ± 0.3) × 1011 (1.8 ± 0.3) × 10−3 (1.0 ± 0.2) × 1011 (2.5 ± 0.5) × 10−3 (7.9 ± 1.2) × 1010

0.4 (1.6 ± 0.2) × 10−3 (2.0 ± 0.2) × 1011 (2.0 ± 0.2) × 10−3 (1.8 ± 0.1) × 1011 (2.3 ± 0.2) × 10−3 (1.6 ± 0.1) × 1011

0.5 (1.3 ± 0.2) × 10−3 (2.9 ± 0.3) × 1011 (2.0 ± 0.2) × 10−3 (2.4 ± 0.2) × 1011 (2.6 ± 0.3) × 10−3 (2.1 ± 0.1) × 1011

0.7 (9.8 ± 1.2) × 10−4 (5.1 ± 0.5) × 1011 (1.3 ± 0.1) × 10−3 (4.4 ± 0.3) × 1011 (1.5 ± 0.2) × 10−3 (4.0 ± 0.4) × 1011

0.9 (5.1 ± 0.6) × 10−4 (1.01 ± 0.09) × 1012 (1.1 ± 0.1) × 10−3 (7.0 ± 0.5) × 1011 (1.7 ± 0.2) × 10−3 (5.5 ± 0.3) × 1011

1.1 (5.0 ± 0.8) × 10−4 (1.3 ± 0.1) × 1012 (1.1 ± 0.1) × 10−3 (8.6 ± 0.7) × 1011 (1.4 ± 0.2) × 10−3 (7.7 ± 0.6) × 1011

1.5 (3.2 ± 0.3) × 10−4 (2.2 ± 0.1) × 1012 (4.2 ± 0.4) × 10−4 (1.8 ± 0.1) × 1012 (5.6 ± 0.6) × 10−4 (1.5 ± 0.1) × 1012

1.9 (7.8 ± 1.1) × 10−5 (5.7 ± 0.6) × 1012 (2.2 ± 0.3) × 10−4 (3.6 ± 0.3) × 1012 (2.6 ± 0.4) × 10−4 (3.2 ± 0.4) × 1012

2.2 (9.6 ± 1.6) × 10−5 (5.6 ± 0.6) × 1012 (1.9 ± 0.3) × 10−4 (4.0 ± 0.4) × 1012 (3.1 ± 0.5) × 10−4 (3.1 ± 0.4) × 1012

2.8 (8.1 ± 2.4) × 10−5 (9.0 ± 1.5) × 1012 (1.9 ± 0.4) × 10−4 (5.8 ± 0.6) × 1012 (1.9 ± 0.4) × 10−4 (5.5 ± 0.6) × 1012

3.6 (1.4 ± 0.6) × 10−5 (1.0 ± 0.3) × 1013 (3.3 ± 1.2) × 10−5 (6.4 ± 1.2) × 1012 (4.9 ± 1.6) × 10−5 (5.8 ± 0.9) × 1012
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Table 2.17: Faint-end slope values

dataset ΛCDM CGBH OCGBH
L100µm 0.42 ± 0.04 0.03 ± 0.05 0.03 ± 0.05
L160µm 0.25 ± 0.06 0.00 ± 0.05 0.00 ± 0.05
LIR,100µm 0.67 ± 0.06 0.38 ± 0.08 0.33 ± 0.09
LIR,160µm 0.61 ± 0.07 0.26 ± 0.09 0.2 ± 0.1

Table 2.18: Comoving number density and characteristic luminosity evolution pa-
rameters.

dataset model A B
ΛCDM (5.2± 1.0)× 10−1 (−3.3± 0.6)× 10−1

L100µm CGBH (5.6± 1.0)× 10−1 (−4.5± 0.8)× 10−1

OCGBH (5.5± 0.9)× 10−1 (−4.2± 0.7)× 10−1

ΛCDM (6.8± 0.8)× 10−1 (−7.6± 0.6)× 10−1

L160µm CGBH (5.4± 0.9)× 10−1 (−5.8± 0.8)× 10−1

OCGBH (5.4± 0.9)× 10−1 (−5.8± 0.8)× 10−1

ΛCDM (6.4± 0.5)× 10−1 (−6.6± 1.0)× 10−1

LIR,100µm CGBH (6.4± 0.4)× 10−1 (−6.3± 0.9)× 10−1

OCGBH (6.3± 0.5)× 10−1 (−6.1± 0.7)× 10−1

ΛCDM (5.8± 0.7)× 10−1 (−5.9± 0.5)× 10−1

LIR,160µm CGBH (5.6± 0.7)× 10−1 (−5.1± 0.3)× 10−1

OCGBH (5.6± 0.7)× 10−1 (−5.1± 0.3)× 10−1

2.5 Standard vs. void models comparison

In Fig. 2.1-2.4 we plot the 1/Vmax LF estimations in the three different cosmolo-

gies, together with the best-fit Schechter profiles for each of them. As can be seen

in the four figures, the faint-end number densities in the void models are lower then

the standard model ones.

If there were a direct correlation between the matter density parameter in the

cosmology, and its estimated number density of sources selected in the FIR, then

at the lowest redshift bin we should see higher number densities in the void models,

since the ΩM(z) in those models are bigger in that redshift range than the standard

model value (more on that in Appendix A, Fig. A.1).

The difference in the number densities at the lower redshift interval for the differ-

ent cosmologies does not follow the same relation as the matter density parameters

ΩM(z). In addition, it shows a dependence on the luminosity, which is more pro-

nounced at the fainter end in both the monochromatic and the total IR LFs.

This dependence produces significant differences in the faint-end slopes of the

computed luminosity functions. This can only be attributed to the different geo-
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metrical parts of the cosmological models studied here, since the matter content, as

discussed above, would only shift the normalization of the LF independently of the

luminosity of the sources.

In Table 2.17 we present the best fit values of α for each dataset / model combi-

nation. Simple error propagation allow us to write the uncertainty of the difference

∆α between the faint-end slopes in the standard model (αΛ) and the void models

(αV ) as

δ(∆α) =
√
(δαΛ)2 + (δαV )2. (2.14)

The significance level of this difference can then be obtained by computing ∆α/δ(∆α).

For the monochromatic 100 µm luminosity functions, the difference between the α

computed assuming the standard model and the α computed in the GBH models

studied here is 6.1-σ, as compared to its propagated uncertainty. For the monochro-

matic 160 µm luminosity functions, this value is 3.2-σ. For the total-IR 100-µ se-

lected luminosity functions, these values are 2.9-σ for the difference between ΛCDM

and CGBH models, and 3.1-σ, for the ΛCDM-OCGBH difference. Finally, for the

same differences in the total-IR 160 µm selected dataset, the significances are 3.1-σ

and 3.4-σ, respectively.

