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Resumo

Formation, Destruction and Identification of Complex Organic Molecules

(COMs) in Circumstellar Environments
Heidy Mayerly Quitian Lara

Orientadores: Heloisa Maria Boechat-Roberty e Bertrand Lefloch

RESUMO DA TESE DE DOUTORADO SUBMETIDA AO PROGRAMA DE PGS GRADUAGAO EM ASTRONOMIA,
OBSERVATORIO DO VALONGO, DA UNIVERSIDADE FEDERAL DO R10 DE JANEIRO (UFRJ), COMO PARTE

DOS REQUISITOS NECESSARIOS A OBTENGAO DO TiTULO DE DOUTORA EM CIENCIAS (ASTRONOMIA).

O Universo é rico em complexidade quimica e molecular. Até o momento, mais de 200 moléculas
foram detectadas em regiGes interestelares e circunstelares incluindo objetos protoestelares e nebulosas
planetdrias (PNe), sendo mais de 60 observadas em objetos extragaldcticos. Estudos sobre os mecanismos
de formagao, destruigdo de moléculas, assim como a identificagdo de moléculas em espectros observa-
cionais, sdo fundamentais para a compreensdao da quimica em ambientes astrofisicos. Neste trabalho,
foram utilizadas técnicas experimentais e observacionais para a descri¢do quimica de distintos objetos
astrofisicos nos quais moléculas organicas complexas (COMs) e hidrocarbonetos policiclicos aromaticos
(PAHs) estao presentes. Experimentalmente, estudou-se a formagéao e destruigdo de moléculas derivadas
do benzeno (CgHg), unidade bésica de PAHs, através da interagdo de fétons na faixa dos raios X com
moléculas na fase gasosa empregando a espectrometria de massas por tempo de voo (MS-TOF), simu-
lando assim os processos que ocorrem nas regides de fotodissociagdo (PDRs) de PNe. Analisamos as
moléculas: C¢Hs, naftaleno (C19Hs), bifenila (C12Hio) e ciclohexano (C¢Hiz), esta dltima como unidade
bédsica de PAIs super- hidrogenados (IIn-PAIls). Adicionalmente, estudou-se os efeitos de protonagéo e
desprotonagao de anéis benzénicos destas moléculas na fase condensada a partir da técnica de dessorcao
ionica estimulada por elétrons (ESID) de andlogos de gelos astrofisicos. Os gelos foram preparados a
partir de amostras puras de C¢Hg, C¢Hiz e clorobenzeno (C¢HsCl), assim como a partir de uma solugdo
de fenol (C¢HsOH). Para o CgHi2 em fase gasosa, os resultados evidenciam a maior tendéncia & dis-
sociagdo do mesmo em comparagao com o benzeno, associada a diminuicdo da energia de ligacdo do
esqueleto carbonico apds a hidrogenacao. Por outro lado, a alta segdo de choque de fotoabsorcao do
benzeno em energias préximas & ressonancia de camada interna (Cls) faz com que a eficiéncia de dis-
sociagdo da molécula seja maior do que a do ciclohexano. Os resultados sugerem que um efeito similar
é experimentado por PAHs em ambientes ricos em raios-X, como na PDR da NGC 7027, de forma que
sua hidrogenagao possa atuar como um mecanismo de protecdo como consequéncia da diminui¢ao da
secdo de choque de fotoabsor¢io. Para a bifenila, identificou-se os principais fragmentos mono-(A™) e
duplamente (A*") carregados formados pela fotoionizagio dissocialiva nas energias de 275 e 310 eV, e
determinou-se os respectivos percentuais de produgao iénica (PIYs). A partir desses valores, estimou-se
os tempos de meia-vida da bifenila em quatro PNe nos quais emissoes de PAHs estdo presentes: NGC
7027, BD+30°3639, NGC 5315 e NGC 40. Nos estudos em fase condensada, foi observada uma tendéncia
a hidrogenagao dos anéis aromaticos devido a interagao com elétrons na faixa do keV, assim como uma
rota competitiva para a desprotonacdo destes compostos. Estes resultados sugerem possiveis caminhos
de formagdo de PAHs com fragmentos alifdticos, bem como Hn-PAHs, na superficie congelada de graos
de poeira em regioes [rias do meio circunstelar. Na parte observacional deste trabalho, realizou-se uma
andlise abrangente da composigdo molecular do objeto protoestelar de classe 0 IRAS 4A a partir de da-

dos obtidos pelo radiotelescopio IRAM 30m. Foram identificadas 92 espécies moleculares e catalogou-se



1456 frequéncias rotacionais, incluindo perfis finos e largos, por meio da analise do conteiddo molecular
do TRAS 4A. Os resultados mostram que a IRAS 4A é dominada por moléculas simples contendo car-
bono, nitrogénio, oxigénio, enxofre e silicio. Também identificou-se COMs como CH3OH, CH3CHO e
CH3COCHs, sendo que as mais abundantes sdo as que contém oxigénio na estrutura. Com base nos
resultados, foi possivel identificar trés componentes de temperatura de excitagao, associadas a distintas
regides da fonte, e estimar a densidade colunar de cada uma das moléculas com relagdo ao Ho, tanto na

envoltéria protoestelar como no jato bipolar associado a protoestrela.

palavras chave: Astroquimica, Radiastronomia, Moléculas, Espectrometria de massas,

Protoestrelas

Rio de Janeiro
Abril de 2020



Abstract

Formation, Destruction and Identification of Complex Organic Molecules

(COMs) in Circumstellar Environments
Heidy Mayerly Quitian Lara

Orientadores: Heloisa Maria Boechat-Roberty and Bertrand Lefloch

Abstract DA TESE DE DOUTORADO SUBMETIDA AO PROGRAMA DE POS GRADUAGAO EM ASTRONOMIA,
OBSERVATORIO DO VALONGO, DA UNIVERSIDADE FEDERAL DO R10 DE JANEIRO (UFRJ), COMO PARTE

DOS REQUISITOS NECESSARIOS A OBTENGAO DO TiTULO DE DOUTORA EM CIENCIAS (ASTRONOMIA).

The universe is rich in chemical and molecular complexity. To date, more than 200 molecules
have been detected in interstellar and circumstellar regions including protostellar objects and planetary
nebulae (PNe), with more than 60 observed in extragalactic objects. Studies on the mechanisms of
formation, destruction of molecules, as well as the identification of molecules in observational spectra,
are fundamental for the understanding of chemistry in astrophysical environments. In this work, expe-
rimental and observational techniques were used for the chemical description of different astrophysical
objects in which complex organic molecules (COMs) and polycyclic aromatic hydrocarbons (PAHs) are
present. Experimentally, the formation and destruction of molecules derived from benzene (Cg¢Hg), the
basic unit of PAHs, were studied through the interaction of photons in the X-ray range with molecules
in the gas phase employing time-of-flight mass spectrometry (MS-TOF), thus simulating the processes
that occur in the PNe photodissociation regions (PDRs). We analyzed the following molecules: CgHs,
naphthalene (C1oHs), biphenyl (Ci12Hio) and cyclohexane (CgHi2), the latter being the basic unit of
super-hydrogenated PAHs (H,-PAHs). Additionally, we studied the protonation and deprotonation
effects of benzene rings of these molecules in the condensed phase by the Electron Stimulated Ion De-
sorption technique (ESID) of astrophysical ice analogs. The ice was prepared from pure samples of
CsHg, C¢Hi2 and chlorobenzene (C¢HsCl), as well as from a phenol solution (C¢HsOH). For C¢Hyz in
gas phase, the results show a greater tendency to dissociate it compared to benzene, associated with the
reduction of the carbon backbone binding energy after hydrogenation. On the other hand, the photoab-
sorption cross section of benzene t energies close to the inner shell resonance (C1s) is larger than the one
of cyclohexane, which ultimately leads to a higher efficiency of dissociation for the aromatic molecule.
The results suggest that a similar effect is experienced by PAHs in X-ray rich environments, such as
the NGC 7027 PDR, so that their hydrogenation may act as a protective mechanism as a consequence
of decreasing the photoabsorption cross section. For the biphenyl molecule, the major mono-(A™) and
double (A%") charged fragments formed by dissociative photoionization at the energies of 275 and 310
eV were identified. Also its ionic production percentages (PIYs) were determined. From these values,
the biphenyl half-life times were estimated in four PNe in which PAHs emissions are present: NGC 7027,
BD+30°3639, NGC 5315 and NGC 40. In the condensed phase experiments, we observe hydrogenation
of aromatic rings due to interaction with electrons in the keV range, as well as a competitive route
for deprotonation of these molecules. These results suggest possible pathways of PAH formation with
aliphatic fragments, as well as H,,-PAHs, on the frozen surface of dust grains in cold regions of the
circumstellar environment. In the observational part of this work, a survey analysis of the molecular
composition of the Class 0 protostellar object IRAS 4A was performed from data obtained by the IRAM
30m radiotelescope. Ninety-two molecular species were identified and cataloged with 1456 rotational

frequencies, including narrow and wide profiles, by analyzing the molecular content of IRAS 4A. The



results show that IRAS 4A is dominated by simple molecules containing carbon, nitrogen, oxygen, sulfur
and silicon. We also identified COMs such as CH3OH, CH3CHO and CH3COCHs3, the most abundant
ones containing oxygen in the structure. Based on our results, we could identify three excitation tem-
perature components, associated with different regions of the source, and estimate the column density
of each molecule with respect to Ha, both in the protostellar envelope and in the bipolar jet associated

with the protostar.

keywords: Astrochemistry, Radiastronomy, Molecules, Mass Spectrometry, Protostars

Rio de Janeiro
April, 2020
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Chapter 1

Introduction

1.1 Astrophysical Environments: Interstellar and Circumstellar

Media

At the end of the 18" century, Caroline and William Herschel (Fig. 1.1) were the first to observe
dark regions in the celestial sphere, which they called holes in the sky. Such observations led them to
propose the existence of empty regions without stars in the galaxy (Steinicke, 2016). We now know
that these holes are actually molecular clouds, which constitute the starting point of the processes
of molecular, stellar and planetary formation in the galaxies. Stars, indeed, are the atoms of the
universe (McKee and Ostriker, 2007). And as the geometries and electron densities of molecules
heavily depend on the nature of the atoms that make them, a similar relationship is also observed
between stars and galaxies. In this chapter, we will briefly describe the stages of formation of young
stellar objects of solar masses, their main characteristics and the processes that lead to the formation

of planetary nebulae at the final stage of the stellar evolution.

1.1.1 Star Formation and Young Stellar Objects

Stars are formed in supersonic self-gravitating turbulent molecular clouds (Burkhart, 2018). Such
objects can be considered as the link between galaxy evolution, planet formation and astrobiology
(Chyba and Hand, 2005; McKee and Ostriker, 2007; Krumholz, 2014; Burkhart, 2018). In spite of
the huge amount of theoretical and observational data related to star formation obtained in the last

decades, a full understanding of such process is still matter of debate. This also includes the role of
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Figure 1.1: Caroline and William Herschel. Adapted from Steinicke (2016).

turbulence, as there is evidence for its dissipation in many prestellar low-mass cores. Moreover, if
gravitation alone was responsible for star formation, interstellar clouds with density py would col-
lapse to form stars on a free-fall time, 77. For a uniform spherical gas cloud, the dynamics of the

gravitational collapse can be described by the following equation:

(1.1)

F =ma=
2

where m is the element of mass, M is the entire mass of the cloud with r radius, and G is the
gravitational constant. By applying the conservation of energy law, the kinetic energy of m is equal
to the change in the gravitational potential energy:
1 11
—mv* = GMm [———] (1.2)
2 ror

where ry is the initial radius of the cloud. The velocity of collapse is then given by:

v=4[2GM ll—ll (1.3)

r rn

For a uniform spherical gas cloud, M is given by:
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M= gﬂ'r3p0 (1.4)

By replacing eq. 1.4 in eq. 1.3, we obtain the following expression:

8m ro
y= \/?Gporg 1] (1.5)
Since
dr
= — 1.6
V=g (1.6)

the free-fall time 77/ is given by:
-1/2 .0
8 -1/2
= /dt = (—”Gporg) / D] e (1.7)
3 o LT
where integration of eq. 1.7 is from ry to zero. This gives:

o 31
11—\ 32Gp

(1.8)

However, distinct phenomena contribute to counteract gravity and influence the overall dynamics
of the star-forming regions. Such effects include magnetic fields, supersonic turbulence (Shu et al.,
1987a), jet/outflow feedback (Federrath, 2015), and cloud rotation. As a consequence, the timescales
of star formation are significantly longer than the ones expected considering #7,. In other words, star
formation is a very inefficient process, as exemplified in Fig. 1.2. In the following section, we will

describe the basic physical principles that underlie star formation.

1.1.1.1 Basic Principles: Turbulence, Self-Gravity and Magnetic Fields

In the context of star formation, turbulence can be defined as the irregular and random state of
motion of the gas flow in clouds. Most of terrestrial applications deal with incompressible turbulence,
where density remains almost constant as a consequence of the subsonic nature of root-mean-square
velocities, v,s. In this perspective, the dissipation of energy occurs predominantly in the smallest
vortices, at a rate given by (Mac Low and Klessen, 2004):

E_ dE v’

=4 = (1.9)
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Figure 1.2: Simulated column density projections of star formation considering different physical scenarios.
The inclusion of turbulence and magnetic effects significantly increases the time for which a realistic star
formation efficiency (SFE) of 20% is obtained, revealing that such effects are responsible for making the
star formation process very inefficient. Credits: Federrath (2015).

where L is the integral length scale and 7 is a constant determined empirically. Gas flows in the
interstellar medium, on the other hand, are supersonic, highly compressible and not uniform, com-
ing mainly from blast waves and other inhomogeneous processes (Mac Low and Klessen, 2004). As
a consequence, strong density perturbations are observed. In supersonic turbulence, shock waves
can transfer energy between widely separated scales, removing the local nature observed for incom-

pressible turbulence (Mac Low and Klessen, 2004). In fact, turbulence is responsible for much of
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the complex and filamentary density structure observed in molecular clouds, and its effect can even
trigger gravitational collapse due to the creation of dense regions (Bonnell et al., 2003; Hennebelle
and Falgarone, 2012). However, the creation of such regions driven by supersonic turbulence is not
an effective process, and its overall effect is that of suppressing star formation in regions when the
total turbulent kinetic energy exceeds the total gravitational energy (Padoan and Nordlund, 2011).
The ratio between both energy terms can be obtained by the virial parameter, o, as introduced by
Bertoldi and McKee (1992):
5v2 R

Qyir — Grn]:; (1.10)

Self-gravity can be defined as the process by which each individual component of a large object
is kept together by the combined gravity of the whole entity. This effect plays a very important role
in the final stages of star formation, where the star-disk system is formed from the collapse of dense
cores inside molecular clouds (Di Francesco et al., 2006). For earlier times, simulations without the
inclusion of such effect suggest that turbulence alone is sufficient to create a mass distribution profile
that resembles stellar initial mass function (Padoan and Nordlund, 2002). This was further refuted by
Goodman et al. (2009), which used a tree-diagram analysis to show that self-gravity acts at multiple
length scales, being also critical to the earliest phases of star formation.

The simplest case of a self-graviting cloud is a static isothermal cloud with no magnetic field.
The largest mass that such system, embebbed in a medium with a gas pressure pg, could have to still
remain in hydrostactic equilibrium is given by the Bonnor-Ebert mass, Mpg (Ebert, 1955; Bonnar,

1956):

225 t 1

s

Mprp = X X
YW 076 ) ETERAN

where c; is the isothermal sound speed and a is a dimensionless constant that varies with the

(1.11)

density distribution of the molecular cloud. For a uniform mass density, a = 1. If the mass of the
cloud is greater than Mpg, than the system inevitably will undergo gravitational collapse, leading then
to the formation of a protostar (Draine, 2011).

The structure and evolution of the molecular cloud is also affected by magnetic fields. The
importance of magnetic effects to cloud structure is determined by obtaining m, which is the ratio of

the cloud mass M to the magnetic critical mass M :

32



M

=it (1.12)

where, for a cold cloud in magnetostatic equilibrium, M is given by (McKee et al., 1993):

M¢=C¢% (1.13)

where ¢ is the magnetic flux threading the cloud and ¢4 is a numerical coefficient that depends
on the internal distribution of density and magnetic fields. If M > M, the cloud is of a magnetically
supercritical type, and magnetic fields are not able to prevent gravitational collapse. On the other
hand, in magnetically subcritical clouds (M < M), gravitational collapse is not possible.

It is believed that the interstellar medium is strongly magnetized (Nejad-Asghar, 2007). How-
ever, the stars are not. As a consequence, the mass-to-flux ratio increases dramatically during star
formation. Such ratio can be increased by two distinct mechanisms: flows along magnetic fields and
ambipolar diffusion (decoupling of neutral particles from plasma), where mass distribution is affected
by the magnetic flux tube (Mouschovias, 1991). For regions of the molecular cloud in which the gas
is shielded from the interstellar radiation field and ionization is caused by cosmic rays, the ambipolar
diffusion times are around 10 times higher than the free-fall time, 77, without turbulence effects (Mc-
Kee and Ostriker, 2007). However, for a gas ionized by far ultraviolet (FUV) radiation from stars,
which accounts for most of the mass of a giant molecular cloud (GMC), the ambipolar diffusion time
is much longer. As a consequence, suppression of spontaneous star formation in the outer layers of
GMCs is expected (quasi-static scenario, Shu et al. 1987b). This effect was further confirmed both in
the L1630 region of Orion (Li et al., 1997) and in Taurus (Onishi et al., 1998).

1.1.1.2 Low-Mass Star Formation

Prior to the formation of the protostar, there is a central region in the cloud where the expanding

thermal energy is counteracted by gravity. The radius of such region is called Jeans’ length, A;, and

15kgT
Aj= | —B (1.14)
ArGmppp

where kg is the Boltzmann constant; 7', p and p are, respectively, the temperature, density, and

is given by (Jeans, 1902):

mass per particle of the cloud; and m,, is the mass of a proton.
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A marginally unstable core starts collapsing near the outer radius of the Jeans’ length. The col-
lapse wave is then accelerated and propagated inwards. When the protostar is formed, the corre-
sponding infall rate is given by (Shu, 1977; McKee and Ostriker, 2007):

min:%quin% (1.15)

where ¢ is the sound speed of the gas and ¢;, is a numerical factor > 1. The cores that form

low-mass stars have density profiles similar to the ones of Bonnor-Ebert gas spheres, as suggested by

observations (Motte and André, 2001; Kirk et al., 2005). In the innermost regions of the collapsing

core, the opacity becomes large enough so that the gas switches from approximately isothermal to

adiabatic behavior (McKee and Ostriker, 2007). Once the gas is hot enough to dissociate H;, a second
collapse occurs and the protostar is finally formed.

Once a protostar is formed by gravitational collapse of a core, it can continue to grow by accretion
of the nearby gas. If the star is moving through the ambient medium at a velocity of vy = Mjcs,
where M is the Mach number, the characteristic radius from which the star accretes is known as the

Bondi-Hoyle radius, Rpy, which is given by:

Gm,
Rpg — ————— 1.16
BH (T M) (1.16)
where m, is the mass of the protostar. The accretion rate is then defined as:
;_ dMpy 2 2172 _ pG*m?
MBH = dr _47T¢BHRBHpCS(1+MO> —47T¢BHW (117)

where ¢pg is a number ~ 1 that fluctuates due to flow instabilities (Ruffert and Arnett, 1994).

It is possible to classify the stages of the growth of protostars using observations of the mass
distribution surrounding the protostar, the velocity distribution of the circumnuclear gas, and the non-
stellar radiative flux (McKee and Ostriker, 2007). Furthermore, by modelling the spectral energy
distribution (SED) of the continuum, mass and temperature distribution can also be inferred. The
SED of protostars are divided into four classes, representing distinct evolutionary stages of the ob-
ject. These stages are called Class 0, Class I, Class II and Class III (Fig. 1.3). Classes I-III were
introduced by Lada (1987), while Class O protostars were firstly described by Andre et al. (1993). For
a comprehensive review of the evolutionary stages of protostars, see André et al. (2000). A schematic

diagram of the protostellar evolutionary stages is shown in Fig. 1.4.
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Figure 1.3: Spectral Energy Distribution (SED) of the different protostellar stages. Adapted from Persson
(2014).

The classification of protostars, based on the slope of the spectral energy distribution (SED) mea-
sured at 2.2 and 10-25 pm (Wilking et al., 1989), is characterized by an «a spectral index defined

as:

—dlog (\F))
Qi = ——
dlog\

(1.18)
where F), is the flux density.

Class 0 protostars (Fig. 1.3 top left) are the youngest class of protostellar sources currently iden-
tified. They are in a highly active accretion phase with a deeply embedded central object surrounded
by significant amounts of circumstellar material (> 0.5M). Continuum emission of these objects
is extremely weak at optical and near-IR wavelengths (undetectable at A < 10 pym in the 90s), but
they display significant luminosity in the submillimeter domain (Lg,,;,,) with respect to the bolometric
luminosity, Lyos, Lsmm/Lpor > 0.5%. Sources with these properties Show Myejope = My (Andre et al.,
1993; Palla, 1996; McKee and Ostriker, 2007).

Class I protostars (Fig. 1.3 top right) are sources with «;- > 0, indicating an increase in the
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Figure 1.4: Protostellar evolutionary stages: from prestellar core to planetary system. Adapted from Persson
(2014).

SED up to A = 100 pum. It presents an IR excess and the SED is much broader than that of a single
temperature blackbody. Class I sources are thought to represent protostars in a less active accretion
stage than Class O protostars surrounded by luminous disks with radii of ~100 AU. They can also
show infalling processes and extended envelopes with sizes of ~10* AU (Palla, 1996; McKee and
Ostriker, 2007).

Class II protostars (Fig. 1.3 bottom right) are sources with =2 < «;» < 0. Their SEDs fall at longer
wavelengths but continue to be broadened by the presence of a significant amount of circumstellar
dust. A Class II object is thought to evolve from a Class I source by clearing of the circumstellar
envelope, maybe because of stellar wind effects (see Fuente et al. 2002). Class II sources contain
classical T-Tauri (TTS) and Herbig Ae/Be (HAeBe) stars surrounded by a geometrically thin and
optically thick circumstellar disk of radius ~100 AU (Palla, 1996; McKee and Ostriker, 2007).

Class III (Fig. 1.3 bottom right) are sources with «;, < -2. Their SED is similar than that of a
normal and reddened stellar photosphere without IR excess, indicating the disappearance of circum-
stellar disks and envelopes. Class III sources are thought to be on the way from Class II sources to

main sequence stars. The presence of weak TTS lines (typically a; < 1.5) indicates that these objects
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Figure 1.5: The molecular cloud NGC 1333 visualized in the optical (top left), infrared (top right) and
X-ray (bottom) ranges. Credits: Optical: DSS, NOAO, AURA and NSF; Infrared: NASA and JPL-Caltech;
X-ray: NASA, CXC, SAO and S. Wolk et al.

are pre-main-sequence (PMS) stars that are no longer accreting significant amounts of matter (Palla,

1996; McKee and Ostriker, 2007).

1.1.1.3 The Star Forming Region NGC 1333

NGC 1333 (Fig. 1.5) is a young star forming region located at ~ 260 pc (Schlafly et al., 2014)
on the western edge of the Perseus molecular complex (Ra= 03/28™M55.25, Dec=+31922 12"). This
region is one of the most active star forming clouds in the solar neighborhood (Walawender et al.,
2008). It formed a first generation of young pre-main sequence stars, distributed in a cluster at the

center of the cloud (Lada et al., 1993). Its stars are thought to have an average age of 1-2 Myr (Bally
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et al., 2008). A new generation of stars is currently forming in the parental cloud, as testified by the
presence of several Class 0 and Class I protostars (Langer et al., 1996; Lefloch et al., 1998; Sandell
and Knee, 2001; Sadavoy et al., 2014). Inside the cloud, few of the cluster members are easily visible
in the optical range. The first infrared mapping of NGC 1333 was made by Strom et al. (1974), which
also observed that the region hosts numerous Herbig—Haro (HH) objects. Later, Plunkett et al. (2013)
obtained images in the 4.5 ym with the Spitzer Space Telescope, and revealed many outflows coming
from young stars.

Systematic observational studies of the chemical composition of protostellar cores have identi-
ficed two main chemical classes (see e.g. Lefloch et al. 2018):

Hot Corinos (Ceccarelli et al., 2017) — only a few sources, such as NGC 1333 IRAS 4A, NGC
1333 IRAS 4B and NGC 1333 IRAS 2, were identified as hot corinos for presenting abundant oxy-
genated molecular species. In a similar manner, other sources, such as Serpens SMM1, Serpens
SMM4, and HH212, are also classified as hot corinos. (Cazaux et al., 2003; Bottinelli et al., 2004;
Sakai et al., 20006; Oberg et al., 2011; Codella et al., 2016). Hot corinos are also detected towards
intermediate-mass protostellar cores (Ospina-Zamudio et al., 2018).

WCCC Sources — objects with an abundant content in polyynic hydrocarbon species, such as
L1527, L1157-MM IRAS 15398-3359, and TMC-1A, are classified as chemical objects of the warm
carbon-chain chemistry, WCCC (Sakai et al., 2008, 2014; Lefloch et al., 2018).

Recent studies (Sakai et al., 2009; Oya et al., 2017) show that a few protostellar sources actually
display the chemical signatures of both classes. It is not completely clear, however, whether the
complex organic molecules (COM) emission arises from the thermal evaporation of grain mantle
ices, or is caused by other processes, like e.g. shocks.

A systematic study by Higuchi et al. (2018) led to identify a large number of hot corinos and
WCCC sources in the Perseus molecular cloud complex. However, full characterization of the chem-
ical properties of these sources is pending. It is, however, the first step in order to understand the
origin and the evolution of the molecular species present in the envelope, a fraction of which will be
transferred to the disk in which planets will eventually form.

In this PhD thesis, the protostellar object NGC1333 IRAS 4A was studied through observations
made with the IRAM 30m radiotelescope. The main characteristics of this source are briefly described

in the next section.
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Figure 1.6: NGC 1333 IRAS 4A region. In the image: Very Large Array (VLA) SiO(1-0) map (red and blue
contours) is shown in comparison with the proposed propagation directions of the Al and A2 jets (green
solid lines). The positions of IRAS 4A1, IRAS 4A2 and IRAS 4B are marked with green triangles. Taken
from Santangelo et al. (2015).

1.1.1.4 The Class 0 protostellar core IRAS 4A

NGC 1333 IRAS 4A is a protostellar binary system located in the Perseus molecular complex at
~260 pc (Schlafly et al., 2014). IRAS 4A harbours two compact protostellar sources, embedded in an
extended, dense envelope. Its two components, IRAS 4A1 and IRAS 4A2, have a separation of about
1.8 arcsec (~ 420 - 527 AU) (Lefloch et al., 2018; Sahu et al., 2019), with IRAS 4A1 being brighter
than IRAS 4A2 in the continuum. Each of them powers a molecular jet, confirming their protostellar
nature (Santangelo et al., 2015; Taquet et al., 2015; Lopez-Sepulcre et al., 2017).

The luminosity (including the two components) and envelope mass of IRAS 4A are 9.1 L., and
5.6 M, respectively (Karska et al., 2013; Sahu et al., 2019). The IRAS 4A system is associated with
a large-scale (a few arcminutes) bipolar molecular outflow (Santangelo et al., 2014). Santangelo et al.

(2015) showed that the large-scale outflow emission is driven by the component A2 (Fig. 1.6). Ob-
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servations made with the IRAM 30m radiotelescope revealed that IRAS 4A2 is a hot corino, merely
the second object classified as such (the first observed hot corino was IRAS 16293-2422, Bottinelli
et al. 2007; Lopez-Sepulcre et al. 2017. Recent studies published by Santangelo et al. (2015) and
Lépez-Sepulcre et al. (2017) confirmed that IRAS 4A2 is a hot corino protostar, as evidenced by the
detection of COMs such as dimethyl ether (CH3;0CH3), ethyl cyanide (C;HsCN), and glycolalde-
hyde (CH,OHCHO). Furthermore, molecular isotopologues, such as heavy-oxygen water (HéSO),
were detected in this source. Interestingly, COM emission in the millimeter domain is not detected
towards IRAS 4A1. Such a chemical differentiation is not unique among the multiple systems inves-
tigated so far (see e.g. Ospina-Zamudio et al. 2018, 2019), and its origin is strongly debated.

Recently, a systematic survey of the molecular line emission towards IRAS 4A led to the identi-
fication of more than 40 molecular species (Lefloch et al., 2018). Such species are oxygen-bearing,
sulfur-bearing, carbon-bearing and nitrogen-bearing type molecules, being the chemical composition
of the source dominated by oxygen-bearing species. Identifications were made as part of the ASAI
large program in the 3mm spectral range using the IRAM 30m telescope (see Chapter 3). This work
establishes the starting point for the results presented in Chapter 8, which also includes an extended
survey of the source in 1, 2 and 3mm.

In the next section, we discuss the evolutionary stages of low-mass stars.

1.1.2 Stars and Evolved Objects: AGBs and Planetary Nebulae
1.1.2.1 Herzprung-Russel Diagram

The first phase of stellar evolution is known as pre-main-sequence or PMS. As mentioned in the
previous sections, large molecular clouds, mainly constituted by gas (H) and dust grains (silicates,
graphites, etc.), contract isotropically to form a protostellar object. As a consequence, the huge
release of gravitational potential energy heats the interior such object, producing great luminosity.
When the onset of nuclear fusion in protostellar objects takes place, a star is finally formed. The Zero
Age Main Sequence (ZAMS) object, or star, enters the main sequence and begins its evolutionary
path following a trajectory described by the Hertzsprung-Russell (HR) diagram (Fig. 1.8).

The relationship between luminosity (absolute magnitude) and surface temperature (or spectral
class) of a star, described in the HR diagram, is directly proportional to the stellar mass (Longair,
1994; Carroll and Ostlie, 2007). In the emission spectrum, the intensity of the spectral line indicates

the chemical abundance (elements and molecules) present in the stellar photosphere, as well as the
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Figure 1.7: Cycle of formation of sun-like and massive stars. Credits: NASA.

ionization states provide a measure directly proportional to the temperature (Carroll and Ostlie, 2007).

Most stars are classified by the Morgan-Keenan system (MK). This system uses the O, B, A, F, G,
K and M letters to separate the stars according to their temperature, mass and spectral characteristics.
In this sequence, hottest and heavy stars are of the O-type while coldest and low-mass stars are of the
M-type. Each class (O to M) is subdivided using a numerical digit, with zero being the hottest and
9 being the coldest. Currently, new classes have been incorporated for other stars and objects similar
to stars that do not fit the classical system, such as class D for white dwarfs and classes S and C for
carbon stars (Karttunen et al., 2003; Henning, 2010).

All stars that achieve thermonuclear equilibrium reactions in the ZAMS stage enter the main
sequence, but differ in its evolutionary pathways. By establishing the stellar mass as a differentiating
factor, the energy transport processes and production mechanisms vary from one class to another.
Therefore, low-mass stars (M, < 1.2 M) evolve to become brighter and more blue, as more massive
stars evolve into a brighter state with a decrease in temperature, except during the very fast overall
contraction phase (Gallart et al., 2005).

Fig. 1.8 shows that most of the stars occupy the region in the diagram along the main sequence.

Main sequence is the evolutionary stage in which the energy released by the burning of hydrogen in
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Figure 1.8: Hertzsprung-Russell diagram, obtained by a selection of stars in Gaia’s second release cata-
logue. Credits: ESA, Gaia and DPAC.

the stellar core is the only source of energy (mainly proton-proton chain and CNO cycle). During this
stage, the star is in stable equilibrium, and its structure changes only because its chemical composition
is gradually altered by the nuclear reactions. Thus, the evolution takes place on a nuclear time scale,
which means that the main sequence phase is the longest part of the life of a star. The main sequence

phase ends when hydrogen is exhausted at the nucleus. The giant phase star then settles in a state in
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which hydrogen is burning in a shell surrounding a helium core. This transition takes place gradually
in lower and intermediate mass stars (M, < 2.3 Mg,)), giving rise to the Subgiant Branch in the HR
diagram, while the upper main-sequence stars make a rapid jump at this point (Karttunen et al., 2003).

The evolution that follows core helium burning depends significantly on the stellar mass (Kart-
tunen et al., 2003). It determines how high the central temperature can become and also the degree
of degeneracy, when heavier nuclear fuels are ignited. When the central helium supply is exhausted,
helium will continue to burn in a shell, while the hydrogen burning shell is extinguished. In the HR
diagram the star will move towards lower effective temperature and higher luminosity. This phase is
quite similar to the previous red giant phase of low-mass stars, although the temperatures are slightly
hotter. For this reason it is known as the asymptotic giant branch, AGB (Fig. 1.8). After the early
phase, when the helium shell catches up with the extinguished hydrogen shell, the AGB star enters
what is known as the thermally pulsing phase, with hydrogen and helium shells burning in an al-
ternate fashion. A configuration with two burning shells is unstable, and in this phase the stellar
material may become mixed or matter may be ejected into space in a shell, like that of a planetary
nebula (Karttunen et al., 2003).

Planetary nebulae (PNe) are atomic and molecular gas shells — both neutral and ionized — around
small hot stars. Instabilities developed in the helium burning stage leads to stellar pulsations with a
high rate of mass loss and eventually a violent expulsion from the stellar atmosphere. In the latter
case, a gas shell expanding at 20—30 km s~! will be formed around the core of the original star, whose
temperatures reach 5 x 10* to 1 x 10° K. The expanding gas in a planetary nebula is mainly ionized
by the ultraviolet radiation of the central star. Typically, the spectrum of a PNe contains many of the
same bright emission lines as those of an HII region, as well as emission from grains and molecules,
such as polycyclic aromatic hydrocarbons (PAH), which are formed in the AGB phase (Gallart et al.,
2005; Karttunen et al., 2003).

1.1.2.2 Planetary Nebula I: BD+30°3639

BD+30°3639 (Fig. 1.9) or Campbell’s star, is a young planetary nebula (PN), with an estimated
dynamical age of 800 yr (Li et al., 2002; Freeman and Kastner, 2016). It is located at a distance of 1.2
kpe (Li et al., 2002; Yu et al., 2009) in the direction of the constellation of Cygnus (Ra= 1973474525,
Dec= +30°30/58.9”). This object was observed many times with different telescopes and surveys.

In fact, BD+30°3639 is one of the first sources together with NGC 7027 where the emission bands
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Figure 1.9: The BD+30°3639 planetary nebula. Credits: optical (left): NASA and J. Harrington et al.;
infrared (middle): UH, IoA and Gemini; X-ray (right): NASA, RIT, and Kastner et al.

attributed to polycyclic aromatic hydrocarbons (PAHs) in the IR were identified (Allamandola et al.,
1989; Bernard et al., 1994; Tielens, 2008; Yang et al., 2017a). The first identifications in the middle
infrared (mid-IR) of bands attributed to PAHs at 3.3 3.4 5.7 6.2 7.7 8.6 and 11.6 ;sm were done from
observations of this source made by the telescope Mount Lemmon Arizona (Allamandola et al., 1989)
and the CFH Telescope in Hawaii (Bernard et al., 1994). Later, the Infrared Space Observatory (ISO)
confirmed that the dust emission features of BD+30°3639 can be attributed to PAHs mixed to car-
bonaceous and silicate dust, which are all spatially coincident (Persi et al. 1999, see Fig. 1.9, middle
panel). Matsumoto et al. (2008), using 8.8, 9.7, 10.5, 11.7, 12.4 ym medium band filters and 8.6,
11.2, and 12.8 pm narrow band filters, revealed a rectangle structure, boxier than previously observed
in the mid-IR. These features allowed estimations of the dynamical age for the silicate dust shell to be
43004740 yr and the age of the amorphous carbon shell to be 2800£580 yr (Guzman-Ramirez et al.,
2015). These ages suggest that it took ~1500 yr for the central object to make the transition from a
Wolf-Rayet O-rich (WO) to a Wolf-Rayet C-rich (WC) star. The analysis by Guzman-Ramirez et al.
(2015) also suggests that, while the age of the ionized nebula is ~ 10% yr, the dusty components were
ejected more than twice as long ago (Freeman and Kastner, 2016).

After its first detection using the Rontgen Satellite (ROSAT), BD+30°3639 has been known as
the X-ray-brightest PN. From inside its ~4” diameter optical shell (Fig. 1.9, left panel), the central
star of BD+30°3639 shows an extended emission (Fig. 1.9, right panel) in soft X-rays (Kastner et al.,
2001; Murashima et al., 2006; Yu et al., 2009) with a luminosity of 8.60 x 1032 erg s7! (Yu et al.,
2009) and a column density of Ny = 2.4 x 10?! cm? (Yu et al., 2009). The X-ray emitting plasma
presents high abundance ratios of elements such as Ne and K — different than solar abundances — and

a broad spectral band, probably attributed to a blend of C, N, and O lines, subsequently detected with
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Figure 1.10: The NGC 7027 planetary nebula. Left: Chandra X-ray image (green) is overlaid on the Hubble
infrared image (red and blue). Credits: IR: NASA and STScl; X-ray: NASA, RIT and J.Kastner et al. Right:
Hubble optical image. Credits: NASA and STScl.

Chandra (Kastner et al., 2001; Guerrero et al., 2000; Maness et al., 2003; Murashima et al., 2006).

1.1.2.3 Planetary Nebula II: NGC 7027

NGC 7027 is a young carbon-rich planetary nebula located in the Cygnus constellation at a dis-
tance of 880 pc (Ra= 21M7m1.75, Dec= +42°141 1””)(Masson, 1986; Latter et al., 2000; Bernard-Salas
et al., 2001; Kastner et al., 2001; Hasegawa and Kwok, 2001, 2003; Wesson et al., 2010). It has a
differentiated structure with an ionized elliptical envelope lying at the center of an extended molec-
ular envelope. Intense lines of highly ionized Ne atom were observed in infrared spectra obtained
by ISO-SWS of NGC 7027 (Bernard-Salas et al., 2001) and in X-ray spectra taken by the Chandra
X-Ray Observatory (Kastner et al., 2001). At the interface between the cold molecular region and
the ionized front, there is the photodissociation region (PDR) where chemistry is controlled by the
penetrating UV and X-rays photons from the central star (Lau et al., 2016; Latter et al., 2000).

The morphology of NGC 7027 (Fig. 1.10) presents three outflows in the HII region interacting
with the outermost regions (Cox et al., 1997; Santander-Garcia et al., 2012; Lau et al., 2016). The
variations in the radiative flux of the object provide a non-equivalent mixture of chemical species
within the outer layers, thus providing environments with different characteristics within the same
nebula (Arnoult et al., 2000). Consequently, it stimulates the formation and destruction of a wide

variety of molecular species detected in both neutral and ionized states, such as: Hp, CO, CHj, CHJ,
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CH*, c-C3H,, PAHs, and aliphatic hydrocarbons (Hasegawa et al., 2000; Hasegawa and Kwok, 2001;
Lau et al., 2016).

The physical properties of the central star, a very hot white dwarf with a temperature around
2x10° K and an estimated luminosity of 7700 L, (Latter et al., 2000), promote a chemically rich
medium. This implies that different reaction mechanisms could be taking place, both in the gas phase
and on the surface of grains. Ultimately, such environment could uphold the formation of complex

ions and organic molecules, among them PAHs (Herbst and van Dishoeck, 2009).

1.1.2.4 Planetary Nebula III: NGC 5315

NGC 5315 is a planetary nebula with a Wolf-Rayet C-rich type central star with a temperature
around 2 x 10° K (Montez Jr. et al., 2015; Kastner et al., 2008). It is located at a distance of 2.5 kpc
in the constellation Circinus (Ra= 13"53"56.95, Dec= -66°30/50.9”, Marcolino et al. 2007; Kastner
et al. 2008; Ali et al. 2015, with a dynamic age of around 1000 yr (Ali et al., 2015). NGC 5315
has an X-ray emission profile with a luminosity of 2.6 x 103 erg s™! and a column density of Ny =
2.29 x 102! cm? (Kastner et al., 2008). The source also shows a compact multipolar (4 in the optical
range) morphology, with PAH features identified with the PHOTo-polarimeter of the Infrared Space
Observatory (ISO-PHOT, Kastner et al. 2008; Marcolino et al. 2007; Monteiro and Falceta-Gongalves
2011; Szczerba et al. 2001).

Estimations from observations point that the X-ray emission of NGC 5315 comes from a compact
and delineated central cavity of ~1” radius (Fig. 1.11), revealing that this object is one of the most

luminous hot bubble” X-ray sources detected (Kastner et al., 2008).

1.1.2.5 Planetary Nebula I'V: NGC 40

NGC 40 was discovered by William Herschel in 1788, and is also known as Bow-Tie Nebula and
Caldwell 2. 1t is located in the northern part of the Cepheus constellation at a distance of 1.1 kpc
(Ra= 00"13™1.01¢, Dec= +72°31’19.1”). With a dynamical age of 4000 yr (Monteiro and Falceta-
Gongalves, 2011; Ali et al., 2015; Freeman and Kastner, 2016), NGC 40 is a well-studied object,
classified as a low-excitation PN. The central star of NGC 40 is a WC-type. Several imaging studies
revealed a bright (slightly elliptical) core, a large halo, and filamentary structures (Monteiro and
Falceta-Gongalves, 2011). The source presents a broad PAH feature at 11.3 ym observed by ISO

(Delgado-Inglada and Rodriguez, 2014) and emission in soft X-rays with a luminosity of 4.0 x 103!
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Figure 1.11: The NGC 5315 planetary nebula. Hubble Optical Image, credits: NASA,ESA,STScI, AURA
and The Hubble Heritage Team.

Figure 1.12: The NGC 40 planetary nebula. Left: Image in the X-rays taken from the Chandra telescope.
Right: Composite image with X-ray (blue) and NOAO Optical (red). Credits: X-ray: NASA, CXC, RIT
and J.Kastner and R.Montez.; Optical: NSF, AURA, NOAO and WIYN.

erg s~! (Kastner et al., 2008) and column density of Ny = 2.2 x 102! cm? (Montez Jr. et al., 2015).
Having 40” of diameter in the optical images, NGC 40 appears as a brightened shell, with a bright

rim that is interrupted by fainter protrusions to the north-northeast and south-southwest (Monteiro and
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Falceta-Gongalves, 2011). The detection of soft X-rays in the range of 0.3—1.0 keV energy reveals
that the emission in the NGC 40 arises from an annular region (Fig. 1.12-left) around the central star,
following the same overall surface brightness distribution as the ones in the optical and near-infrared.
Fig. 1.12-right shows an X-ray (blue)/optical (red) image of the hot gas around the central star of
NGC 40 (Monteiro and Falceta-Gongalves, 2011; Montez and Kastner, 2018).

NGC 5315 and NGC 40 are planetary nebulae included in the Cycle 5 of Chandra observations
(Montez Jr. et al., 2015; Kastner et al., 2008).

1.2 Chemical Composition of Interstellar and Circumstellar Me-
dia

In the Universe, chemistry begins with primordial nucleosynthesis and continues in the stars. The
formation of cosmic dust is generally associated with the most evolved stages of the stars (AGB
phase). With some exceptions, the elements of the photosphere of the stars reflect the pattern of
the abundances present in the parent cloud, but during the stages subsequent to the main sequence,
variations in these abundances may occur for two mainly reasons (Henning, 2010):

I. In low- and intermediate-mass stars, convective mixing between the nuclear burning interior
and the stellar photosphere carries some quantities of the freshly synthesized heavy nuclei and small
molecules from the centre to the surface. In rapidly rotating hot stars some mixing from the central
region to the photosphere occurs by circulation currents.

II. The dust formed in highly evolved stars has a composition considerably more enriched than
standard cosmic element abundance.

These two situations are important for the enrichment of both the interstellar and circumstellar
media, the winds associated with the stars provide the necessary material for the formation of refrac-
tory grains. These grains will be the seed for the formation of a wide variety of chemical species,
formed by the synthetic routes in condensed phase on the grain surface and/or directly in the gas

phase.

1.2.1 Gas Phase Chemical Reactions

Gas phase collisions are fundamental to the physics and chemistry of the interstellar medium

(Draine, 2011). Collisions excite atoms and molecules, eventually resulting in emission of photons
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from the ISM. They are also responsible for chemical reactions, including both formation and de-
struction of chemical species.

Chemical processes in the gas phase begin when the molecular hydrogen, H, is released into the
interstellar medium. Inside dense molecular cores, the temperature is low enough (Tgas & Train =
10 K) and the density high enough that exothermic reactions are favored. The only possible reactions
in practice are those with low activation energies between reagents and products. Reactions involving
ions and neutral species (Table 1.1, ion-neutral reactions) often obey this restriction and dominate
the chemistry in these astrophysical environments (Herbst and van Dishoeck, 2009). However, there
are other types of reactions that can be carried out in the gas phase. The different types of possible
reactions in the interstellar medium are summarized in Table 1.1.

Neutral-neutral reactions. The reaction between two neutral species can be formally written as:

A+BXC+D (1.19)

where A and B are the reactants, while C and D are the products. We can calculate the reaction
rate I' by the following equation:
d[C d[A
p_dIC]__dA]

where [A], [B] and [C] are the concentrations of species A, B and C, respectively; k is the kinetic
coefficient (cm™ s7'); and ng is the numerical density of the reagents. The kinetic coefficient k is
specific for each reaction. In this case, for a second order reaction (two reagents are involved), the
reaction rate ' is proportional to the product of the concentrations (numerical densities) of the two
species (Tielens, 2005; Draine, 2011).

Photon-induced processes. The interaction of the interstellar radiation field with molecular
species can lead to the photoionization and/or the photodissociation of the latter. This process is

modelled by the following reaction:

AB+hv S A+B (1.21)

and their reaction rate I' and kinetic coefficient k have the following relation:

_d[A] _ d[AB]
o dr de

r = knap (1.22)
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Table 1.1: Examples of selected gas phase reactions. Adapted from Smith (2011).

Type of mechanism Example

Gas-grain H +H + grain — Hj + grain
Cosmic-rays Hy+cr - Hyt+e~
Cation-neutral H,*+H, - H;*+H
Anion-neutral C"+NO —-CN™ +0
Radiative associations (ion) Ct*+H, - CHy" + hv
Associative detachment C +H, -CHy +e”
Chemi-ionization O+CH — HCO" +e~
Neutral-neutral reactions C+CH, - CsH+H
Radiative association (neutral) C+ H, — CHj, + hv
Dissociative recombination NoH  +e - N+ H
Radiative recombination H,CO* +e~ — H,CO + hv
Anion-cation recombination HCO*+H™ — H,+CO
Electron attachment CsH+e™ — CegH™ + hv
External photo-processes® C3N+hy —Cy +CN
Internal photo-processes” CO+h—=C+0

¢ External photo-processes are those induced by the interstellar radiation field.
b Internal photo-processes are induced by radiation generated in dark clouds by the
interaction of molecules, especially Hy, with cosmic rays.

The kinetic coefficient k (s™') represents the number of photoionized or photodissociated molecules
per second. This value depends on the photon flux in the astrophysical source and other parameters,
such as the cross-section of the each species (see Chapter 2). However, it is necessary to take into
account the attenuation flux due to the presence of interstellar grains and dust. Therefore, for UV

photoionization reactions, we can calculate the kinetic coefficient as:

k= ae AV (1.23)

where « represents the rate without UV attenuation, Ay is the extinction coefficient in the optical
range and +y is the factor that describes attenuation by UV photoabsorption in interstellar grains and
dust.

Cosmic-Ray ionization. In dense ISM regions, cations are formed mainly by cosmic-ray bom-
bardment and are modified by secondary reactions. Hp* ions react rapidly with Hy to produce Hs*.
Because H; has a rather low proton affinity, H3* is the hydrogen-bearing moiety that most effectively

reacts with other species, notably C, O and N, in the following manner (Smith, 2011):

Ho+cr - Hy+e” (1.24a)
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H2++H2 — H3++H (1.24b)

Hy"+X — Hy+XH" (1.24c¢)

where X can be atoms or even molecules, such as CO. For the ionization of H, molecules into
dense regions, the cosmic-ray flux should have a rate of t ~ 1—5 x 10717 s7!. In addition to ionization,
cosmic-rays can also lead to the formation of UV photons from a mechanism in which the secondary
electrons excite Hy, and the photon is subsequently emitted by relaxation processes. These secondary
photons are a source of ionization and destruction of molecules despite high visual extinction (Herbst
and van Dishoeck, 2009; Smith, 2011).

Molecular species formed from ion-neutral reactions tend to be unsaturated because hydrogena-
tion reactions have a high energy barrier. For example, in the gas phase, the transfer of H in C,H;,
hydrocarbon chains with n > 3 cannot produce ions with m > 2. In addition, once the molecular
cations are formed, the processes of dissociative recombination, such as C,H,* + e~ — C,H" + H,
produce neutral fragments that tend to be more unsaturated than the original ionic structure (Smith,
2011). Therefore, ion-neutral reactions with C*, C or CoH, and neutral-neutral reactions with car-
bon insertion in molecular clouds produce long and unsaturated (polyynic) carbon chains, such as
C4H, CgH and CgH (Sun et al., 2015). H transfer reactions between molecular ions of the type X* +
H, — XH' + H, or even hydrogenation reactions, are endothermic and, therefore, they are not fa-
vored at low temperatures (Herbst and van Dishoeck, 2009; Smith, 2011). Consequently, this type of
reaction requires the presence of catalytic environments to reduce the excitation barriers, such as ices

or grain surfaces.

1.2.2 Condensed Phase Chemical Reactions

At temperatures low enough, atoms and molecules tend to freeze out from the gas phase onto dust
grains. The freeze-out temperature is directly related to the binding energy of the molecular species
with the grain surface. In practice, CO freeze out occurs below 20K, whereas H,O freeze out already
at 100K. Sublimation at 10K can only occur efficiently for weakly bound species, such as H, H, and
He. The accretion of atoms and molecules on a solid surface can occur through two distinct processes

(Herbst and van Dishoeck, 2009): physisorption (involving van der Waals forces) and chemisorption
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Figure 1.13: Scheme of the adsorbate-surface interaction. The physisorbed site is due to van der Waals in-
teractions (binding energy: E ). The chemisorbed site involves valence shell interaction (binding energy:

E pem). The actual binding energies E;, and E. take the zero-point energy into account. The two bonding
sites are separated by a saddle point with energy E;. Taken from Tielens (2005).

(through valence shell interactions). A gas phase species approaching a surface will feel at a large
distance a weak attraction due to van der Waals forces. These are due to mutually induced dipole
moments in the electron shells of the gas phase species and the atoms in the surface. At short range,
forces associated with the overlap of the wave functions of the approaching species and the surface
atoms lead to much stronger binding (Tielens, 2005).

The interaction potential depends not only on the distance to the surface but also on the location
on the surface. For example, on a perfect surface (crystal) the process experiments a regular variation
of the potential energy across the material surface with an array of wells evenly spaced in between
the surface atoms (Fig. 1.13). In an irregular material, this regularity is lost, and the reaction curve
resembles a mountainous configuration with peaks associated with the surface atoms and valleys
representing the physisorbed and the chemisorbed wells.

When adsorbed species (adsorbate) accumulate on the surface of an interstellar grain or dust, pro-

cesses or reactions are stimulated, thus forming astrophysical ices (Herbst and van Dishoeck, 2009).
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Hinshelwood Hot-Atom Eley-Rideal

Figure 1.14: Scheme of some mechanisms for surface reactions on a regular grain surface. § is the sticking
efficiency of a gas phase species, Ep is the binding, or desorption, energy of the adsorbate to the surface,
and E,, is the barrier from one site to an adjacent one. Taken from Herbst and van Dishoeck (2009).

The exact processes responsible for the formation of molecular species on dust grain are subject of
intense theoretical work and modelling and laboratory experiments. Recent works (Wakelam et al.,
2010; Cuppen et al., 2017) stress the difference of reactivity between the surface layers and the bulk of
the grain mantles. In these substrates (ice) the main physisorption reaction mechanisms on the surface
are: diffusive, or Langmuir-Hinshelwood mechanism; the hot-atom mechanism; and the Eley-Rideal
mechanism. All of them are represented in the scheme of Fig. 1.14, where the processes are assumed
to happen on a regular surface with a periodic potential. In this model surface, accretion occurs onto
the binding sites, which are regions of potential minimum energy, and are given by the sticking ef-
ficiency, S. On the other hand, desorption can occur if the desorption energy, Ep, is reached, either
by sublimation (thermal evaporation) of by non-thermal processes. In the Langmuir-Hinshelwood
mechanism, diffusion is obtained by tunneling over the barrier E;, between binding sites. Once lo-
cated in the same minimum, absorbates can react by sticking together, with the excess energy being
absorbed by the grain. In the hot-atom mechanism, a gas phase species lands on a surface acquiring
an increase in kinetic energy before its thermalization, favoring the collisions of the species with the
adsorbate (Tielens, 2005; Herbst and van Dishoeck, 2009). Finally, in the Eley-Rideal mechanism
physisorption is produced by the interaction of a gas phase species that lands on an adsorbate and
reacts with it.

Unlike the highly unsaturated molecules produced in the gas, species formed on the surface of the
ice are saturated. The Langmuir-Hinshelwood mechanism describes the process where the activation
barriers are low. Therefore, the atomic hydrogen of the gas accumulates on the surface and diffuses

rapidly, acting as a very efficient reagent on ice surfaces. In the different astrophysical environments
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Figure 1.15: Schematic picture of interstellar ice processing. The hydrogenated species labelled within
the inner layer are formed by Langmuir-Hinshelwood mechanism. Some of the main constituents usually
detected in interstellar ice analogues are also depicted. Adapted from Burke and Brown (2010).

(comets, asteroids, clouds, etc.), water ices are the most abundant. These ices are produced by the
sequential hydrogenation of O atoms accreted on the surface of a grain: O — OH — H,O. This
reaction is just an example of hydrogenation processes that can become much more complex (Fig.
1.15). For example, the formation of ammonia (NH3), methane (CH,4), and methanol (CH30H), as
well as the hydrogenation of polycyclic aromatic hydrocarbon species (PAHs), are described by the
Langmuir-Hinshelwood mechanism (Henning, 2010; Herbst and van Dishoeck, 2009; Tielens, 2005).

In the more diffuse phases of the ISM, the grain-surface chemistry and ice-mantle processing are
limited due to the unshielding of UV radiation, which drives photodesorption of adsorbed molecules
(Tielens, 2005). On the other hand, in dense cloud cores, which are shielded from UV photons, the
composition of the accreting gas dictates the fate of the condensed phase reaction network. In such
regions, hydrogen is mainly in the molecular form (H;), but cosmic-ray ionization is responsible
for introducing a low level of atomic hydrogen. Assuming that each cosmic-ray ionization of Hj
eventually delivers two H atoms through accretion onto grains, the numerical density of H, n(H), is

given by:

~2cm (1.25)
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where (., is the ionization rate by cosmic rays and k; is the accretion rate, which is estimated
as 3 x 1077n s7! independent of the environment density. Given that oxygen will predominantly
exist in the atomic form, carbon as CO and N as N», the composition of the ice sheets is largely
determined by the reaction between H, O and CO, with traces of C and N. The abundance of H
dominates these environments, consequently the abundance of hydrogenated species will be high

(Tielens, 2005; Burke and Brown, 2010).

1.2.3 Complex Organic Molecules (COMs)

Laboratory experiments suggest that the UV and the cosmic ray irradiation of H,O interstellar ices
could play an important role in the formation of more complex species (Burke and Brown, 2010).
Atomic carbon can be hydrogenated on grain surfaces through sequential atomic H incorporation,
which is an important formation pathway of interstellar hydrocarbons. Hydrocarbon radicals in this
route can react with atomic O and N to form organic molecules with heteroatoms, such as CH3;OH
and HCN. In the ISM, atomic C is only abundant during the first diffuse phases of a cloud — after that
most of the accreted carbon in molecular clouds is in the form of CO and its reaction with H proceeds
efficiently. The radicals formation from HCO leads to the formation of other C-bearing species that
can react with atomic C, N, or O. (Fig. 1.16) show various ways where CO can efficiently be converted
into complex organic species (Tielens, 2005).

Gas phase pathways have also been proposed for the formation of COMs in star forming regions,
both in hot cores and in hot corinos and shock regions (Herbst and van Dishoeck, 2009). Determi-
nation of the relative efficiencies of distinct proposed pathways (Kaiser et al., 2015; Oberg, 2016;
Biczysko et al., 2018), as well as the identification of the most stable isomers of a given molecular
formula (Lattelais et al., 2009), requires a large effort from chemists. Most likely, the processes at
work depend on the actual physical conditions (density, temperature) in the astrophysical objects of

study.

1.2.4 Deuteration

It is important to mention that in young stellar objects there may be a high rate of deuterated
species (Marcelino et al., 2005; Roueff et al., 2005; Ceccarelli et al., 2007; Emprechtinger et al., 2009;
Ceccarelli et al., 2014; Vastel et al., 2014; Codella et al., 2012; Lefloch et al., 2018). The formation

of deuterated species on grain surfaces largely follows from the reaction of accreted atomic D. After
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Figure 1.16: Scheme of the reaction pathway of hydrogenation and oxidation of CO on grain surfaces.
Adapted from Tielens (2005).

accretion, the chemistry of atomic D on grain surfaces is very similar to that of atomic H. In ices,
atomic D is quickly distributed over the surface, and compared to atomic H, deuterium reactions have
lower activation energies. Thus, any species that can be hydrogenated on a grain surface can also be

deuterated (Linnartz et al., 2011).

1.2.5 Polycyclic Aromatic Hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons (PAHs, Fig. 1.17) are molecular archetypes that can be classi-
fied according to the number of fused benzene (CgHg) rings that make up the base structure (Scott,
2015). Neutral and ionized PAHs are detected in astronomical sources through emission bands in
the infrared (IR) wavelength range, due to the corresponding molecular vibrations. (Peeters et al.,
2002; Tielens, 2008). The main vibrational features of PAHs (Fig. 1.18) comprise the C—H (3.3
pm), C=C (6.2 um) and C—C (7.7 um) bond stretching modes, as well as the in-plane (8.6 ym) and
out-of-plane (11.3 pm) C—H bond bending modes. From the analysis of such IR bands, PAHs have
been observed in a diversity of galactic objects, such as planetary nebulae (Waters et al., 1998; Gorny

et al., 2001; Ohsawa et al., 2012; Guzman-Ramirez et al., 2014), HII regions (Roelfsema et al., 1996;
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Peeters et al., 2002), reflection nebulae (Boersma et al., 2014; Ricca et al., 2018), protoplanetary
disks (Ressler and Barsony, 2003; Maaskant et al., 2014; Schworer et al., 2017; Seok and Li, 2017;
Taha et al., 2018), among others. PAH IR features contribute to about 10% of the ISM luminosity
in the 1-1000 pm range, accounting for a large fraction of the elemental C in star-forming galaxies
(Lagache et al., 2004). In addition, their luminosities are well correlated with star formation rates
(Peeters et al., 2004; Stierwalt et al., 2014; Alonso-Herrero et al., 2014; Esparza-Arredondo et al.,
2018). In view of such remarkable characteristics, continuing research on the formation and stability
of PAHs has a key relevance to astrochemistry.

In addition to galactic sources, PAHs have also been observed in a variety of extragalactic ob-
jects, such as HII regions in the Magellanic Clouds (Li and Draine, 2002; Vermeij et al., 2002; Oey
et al., 2017), local dusty elliptical galaxies (Kaneda et al., 2008), starburst galaxies (Brandl et al.,
2006), submillimeter galaxies (SMGs) (Menéndez-Delmestre et al., 2009), ultra-luminous IR galax-
ies (ULIRGS) (Desai et al., 2007) and in the circumnuclear regions of Active Galactic Nuclei (AGNs)
(Lutz et al., 1998; O’Dowd et al., 2009; Tommasin et al., 2010; Sales et al., 2013; Esquej et al., 2013;
Alonso-Herrero et al., 2016). Concerning the latter objects, PAHs have been identified in both Seyfert
1 and Seyfert 2 galaxies (Mazzarella et al., 1994; Deo et al., 2007; Diamond-Stanic and Rieke, 2010;
Sales et al., 2013), in low-ionization nuclear emission-line regions (LINERs) (Sturm et al., 2006) and
obscured quasars (Martinez-Sansigre et al., 2008).

The most accepted mechanism for the formation of benzene molecule, building block of PAHs,
in circumstellar environments is from polymerization of the acetylene molecule (CoH», Fig. 1.19)
(Woods et al., 2003). PAH formation pathways are carried out starting from the previous reaction,
followed by polymerization from the phenyl ion (ionized benzene, Fig. 1.20, Frenklach and Feigelson
1989; Cherchneff et al. 1992; Carelli et al. 2011; Jones et al. 2011).

Frequently, PAH infrared features are accompanied by bands at 3.4 and 6.9 ym (Zhang and Kwok,
2014), characteristic of C-H and C-C aliphatic bonds. These bands are emitted by hydrogenated PAHs
(H,,-PAHs) and by species of PAHs with aliphatic side groups observed in many sources, such as HII
regions, interstellar (ISM) and circumstellar mediums (CSM), planetary nebulae (PNe) and galaxies
(Tielens, 2008; Li and Draine, 2012; Sandford et al., 2013; Hsia et al., 2016; Simonian and Martini,
2017; Yang et al., 2017b). For example, in the infrared spectra of the well studied planetary nebula
NGC 7027, the emission feature 3.3 pm is much more intense than 3.4 ym. The difference between

the profile of both bands can be attributed to distinct factors, such as the relative abundances of the
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Figure 1.17: Scheme of molecular structure of some representative polycyclic aromatic hydrocarbon
molecules. Adapted from Tielens (2005).

aromatic and aliphatic compounds (Tielens, 2008), differences in the oscillator strength values of
each transition (Yang et al., 2017b), the average size of the PAH carbon backbone (Le Page et al.,
2003; Montillaud et al., 2013), and the evolution stage of the object (Sandford et al., 2013; Steglich
et al.,, 2013).

Currently, the stability of H,-PAHs and their role as catalysts in the formation of H, in different
astrophysical environments are of special interest in astrophysics and astrochemistry, and the subject
of an intense debate (Reitsma et al., 2014; Gatchell et al., 2015; Cazaux et al., 2016; Wolf et al., 2016).
Le Page et al. (2003) studied the hydrogenation and charge state of PAHs in diffuse clouds, and con-
cluded that the size of the PAH influences the stability of highly hydrogenated species. More recently,
it was shown that the hydrogenation of the coronene cation, C24HT’2, follows a site-selective sequence,
leading to the appearance of magic numbers of attached hydrogen atoms (Cazaux et al., 2016). Be-
sides, Reitsma et al. (2014) verified that although the carbon backbone of a super-hydrogenated PAH
is locally weakened, its deexcitation by H loss protects the PAH from fragmentation. These find-

ings suggest that the addition of peripheral hydrogen atoms in PAHs could impart a greater stability
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Figure 1.18: a) Label of the vibrational modes of polycyclic aromatic hydrocarbon molecules. b-c) The
mid-infrared spectrum of the photodissociation region in the planetary nebula NGC 7027 (b) and in the
Orion Bar (c). Adapted from Tielens (2005).

to these molecules in interstellar and circumstellar photodissociation regions (PDR). Gatchell et al.
(2015) and Wolf et al. (2016), however, have shown that carbon backbone fragmentation was actu-
ally increased in collision and photoinduced experiments with super- and fully-hydrogenated pyrene
cations (CgH}). Their results, therefore, point out to a failure of the hydrogenation protection mech-
anism, at least for small H,-PAHs.

The results obtained in the study of molecular units of PAHs and H,,-PAHs in selected astrophys-

ical environments are discussed in detail in Chapters 4 to 6.
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Chapter 2

Interaction of Radiation with Matter

Astrochemistry (or Molecular Astrophysics) is a young branch in the field of Astrophysics. Its
primary goal is to understand the nature of chemical complexity, the existence of molecules, as well
as their routes of formation and destruction, in distinct astrophysical environments. It secondary goal
is to use the properties of the molecular emission to probe the physical and chemical properties of
the objects of study. To do so, Astrochemistry relies on a multi-disciplinary approach combining
astronomical observations, modelling, theory and laboratory experiments. In this perspective, the
search for molecules is conducted by means of observations in different wavelength ranges of the
electromagnetic spectrum. Photons emitted by rotational, vibrational and electronic transitions are
observed at microwave and radio, Infrared and Ultraviolet (UV) and X-rays respectively. In this
chapter, we will discuss the general concepts of the interaction of radiation with matter, and then
focus on the most relevant types of spectroscopy for the development of this PhD thesis: rotational

and X-ray spectroscopy.

2.1 General Concepts

2.1.1 The Electromagnetic Spectrum

Electromagnetic waves are produced by the oscillation of electric and magnetic fields in space
and time over ranges of frequencies v (Hz), or wavelengths A (nm). They propagate in the free
space with the speed of light, ¢, and transport electromagnetic radiation through the universe. The
electromagnetic spectrum is the set of all possible frequencies at which this radiation is propagated.

The frequency and wavelength of the electromagnetic radiation are related by the following equation:
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AV =c 2.1

The photon energy is given by E = hv (ergs or eV), where £ is the Planck constant (6.625 x 10727
erg s). The analysis of the molecular transitions provides important information about the temperature
of emitting source, T = E /kp, where kp is the Boltzmann constant (1.38 X 10716 erg K.

Fig. 2.1 presents the electromagnetic spectrum divided into wavelength ranges (at the top) show-
ing: the Solar radiation spectrum in the visible wavelengths only; the percentage of atmospheric
transmission due to the photoabsorption by the molecules such as O;, N», ozone (O3), water vapour;

and the interstellar transmission due to the H atom.

The electromagnetic spectrum, from the shortest gamma rays to long radio waves, is used for

astronomical observations (Karttunen et al., 2003). However, some wavelength ranges are absorbed

62



by the atmosphere (Fig. 2.1). Historically, the most important transparent window lies in the optical
range, between 300 and 800 nm. The optical radiation is, however, partially attenuated by atmo-
spheric molecules and dust as a result of scattering effects. The optical interval coincides with the
region where the human eye is sensitive to elelectromagnetic radiation (400—700 nm). For A < 300
nm, absorption by the atmospheric ozone prevents radiation from reaching the surface of the Earth.
In fact, the atmospheric ozone layer protects the Earth from harmful UV radiation. For even shorter
values of A, the main absorbers are O;, Ny, O3 and some atoms. For A > 800 nm, in the near-
infrared region, the atmosphere is fairly transparent up to 10 pum, except for some absorption lines
due to the presence of atmospheric water and O;. All wavelengths between 20 ym and 1 mm are
totally absorbed at ground level, mainly because of absorption by the water line emission. The bulk
of water vapour in the atmosphere is located in the first two kilometers above the ground. For that
reason, some atmospheric windows offer a reasonably high transparency under dry (and cold) condi-
tions, permitting observations up to about 1 THz from high-altitude sites like Sierra Nevada (3000m;
Spain), Mauna Kea (4000m; Hawaii), Atacama (5000m; Chile), from Earth. Last, for A > 1 mm,
there is a transparent window, called the radio window, which extends up to 20 m. At longer values
of A (typically a few MHz, as it depends on the day/night solar activity) the radiation is reflected by

the ionosphere.

2.1.2 Radiative Flux and Luminosity

In order to know the flux emitted by astronomical objects, we need to define the amount of energy
dE per unit of time, area dA, solid angle d{2 = sinf df d¢ and frequency dv, which is given by
(Rybicki and Lightman, 1985):

dE = 1,dAdtd)dv (2.2)

where I, (ergs s™' cm™ ster ! Hz!) is the specific intensity. Integrating I, over the total solid
angle subtended by the source, we get the flux per unit of frequency F,, (erg s~'cm™2) that depends on

the direction in relation of the normal to the surface (Fig. 2.2):

F, = /chos@dQ (2.3)

The luminosity L (ergs s!) is the electromagnetic power emitted by an object, or the flux inte-
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Figure 2.2: Scheme of the geometry for n direction incident ray. Adapted from Rybicki and Lightman
(1985).

grated in its area and in each frequency range. For example, the X-ray luminosity value Ly is obtained
by the integration of the flux Fx in this frequency (or photon energy) range. If the flux radiated by an
object is integrated over all wavelengths, we have the bolometric luminosity, Lp,;.

Therefore, by knowing the luminosity it is possible to determine the flux as a function of the

distance r from the object by the following relation:

F, = (2.4)

2.1.3 The Beer-Lambert Law

The Beer-Lambert law is an empirical law that determines how the radiation is absorbed by a
gaseous medium due to the presence of atoms and molecules. The initial intensity of the radiation [,
or the photon flux (number of photons cm= s7!), in a given wavelength ()) that enters in a cylinder
of length L, is absorbed by the constituents of the medium, emerging from the opposite side with a

reduced number of photons I given by:

1= Ioe_T (25)

64



where 7 is the dimensionless optical depth, given by:

L
7'=/ kpdl (2.6)
0

where k is the absorption coefficient (cm? g™'), p is the mass density (g cm™) and L (cm) is the
distance traveled by the light.

This work deals with formation and destruction of molecules in astrophysical environments of ex-
tremely low densities. Therefore, it is necessary to know the probability, or cross section, of molecules
absorbing photons in a given wavelength to make molecular transition. In this perspective, we can

also write 7 as:

T = Oph-abshL 2.7)

where 7 ,,_aps 18 the photoabsorption cross section (cm?) as a function of A and # is the numerical
density (cm™). Integrating n in L we obtain the column density (cm™2), N = nL.

Although scattering of radiation can also occur, the dominant radiation extinction process is due
to light absorption. However, the radiation energy needs to be the same as the energy gap between
quantum states of the molecule for the absorption to occur, while the scattering process can occur at

all wavelengths with distinct degrees of efficiency.

2.1.4 Natural linewidth and the Doppler Effect

The line profiles of transitions between two energy levels are not exactly sharp. They have an
intrinsic width and shape, which also reveal information about the local environment of the absorbing
material. The line profile of an atomic or molecular transition has contribution mainly from three
distinct effects. First, energy transitions have a natural linewidth, which is associated with their
lifetime. Second, the presence of nearby molecules perturb the position of the energy levels due to
an effect known as pressure broadening. This effect may be irrelevant in the interstellar medium, but
become more important when molecules are, for example, in planetary atmospheres. Finally, some
of the molecules in a gas cloud may be moving towards the observer, while others are moving away
in the line of sight. This effect is known as Doppler broadening, and also contributes for the overall
linewidth of the energy transition.

The natural linewidth is related to the lifetime, ¢, of the upper state of a spontaneous transition.
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Faster transitions have shorter lifetimes, while slower transitions have longer lifetimes. All transitions
are naturally broadened due to the existence of the uncertainty principle, which is a fundamental effect

in quantum mechanics:

AEAt > T 2.8)

As for the Doppler shifting, this arises because of the Doppler effect, which is an apparent shift in
frequency or wavelength of a transition, that is observed in all objects, due to the relative movement
between the source and the observer. A transition is called redshifted when the source is moving away
from the observer, so the transition is shifted to a longer wavelength. On the other hand, a transition is
called blueshifted if the source is moving towards the observer, so the transition is shifted to a shorter
wavelength.

The shift in the wavelength due to the relative velocity between the source and the observer is
given by:

AN Vsource

~ =" (2.9)

where ) is the wavelength of the transition, v, 1S the relative velocity of the source and c is
the speed of light.
In a gas sample, the effect of the Doppler shift related to the movement of the molecules in the

sample creates a Gaussian line shape with a linewidth given by:

ON=—
c

N [ 2kgTIn2\ ">
_ ( B ”) (2.10)

m

where kp is the Boltzmann constant, 7 is the local temperature and m is the mass of the molecule.

2.2 Rotational Spectroscopy

2.2.1 Molecular Rotation in the Rigid Rotor Approximation

In order to describe molecular rotation, first we need to define moment of inertia, /. This quan-
tity, as defined by Encyclopedia Britannica, is a "quantitative measure of the rotational inertia of a

body—i.e., the opposition that the body exhibits to having its speed of rotation about an axis altered Dy
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the application of a torque (turning force)". In a molecule, the moment of inertia about an arbitrary

axis ¢ set in the molecule is given by:

I, =Y mxi(q) @.11)

where x;(g) is the perpendicular distance of the atom i with mass m; from the axis ¢g. Let us
consider a diatomic molecule with bond length R and atomic masses m4 and mp, and that it behaves

as a rigid rotor. The moment of inertia, /, of such a molecule is given by:

[ = uR? (2.12)

where 1 is the reduced mass of the molecule:

1 1
mapg mpg

For polyatomic molecules, the expression of the moment of inertia can be more complex (see Fig.
2.3).

If the diatomic molecule is composed of heavy atoms which are far from the center of mass, it
will have a large moment of inertia and, therefore, will accelerate slowly when subjected to a torque

T.

dw

o (2.14)

~I =

where w is the angular velocity.
Now let us define the Hamiltonian operator, which corresponds to the sum of the kinetic and

potential energies for all particles in the system:

H=T+V (2.15)

where T and V are the kinetic and potential operators, respectively. The kinetic energy of rotation

of a body of moment of inertia I, with respect to the axis g is given by:

IS~ 2o
T=3) lwg=) 5 (2.16)
q g 1
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Figure 2.3: Moments of inertia of diatomic and selected triatomic and polyatomic molecules. Adapted from
Atkins and Friedman (2005).

2

where wy

is the angular frequency with respect to the axis g and J, is the angular momentum
around axis gq.

The kinetic energy of rotation operator, then, is given by:
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[

(2.17)

Py
q

[\

Iy

where fq is the g-component of the angular moment operator J, whose square, J2, is given by:

2 2
P=>"r (2.18)
q
The potential energy does not contribute to the free rotation. Therefore, in this case:

A~

V=0 (2.19)

By replacing eqs. 2.17 and 2.19 in eq. 2.15, and letting g be the molecule-fixed coordinates x, y

and z, we obtain:

~

22 )2
H = Ky = 2+ 2+ % 2.20
ST TRS) (2.20)
The respective J? operator is, then:
2= T2+ +T? (2.21)

Let ