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Resumo

Otimizando observações de velocidades peculiares de

supernovas

Karolina Torres Garcia

Orientador: Miguel Boavista Quartin

Coorientadora: Beatriz Blanco Siffert

As supernovas do Tipo Ia são fontes de informação muito importantes para a Cosmologia,

visto que elas ainda são as únicas velas-padrão de alto redshift bem estabelecidas. A fim de

estimar parâmetros cosmológicos com elas, precisamos levar em conta algumas fontes de

incerteza, que incluem suas dispersões intŕınsecas e velocidades peculiares, normalmente

modeladas como termos gaussianos aleatórios. No entanto, o fato é que velocidades pecu-

liares introduzem uma fonte de correlação entre magnitudes de supernovas que deve ser

considerada em análises de amostras de baixo redshift. Isso significa que os reśıduos do

diagrama de Hubble contêm informações importantes sobre o espectro de potências de

matéria atual (cuja amplitude é obtida analisando a função de correlação de dois pontos

de velocidades peculiares de supernovas), e sobre a taxa de crescimento do Universo.

Nesse trabalho, nós estudamos supernovas do Tipo Ia de baixo redshift para entender

como diferentes parâmetros observacionais (o tempo de observação, a área observada

e o redshift alcançado) influenciam na estimação dos parâmetros de perturbação σ8 e

γ. σ8 é um parâmetro que faz parte do modelo cosmológico padrão e representa o valor

quadrático médio do contraste de matéria no Universo; ele proporciona informações acerca

da formação de estruturas no regime linear - quanto maior seu valor, mais inomogêneo

é o Universo. γ é o ı́ndice da taxa de crescimento relacionado com a parametrização do
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crescimento de estruturas no regime linear. Os dois parâmetros são usados também para

testar a consistência do modelo cosmológico padrão.

Apesar de ser comum na literatura considerar que as contribuições das velocidades

peculiares de supernovas para o erro total só são relevantes para supernovas até z ≈ 0, 1,

nesse trabalho mostramos que é posśıvel ganhar informação nas estimativas de σ8 e γ indo

até z ≈ 0, 2. Além disso, nós concluimos que o erro nesses v́ınculos para a nossa amostra

cai como uma lei de potência com ı́ndice de 0, 5 em função da área coberta e que não

segue uma lei de potência em função da duração do levantamento (o ganho de informação

atinge um limite após certo tempo). Para a nossa amostra de 11285 supernovas cobrindo

600 graus2 em 6 anos, nós concluimos que o levantamento se beneficiaria de observar

por mais tempo o mesmo campo antes de mudar para uma outra área do céu. Fazendo

uma análise preliminar do DES e do LSST, nós mostramos que os dois também deveriam

preferir continuar no mesmo campo por mais tempo do que o previsto (5 anos para o DES

e 10 para o LSST) para otimizar as observações de velocidades peculiares de supernovas.

Palavras-chave: Supernovas do Tipo Ia, velocidades peculiares, parâmetros cosmológicos

de perturbação, estratégias observacionais.

Rio de Janeiro

Abril de 2018
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Abstract

Optimizing Observations of Supernova Peculiar

Velocities

Karolina Torres Garcia

Advisor: Miguel Boavista Quartin

Co-advisor: Beatriz Blanco Siffert

Type Ia supernovae are very important sources of information to Cosmology as they are

still the only established high-redshift standard candles. In order to constrain cosmo-

logical parameters based on them, we need to account for some sources of uncertainty,

including their intrinsic dispersions and peculiar velocities. These uncertainties are often

just modeled as Gaussian random terms; however, supernova peculiar velocities introduce

a source of correlation between supernova magnitudes that should be considered in all

analyses of nearby samples. This implies that the supernova Hubble diagram residual

contains valuable information on both the present matter power spectrum (whose am-

plitude is obtained by analyzing the 2-point correlation function of supernova peculiar

velocities), and the growth rate of the Universe.

In this work, we study low-redshift Type Ia supernovae to understand how different

survey parameters such as its duration, the area covered and the redshift reached influence

on the estimation of the perturbation parameters σ8 and γ. σ8 is a parameter included

in the standard model of cosmology that represents the mean square value of the matter

contrast in the Universe and measures the formation of structures in the linear regime - the

larger its value, the more inhomogeneous is the cosmos. γ is the growth rate index related

to the common parametrization for the linear growth of structures. Both these parameters
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are also useful to test the consistency of the General Relativity and the standard model

of cosmology.

Despite the common assumption that supernova peculiar velocities just relevantly

contributes to the overall error budget when considering z . 0.1, in this work we show

that it is possible to gain information on the estimation of σ8 and γ by going until z ≈ 0.2.

In addition, we concluded that the error on those constraints for our sample falls as a

power law with index 0.5 as a function of the area covered, and does not follow a power law

as a function of survey duration (the gain of information reaches a limit after a determined

time). For our 11,285-supernova 600-deg2 sample that lasts 6 years, we concluded that the

survey would benefit more from staying longer in the same field before exploring another

area of the sky. Making a preliminary analysis for the Dark Energy Survey (DES) and

the Large Synoptic Survey Telescope (LSST), we show that they both also should prefer

staying longer in the same area then the intended time (5 years for DES and 10 years for

LSST) to optimize observations of supernova peculiar velocities.

Keywords: Type Ia supernovae, peculiar velocities, perturbation cosmological parame-

ters, observational strategies.

Rio de Janeiro

April, 2018
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Chapter 1

Introduction

Two decades ago, Type Ia supernovae, the only established high-redshift standard can-

dles, revealed the presence of the dark energy, which is opposing the attractive force of

gravity and is instead accelerating the Universe’s rate of expansion (Hamuy et al. (1996);

Perlmutter et al. (1998); Riess et al. (1998)). Because of their high luminosity and stan-

dardizable light curves, Type Ia supernovae help determine the properties of the dark

energy component and constrain cosmological parameters. They then represent a driving

area in Cosmology, which aims to expand our knowledge of the Universe.

Many supernova (SN) surveys - including the Dark Energy Survey (DES - Abbott

et al. (2016)), the Large Synoptic Survey Telescope (LSST - Abell (2009)), and the Zwicky

Transient Facility (ZTF - Bellm (2014)) - are being conducted or planned in the next years,

which will increase the number of observed explosions from the current ∼ 103 (Betoule

et al. (2014), Scolnic (2018)) to over ∼ 106 (Abell 2009) and, consequently, increase

the confidence level related to the cosmological parameters estimation. However, the

systematic errors are already of the same order of magnitude as the statistical ones (Davis

et al. 2011). This means that although telescope specifications and survey strategies are

constantly getting better, it is also important to improve our understanding of these errors

and correct for the systematics.

One of the ways of turning noise into signal is by using supernova peculiar velocities

(PV), which introduce correlations in the supernova magnitudes (Gordon et al. 2007).
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This effect was well developed by Hui & Greene (2006) and Davis et al. (2011). The su-

pernova peculiar velocities are often just modeled as Gaussian random terms, and plotted

in the supernova Hubble diagram (that relates distance modulus with redshift) consider-

ing that its total redshift is due to the expansion of the Universe. Figure (1.1) shows the

Hubble diagram for 472 Type Ia supernovae from the Sloan Digital Sky Survey (SDSS,

Holtzman et al. (2008), Kessler et al. (2009a)), the Supernova Legacy Survey (SNLS,

Astier et al. (2006), Sullivan et al. (2011)) and the Hubble Space Telescope [survey]

(HST, Riess et al. (1998)) plus a nearby supernova set built with the combination of five

samples: Calán/Tololo (Hamuy et al. 1996), CfAI (Riess et al. 1998), CfAII (Jha et al.

2007), CfAIII (Hicken et al. 2009) and CSP (Contreras et al. 2010).

Figure 1.1: Hubble diagram for 472 Type Ia supernovae (123 low-z, 93 SDSS, 242 SNLS,
14 HST), with the residuals from the best fit shown in the bottom panel. Credits: Conley
(2011)

Meanwhile, supernova velocities are not really random, as the large-scale gravitational

potential wells incur in coherent velocity flows. Any two supernovae in the same region of

the sky (which extends to many dozen of Mpc) are supposed to have correlated magnitude
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fluctuations. In other words, if a given supernova is dimmer than the average because it is

moving away from us, a nearby supernova has an excess probability of also being dimmer

than the average because it will be in the same velocity flow. The amplitude of these

correlations depends on cosmology, as they are directly related to the 2-point correlation

function of matter and, therefore, to the matter power spectrum. Consequently, one can

obtain the amplitude of the matter fluctuations from the correlation between peculiar

velocities. At the scale of 8 Mpc/h, this amplitude is called σ8, expressing how overdense

are the 8 Mpc/h structures in the Universe. Besides that, with the peculiar velocity fields

we are also able to constrain the value of the growth rate index γ (related to the common

parametrization for the linear growth rate of structure), considered a fixed parameter in

ΛCDM.

This project aims to optimize survey strategies in order to measure peculiar velocity

fields with Type Ia supernovae. By varying observational parameters, such as the area

of the sky, the depth being reached, and the duration of the survey, we studied what

strategies could give us the best estimation on σ8 and γ, via peculiar velocity studies.

This kind of analysis is crucial because the deeper we look in the sky, the more supernovae

we see (which improves our sample, until a certain redshift determined by the telescope

capabilities, of course), but also the larger is the contribution of the cosmological redshift,

and the harder is to distinguish the contribution of the peculiar velocity fields. So, depth

and field area must be well balanced to optimize observations.

We are currently performing simulations based on DES, LSST and ZTF specifications

and strategies to make comparisons on how well they will constrain σ8 and γ. DES will

use only a small fraction of the survey time to observe small patches of sky (30 deg2) once

a week to discover transients, while LSST and ZTF will cover a huge area of the sky (at

least 18.000 deg2) with a frequency that enables images of every part of the visible sky to

be obtained every few nights. Results for this analysis will be presented in an upcoming

paper: Garcia et al. (2018).
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This dissertation is organized as follows: Chapter 2 introduces some cosmology con-

cepts necessary for the understanding of the next chapters; Chapter 3 gives an overview

about supernova cosmology and shows how we use supernova peculiar velocities to con-

strain perturbation parameters; Chapter 4 explains how we performed the simulations

and made the comparison among survey strategies; and Chapter 5 presents conclusions

and future works.
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Chapter 2

Cosmology Concepts

2.1 Standard Model of Cosmology

The standard model of cosmology is the Lambda Cold Dark Matter model (ΛCDM), which

can be described as an homogeneous and isotropic universe, that expanded from a hot

and dense state and whose dynamics was dominated by different components during its

evolution. It is based on the general relativity and the cosmological principle, supporting

that the universe looks the same (on average) for an observer at rest, wherever he is. It is

also the simplest model that reasonably explains the existence and structure of the Cosmic

Microwave Background (CMB), the large-scale structure in the distribution of galaxies and

clusters, the abundances of hydrogen, helium and lithium, and the accelerating expansion

of the universe.

The letter ‘Λ’ represents the cosmological constant, which in ΛCDM is associated

with the dark energy used to explain the current accelerating expansion of space against

the attractive effects of gravity. The cosmological constant has negative pressure, which

contributes to the stress-energy tensor that causes accelerating expansion, according to

the general theory of relativity. The term ‘Dark Matter’ is postulated in order to account

for gravitational effects observed in large-scale structures that cannot be accounted for

by the quantity of observed matter; and ‘Cold’ means that dark matter’s velocity was far

less than the speed of light at the epoch of radiation-matter equality.
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The most general metric to describe an expanding universe that obeys the cosmological

principle is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −c2dt2 + a(t)2

[
dr2

1− κr2
+ r2(dθ2 + sin2θdφ2)

]
, (2.1)

where r, φ and θ are comoving coordinates, t is time (counted from the birth of the

universe), a(t) is the scale factor and κ is the curvature parameter, which can assume the

values -1 (negative curvature), 0 (plane) and +1 (positive curvature).

The scale factor a(t) is a parametrization to the expansion of the universe (defined

relative to the present day), and is related to the observed redshift z of an object whose

light was emitted at time tem by

1

a(tem)
= 1 + z. (2.2)

We use the time-derivative of the scale factor (ȧ) divided by the scale factor itself to

give the time-dependent Hubble parameter (that represents the expansion rate of the

Universe)

H(t) =
ȧ

a
. (2.3)

By combining the Einstein’s field equations and the FLRW metric, and supposing that

the universe components behave as perfect fluids, we have two independent equations that

give the expansion rate in terms of the matter+radiation density ρ, the curvature κ, the

cosmological constant Λ, the gravitational constant G, and the pressure of the fluid p:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
+

Λ

3
, (2.4)

and

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.5)

We can interpret the cosmological constant as one of the components of the Universe

with density ρΛ ≡ Λ/8πG and pressure pΛ ≡ −Λ/8πG. So we can simplify the above
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equations and get to the Friedmann ones:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (2.6)

and

ä

a
= −4πG

3
(ρ+ 3p), (2.7)

that combined give the third dynamics equation, the fluid equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (2.8)

Eq. (2.6) and (2.7) give us two independent equations but three variables, making

it impossible to find a solution for this system. One way of moving forward with this

analysis is by using an equation of state, to relate pressure and energy density. Since

the density of the components of the Universe is currently low, linear equations of state

provide a good approximation, where pi = wiρi, wi is the equation of state parameter and

the index i represents the different components. If we combine the equation of state with

the fluid Eq. (2.8), we have

ρ̇i + 3
ȧ

a
(1 + wi)ρi = 0, (2.9)

which is the same as

ρ̇i
ρi

= −3
ȧ

a
(1 + wi). (2.10)

By integrating and rearranging the last equation, we get to the equation that governs the

evolution of the different components in terms of the scale factor:

ρi(a) = ρi,0a
−3(1+wi). (2.11)

The flat ΛCDM model considers three components: radiation (wrad = 1/3), matter

(wm = 0) and dark energy (wΛ = −1). A useful way to study the Friedmann equations is

by defining the density parameter for each of these components as

Ωi =
ρi
ρcrit

, (2.12)
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where ρcrit = 3c2H2/3πG is the critical energy density (the one a perfectly flat Universe

would have).

The different energy densities decay modes for each component of the universe lead

it through different eras, each one dominated by one of these fluids. One can see the

different eras in Figure (2.1).

Figure 2.1: Density parameter values for the different components of the universe as a
function of the redshift. Credits: Sánchez (2018)

Based on the various density parameters (which add up to 1), the Friedmann equation

can be rewritten as

H(a) ≡ ȧ

a
= H0E(a), (2.13)

with

E(a) =
√

(Ωc + Ωb)a−3 + Ωra−4 + Ωκa−2 + ΩΛa−3(1+w), (2.14)

where w is the equation of state for dark energy assuming negligible neutrino mass, Ωc is

the dark matter density parameter, Ωb is the baryon density parameter, Ωr is the radiation

density parameter, Ωκ represents the curvature of the Universe, and ΩΛ is the dark energy

density parameter.
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The ΛCDM model is based on six parameters: Ωb, Ωc, the Hubble parameter (H0);

the scalar spectral index (ns); the curvature fluctuation amplitude; and the reionization

optical depth (τ). Commonly, the set of observations used to fit cosmological parameters

includes the CMB anisotropy, the brightness/redshift relation for supernovae, large-scale

galaxy clustering (including the baryon acoustic oscillation feature, or BAO), weak grav-

itational lensing and globular cluster ages.

If curvature Ωκ is assumed zero and the equation of state for dark energy w is -1, the

Friedmann equation simplifies to

H(a) = H0

√
Ωma−3 + Ωra−4 + ΩΛ. (2.15)

The definitions and explanations about the ΛCDM model presented in this section were

based on Ryden (2003) and Coles & Lucchin (2002), which can be revised for more details.

The results based on full-mission Planck observations of temperature and polariza-

tion anisotropies of the CMB are consistent with the six-parameter ΛCDM cosmol-

ogy (Planck Collaboration 2016). Planck found a Hubble constant H0 = (67.8 ± 0.9)

km/s/Mpc, a matter density parameter Ωm = 0.308± 0.012, and a scalar spectral index

with ns = 0.968 ± 0.006. Combined with Planck temperature and lensing data, Planck

Low Frequency Instrument (LFI) polarization measurements lead to a reionization optical

depth τ = 0.066± 0.016. Spatial curvature is found to be |Ωκ| < 0.005 and the equation

of state of dark energy is constrained to w = −1.006± 0.045.

Planck results are in agreement with Baryonic Acustic Oscilations (BAO) data (Beut-

ler et al. (2011); Anderson et al. (2014); Ross et al. (2015)) and with the Joint Light-curve

Analysis (JLA) supernovae sample (Betoule et al. 2014). However, the amplitude of the

fluctuations is found to be higher than inferred from rich cluster counts and weak grav-

itational lensing. Moreover, the currently most precise measurement of H0 (Riess et al.

2016) differs by ∼ 3.4 standard deviations from the value reported by Planck Collabora-

tion (2016). Apart from these tensions, the base ΛCDM cosmology provides an excellent
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description of the Planck CMB observations and many other astrophysical data sets.

2.2 Dark Energy Models

Although ΛCDM is the current benchmark cosmological model, alternative models for

dark energy are extensively studied in the literature. There are a lot of different ap-

proaches trying to describe the dark energy, like the inclusion of new fields with different

couplings to geometry quantities or the parametrization of the dark energy equation of

state. Anyway, the dark energy models can be tested by analyzing its effect over the

expansion rate of the Universe (via H(z)). The particular form of the Hubble parameter

depends on the model, but considering that all components are conserved independently,

the expansion parameter is described as

H2(z) = H2
0 [Ωr(1 + z)4 + Ωm(1 + z)3 + Ωκ(1 + z)2 + Ωxf(z)], (2.16)

where Ωx is the current fraction of the energy density related to the dark energy, and f(z)

is its evolution function given by

f(z) ≡ ρ(z)

ρ0

= exp

(
3

∫ z

0

1 + w(z′)

1 + z′
dz′
)
. (2.17)

Regardless of the mechanism used (inclusion of new fields or a parametrization), the

equation of state w(z) determines the evolution of the dark energy.

Table (2.1) presents recent values for the cosmological parameters obtained by com-

bining different observables to varying models describing the dark energy. Constraints

were based on Galaxy+Lyman-alpha Forest (LyaF) BAO data, the combination of Planck

temperature and Wilkinson Microwave Anisotropy Probe (WMAP) polarization measure-

ments of the CMB fluctuation (Planck+WP), the Nine-Year WMAP (WMAP9), and the

Joint Light-curve Analysis (JLA) supernova data. The dark energy is represented by the

cosmological constant Λ, by a fluid with equation of state w(z) = w, or by a fluid with

equation of state w = w0 + (1 − a)wa. Figures (3.3) and (3.4) in the next chapter show

the constraints on the most representative parameters of those three models.
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Table 2.1: Cosmological parameter constraints from Galaxy+LyaF BAO data combined
with a compressed description of CMB constraints from Planck+WP or WMAP9, and the
JLA SN data. Entries for which the parameter is fixed in the listed cosmological model
are marked with a dash. For w0waCDM and ow0waCDM, column 7 lists the value of w
at z = 0.266, which is the ”pivot” redshift for w0waCDM with the full data combination.
Credits: Aubourg et al. (2014).

2.3 Distances in Cosmology

The concept of simultaneity was totally reformulated by Special Relativity. The definition

we once had about distance, as being absolute and unequivocal, was deeply affected by

this theory; and we discovered that in fact the definition of distance depends on the

motivation.

Within the Solar System, for example, we measure the distance to the Moon and
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planets by reflecting radar signals from them. For the purpose of determining distances

to stars within the Milky Way galaxy, the most used method is the trigonometric parallax.

Although this method is not suited to measure distances to high-redshift objects, it is used

to calibrate other measurement methods.

When dealing with much more distant objects, we enter the realm of cosmological

distances. There are different definitions of such distances, and we integrate the Eq.

(2.15) in order to get them. They all coincide for sufficiently small redshifts, but differ in

their fundamental concept and usage. In the following sections, I present the most used

definitions, that can be revised in more detail in Hogg (2000).

On cosmological scales, there are two known methods to measure distances. One is by

using objects with a known brightness, called the standard candle method, and the other

method is by using an object with known size, called the standard ruler method.

2.3.1 Proper Distance and Comoving Distance

Proper distance and comoving distance are closely related distance measures. The main

difference is that proper distance changes over time due to the expansion of the Universe

while the comoving distance does not.

If we are observing an object moving with the Hubble flow, i.e. moving due solely to

the expansion of the Universe, its proper distance is defined as

DP (t) = a(t)

∫ r

0

dr′√
1− κ( r

′

R0
)2

= a(t)χ(r), (2.18)

where

χ(r) =


R0 sin−1 r/R0 : κ = +1

r : κ = 0

R0 sinh−1 r/R0 : κ = −1

, (2.19)

and R0 is the intrinsic curvature of space.

The comoving distance δχ between two nearby objects moving with the Hubble flow

is the distance that remains constant with epoch. This is the proper distance multiplied
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by (1 + z). So the line-of-sight comoving distance χ from us to a distant object is the

integration of the δχ contributions between nearby events along the radial ray from z = 0

to the object, i.e.:

χ = DH

∫
dz′

E(z′)
, (2.20)

where DH ≡ c/H0 is the Hubble distance and E(z) ≡
√

ΩM(1 + z)3 + Ωκ(1 + z)2 + ΩΛ.

The comoving distance of two objects at the same redshift separated by an angle δθ

is DMδθ, where DM is called the transverse comoving distance

DM = DH
1√
Ωκ

sinh(
√

Ωκχ/DH). (2.21)

In order to measure comoving distances we use the radial BAO: frozen relics left

over from the pre-decoupling universe, after which baryons and photons started evolving

independently (z = 1090), and whose characteristic scale known as the sound horizon

scale has been precisely measured by CMB probes.

2.3.2 Luminosity Distance

The luminosity distance DL is defined by the relationship between bolometric flux f (the

integral over all frequencies of the spectral flux) and bolometric luminosity L (the integral

over all frequencies of the spectral luminosity):

DL ≡
(

L

4πf

)1/2

. (2.22)

In an expanding, spatially curved universe, the relation between the observed flux f

and the luminosity L of a distant light source is

f =

(
L

4πχ(r)2(1 + z)2

)
, (2.23)

and the luminosity distance DL is

DL = χ(r)(1 + z). (2.24)
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For a flat Universe, we have:

DL = r(1 + z) = χ(1 + z), (2.25)

where t0 is the time in the observer’s rest frame.

There is a convenient way of relating the distance to an astronomical object to its

bolometric magnitudes, through the quantity called distance modulus:

µ := m−M, (2.26)

which is the magnitude difference between the object’s bolometric flux and the flux it

would have if it was 10 pc away from the observer (in the observer’s reference frame):

µ ≡ 5 log10

(
DL

10pc

)
. (2.27)

The apparent magnitude is the sum of the absolute magnitude of the object, the

distance modulus and the K-correction. K-correction is an adjustment made to an as-

tronomical object’s magnitude (or flux) that allows a measurement of a quantity of light

emitted at a redshift z to be converted to an equivalent measurement in the rest frame of

the object. It is needed because an astronomical measurement through a single filter or a

single bandpass only sees a fraction of the total spectrum, redshifted into the frame of the

observer. In order to compare the measurements through a filter of objects at different

redshifts, one needs to make this correction.

To take into account the absolute magnitude, one needs a standard candle (an object

of known absolute magnitude), making it possible to calculate its luminosity distance.

The most commonly used standard candles in astronomy are Cepheid Variables (since

their absolute magnitude can be determined from their variability period), and Type Ia

supernovae (since their peak luminosity is correlated with how quickly their light curve

declines after maximum light). In chapter 3, I make an overview about Type Ia supernovae

and how we do cosmology with them.
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Another way of measuring luminosity distances is by using gravitational waves, which

provide a direct measure of the distance, but give no independent information about

redshift, so an electromagnetic counterpart is needed (Zhao et al. (2011); Taylor & Gair

(2012)).

2.3.3 Angular-Diameter Distance

Another distance measure that can be computed using the observable properties of cos-

mological objects is the angular-diameter distance. By observing an object whose proper

length is known (a standard ruler) and measuring its angular size, one can make esti-

mations on cosmological parameters because the relation between these two distances

depends on the assumed cosmological model.

Consider a standard ruler of constant proper length l, aligned perpendicular to the

line of sight, with angular size θ between its edges, at redshift z. If θ is very small, the

angular-distance to the standard ruler is given by

DA ≡
l

θ
=

χ(r)

1 + z
. (2.28)

Comparing with the proper distance and the luminosity distance formulas, one can find

that

DA =
DP (t0)

1 + z
=

DL

(1 + z)2
. (2.29)

There are two ways of measuring the angular-diameter distance: using the angular

BAO or gravitational lensing. Since BAO is a generic result of interactions between

photons and baryons, the BAO feature exists not only in the CMB, but also in the matter

distribution. As collapsed objects growing inside over dense regions, galaxies can be used

as tracers of matter distribution by assuming some appropriate galaxy bias. This way,

BAO matter clustering provides a standard ruler for length scale in cosmology, but it

requires substantial resources and many years of dedicated observations. Another way

of measuring DA is by using gravitational lensing. The angular diameter distance to
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the lens can be determined by measuring both the time delay between two spatially

separated images of a single source via strong lensing, and the velocity dispersion of the

lensed galaxy.

2.4 Large Scale Structure

The Large Scale Structure of the Universe refers to the patterns of galaxies and matter on

scales much larger than individual galaxies or groupings of galaxies. On large scales, the

Universe displays a coherent structure, with galaxies residing in groups and clusters on

scales of ∼ 1− 3 h−1 Mpc, which lie at the intersections of long filaments of galaxies that

are > 10 h−1 Mpc in length. Vast regions of relatively empty space (the voids) contain

very few galaxies and span the volume in between these structures (Coil 2012). Figure

(2.2) shows the spatial distribution of galaxies as a function of redshift from the 2-degree

Field (2dF) Galaxy Redshift Survey. The observed large scale structure depends both on

cosmological parameters and the formation and evolution of galaxies.

In order to quantify the clustering of galaxies, one must survey the entire galaxy

density distribution, from voids to superclusters. Any galaxy survey will observe a radial

distribution of galaxies and need to correct for a spatially varying galaxy selection function

(Percival 2013). So we use the expected mean density of the universe ρ̄(x) to translate

the observed galaxy density ρ(x) to a dimensionless over-density

δ(x) =
ρ(x)− ρ̄(x)

ρ̄(x)
, (2.30)

which has a distribution that is close to that of a Gaussian, adiabatic fluctuations for

large scales. So the statistical distribution is described by the 2-point functions of this

field.
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Figure 2.2: The spatial distribution of galaxies as a function of redshift and right ascen-
sion (projected through 3 degrees in declination) from the 2dF Galaxy Redshift Survey.
Credits: Colless et al. (2003).

A commonly used quantitative measure of large scale structure is the galaxy 2-point

correlation function, ξ(x), which is the expected 2-point function of this statistic and

traces the amplitude of galaxy clustering as a function of scale

ξ(x1, x2) ≡ 〈δ(x1)δ(x2)〉, (2.31)

where x1 and x2 are the vectors pointing toward supernovae i and j, respectively. Con-

sidering homogeneity and isotropy, we have that

ξ(x1, x2) = ξ(x1− x2) = ξ(| x1− x2 |). (2.32)

Using the mean number of galaxies per unit volume n̄ and two small regions δV1 and

δV2, separated by a distance r, we can calculate the expected number of pairs of galaxies

with one galaxy in δV1 and the other in δV2

〈npair〉 = n̄2[1 + ξ(r)]δV1δV2. (2.33)
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If ξ(r) = 0, the galaxies are uncorrelated (randomly distributed) on this scale. ξ(r) > 0

corresponds to clustering, and ξ(r) < 0 to anti-clustering.

It is often convenient to measure clustering in Fourier space. The Fourier transform

of the 2-point correlation function is the power spectrum, which is often used to describe

the distribution of galaxies and clusters of galaxies, and is defined as

P (k1, k2) =
1

(2π)3
〈δ(k1)δ(k2)〉, (2.34)

where k1 and k2 represent the possible wavenumbers. The statistical homogeneity and

isotropy gives

P (k1, k2) = δD(k1− k2)P (k1), (2.35)

where δD is the Dirac delta function. The correlation function and power spectrum form

the following Fourier pair:

P (k) =

∫
ξ(r)eikxd3x, (2.36)

ξ(x) =

∫
P (k)e−ikx

d3k

(2π)3
. (2.37)

Measuring either the correlation function or the power spectrum provides a statistically

complete description of the Gaussian field. The present-day matter power spectrum is

the evolved result of the primordial power spectrum produced during inflation, a period

of rapid acceleration in the early Universe.

It is possible to calculate the mean quadratic value of the matter contrast, which

indicates where there are local enhancements in matter density, as a function of the

power spectrum:

σ2
R(t) =

V

(2π)3

∫
P (k) | f(kR) |2 d3k, (2.38)

where f(kR) is the Fourier transform of the window function. In order to compare theory

with observations, we can take also the purely statistics formula:

σ2
R(t) =

〈(
1

V

∫
V

δ(x, t)d3x

)2
〉
, (2.39)
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where V is the comoving volume of the sample and the average is about different universe

samples with volume V = 4πR3/3a3
0. This kind of analysis is traditionally done with

clusters of galaxies, which have characteristic dimensions of the order of 8 Mpc/h. From

that, we define σ8: the amplitude of the matter fluctuations at the scale of 8 Mpc/h,

σ8 ≡

√∫
dk

k2

2π2

9P (k)

(kR)6
[sin(kR)− kR cos(kR)]2, (2.40)

where R ≡ 8Mpc/h. σ8 represents a measure of the Universe’s inhomogeneity by express-

ing how overdense the 8 Mpc/h structures are.

Another useful parameter to describe large scale structure evolution is γ, the growth

rate index related to the common parametrization for the linear growth rate f (Lahav

et al. 1991):

f(a) = −d lnG(a)

d ln a
' Ωm(a)γ, (2.41)

where G(a) is the growth function:

G(a) =
5Ωm(a)

2H3
0

∫ a

0

da′

(a′E(a′))3
, (2.42)

and

Ωm(a) =
Ωm,0

a3E2(a)
. (2.43)

Within General Relativity and for the ΛCDM model, γ = γΛCDM ≈ 0.55. Since γ

does not depend strongly on the equation of state parameter of dark energy, it is often

employed as a simple way of describing the growth rate in modified gravity models.
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Chapter 3

Type Ia Supernovae and Peculiar
Velocity Fields

3.1 Supernova Classification

Supernovae are transient astronomical events that occur during the last stellar evolution-

ary stages of some stars. This dramatic and catastrophic destruction is marked by one

final explosion due to the instability generated by the action of the photodisintegration

or neutron degeneracy in their interior, or because of the accretion of matter from one

of the stars in a particular binary system. These processes release kinetic and luminous

energy and occur once in every 50 years in a typical galaxy.

Supernovae are divided into subclasses, classified according to their light curves and

the absorption lines of different chemical elements that appear in their spectra. The first

classification criterion is the presence or absence of a hydrogen line. If a supernova’s

spectrum contains these lines (the Balmer series), it is classified as Type II; otherwise,

it is Type I. In each of these two types there are subdivisions according to the presence

of lines from elements other than hydrogen or to the shape of the light curve. Type Ia

supernovae show a strong ionised silicon absorption line, while Type Ib and Ic have weak

or no silicon absorption feature. Type II-P and Type II-L supernovae have no narrow

lines, while Type IIn show some narrow lines, and Type IIb have the characteristic that

their spectrum changes to become like Type Ib in their late stages.
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Supernovae are also classified in Thermonuclear or Core Collapse. Type Ib, Ic and

II represent massive stars that undergo core collapse in the end of their lives. Type Ia

supernovae happen when a white dwarf star accumulates sufficient material from a stellar

companion to raise its core temperature enough to ignite carbon fusion, at which point it

undergoes runaway nuclear fusion, completely disrupting it. All those classifications can

be summarized in Figure (3.1), taken from Coelho et al. (2015), who makes a good review

about this topic.

Figure 3.1: Supernovae classification. Credits: Coelho et al. (2015)

3.2 Type Ia Supernovae as Standard Candles

The most interesting supernova subclass to cosmology is the Type Ia supernova. Phys-

ically, carbon-oxygen white dwarfs with a low rate of rotation are limited to below 1.44

solar masses (the Chandrasekhar limit mass). If a white dwarf gradually accretes mass

from a binary companion, the general hypothesis is that its core will reach the ignition

temperature for carbon fusion as it approaches the limit, so the pressure due to the de-

generacy of electrons is not suficient to keep the star stable and it collapses. The fact

that this class of stars all explode with mass given by the Chandrasekhar limit suggests

that all of them should have similar characteristics, and could behave as standard can-

dles. Observations showed that this is not quite true, but the discovery of a correlation
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between peak luminosity and how quickly the light curve declines after maximum, made

it possible to standardize Type Ia supernova, and they can be made into standard candles

by correcting for this effect. Figure (3.2) depicts one such procedure, which makes use of

the so called stretch parameter. Coelho et al. (2015) reviews this subject by presenting

some fundamental concepts related to the cosmological use of Type Ia supernovae, and

builds a light curve template to exemplify the procedure.

Figure 3.2: Time scale stretch factor application in various supernova light curves in
order to determine a standard absolute magnitude. Credits: http://hyperphysics.phy-
astr.gsu.edu

There are several light-curve fitters in the literature (Jha et al. (2007); Wang et al.

(2003); Guy et al. (2007); Conley (2011)). The most commonly used are the multicolor

light-curve shape (MLCS2k2), by Jha et al. (2007), and the spectral adaptive light-curve

template (SALT2), by Guy et al. (2007), which are discussed in the following sections

based on Lago et al. (2011).

The MLCS2k2 fitting model describes the variation among Type Ia supernova light

curves with a single parameter (∆). The theoretical magnitude, mth
Y,γ, observed in an

arbitrary filter Y , at an epoch γ, is given by

mth
Y,γ = MY ′,γ + pY ′,γ∆ + qY ′,γ∆

2 +KY ′Y,γ + µ+Xhost
Y ′,γ +XMW

Y , (3.1)

where Y ′ ∈ U,B, V,R, I is one of the supernova rest-frame filters for which the model is

defined, ∆ is the MLCS2k2 shape-luminosity parameter that accounts for the correlation
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between peak luminosity and the shape/duration of the light curve, Xhost
Y ′,γ is the host-

galaxy extinction, XMW
Y is the Milky Way extinction, KY ′Y,γ is the K-correction between

rest-frame and observer-frame filters, and µ is the distance modulus. The coefficients

MY ′,γ, pY ′,γ and qY ′,γ are model vectors that have been evaluated using nearly 100 well

observed low-redshift Type Ia supernovae as a training set. Above, γ = 0 labels quantities

at the B-band peak magnitude epoch. Fitting the model to the magnitudes of each

Type Ia supernova, usually fixing RV (the ratio of V band extinction to color excess at

B-band peak), gives µ (the distance modulus), ∆, AV (the V band extinction; AV =

RV × E(B − V )) and t0 (the B-band peak magnitude epoch).

On the other hand, SALT2 uses a two-dimensional surface in time and wavelength to

describe the temporal evolution of the rest-frame spectral energy distribution (SED) or

specific flux for Type Ia supernovae. The original model was trained with 303 Type Ia

supernovae from various redshifts. In SALT2, the rest-frame specific flux at wavelength

λ and phase p does depend through the parameters x0, x1, and c on the particular Type

Ia supernova and is modeled by

φ(p, λ;x0, x1, c) = x0[M0(t, λ) + x1M1(t, λ)] exp[cC(λ)], (3.2)

whereM0(t, λ), M1(t, λ) are the zeroth and the first moments of the distribution of training

sample SEDs. M0(t, λ), M1(t, λ), and C(λ) are determined from the training process

described in Guy et al. (2007). In order to compare with photometric Type Ia supernovae

data, the observer frame flux in passband Y is calculated as

F Y (p) =

∫
dλ′[λ′φ(p, λ′)T Y (λ′)], (3.3)

where T Y (λ′) defines the transmission curve of the observer frame filter Y , which repre-

sents the fraction of energy that passes through the filter Y as a function of wavelength.

This needs to be taken into account because the filters are not perfect, in the sense that

they do not let all photons pass, no matter what wavelength is being considered. Con-

sidering that time intervals dpS in the source’s rest-frame correspond to time intervals in
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the detector’s frame dpD = (1 + z)dpS, and that the photon energies are also related by

a factor (1 + z), we can rewrite Eq. (3.3) in the observer’s rest frame:

F Y (p(1 + z)) = (1 + z)

∫
dλ′[λ′φ(p, λ′)T Y (λ′(1 + z))]. (3.4)

The parameters x0, x1, and c can be determined by fitting each Type Ia supernova

light curve separately using Eq. (3.2) and (3.4). However, SALT2 fit does not provide an

independent distance modulus (µB) estimate for each supernova. We use the parameters

retrieved from the light-curve fit to estimate it:

µB = x0 −M + α× x1 − β × c, (3.5)

where α, β and the absolute magnitude M are parameters which are fitted by minimizing

the residuals in the Hubble diagram.

From statistical analysis, it is possible to compare the measurement of µ with the

theoretical prediction of a given model. Based on that, the Supernova Cosmology Project

and the High-z Supernova Search Team obtained the first clear evidences that the Universe

is experiencing an accelerated expansion (Hamuy et al. (1996), Perlmutter et al. (1998),

Riess et al. (1998)). Adam Riess, Brian Schimidt and Saul Perlmutter were awarded the

2011 Nobel Prize in Physics for this discovery.

3.3 Cosmology with Type Ia Supernovae

Once the stretch-corrected magnitude and redshift are determined, the supernova can be

put into the Hubble diagram in order to measure the cosmological parameters. Since

the apparent magnitude of a standard candle gives us its distance and the time at which

the light was emitted, and the redshift gives the cosmic expansion parameter a(t), a

Hubble diagram populated with supernovae at different distances gives us the history of

the expansion of the universe. Since the expansion rate is determined by its matter-energy

content, it is clear that Type Ia supernovae can tell us about the properties of the contents

of the universe, and, in particular, of the dark energy component.
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The statistical uncertainties in the Hubble diagram are dominated by the intrinsic

supernova peak magnitude dispersion σint = 0.10−0.15, and the statistical error achieved

by near-future surveys will be σstat = 0.01 − 0.02. Since many systematic uncertainties

are expected to be fully correlated for supernovae at similar redshifts, but uncorrelated

otherwise, it is clear that systematic errors of order a few per cent will be important, and,

in many cases, already dominant.

The most common Type Ia supernova cosmological analysis is based on the χ2 function:

χ2 := XTΣ−1X, (3.6)

where X := (µ − µth(z,Θ)), µ is the set of distance moduli derived from the light curve

fitting procedure for each supernova event, at redshifts given by z, µth(z,Θ) is the the-

oretical prediction for them, given in terms of a vector Θ of parameters and Σ is the

covariance matrix of the events.

In the following discussion, we present concepts based on the SALT2 light curve fitter

as discussed in Lago et al. (2011). SALT2 gives three quantities to be used in the analysis

of cosmology: x1 (a parameter related to the stretch of the light-curve), c (a parameter

related to the color of the supernova alongside its redshift z), and m?
B (the peak rest-frame

magnitude in the B band), given by:

m?
B := −2.5 log[x0

∫
dλ′M0(p = 0, λ′)TB(λ′)]. (3.7)

The distance modulus is modelled as a function of these SALT2 parameters, two new

parameters δ := (α, β), and the peak absolute magnitude in B band MB. If we define the

corrected magnitude as

mcorr
B (δ) := m?

B + αx1 − βc, (3.8)

we can write

µ(δ,MB) = mcorr
B (δ)−MB. (3.9)



26

Assuming that all Type Ia supernova events are independent, we can rewrite Eq. (3.6)

in terms of the number of supernovae in the sample N as

χ2
SALT2(θ, δ,M(MB, h)) =

N∑
i=1

[µi(δ,MB)− µth(zi;θ, h)]2

σ2
i (δ) + σ2

int

, (3.10)

where θ represents the cosmological parameters other than h and M(MB, h) := MB +

µ0(h). So the theoretical distance modulus is given by

µth(z,θ, h) = 5 log[DL(z;θ)] + µ0(h). (3.11)

The supernova intrinsic dispersions need to be accounted for and are added in quadra-

ture to the distance modulus dispersion, given by

σ2
i (δ) = σ2

m?
B ,i

+ α2σ2
x1,i

+ β2σ2
c,i + 2ασm?

B ,x1,i
− 2βσm?

B ,c,i
− 2αβσx1,c,i + σ2

µ,z,i, (3.12)

where σ2
µ,z,i is the contribution to the distance modulus dispersion due to redshift un-

certainties from peculiar velocities and also from the measurement itself. For simplicity

and following Kessler et al. (2009b), this contribution will be modeled using the distance-

redshift relation for an empty universe, so we have

σµ,z,i = σz,i

(
5

ln 10

)
1 + zi

zi(1 + zi/2)
, (3.13)

where

σ2
z,i = σ2

spec,i + σ2
PV . (3.14)

σspec,i is the redshift measurement error, and σPV is the redshift uncertainty due to peculiar

velocity.

Astier et al. (2006) showed that by minimizing Eq. (3.10), a bias towards increasing

values of α and β shows up. Guy et al. (2007) circumvent this problem with an iterative

method, in which the χ2 presented in Eq. (3.10) is replaced by

χ2
SALT2(θ, δ,M) =

N∑
i=1

[µi(δ,MB)− µth(zi;θ, h)]2

σ2
i (η) + σ2

int

. (3.15)
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Since η is not a χ2
SALT2 parameter, it is given an initial value and the optimization is

performed on θ, δ and M . After this, η is updated with the best fit value of δ and the

optimization is performed again and again, until a convergence is achieved. During this

process, σint is not considered a free parameter to be optimized, being determined rather

by an initial value that will next perform the iterative procedure described above and

the value of σint is then obtained by fine tuning it so that the reduced χ2 equals unity

(with all the other parameters fixed on their best fit values). The iterative procedure is

repeated once more with this new value and the final best fit values are obtained.

Considering that the Type Ia supernova light curve fitting parameters are Gaussian

distributed random variables, one can take as starting point the likelihood

L =
1

(2π)N det Σ
exp(−XTΣ−1X/2), (3.16)

which is related to the χ2 in Eq. (3.6) by

L := −2 lnL = χ2 + ln det Σ +N ln(2π). (3.17)

One can note that, when the full covariance of the problem is known, minimizing χ2 is

equivalent to minimizing L. However, this is not the case for current Type Ia supernova

observations and neglecting one term in Eq. (3.17) would, in principle, lead to a biased

result. In order to obtain probability distributions functions for all parameters, including

σint and δ, we need to minimize the function

LSALT2(θ, δ,M, σint) = χ2
SALT2(θ, δ, µ, σint) + ΣN

i ln(σ2
i (δ) + σ2

int), (3.18)

where parameter-independent terms were neglected. χ2
SALT2(θ, δ,M, σint) is given by Eq.

(3.10), considering σint as a free parameter.

The most common constraints analyzed are the 68% and 95% confidence level contours

in the planes: 1) Ωm0×ΩΛ0 (for the ΛCDM model), 2) Ωm0×w (for the FwCDM model),

and 3) w×wa. Examples of those three cases can be seen in Figures (3.3) and (3.4), from

Betoule et al. (2014).
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Figure 3.3: 68% and 95% confidence contours (including systematic uncertainty) for the
Ωm and ΩΛ cosmological parameters for the o-ΛCDM model. Labels for the various
data sets correspond to the JLA supernova compilation (JLA), the Conley (2011) Type
Ia supernova compilation (C11), the combination of Planck temperature and WMAP
polarization measurements of the CMB fluctuation (Planck+WP), and a combination
of measurements of the BAO scale (BAO). The black dashed line corresponds to a flat
universe. Credits: Betoule et al. (2014).

Figure 3.4: Confidence contours at 68% and 95% for the Ωm and w cosmological parame-
ters for the flat wCDM model in the left, and for w and wa in the right. The black dashed
line corresponds to the cosmological constant hypothesis. Credits: Betoule et al. (2014).
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3.4 Supernova Peculiar Velocities

As explained in the previous sections, in order to constrain cosmological parameters

(namely Ωm and w for a flat universe) using supernova data, one needs to account for

the dispersions of these objects that are not due to the expansion of the Universe. These

dispersions include the supernova peculiar velocities related to the distribution of matter

in the large-scale structure, which are often just modeled as Gaussian random terms.

However, it has been shown in Gordon et al. (2007) that supernova velocities are not

really random, as the large-scale gravitational potential wells incur in coherent velocity

flows. This means that any two supernovae in the same region of the sky (which extends

to many dozen of Mpc) are supposed to have correlated magnitude fluctuations. In other

words, if a given supernova is dimmer than the average because it is moving away from

us, a nearby supernova has an excess probability of also being dimmer than the average

because it will be in the same velocity flow. Figure (3.5) exemplifies it.

Figure 3.5: Representation of two supernovae falling in the same large-scale structure
potential well.

Castro et al. (2016) showed this correlation through Figure (3.6), that represents 3

random realizations of 500 idealized supernovae, i.e., considering that the only dispersion

they have is due to the peculiar velocity fields. This way, one can easily notice the

magnitude correlations by eye, although in practice these are suppressed by much larger

intrinsic dispersion of the supernovae.

As emphasized by Hui & Greene (2006), in the limit of low redshift (z . 0.1) and

large sample size, these correlations between supernova peculiar velocities contribute sig-

nificantly to the overall error budget related to the estimation of cosmological parameters.

Gordon et al. (2007) calculated the ratio of the covariance from peculiar velocities com-
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pared to the random errors for a pair of supernovae over a range of angular separations

in Figures (3.7) and (3.8).

Figure 3.6: 3 random realizations of 500 idealized supernovae. In practice, these are
suppressed by much larger intrinsic dispersion of the supernovae. Credits: Castro et al.
(2016)

Figure 3.7: CPV
v compared to the random

errors σ for 2 supernovae over a range of an-
gular separations θ. Credits: Gordon et al.
(2007)

Figure 3.8: The same as Figure (3.7), but
varying z, with both supernovae at the same
z or with one supernova fixed at z = 0.03
(dash-dot). Credits: Gordon et al. (2007)
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A way of accounting for the correlated peculiar velocities is to estimate the underlying

density field from galaxy redshift surveys and then use this to try and remove peculiar

velocity at each supernovae. However, instead of just taking it off of the analysis, we can

use the correlation between these velocities to constrain perturbation parameters.

The effect of peculiar velocities leads to a perturbation in the luminosity distance

(δDL) given by

δDL

DL

= x̂ ·
(
v − (1 + z)2

H(z)DL

[v − v0]

)
, (3.19)

where x̂ is the position of the supernova at redshift z, and v0 and v are the peculiar

velocities of the observer and supernova respectively. The CMB dipole can correct for v0.

This way, a supernova survey can estimate the projected peculiar velocity field.

The velocity correlation function is defined by

ξ(xi, xj) ≡ 〈(v(xi) · x̂i)(v(xj) · x̂j)〉. (3.20)

Since the velocity correlation function must be rotationally invariant, it can be decom-

posed into the components (Dodelson 2003):

ξ(xi, xj) = sin θi sin θjξ⊥(x, zi, zj) + cos θi cos θjξ‖(x, zi, zj), (3.21)

where xij ≡ xi − xj, x = |xij|, cos θi ≡ x̂i · x̂ij and cos θj ≡ x̂j · x̂ij. In linear theory, those

components are given by (Dodelson 2003):

ξ‖,⊥ = G′(zi)G
′(zj)

∫ ∞
0

dk

2π2
P (k)K‖,⊥(kx), (3.22)

where G is the growth function, and for an arbitrary value of y, K‖(x) ≡ j0(x) − 2j1(x)
x

and K⊥(x) ≡ j1(x)
x

, and j0, j1 represent the spherical Bessel functions. For the diagonal

i = j terms, we have simply

ξ(xi, xi) = [G′(zi)]
2

∫ ∞
0

dk

2π2

P (k)

3
. (3.23)

The peculiar-motion convariance matrix is then given by

Cv(i, j) =

[
1− (1 + zi)

2

H(zi)dL(zi)

] [
1− (1 + zj)

2

H(zj)dL(zj)

]
ξ(xi, xj). (3.24)
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Since the amplitude of the correlations between supernova peculiar velocities is directly

related to the 2-point correlation function of matter, it can also provide the matter power

spectrum, from which we can derive the standard deviation of density perturbations on 8

Mpc/h (σ8) based on (Eq. 2.40). If we extend the analysis for beyond the ΛCDM model,

we can account for the free parameter γ that represents the common parametrization

for the linear growth rate, which can be calculated using (Eq. 2.41). Within General

Relativity and for the ΛCDM model, γ = γΛCDM ≈ 0.55. γ does not depend strongly on

the equation of state parameter of dark energy, so it is often employed as a simple way of

describing the growth rate in modified gravity models.

Both peculiar velocity fields and gravitational lensing can put constraints on σ8 x γ,

and they provide complementary constraints on this matter. Figure (3.9) shows a forecast

by Castro et al. (2016) for a possible future catalog, counting on 3000 supernovae from

DES plus 1000 low-redshift supernovae in 0.01 < z < 0.1, in an area of the sky of 400

deg2. One can see that lensing and peculiar velocity analysis show an angle between

degeneracies of ∼60 deg, what expresses good complementarity.

Figure (3.10) shows a comparison among the constraints on σ8 and γ from supernovae

(using lensing and peculiar velocities), Planck CMB spectra, clusters and galaxies. Note

that the JLA supernova data is already able to complement well the others, specially the

CMB. Planck CMB spectra constrains well σ8 supposing γ = γΛCDM ≈ 0.55, but needs

complement when γ is a free parameter.

Castro et al. (2016) also presented constrains on the values of σ8 (using a fixed value

for γ), and γ (fixing the perturbation parameters Ωb,0, H0, A, ns, τ), showed in Figure

(3.11). Those both analysis are well motivated because: 1) supposing General Relativity

as the correct theory for gravitation, γ is fixed; 2) if we rely on other precise measurements

of the perturbation parameters, there is no difference in practice between marginalizing

over the priors or fixing them to the best fit. Huterer et al. (2015) found similar results.
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Figure 3.9: 1 and 2σ forecast for a possi-
ble future supernovae catalog of 3000 DES
+ 1000 low-redshift supernovae in 0.01 <
z < 0.1, in an area of the sky of 400 deg2.
The contours were obtained by using pecu-
liar velocities (in green), lensing (in blue),
or both combined (in orange). The dashed
black line represents the expectation from
general relativity and the yellow dot repre-
sents the considered value in ΛCDM. Cred-
its: Castro et al. (2016)

Figure 3.10: A comparison among the con-
straints on σ8 and γ from supernovae (using
lensing and PV), Planck CMB spectra, clus-
ters and galaxies. The large orange contours
are from the JLA supernovae, whereas the
smaller orange contours with red borders are
a forecast for DES + 1000 low-z supernovae.
The other contours were obtained by Mantz
et al. (2015). Credits: Castro et al. (2016)

Figure 3.11: Marginalized 1-dimensional constraints on σ8 and γ from the combination
of supernova lensing and peculiar velocities. In blue, the full results; in dashed brown,
the contours obtained by assuming General Relativity (γ = 0.55; left) or all perturbation
quantities in P (k) (right). Credits: Castro et al. (2016)
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Some upcoming surveys, such as the DES and LSST, will have a great focus on lensing,

what will contribute to better constrain the blue area in Figure (3.9). So we are going to

need efficient survey strategies in order to also constrain those parameters using supernova

peculiar velocities. The challenging aspect is that peculiar velocities of ∼ 300 km/s are

typically much smaller than the Hubble expansion velocity; the two are similar in value

only at the very lowest redshifts, z ∼ 0.001. In the next chapter, we investigate how

the duration, depth and field size of supernova surveys influence on the peculiar velocity

signals and estimation of σ8 and γ from that.
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Chapter 4

Optimizing Observations

Chapters 2 and 3 showed that the use of peculiar velocity fields to constrain perturbation

parameters is very important, first because lensing alone will not be able to put good

constraints on σ8 x γ (Castro et al. 2016); and also because the σ8 estimates we have until

now (from Planck Collaboration (2016)), already considered very precise, were derived

using a fixed value for γ (as it is in ΛCDM). Peculiar velocities are very sensitive to σ8

and γ, allowing the latter to be a free parameter.

The objective of this work was to understand which observational parameters are

more sensitive to the peculiar velocity field signals from supernovae. In order to do that,

we used the pairV code (Hui & Greene 2006) to account for the magnitude covariance

matrix in our simulated supernova catalogs, which were constructed with varying sky

areas, survey durations and depths. Then we considered some priors and a matter power

spectrum evaluated numerically using CAMB (Lewis et al. 2010) to constrain σ8 and γ.

4.1 Simulations

Since the first objective of this work was to make comparisons among survey parameters,

we used supernova simulations based on idealized surveys: whose observations are able

to detect all supernovae exploded in a certain volume, regardless of how distant they are.

To generate the mock catalogs, we first assumed a magnitude distribution given by a
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fiducial ΛCDM model in General Relativity (i.e., γ = 0.55) with σ8 = 0.83, Ωm0 = 0.3

and h = 0.7. Then we added the peculiar velocity effects, employing the pairV code to

compute the covariance, and an intrinsic dispersion of σint = 0.13 mag to the diagonal of

the covariance matrix. The resulting covariance was used to draw random realizations of

a Gaussian.

We first simulated the mother catalogs: 40 versions of 6-year catalogs, covering an area

of 600 deg2 and reaching redshift 0.25. Assuming a constant supernova explosion rate of 3

x 10−5/yr/Mpc3 (Rodney et al. (2014) and Cappellaro et al. (2015)), this totalizes 11,285

supernovae. We later divided these catalogs in children catalogs with different field areas,

survey durations and maximum redshifts, so that we could estimate σ8 and γ with each

and see how the measurements scale with survey time, area and redshift.

The variations of time were taken by randomly picking supernovae from the mother

catalogs. For the 1-year catalogs, we took 11285/6 supernovae; for the 2-year ones, we

took 2x11285/6, etc. Given that, we constructed 40 versions of 5 children catalogs of 1,

2, 3, 4 and 5 years, covering the whole 600 deg2 survey area. Figure (4.1) illustrates it.

Figure 4.1: Representation of the different duration children catalogs used in our studies.
Area and redshift are fixed while time is varying. We simulated 40 versions of each.
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For the area variations, we sampled 2 subareas by taking 300 deg2 and 450 deg2 from

the central region of the 600 deg2 catalogs, and produced 2x40 children catalogs (40 for

300 deg2 + 40 for 450 deg2) representing surveys with 6 years of duration and reaching

z = 0.2. We decided to make this analysis up until z = 0.2 instead of z = 0.25 because

we had already noticed that this upgrade in the redshift would not bring much more

information for the results, so it would be unnecessarily time-consuming. Figure (4.2)

illustrates the area variations.

Figure 4.2: Representation of the different area children catalogs used in our studies.
Duration and redshift are fixed while the solid angle from which is being observed is
varying. We simulated 40 versions of each.

We also made variations in the redshift (that represents the depth). So we had 40

full-area, full-time children catalogs reaching z = 0.05 (which contains 70 SN), other 40

reaching z = 0.1 (700 SN), and the same for z = 0.15 (2500 SN) and z = 0.2 (5800 SN).

Figure (4.3) illustrates it, and Table (4.1) sums up the subcatalogs we considered in the

analysis.
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Figure 4.3: Representation of the different redshift children catalogs used in our studies.
Area and duration are fixed while depth is varying. We simulated 40 versions of each.

Mother catalogs: 40 versions of 6 yr, 600 deg2, up to z = 0.25
complete survey, with total 11,285 SNe Ia
Children catalogs:
. Durations: 1, 2, 3, 4 and 5 yr
. Areas: 300 and 450 deg2

. Max. redshifts: 0.05, 0.1, 0.15 and 0.2

Table 4.1: Survey duration, total area and maximum redshift considered in our analysis.

4.2 Determination of σ8

We constrained the value of σ8 for each of the 6x40 different-time catalogs and 3x40

different-area catalogs, considering only the supernovae up to 5 different values of redshift:

0.05, 0.1, 0.15, 0.2 and 0.25. In order to estimate the value of σ8, we used the likelihood

function:
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LPV ∝
1√
|CPV

ij |
exp

[
−1

2
δTm(CPV

ij )−1δm

]
, (4.1)

where δm = σ8 − σ8,fid.

The matter power spectrum was evaluated numerically using CAMB (Lewis et al.

2010) in a 1-dimensional parameter space sampled by a grid. Since our objective is to

make comparisons between survey strategies, there’s no need to let all parameters besides

As (the amplitude of scalar fluctuations) - directly related to σ8 - free, so we assumed

a model with the same background expansion as a flat ΛCDM, composed of As and

the 6 following parameters as priors: Ωc0 = 0.254, Ωb0 = 0.046, γ = 0.55, h = 0.7,

ns = 0.9603, τ = 0.089. Those values were taken from Bennett et al. (2014), Planck

Collaboration (2016) and Iocco et al. (2009), where h is H0 in units of 100 km/s/Mpc

and Ωm0 ≡ Ωc,0 + Ωb0. From the resulting matter power spectrum P (k), we derive the

standard deviation of density perturbations on 8 Mpc/h spheres: Eq. (2.40).

Figure (4.4) shows an example of contraints on σ8. It was constructed based on one

of the 40 versions of the full-area catalog (600 deg2), for 6 years of survey, and reaching

z = 0.15. Since we made a cut in 0, not allowing σ8 constraints to be negative, some

likelihood curves are partially Gaussian-like. Figure (4.5) shows an example of this case,

from another version of the full-area, 6-year survey, with a cut in z = 0.2.

Although this cut is physically justified as σ8 cannot be negative, such oscillation in

the likelihood just happens due to large fluctuations when there is a small number of

supernovae in the chosen sample. So the standard deviations for low-z, low-area and

low-time surveys will sometimes appear to be lower or of the same order of high-z, wide,

long-time surveys. This effect could hinder the comparisons we need to make. Besides

that, if we want to make an analysis that lies on the Fisher matrix (see Section 4.3),

we need to assume Gaussianity. That is why, in the following sections, we are going to

use Gaussian fits (as exemplified in Figures (4.6) and (4.7)) to analyze the sensitiveness
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of each observational parameter on the estimation of σ8. In Appendix A one can see a

comparison between both analysis: the one using the real likelihood curves and another

using the Gaussian fits to them.

Figure 4.4: σ8 likelihood curve for a hypo-
thetical survey that covers 600 deg2, reaches
z = 0.15 and lasts 6 years. The red lines
represent the best fit (solid) and fiducial
(dashed) values.

Figure 4.5: σ8 likelihood curve for a hypo-
thetical survey that covers 600 deg2, reaches
z = 0.2 and lasts 2 years. The red lines repre-
sent the best fit (solid) and fiducial (dashed)
values.

Figure 4.6: σ8 likelihood curve (in blue) and
Gaussian fit (in yellow) for a hypothetical
survey that covers 600 deg2, reaches z = 0.15
and lasts 2 years.

Figure 4.7: σ8 likelihood curve (in blue) and
Gaussian fit (in yellow) for a hypothetical
survey that covers 600 deg2, reaches z = 0.05
and lasts 1 year.

4.3 Comparing Parameters

In order to predict the role of each observational parameter on the estimation of cosmo-

logical ones, we are going to make use of the Fisher matrix, which is a way of measuring

the amount of information that an observable random variable carries about an unknown
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parameter of a distribution that models it. The accuracy with which cosmological param-

eters can be measured from a given data set is conveniently computed with the Fisher

information matrix formalism (see Tegmark et al. (1997) for a review) defined as

Flm ≡ −
〈
∂2 ln f

∂pl∂pm

〉
, (4.2)

where f depends on a vector of pl and pm, which represent hypotetical cosmological

parameters to be estimated. The inverse of the Fisher matrix (F−1) can be interpreted

as the best possible covariance matrix for the measurement errors on the parameters. No

unbiased method whatsoever is able to measure the lth parameter with standard deviation

less than 1/
√
Fll.

In the case of an experiment that measures the matter power spectrum, the integral

form of the Fisher matrix is given by Tegmark (1997) and Seo & Eisenstein (2003):

Flm =
1

8π2

∫ +1

−1

dµ

∫ kmax

kmin

k2dk
∂ lnP (k, µ)

∂pl

∂ lnP (k, µ)

∂pm

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey, (4.3)

where µ is the cosine of the observed angle, k represents the scale, P (k, µ) is the matter

power spectrum, n is the number density of supernova in this region, and Vsurvey is the

total volume observed by the survey.

In the following sections, we are going to present how the error related to the estimation

of cosmological parameters behaves with varying survey areas, durations and redshifts,

and interpret them in light of the Fisher matrix analysis.

4.3.1 Redshift

One can see in Eq. (4.3) that a Fisher matrix Fll is proportional to the survey volume

Vsurvey. If we take a infinitesimal redshift bin, we can say that dVsurvey = A(z)dz. Since

the area A(z) is proportional to z2, this means that Vsurvey ∝ z3 and then Fll ∝ z3. So

the minimum achieved error is σ = 1/
√
Fll ∝ zα, where α = −3/2.

The relation above, stating that the error falls with z3/2, would be valid if all su-

pernovae had the same statistical significance. However, the contribution of peculiar
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velocities in the measurement of supernova magnitudes decreases with redshift, as the

contribution from cosmic expansion grows. One way of accounting for this effect would

be by taking the ratio of peculiar flow to Hubble flow to use this as a weight on peculiar

velocity determinations - the lower the supernova redshift, the higher the weight. Typical

peculiar velocities are of the order of 300 km/s, and so the ratio at z = 0.1, for exam-

ple, is about 300/(3 × 105 × 0.1) ∼ 0.01, using c = 3 × 105 km/s. Translating this into

fluctuations in magnitude, we have δmz=0.1 ∼ 2.17 × 0.01 ∼ 0.02. At z = 0.2, the ratio

is 300/(3× 105 × 0.2) ∼ 0.005, so in this case: δmz=0.2 ∼ 2.17× 0.005 ∼ 0.01. Since the

intrinsic spread in supernova magnitudes is the order of (0.1− 0.15) - much higher than

δm -, it is common in the literature to ignore peculiar motion. However, this argument

misses that the correlations in magnitude fluctuations between supernovae do not only

introduce a negligible Poissonian scatter, but also a correlated component that needs to

be taken into account.

Hui & Greene (2006) and Gordon et al. (2007) consider that the correlations between

supernova peculiar velocities contribute significantly to the overall error budget only up

to z . 0.1. In order to study the effect of the redshift limit, which represents the depth

of a given survey, we used our sample of 11,285 supernovae distributed in 600 deg2 to

perform the likelihood estimations for σ8, and present, in Figure (4.8), σmean(σ8) as a

function of maximum redshift for different survey durations, where σmean(σ8) is the σ8

error mean value of the 40 versions for each subcatalog of time variations. Figure (4.9)

shows a similar analysis, but plotted by first tracing best fits for each version in a log-log

plot and later taking the mean value and standard deviations of the inclinations. One

can see in those figures that it is possible to gain information on the estimation of σ8 by

going further, until z = 0.2. Beyond this redshift value, it shows that the decrease in the

standard deviation starts to become negligible.
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Figure 4.8: The standard deviation of σ8 with 2σ error bars as a function of the maximum
redshift, for the different survey durations indicated.

Figure 4.9: Log-log analysis for the error of σ8 for different survey durations as a function
of the maximum redshift performed by taking the average of the inclinations of all the
versions.

4.3.2 Survey Duration

The survey duration is an important observational parameter to analyze. It may seem

plausible to think that the longer we observe, the more information we have. However,

when we are looking at peculiar velocity fields, we gain information when raising the survey
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time in the beginning, but it gets to an apex and the gain of information starts declining

after some time, meaning that all the information about the clumpiness of determined

region is getting saturated. Any other detected supernova will not make any difference

since the peculiar velocity correlations driven by previously detected supernova already

tell all that can be known from a given survey about a considered region.

The last factor in Eq. (4.3),

Veff =

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey, (4.4)

can be seen as an effective survey volume. It is worth evaluating the two limiting cases

for nP (k, µ). When nP (k, µ) >> 1, it means that the sampling is good enough to derive

all the cosmological information that can be extracted from the survey; in other words,

detecting more supernovae will not bring any advantage. And when nP (k, µ) << 1, the

effective volume is severely reduced, meaning that even a small amount of supernova added

can bring a lot of information. In particular, we see in this case that Flm ∝ Veff ∝ n2.

Since Flm ∝ 1/σ2, we see that in this limit σ ∝ 1/n. We can extend this analysis to

the time parameter as the number of supernova detected is directly proportional to the

duration of the survey; the number density increases with survey time for a fixed observed

area. So we can conclude that we gain information by raising the survey time until it gets

saturated. This tendency can be seen in Figure (4.10), that represents the Fisher matrix

error for varying supernova number densities.

As our sample includes 11,285 supernovae distributed in 600 deg2 up until redshift

0.25, this means a number density of about 5 × 10−4 SN h3/Mpc3 for the 6 years of

survey. Figure (4.11) shows a plot with vertical lines representing the number density of

supernovae for 1, 2, 3, 4, 5 and 6 years of survey, from left to right. Dashed lines represent

power laws of the form σ = (nSN)α. In green we represent a power law with α = −1

(indicated as “-1 inclination” in the plot), and in red α = −1/2 (“-1/2 inclination” in

the plot), that serve as reference for the rate of gained information as we move along the
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x-axis. One can note that, theoretically, our data is close to the -1/2 inclination curve.

Given that, we expect that a log-log graph relating the error on σ8 measurements with

the survey’s duration, for this sample, would show an inclination around -1/2, meaning

that it is still worth continuing the survey in this field.

Figure 4.10: Fisher matrix error as a function of the number density of observed super-
novae.

Figure 4.11: Fisher matrix error as a function of the number density of observed super-
novae with gridlines representing different survey durations. From the left to the right,
the vertical grid lines represent 1 to 6 years of the 600 deg2 survey, reaching z = 0.25.

To exemplify with real upcoming surveys, Figures (4.12) and (4.13) show the same
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analysis applied to DES and LSST strategies. One can see that even after the intended

time for these surveys (5 years for DES and 10 years for LSST), the power law is still

steeper than −1/2, which means that observing longer the same field is much better than

extending the observation to another area, since σ follows a fixed −1/2 index power law

as a function of the area (see Section 4.3.3).

Figure 4.12: Fisher matrix error in function
of the number density of observed supernovae
with gridlines representing different survey
durations for DES. From the left to the right,
the vertical grid lines represent 1 to 5 years
survey, reaching z = 0.25.

Figure 4.13: Fisher matrix error in function
of the number density of observed supernovae
with gridlines representing different survey
durations for LSST. From the left to the
right, the vertical grid lines represent 1 to
10 years survey, reaching z = 0.25.

Figure 4.14: The standard deviation of σ8 with 2σ error bars as a function of the survey
duration, for the different redshift limits indicated.
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In order to see this effect in practice, we performed the likelihood estimations for

σ8 based on our 11,285-supernovae sample and plotted Figure (4.14), that shows how

σmean(σ8) changes with survey duration for different redshift limits, where σmean(σ8) is

the σ8 error mean value of the 40 versions for each subcatalog of time variations. Figure

(4.15) shows a similar analysis, but plotted by first tracing best fits for each version in a

log-log plot and later taking the mean value and standard deviations of the inclinations.

Note that all the curves in Figure (4.15) are less inclined than the −1/2 index power law,

meaning that it is in accordance with our predictions and it is still worth continuing the

survey for a longer time.

Figure 4.15: Log-log analysis for the error of σ8 for different redshift limits as a function
of the survey time performed by taking the average of the inclinations of all the versions.

4.3.3 Area of the Sky

The area case is trivial: since Fll ∝ Vsurvey, and Vsurvey = χ3 × Ω/3 (where Ω is the solid

angle representing the sky area being observed and χ is the comoving distance), it means

that Fll ∝ Ω. So we have that σ = 1/
√
Fll ∝ Ω−1/2. As in the other cases, we have Figure

(4.16) showing how the standard deviation of σ8 changes with survey area by taking the

average and error of the 40 versions for each time, and Figure (4.17), where we log-log
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plotted the 40 inclinations for each time and then took their average and error. One can

see that this result is in accordance with our predictions as the different inclination values

for different redshifts can be interpreted as statistical fluctuations around α = −1/2.

Figure 4.16: The standard deviation of σ8 with 2σ error bars as a function of the survey
area, for the different redshift limits indicated.

Figure 4.17: Log-log analysis of the error for σ8 for different redshift limits as a function
of the survey area performed by taking the average of the inclinations of all the versions.
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4.4 The case of γ

In order to make predictions on the γ parameter, we performed the same estimation

process as we did to σ8, but now making γ free while all the other parameters are fixed.

Although it would be worth reproducing also the analysis we did to σ8 based on the

Fisher matrix, the γ estimation process is a little trickier, as its likelihood curve is not as

similar to a Gaussian distribution as it is in the case of σ8. In Figure (4.18) one can see

an example of constraints on γ for a subcatalog covering 600 deg2 for 6 years, reaching

z = 0.05. Fortunately, the more signal we have, the more the likelihood curve seems like

Gaussian, as it is shown in Figure (4.19). The area covered in this case is the same of

Figure (4.18), and the duration is also 6 years, but it is reaching z = 0.15, adding more

supernovae to the sample.

We studied how the constraints on γ depend on the survey redshift limit, using the

same 11,285-supernovae catalog. Results are shown in Figures (4.20) and (4.21). One can

see that, as in the σ8 case, the gain of information grows until z = 0.2. We intend to

extend the varying time and varying area analysis to the case of γ in the near future, to

be presented in Garcia et al. (2018).

Figure 4.18: γ likelihood curve for a hypo-
thetical survey that covers 600 deg2, reaches
z = 0.05 and lasts 6 years.

Figure 4.19: σ8 likelihood curve for a the
same hypothetical survey considered in Fig-
ure (4.18), but reaching z = 0.15 instead.
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Figure 4.20: The mean standard deviation of γ as a function of the maximum redshift.

Figure 4.21: The mean standard deviation of γ as a function of the maximum redshift in
a log-log scale.
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Chapter 5

Conclusions and Future Works

In this work, we showed that the correlation between Type Ia supernova peculiar veloc-

ities represents new opportunities to cosmology as it offers constraints on perturbation

parameters that background supernova data do not, and provides direct ways of probing

the General Relativity theory and the ΛCDM model. Some upcoming surveys, such as the

ZTF and LSST, are going to provide an increase of one order of magnitude in the number

of low-redshift observed explosions, opening up the possibility of improving cosmological

parameter constraints through peculiar velocity studies. However, we do not see in the

literature yet (until now) an effort to optimize observations of supernova peculiar veloci-

ties. In this work, we compared different observational parameters (area of the sky, survey

depth and duration) to understand how they affect perturbation parameters’ constraints

based on peculiar velocity fields.

Despite what is commonly assumed in the literature, contributions to the overall error

budget from supernova peculiar velocities goes beyond z . 0.1; it is possible to gain

information on the estimation of σ8 and γ by going further, until z . 0.2. We showed

that, in average, the error on the estimation of σ8 falls with the square root of the solid

angle from which the sky is being observed, which is in accordance with the theoretical

prediction. Besides that, the error on the estimation of σ8 is proportional to the inverse of

the number density of supernovae, which is directly proportional to the survey duration.

So we showed that we gain information when raising the survey time in the beginning of
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the survey, but it gets to an apex and the gain of information starts declining after some

time, meaning that all the information about the clumpiness of a determined region is

getting saturated. Our simulated 11,285-supernova 600-deg2 catalog, as predicted, was

close to (but less negative than) the -1/2 index power law curve in Figure (4.15), meaning

that, for this case, looking at this area for a bit longer would be better than changing to

another area of the sky.

We are now making predictions on how comparatively well DES, LSST and ZTF will

be able to put constraints on σ8 and γ. The time dedicated for the supernova search with

DES is limited to about 10% of the total survey photometric time, covering 30 deg2 in 5

years for this purpose. LSST will cover nearly 18,000 deg2 of sky for 10 years, and ZTF

will scan 4,000 deg2 an hour to a depth of 20.5 mag. Despite the huge difference in area

covered when comparing DES with LSST and ZTF, our preliminary analysis shows that

they all would benefit from staying longer in the same fields than it is intended.

In order to probe those observational parameters with real-survey data, we are em-

ploying the SNANA package to simulate and fit Type Ia supernova light curves. Using

this software requires survey-specific libraries that include the survey characteristics and

strategies. For each supernova observing field, the library includes information about the

survey cadence, filters, CCD gain and noise, point spread function, sky background level,

zero points and their fluctuations. The zero point encodes exposure time, atmospheric

transmission, telescope efficiency and aperture. DES and LSST have their own libraries in

SNANA, but these libraries require many adjustments depending on the motivation. We

have already performed some simulations based on these surveys and we are now using

them to constrain σ8 and γ. ZTF does not have its own library yet, so we are trying

to build it from the very beginning. Results for this analysis are going to complement

the ones we already have and represent the core of a paper in preparation: Garcia et al.

(2018).



53

Appendix A

Likelihood x Gaussian Fit

In this appendix, we show a comparison between the results of the likelihood analysis

obtained from the real likelihood curves (which can be truncated in σ8 = 0), and from

the Gaussian fit that was used in all the results shown in Chapter 4. In Figures A.1, A.2

and A.3, we show the differences in the error of σ8 obtained from the two approaches, as

a function of survey area, maximum redshift and survey duration, respectively.

Figure A.1: Comparison between σ8 estimation errors versus survey area for the analysis
using the likelihoods (in blue) and the one using gaussian fits (in yellow).
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Figure A.2: Comparison between σ8 estimation errors versus the maximum redshift for
the analysis using the likelihoods (in blue) and the one using the gaussian fits (in yellow).
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Figure A.3: Comparison between σ8 estimation errors versus survey years for the analysis
using the likelihoods (in blue) and the one using the gaussian fits (in yellow).
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