Could this difference be caused by a limitation of the 1/Vmax method used here?

As we show in Appendix A, the matter density parameters in both the ΛCDM and

GBH models do not affect the performance of this LF estimator significantly. When

the same input LF and matter density are assumed, the 1/Vmax method obtains

values within their error bars for all cosmological models considered. This indicates

that the change in the slopes is caused by how the luminosities are computed from

the redshifts in the different metrics.

To check this assertion, we investigate the effects of both luminosity and co-

moving volume separately on the shape of the LF. Starting from the 1/Vmax results

for the LF in the interval 0 < z < 0.4, assuming the standard cosmological model,

we compute alternative LFs using the same methodology, but assuming either the

luminosity distance of one of the void models and keeping the comoving distance

of the standard model, or the luminosity distance of the standard model and the

comoving distance of one of the void models. This allows us to assess how each

distance definition affect the LF individually. The results are plotted in Fig. 2.6 for

the rest-frame 100 µm monochromatic luminosity dataset.

From these plots it is clear that the luminosity is the main cause of change in the

shape of the LF. What remains to be investigated is whether the number density

in a given luminosity bin is lower in the void models because of a re-arranging of

the number counts in the luminosity bins, or because of a possible change in the

maximum volume estimate of the sources in each bin. From this inspection, it
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turns out that the number counts in all three models are all within their Poisson

errors, and therefore the number densities in the void models are lower because the

maximum volumes in them are larger.

Looking at Eq. (2.10), we identify two parameters that can introduce a depen-

dency of the maximum volume of a source on its luminosity, the incompleteness

corrections wk(z) and the upper limit of the integral zmax.

The incompleteness correction wk(z) for each source depends on the observed

flux that the source would have at that redshift, which is affected by the luminosity

distance-redshift relation assumed.

More importantly however, at the higher luminosity bins, the zmax of most of the

sources there assumes the zh value for that redshift interval, which does not depend

on the luminosity of the source. This renders the Vmax of the high luminosity sources

approximately the same, apart from small changes caused by the incompleteness

corrections wk, as discussed above. At the lower luminosity bins, on the other hand,

it happens more often that the zmax of a source assumes its ζ value, which in this

case depends on its luminosity, as is clear from Eq. (2.8).

In order for that equation to hold, given that fR and fR,lim are fixed, the dL(z)/dL(ζ)

ratio must be the same for all cosmologies. Since the redshift z of each source is

also fixed, then it follows that the ζ value that makes the dL(z)/dL(ζ) ratio hold in

the void models must be higher then in the standard model (see Fig. 1.3). This, in

turn, accounts for the larger maximum volumes and lower number densities at the

low luminosity bins in the void models.

From the discussion above we conclude that a change in the luminosity distance

- redshift relation changes the zmax of the low luminosity sources, which in turn

changes the maximum volumes, and finally, the fitted faint-end slope. However,

from Fig. 1.3, it is not obvious that such small differences in the dL(z) relation

for the different cosmological models could cause such a significant change in the

faint-end slopes, especially at low redshifts. It is useful to remember here that the

LF is a non-linear combination of quantities that depend, from a geometrical point

of view, on the luminosity distance (through the luminosities of the sources) and on

the comoving distances (through their enclosing volumes). Even if the observational

constraints on the luminosity-redshift relation, and the additional ones stemming

from BAO results, yield both dL(z) and r(z) that are quite robust under changes

of the underlying cosmological models, such small differences in the distances could

pile up non-linearly and cause the observed discrepancies in the faint-end slope.

This appears to be the case here, at least in the low redshift interval where

we can fit the faint-end slopes with confidence. Rather then following the trend

of the matter density parameter, the number densities at those redshifts seem to

be predominantly determined by their enclosing volumes, even if at low redshift
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the differences in the distance-redshift relations in the different cosmologies is quite

small.

Looking at how the distances in Fig. 1.3 have increasingly different values at

higher redshifts, it would be interesting to check if the faint-end slopes in the differ-

ent cosmologies at some point start following that trend. Unfortunately, at higher

redshifts the incompleteness caused by different luminosity limits for different pop-

ulations does not allow us to draw any meaningful conclusion about the faint-end

slope of the derived LFs. As it is, all that can be concluded is that the standard

model LF would be over-estimating the local density of lower luminosity galaxies if

the Universe’s expansion rate and history followed that of the LTB/GBH models.

We proceed to investigate the robustness with respect to the underlying cosmol-

ogy of the redshift evolution of the other two Schechter parameters, the characteristic

luminosity L∗ and number density ϕ∗. Figure 2.5 presents the redshift evolution of

these parameters that we model by means of the simple relations

L∗(z) ∝ 10(1+z)A (2.15)

ϕ∗(z) ∝ 10(1+z)B. (2.16)

We use a least-squares technique to fit such evolution functions to their correspond-

ing Schechter parameter results (Richter 1995). Table 2.18 lists the best-fit values

for the evolution parameters A and B in the different datasets / cosmologies.

The listed uncertainties for the evolution parameters are the formal 1-σ values

obtained from the square root of the corresponding diagonal element of the covari-

ance matrix of the fit. We find no evidence of a significantly different evolution of

either L∗ or ϕ∗ in the void models considered. The monochromatic luminosities,

especially the number density of sources in the rest-frame 160 µm, show some mild

evidence of being affected by the geometrical effect discussed above, but the evolu-

tion parameters in the total IR are remarkably similar. We also note that assuming

an open or flat CGBH model makes no significant difference to such parameters. It

seems that they are more strongly affected by the intrinsic evolution of the sources,

and the secular processes and merging history of galaxy formation than by the ex-

pansion rate of the Universe.

Physically speaking, in terms of tracing the redshift evolution of different galaxy

populations using the FIR data in the present work, the marginally significant dif-

ference in the faint-end slopes, together with the evolution parameters for the char-

acteristic number densities and luminosities, can be understood as follows: asser-

tions about the number density of FIR low-luminosity galaxies, broadly related to

populations that are poor in dust content, are still systematically affected by model-

dependent corrections due to survey flux limits in the construction of the LF. That
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is, there might be less of these galaxies in the local Universe (z ≈ 0.3) than what

we expect based on the underlying standard model. On the other hand, evolution

of the FIR high-luminosity end, broadly related to populations with high dust con-

tent, is well constrained by the flux limits of the PEP survey where the underlying

cosmological model is concerned.
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Chapter 3

Comoving densities

Having computed the LF in both cosmologies studied here, we focus our attention

next to computing and studying the observed number density we can derive from it.

3.1 Selection functions

Selection functions are an estimate of the number density of galaxies with lumi-

nosity above a chosen threshold, Llim. Once computed, the selection functions can

be used to estimate the observed number of objects per comoving volume, derived

in Sect. 1.2.3, and from that the observed differential and integral densities in the

past lightcone.

Following the empirical approach of Iribarrem et al. (2012), we computed selec-

tion functions ψ in each redshift interval using each of the three cosmological models

(ΛCDM, CGBH, and OCGBH) and the monochromatic 100 µm and 160 µm rest-

frame luminosity functions for the combined PEP fields in Iribarrem et al. (2013b)

as

ψz̄ =
∫ Lmax, z̄

Llim, z̄

ϕz̄(L) dL , (3.1)

where Lmax, z̄ is the brightest source luminosity inside the redshift interval, and Llim, z̄

is the rest-frame luminosity associated to the flux limit of the observations.

The dataset used in this work was built using combined fields, i.e observations

carried out in different sky regions at different depth. The large number of sources

per redshift interval allowed us to derive the observed quantities with a better statis-

tics, at the expense of an added difficulty related to the definition of the luminosity

limits corresponding to the actual flux limits of the observations. This difficulty

stems from the fact that the computation of the rest-frame luminosity involves k

corrections, which in turn depends on the spectral energy distribution (SED) of the

source. That is, each SED template defines a slightly different luminosity limit for

the same flux limit. In the case of the PEP survey, each field – namely GOODS-N,
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GOODS-S, COSMOS and ECDF-S – had also a different flux limit, depending on

the PACS passband in which the observation was done (Lutz et al. 2011).

To investigate how important are the selection function variations caused by

the different SED templates in the datasets, we first computed the selection func-

tions in each redshift interval assuming the lowest computed luminosity among the

sources in that interval, and then compared the results to the average, and to the

highest luminosities. The variations in the selection functions caused by assuming

different luminosity limits were found to be many times larger then the error bars

propagated from the luminosity function uncertainties. For example, at z = 0.2,

the selection function computed using the lowest monochromatic luminosity in the

100-µm dataset read (9.0 ± 1.8) × 10−3 Mpc−3, while the one computed using the

average luminosity read (3.7 ± 0.7) × 10−3 Mpc−3, and the one using the highest

luminosity read (2.6 ± 0.5) × 10−3 Mpc−3, a variation over three times larger then

the combined uncertainties obtained by propagating the ones from the LF parame-

ters. For the same dataset, at z = 1, the selection functions read (2.3 ± 0.3) × 10−3

Mpc−3, (1.1 ± 0.1) × 10−3 Mpc−3, and (4.9 ± 0.6) × 10−4 Mpc−3, respectively, a

variation almost six times larger then the propagated uncertainties.

Therefore, for every source in each redshift interval, we computed the rest-frame

luminosity for the flux limit of the field and filter where it was observed, given its

best fit SED and redshift. Next, we computed a set of selection function values in

that redshift interval, using the luminosity limits computed above for each source

in the interval. Finally, we computed the average over this set of selection function

values for a given redshift interval and used this average as the value for the selection

function in that same interval. The uncertainties, as discussed above, are dominated

by the variation in the luminosity limits, and therefore can be taken simply as the

standard deviation over the same set of computed selection function values for each

redshift interval. The resulting monochromatic rest-frame 100 µm and 160 µm

selection functions are given in tables 3.1 and 3.2.

3.2 Consistency functions

In the empirical framework of Ribeiro & Stoeger (2003); Albani et al. (2007);

Iribarrem et al. (2012), the observed quantities computed in the past lightcone of a

given cosmological model were obtained from their predicted values through what it

was then called a completeness function J(z). This can be somewhat confusing from

the observer’s point of view, since J(z) is not necessarily related to incompleteness

like that of missing sources in a survey, but to the relation between a theoretical

prediction for the number counts and the actual measurement of that quantity (Irib-

arrem et al. 2012). In this sense, this quantity would be better named consistency
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Table 3.1: Selection functions for the rest-frame 100 µm datasets. Units are Mpc−3.

z̄ ψΛCDM ψCGBH ψOCGBH

0.1 (4.0± 0.8)× 10−3 (5.0± 1.0)× 10−3 (5.6± 1.1)× 10−3

0.3 (3.6± 0.5)× 10−3 (4.4± 0.6)× 10−3 (5.0± 0.7)× 10−3

0.5 (2.6± 0.4)× 10−3 (3.2± 0.5)× 10−3 (3.6± 0.5)× 10−3

0.7 (2.3± 0.4)× 10−3 (2.9± 0.5)× 10−3 (3.2± 0.6)× 10−3

0.9 (1.3± 0.2)× 10−3 (1.9± 0.3)× 10−3 (1.9± 0.3)× 10−3

1.1 (1.1± 0.3)× 10−3 (1.6± 0.4)× 10−3 (1.6± 0.4)× 10−3

1.4 (4.3± 1.1)× 10−4 (3.7± 1.0)× 10−4 (4.8± 1.2)× 10−4

1.6 (4.1± 1.4)× 10−4 (3.6± 1.2)× 10−4 (4.6± 1.5)× 10−4

2.0 (5.1± 1.6)× 10−4 (5.9± 1.9)× 10−4 (6.0± 1.9)× 10−4

2.4 (4.9± 1.7)× 10−4 (5.6± 2.0)× 10−4 (5.7± 2.0)× 10−4

2.8 (3.3± 1.1)× 10−4 (1.7± 0.5)× 10−4 (2.5± 0.8)× 10−4

3.2 (2.7± 1.1)× 10−4 (1.4± 0.6)× 10−4 (2.1± 0.8)× 10−4

Table 3.2: Selection functions for the rest-frame 160 µm datasets. Units are Mpc−3.

z̄ ψΛCDM ψCGBH ψOCGBH

0.1 (6.0± 1.4)× 10−3 (3.7± 0.9)× 10−3 (3.7± 0.9)× 10−3

0.3 (5.4± 0.9)× 10−3 (3.3± 0.5)× 10−3 (3.3± 0.5)× 10−3

0.5 (2.7± 0.5)× 10−3 (2.6± 0.4)× 10−3 (3.0± 0.5)× 10−3

0.7 (2.5± 0.5)× 10−3 (2.3± 0.5)× 10−3 (2.7± 0.6)× 10−3

0.9 (1.0± 0.2)× 10−3 (1.3± 0.2)× 10−3 (1.8± 0.3)× 10−3

1.1 (9.8± 2.7)× 10−4 (1.2± 0.3)× 10−3 (1.8± 0.4)× 10−3

1.4 (4.6± 1.2)× 10−4 (4.4± 1.2)× 10−4 (4.2± 1.1)× 10−4

1.6 (4.5± 1.3)× 10−4 (4.3± 1.3)× 10−4 (4.1± 1.2)× 10−4

2.0 (1.1± 0.3)× 10−4 (3.0± 0.8)× 10−4 (2.4± 0.7)× 10−4

2.4 (1.3± 0.3)× 10−4 (3.4± 0.9)× 10−4 (2.8± 0.8)× 10−4

2.8 (5.9± 1.9)× 10−5 (1.5± 0.4)× 10−4 (1.4± 0.4)× 10−4

3.2 (3.5± 1.6)× 10−5 (9.2± 4.3)× 10−5 (8.6± 4.0)× 10−5
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function, a term which we will use from now on. The consistency function J(z) was

obtained by relating the prediction for the comoving number density nC given by

the cosmological model

nC(z) =
ρM [r(z)]

Mg

=
ΩM [r(z)]

Mg

ρC, (3.2)

to the selection functions for a given galaxy survey ψz̄ in a given redshift interval z̄

as Iribarrem et al. (2012),

Jz̄ =
ψz̄

nC(z̄)
. (3.3)

The values for Jz̄ can be obtained numerically for the CGBH void models using Eqs.

(1.57), and (1.61) combined with the appropriate r(z) table as described in §1.1,
and the selection functions computed in §3.1.

As discussed in Iribarrem et al. (2012) the estimation of the comoving num-

ber density nC assumes a constant, average total mass value Mg for normalisation

purpose – that is, getting a correct order-of-magnitude estimation of the number

density. Such estimation is not supposed to provide a detailed description of nC(z),

but rather to convey the information on the redshift evolution of the comoving num-

ber density caused solely by the cosmological model, through ρM(z), on Eq. (3.2).

The details of the redshift evolution of the total masses of the sources, missing on

this estimation, are imprinted on the observed LF, and inherited by its derived

selection functions. By translating this purely theoretical nC(z̄) estimation to the

corresponding selection functions ψz̄ through the consistency function J(z̄), we allow

any theoretical quantity assuming a nC(z) built on a cosmological model to use the

observed values given by the selection functions.

For the purpose of obtaining empirically the relativistic number densities this

approach is sufficient. It minimizes the number of theoretical assumptions about the

evolution of the sources, such as including a Press & Schechter (1974) formalism,

and considers as much information as possible from the observations. Since a Press-

Schechter-like formalism is still not implemented on LTB models, the empirical

approach described above is the simplest way to work with both standard and void

cosmologies in a consistent way.

As mentioned above, Mustapha et al. (1997) showed that any spherically sym-

metric observation alone, e.g. redshift estimations or number counts, can be fit

purely by a general enough LTB dust model, no evolution of the sources required.

In the context of the present discussion their argument can be understood by

combining Eqs. (3.2) and (3.3) to write

Jz̄ = ψz̄

Mg

ρC ΩM(z̄)
(3.4)

70



Looking at the right-hand side of the equation above one can easily separate its

two terms into an observed quantity to the left and a fraction between theoretically

obtained quantities to the right. Moreover, one can identify the constant Mg with

the lack of a model for the secular evolution of the average mass of the sources, and

ΩM(z̄) with the evolution of the matter density parameter on a given cosmology. By

using the extra degree of freedom in setting the matter density profile in the LTB

model, ΩM(z), one can obtain a number density nC(z) that perfectly matches the

selection functions without the need to assume an evolving average mass Mg(z).

To constrain this degree of freedom, it is necessary a different set of independent

observations. This is precisely what the GBH parametrisation of a giant void in an

LTB dust model yields: a matter density profile that is parameterized to best fit

the combination of different, independent observations.

We present the evolution of the consistency functions for the different PACS

filters and cosmological models in figures 3.1 and 3.2. It is clear from these plots

that this quantity evolves with redshift in both standard and void cosmologies. The

behaviour of the consistency functions in all models studied here are well fit by a

power-law decreasing with redshift. The best fitting slopes are given in table 3.3.

These results suggest that not considering the evolution of the sources leads to a

systematic trend that increases the inconsistency with z. This is not as obvious as

it may seem given the flexibility of the LTB models as discussed above. It is the

parametrisation of ΩM(z) constrained by combined independent observations that

requires Mg to evolve with z in the LTB models studied here. Only by allowing Mg

to evolve with z can Eq. (3.4) yield a constant consistency function indicating that

the theoretical term on the right of the right-hand side of Eq. (3.4) is proportional

to the observed term on the left.

We use a Kolmogorov-Smirnoff (KS) two-sample test to check, on a statistical

sense, how different are the consistency functions assuming the different cosmolog-

ical models studied here from a hypothetically constant consistency function. By

construction, a constant J(z) indicates that the model for the comoving number

density used here, assuming Mg(z) = Mg, matches the observed number density.

The KS test is a non-parametric, distribution-free way to compare two datasets, and

assigns to which level of confidence can we refute the hypothesis that they were ob-

tained from the same underlying distribution. The resulting p-value of this test can

be understood as the probability that both datasets come from the same distribu-

tion. For all cosmologies studied here, the no-evolution hypothesis, Mg(z) = Mg, is

rejected at over 5-σ confidence level, with p-values lower then 10−5. This means that

an evolving average mass of the sources is also required by the LTB/GBH models

studied here.

Next, we use the same KS test to determine how different the consistency func-
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Figure 3.1: Consistency functions for the monochromatic 100 µm luminosity func-
tions computed in the three cosmological models used in the present work.
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Figure 3.2: The same results as in Figure 3.1 for the monochromatic 160 µm lu-
minosity functions. From these plots, one can see that the difference between the
standard model consistency function (black circles), and the void model ones (color
circles) is not very significant, since most of the points lie within the error bars. The
pΛ values discussed in §3.1 quantify this conclusion, and agree with it.
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Table 3.3: Comoving, differential and integral densities statistics.

dataset model pΛ log J(z) slope log γL slope log γ∗L slope
ΛCDM 1.0 -0.39 ± 0.05 -2.4 ± 0.2 -2.31 ± 0.03

L100µm CGBH 0.43 -0.51 ± 0.06 -3.1 ± 0.6 -2.50 ± 0.04
OCGBH 0.43 -0.51 ± 0.05 -3.0 ± 0.4 -2.52 ± 0.03

ΛCDM 1.0 -0.75 ± 0.03 -4.5 ± 0.3 -2.54 ± 0.06
L160µm CGBH 0.79 -0.53 ± 0.03 -3.7 ± 0.4 -2.48 ± 0.05

OCGBH 0.79 -0.60 ± 0.04 -3.7 ± 0.3 -2.59 ± 0.06

tions in the void models are from the standard model consistency functions. We

present the computed p-values of these tests, pΛ, in table 3.3. The pΛ value is the

probability that the consistency function for a given void model and the one for the

standard model are computed from the same underlying distribution, or, in other

words, that their differences are not statistically significant. To establish that such

difference is significant, at a 3-σ confidence level, for example, the pΛ value should be

lower then approximately 0.0027. Given the listed pΛ results, we found that the com-

puted consistency functions in void and standard cosmologies were not significantly

different. This means that galaxy evolution proceeds mostly the same, regardless of

the differences in the geometry and the composition of the Universe studied here.
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Chapter 4

Past lightcone densities

In this chapter we compute the relativistic number densities using the Jz̄ obtained

in section 3.2. By definition, the LF is the number of sources per unit luminosity, per

unit comoving volume. This allows us to identify the selection functions in Eq. (3.1)

as the differential comoving density of galaxies stemming from the observations, and

rewrite Eq. (3.3) as

ψz̄ =

[
dN

dVc

]
obs

(z̄) = Jz̄ nC(z̄) = Jz̄
dN

dVc

(z̄), (4.1)

which can still be written as [
dN

dz

]
obs

= Jz̄
dN

dz
, (4.2)

since the purely geometrical term dVc/dz cancels out in both sides of the equation.

Together with Eqs. (3.3) and (1.67), Eq. (4.2) allows us to obtain the differential

number counts [dN/dz]obs from the selection function of a given dataset in the differ-

ent comoving densities nC(z) defined by the void model parametrisations considered

here.

Because the quantity inside the parentheses in Eq. (1.36) is also a purely geo-

metrical term, we can simply write,

[γi]obs(z̄) = Jz̄ γi(z̄), (4.3)

which allows us to obtain the observed differential densities [γi]obs in the lightcones

of the cosmologies considered here once Jz̄ is computed.

To obtain the observed integral densities [γ∗i ]obs(z̄) we substitute dN/dz in,

N(z) =
∫ z

0

dN

dz
(z′) dz′. (4.4)
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with [dN/dz]obs from Eq. (4.2) and compute the observed cumulative number counts

[N ]obs(z̄). Then we can substitute this result back in Eq. (1.46), since the cosmo-

logical distance to redshift relation di(z) is also fixed by the geometry of the given

Cosmology.

We used the observed differential and integral densities to investigate the effects

of the central underdensity prescribed by the GBH models in the redshift distortions

caused by the expanding spacetime on the observer’s past lightcone.

Our previous studies of these relativistic number densities (Ribeiro 2005; Albani

et al. 2007; Iribarrem et al. 2012) suggested a high redshift power-law behaviour for

both differential and integral radial distributions. In other words, that the expansion

distributes the sources along the lightcone in a self-similar manner. This is a purely

geometrical effect, as discussed in Sect. 1.1 that may or may not be dominant,

because the hierarchical build-up of galaxies also plays a role in how the sources

distribute along the lightcone. Given that some of the alternative void models are

built assuming an LTB line element instead of the standard model FLRW one, we

aim in this section to better characterise those power-laws, and to investigate how

they are affected by the secular evolution of the sources and by the direct effect of the

expansion of the different geometries. We focused the discussion on the densities

computed using the luminosity distance, since the results for the other distance

definitions are all qualitatively the same.

As can be seen in Figs. 1.5 and 1.6, the geometrical effect increases with the red-

shift, deviating both the theoretical differential and the cumulative number densities

away from a constant, homogeneous behavior at high redshifts. At redshifts lower

then z ≈ 0.1 this geometrical effect is less pronounced, and both γL(z) and γ∗L(z)

shown follow the constant average galactic mass M assumed in their computation,

as discussed in Sec. 3.1.

It follows that there must be a region in redshift space at which occurs a transition

between the power-law behavior induced by the expansion at high redshift, and the

behavior defined by the underlying density parameter ΩM(z) combined with the

evolution of the sources stemming from the LF. However, the exact size and range

of this region cannot be predicted with the empirical approach for the comoving

number densities used in this work. Therefore, if we are to characterize the power-

law behavior of the high-redshift end of our number densities, we must allow our

fitting procedure to search for the best redshift at which the power-law behavior

begins to dominate.

To characterize the high redshift power-laws, we compute in an iterative way

the best linear fit to the log γL vs. log dL tables. Starting with the LF values

derived for the highest three redshift bins, we perform the same fit, including in

each iteration one extra LF value, in decreasing order, until we have included all
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points. Then, we select the fit with the lowest reduced χ2 value. The selected fits

for the different dataset and cosmology combinations are plotted in figure 4.1. The

listed uncertainties are formally obtained taking the square root of the linear term

in the covariance matrix of the fitted power-law.

To quantify how significant are the differences in the slopes of the power-laws

obtained, we can start by first computing the uncertainty of the difference ∆a,b,

between the αa slope of log γL using a given dataset/cosmology combination a and

that of a different combination b as

δ∆a,b =
√
(δαa)2 + (δαb)2. (4.5)

The significance of this difference in terms of its uncertainty is then obtained from

∆a,b/(δ∆a,b). Next we use the approach above to obtain comparisons between stan-

dard vs. void cosmologies, 100 µm vs. 160 µm datasets, and differential densities γ

vs. integral densities γ∗.

4.1 Comparison with the LTB/CGBH models

Results for the significance of the difference between slopes of the high redshift

power-law fits to the differential densities γ, and the integral densities γ∗, given a

fixed cosmological model, were highly dependent on the dataset. They were fairly

insignificant on the 100 µm data for all cosmologies (ΛCDM: 0.3-σ, CGBH: 0.9-σ,

OCGBH: 1.1-σ); whereas they were all at least marginally significant in the 160 µm

data (ΛCDM: 5.2-σ, CGBH: 3.0-σ, OCGBH: 3.4-σ).

Such differences in the slopes between the high redshift power-law fits to γ and

to γ∗ can be understood by checking at Eqs. (1.36), and (1.46). We note that γ is

proportional to dN/dz whereas γ∗ is proportional to N . Since N is a cumulative

quantity, it can only increase or remain constant with increasing redshift. That

is, even if there are regions in the volume where N is defined, which have a lower

density of detected sources, N itself will remain constant. On the other hand, dN/dz

is sensitive to such local density variations, which adds up to a higher degree of non-

homogeneity in the higher redshift part of the past lightcone probed by the survey

and as a consequence a steeper power-law slope of γ.

The differences between the slopes of the high redshift power-law fits to the

relativistic densities computed using the 100 µm, and the 160 µm PEP blind-

selected datasets were fairly insignificant when assuming the void models studied

here (CGBH: 0.7-σ for γ, and 0.3 for γ∗; OCGBH: 1.3-σ for γ, and 1.0 for γ∗),

whereas, those differences showed a moderate-to-strong significance if the ΛCDM

model was assumed (4.6-σ for γ, and 3.0-σ for γ∗).
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The differences in the slopes obtained using different datasets can be understood

as the effect on the past lightcone distributions caused by different redshift-evolving

luminosity limits of detection. The results above indicated that the distributions on

the past lightcone of the void models were significantly less different, and therefore

less affected by the detection limits of the PEP datasets, then their counterparts

computed on the past lightcone of the standard model.

Finally, we computed the significance of the differences obtained by comparing

the same slopes computed in two different cosmological models. The only marginally

significant (≥ 3-σ) difference we found is for the comparison between standard and

void models, for the integral density γ∗ slopes, using the 100 µm dataset: 3.7-σ

for the ΛCDM vs. CGBH comparison, and 4.3-σ for the ΛCDM vs. OCGBH one.

Given the striking concordance of the other γ∗ slopes around a tentative value of

-2.5 ± 0.1 it is possible that the oddly small values of the slope of γ∗ in the 100 µm

dataset and its uncertainty be an artifact caused by our fitting procedure.

How to combine the results from all of those different comparisons in a coherent

picture? Iribarrem et al. (2013b) showed that the corrections needed to build the LF

using a flux-limited survey rendered the results sensitive to the differences caused

by changing the underlying cosmological model. Detection limits seem to play a

major role in the fully-relativistic analysis used here as well. On one hand, we found

significant differences caused by the kind of statistics used (γ or γ∗) with the 160 µm

blind-selected catalogue. On the other hand, we found that the cosmology assumed

(FLRW/ΛCDM or LTB/GBH) caused significant differences on both γ and γ∗, using

the 100 µm dataset instead. Some of these discrepancies could be caused by the

way we fit the power-laws to the high-redshift parts of the distributions. Future

observations with lower flux limits will help us to check which of these discrepancies

were caused by the present flux limits.

4.2 Comparison with other LTB models

It is important to notice that the results in Chapter 3 together with the discussion

presented above, are valid only for a very special case of LTB models, namely, the

parameterization for the CGBH model obtained by Zumalacárregui et al. (2012).

It is not in the scope of the present work to present a complete analysis of other

LTB models in the literature, which would require first recomputing the Luminosity

Functions presented in Iribarrem et al. (2013b) from the start, but given some

recent advancements in better exploiting the flexibility of these models, a qualitative

discussion of their possible impact on our results is pertinent here.

Assuming different non-homogeneous cosmologies can affect the present analyses

in three different ways. First, in terms of building the LF from the observations,
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Figure 4.1: Best fit power-laws to the differential density γL (dots), and the integral
density γ∗L (diamonds). The left panels show the plots for the 100 µm LF, while the
right ones show the plots for the 160 µm LF, in the three cosmological models /
parameterisations studied here. Full lines show the best fit high redshift power-law
for the differential densities, while the dashed lines show the best fit ones for the
integral densities.
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a model with a matter density profile ΩM(r) different enough from the ones stud-

ied here could possibly render invalid the average homogeneity assumption at the

heart of the 1/Vmax LF estimator. Using mock catalogues, Iribarrem et al. (2013b)

shows that the void shapes of the CGBH models used in their LF does not affect

significantly the ability of the 1/Vmax estimator of recovering the underlying LF.

Second, different distance-to-redshift relations could also affect the LF results,

and thus its redshift evolution, through the computation of the maximum observable

redshift of each source zmax, which is used in the computation of the 1/Vmax value

of the LF in each redshift bin. As discussed in Iribarrem et al. (2013b), this comes

as a result of the fainter part of the galaxies in a survey having fluxes near the limit

of observation in the field, and is affected mainly by differences in the luminosity

distance-to-redshift relation. Also, at luminosities L ≈ L∗, the zmax of the sources is

safely hitting the higher z limit of the redshift bin, rendering their volume correction

independent of their luminosity, and thus, of the dL(z) relation.

Finally, the expected number densities in the past-lightcone γi and γ
∗
i , as com-

puted in Sect. 1.2.3 are both sensitive to the distance-to-redshift relations, as shown

in Figs. 1.5 and 1.6. The differences caused on the number densities by the different

distance relations might be large enough to be detected, given the observational

uncertainties stemming from the LF. Considering the present results, such differ-

ences in the expected number densities should be larger then the CGBH-to-FLRW

ones studied here, if we were to detect a significant effect on the observed number

densities due to their expected values alone.

February et al. (2010) argue that CMB and BAO constraints may be significantly

distorted by differences in the evolution of primordial perturbations caused by the

curvature inside the voids. They go on to fit a number of different shapes for the

inner matter profile, considering only local Universe data, namely, SNe Ia and the

reconstruction of H(z) through passively evolving galaxies. They show that all their

models mimic the FLRW dL(z) to sub-percent level, which should render the changes

on the maximum redshift estimates and on the expected number densities caused

by assuming such models comparable to the ones we observe here.

The authors show in their Fig. 9 that up to redshift z ≈ 1, their best fit models

follow very closely the distance modulus, and thus the dL(z) relation, of ΛCDM.

Looking at the same plot, we can see that the luminosity distances grow increasingly

smaller when compared to their standard model counterparts at higher redshifts.

Looking at Eq. (1.34), we can expect that this could potentially lead to higher

values of γ∗ and, consequentially, a smaller value for its best fit power-law.

Also, their best fit voids are much larger then the ones used here, as can be seen

by comparing the upper left panel of their Fig. 7 versus the upper panel of Fig. 1

in Iribarrem et al. (2013b), which shows the best fit voids of Zumalacárregui et al.
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(2012). Mock catalogue tests should be used to make sure these larger voids don’t

bias the 1/Vmax method used here. However, as argued in Iribarrem et al. (2013b), if

the large underdense profiles used here varied smoothly enough not to significantly

bias the LF estimator, we don’t expect that the larger voids of February et al. (2010)

will.

Clarkson & Regis (2011) discuss the implications of allowing for inhomogeneity

in the early time radiation field and how it affects the constraining power of CMB

results for inhomogeneous models. They show, for example, that even models that

are asymptotically flat at the CMB, can be made to fit if the matter density pro-

file includes a low density shell around the central void. An underdense shell like

this could possibly lead the 1/Vmax method to over-estimate the volume correction

of sources with maximum observable comoving volume inside or beyond the shell,

because such corrections are based on the assumption of an average homogeneous

distribution. To test in detail how accurately would this LF estimator recover the

underlying distribution we would need to build mock catalogues that assume the

matter distribution of these models, but we expect that such differences, if present,

would show more prominently at mid- to high redshift, according to the size of the

shell, and make the faint-end slope steeper by assigning higher over-corrections to

the fainter sources. Depending on how non-homogeneous the matter profile is, an

over-estimation of the characteristic number density parameter ϕ∗ might also be

detected.

Varying bang-time functions tbb(r) were also studied (Clifton et al. 2009) and

shown to be an extra degree of freedom that helps LTB models to reconciliate with

CMB + H0 constraints. Bull et al. (2012) however, show that models with varying

tbb(r) constrained by the combination of SNe + CMB + H0 should produce a kinetic

Sunyaev-Zel’dovich effect which is orders of magnitude stronger then its expected

upper limits. It is not clear how allowing for this extra degree of freedom would

change the key quantities shown to affect our results: the dL(z) and r(z) relations,

and the shape of the central underdense region. Only a full-fledge analysis, starting

from the building up of the LF, assuming a model with a varying bang-time fit by

the observations would allow us to make any reasonable comparison with the results

presented in this work.
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Conclusions

In this work we aimed at studying the redshift evolution of the comoving and

relativistic number densities obtained from the FIR Luminosity Functions for the

PEP survey blind selected catalogues. In our analyses, we compared the results from

the LFs computed assuming the standard FLRW/ΛCDM and the void LTB/CGBH

cosmological models, both fit by the combination of SNe + CMB + BAO observa-

tions.

In Chapter 1 we derived the theoretical results needed to compute the differential

and integral densities along the past lightcone of FLRW and LTB dust models. We

applied these results to compute the theoretical predictions for such quantities in

the CGBH parametrisations of Zumalacárregui et al. (2012).

In Chapter 2 we have computed the far-IR luminosity functions for sources in the

PEP survey, observed at the Herschel/PACS 100 and 160 µm bands. We computed

both monochromatic and total IR luminosities assuming both the ΛCDM standard

and GBH void cosmological models, with the aim of assessing how robust the lumi-

nosity functions are under a change of observationally constrained cosmologies.

We concluded that the current observational constraints imposed on any cosmo-

logical model by the combined set of SNe + CMB + BAO results are enough to

yield robust estimates for the evolution of FIR characteristic luminosities L∗ and

number densities, ϕ∗.

We found, however, that estimations of the faint-end slope of the LF are still

significantly dependent on the underlying cosmological model assumed, despite the

above-mentioned observational constraints. In other words, if there is indeed an

underdense region around the Milky Way, as predicted by the GBH models, causing

the effective metric of the Universe at Gpc scale to be better fit by an LTB line

element, then assuming the spatial homogeneous ΛCDM model in the computation

of the LF would yield an over-estimated number density of faint galaxies, at least

at lower redshifts (up to z ≈ 0.4).

The characteristic number density and the characteristic luminosity parame-

ters of the FIR luminosity functions derived here are made robust by the present

constraints on the cosmological model. The faint-end slope, however, still shows

significant differences among the cosmologies studied here.
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We showed that these differences are caused mainly by slight discrepancies in

the luminosity distance - redshift relation, still allowed by the observations. The

1/Vmax methodology studied here is a necessary way to compute the LF using a

flux-limited survey like PEP. This methodology, as we showed, is not biased by the

kind of under-dense regions proposed by the alternative cosmologies studied here.

On the other hand, the necessary volume corrections intrinsic to the method are still

dependent enough on the underlying assumptions about the geometry and expansion

rate of the Universe at Gpc scale to yield significant (≈ 3-σ) discrepancies in their

results. In other words, the systematic dispersion in the values of the low luminosity

LF points, caused by the (arguably still) remaining degree of freedom in the choice

of the underlying cosmological model, combined with the current flux limits, is still

significantly larger than the statistic uncertainty assumed in the computation of the

error bars of those points, causing the differences in the LF values to be larger than

the combination of their computed uncertainties.

Surveys with lower flux limits would allow lower FIR-luminosity sources to be

fully accounted for, reducing the marginally significant dependency of the FIR LF

on the cosmological model still detected here.

In Chapter 3 we computed the selection functions stemming from the far-IR LFs

of Iribarrem et al. (2013b), which allowed us to establish at an over 5-σ confidence

level that geometry alone is not able to fit their behaviour. This finding confirms

the need to allow for evolution of the sources (either in number or in luminosity)

in these void models as well. We found no strong evidence for a dependence of this

evolution on the cosmological models studied here. In other words, the combined

merger tree and barionic processes needed to reproduce the redshift evolution of the

FIR LF in the GBH void models are not significantly different from the hierarchical

build up and astrophysical processes in the standard model.

Finally, in Chapter 4 we computed the observed differential and integral densities

in the past lightcone of both standard and void cosmologies, and fitted their high

redshift observational non-homogeneities using power-laws. We show that the sys-

tematic dependency of the LF methodology on the cosmology that was discussed in

Iribarrem et al. (2013b) could still lead to significant differences on these relativistic

number densities. The integral densities showed a somewhat consistent slope across

all combinations of blind-selected datasets and cosmological models studied here.

On the other hand, the differential densities were found to be sensible to a change

in the cosmological model assumed in their computation. These results confirmed

the power-law behavior of the galaxy distribution on the observer’s past lightcone of

the LTB/GBH models and allowed to obtain a tentative value of -2.5 ± 0.1 for the

power-law index of the cumulative radial statistics γ∗
i of this distribution, regardless

of the cosmological model assumed.
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Appendix A

Mock catalogues

In this appendix we test whether the 1/Vmax LF estimator is reliable in studying

Gpc scale voids like the ones predicted by the GBH models, embedded in an LTB

dust model. We follow the general approach by Takeuchi et al. (2000) who made use

of mock catalogues built assuming, in the case of the void distribution, a (non-central

and small) void with a radius of 1.6 Mpc at a distance of 0.8 Mpc, and at a limiting

redshift of z = 0.1. Our mock catalogues are built using different distributions as

predicted by the GBH models, and as shown in figure 1.1. Also, the redshift range

of our interest is 4 times larger, since it is in the interval ∆z = [0.01, 0.4] that we fit

the faint-end slope of the luminosity functions.

Mock catalogues are built reproducing the detection limits and SED distributions

in the GOODS-S and COSMOS fields, in the PACS 100 and 160 µm filters, as listed

in Gruppioni et al. (2013). We chose those two fields for better representing the

whole of the data used in this work: GOODS-S is the field with the lowest flux

limits in the PEP survey, while COSMOS is the one with the widest effective area.

Näıvely one might decide to use matter density profiles in figure 1.1 to randomly

assign comoving distances to the sources in the mock catalogue. However, given the

large redshift interval we aim to cover in our simulations, the redshift evolution of

the density profiles must be fully considered.

For each of the present time, rest-frame (z=0) matter density profile, ΩM(r), de-

fined in a constant time coordinate hipersurface, and predicted by both the standard

model and the void models (see figure 1.1), we compute the corresponding redshift

evolution, ΩM(z), defined in the past light-cone of the same cosmological model.

In the FLRW spacetime, the dimensionless density parameters ΩM and ΩM(z) are

related as follows:

ΩM(z) = ΩM

[
H0

H(z)

]2
a(z)−3, (A.1)

where H(z) is the Hubble parameter at redshift z, carried over from the definition

of the critical density ρc = 3H2
0 /8πG, and a(z) the scale factor, both as functions
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of the redshift. Similarly, following the definition of ΩM(r) used in GBH and Zu-

malacárregui et al. (2012), one may write an analogue equation in the void-LTB

models as,

ΩM(z) = ΩM [r(z)]

{
H⊥0[r(z)]

H⊥[t(z), r(z)]

}2

a⊥[t(z), r(z)]
−3, (A.2)

where H⊥[t(z), r(z)] and a⊥[t(z), r(z)] are now the transverse Hubble parameter and

scale factor, respectively. Figure A.1 shows the redshift evolution of the density

parameters in the three models considered in the present work. Note, however, that

there’s an ambiguity in the definition of equation (A.2), due to the fact that the LTB

geometry possesses radial expansion rate and scale factor that are in general different

from their transverse counterparts. For the purpose of building mock catalogues that

are consistent with the void-LTB parametrisations used in this work, the transverse

quantities are the ones to be used, because that was the one used in Zumalacárregui

et al. (2012), from where the best fit parameters used in this work were derived.

Next, we randomly assign redshifts using a probability distribution based on the

one of those ΩM(z) profiles, rest-frame luminosities based on a same Schechter LF

with parameters L∗=1011 L⊙ , ϕ
∗=10−3 dex−1.Mpc−3 and α = -1/2 and a typical em-

pirical SED from the Poletta templates, drawn from the same distributions reported

in Gruppioni et al. (2013). In this way, we can test first the validity of the 1/Vmax

estimator itself for the purposes of the present work, and second, the possible effects

of the different predicted density profiles on the values recovered of the LF.

Having assigned a redshift, a luminosity and a SED for each Monte Carlo (MC)

realisation, we proceed to compute k-corrections and fluxes, using the luminosity

distance-redshift relation consistent with the density parameter in each cosmology.

We include the source in the mock catalogue if its observed flux is larger than the

detection limit of the field. We repeat such process until we have a catalogue with

a number of selected MC realisations equal to the number of sources in the redshift

interval ∆z = [0.01, 0.4], for a given field.

We then compute the 1/Vmax LF following the same methodology described

in §2.3, using 100 mock catalogues built as above. To assess the goodness-of-fit

of the 1/Vmax LF versus the input Schechter profile, we compute the one-sided

Kolmogorov-Smirnov (KS) statistic of the normalised residuals against a Gaussian

with zero mean and unit variance. We plot the estimation of the LF using the mock

catalogues against the input Schechter LF in figures A.2, A.3, and A.4. The KS

statistic for each mock/input comparison is listed between parentheses, in the plots.

We find that the density profiles of interest don’t change significantly the LF

results, as can be seen by comparing different panels in a same figure. We note what

appears to be a general bias towards under-estimating the characteristic luminosity

L∗, in agreement with Smith (2012) results.
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Comparison between the 1/Vmax LF results for the GOODS-S mocks built using

either the present time density profiles (figure A.2) or the proper redshift evolution

of those (figure A.3), shows that the method successfully takes into consideration

the redshift distortion in the matter distribution, yielding points in both cases that

recover the input LF profile qualitatively close in respect to each other, from the

point of view of the KS statistic. However, the 1/Vmax estimator significantly un-

derestimates the LF in lower luminosity bins. This effect, however, is found on all

cosmologies studied in this paper, and cannot therefore account for the significant

difference in the LF faint-end slopes reported in §2.4.
Comparison between the mocks for the GOODS-S and COSMOS fields built

using the redshift evolution of the density parameter in the different cosmological

models shows the 1/Vmax estimator fares slightly better in the deeper GOODS-S

field, as compared to the wider COSMOS one.

Summing up, even if the method is not perfectly robust under a change in the

cosmological model, the variations caused by a change in the underlying cosmology

in the results obtained with the 1/Vmax estimator are not enough to explain the

differences in the shape of the LF at the considered redshift interval, ∆z = [0.01, 0.4].
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Figure A.1: Redshift evolution of the dimensionless matter density parameters in the
standard (ΛCDM) and the void (GBH) cosmological models. The dotted vertical
lines delimit the lowest redshift interval considered in the computation of the LF,
at which the faint-end slopes are fit.
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Figure A.2: Results for the 1/Vmax LF estimator, computed from mock catalogues
assuming a constant density profile ΩM = 0.27 (ΛCDM), and the underdense profiles
of equation (1.61) for the GBH void models (figure 1.1). Sources luminosities in the
mock catalogue are drawn from the Schechter LF (here shown in green dashed line,
with parameters L∗=1011 L⊙ , φ

∗=10−3 dex−1.Mpc−3 and α = -1/2). Flux limits
and SED are taken from the results of Gruppioni et al. (2013) for the PEP survey
dataset in the GOODS-S field.
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Figure A.3: Same as Figure A.2 but assuming the redshift evolution of the matter
density profiles in both the standard (ΛCDM), and the void-LTB models as in Figure
A.1.
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Figure A.4: Same as Figure A.3 but for the PEP survey dataset in the COSMOS
field.
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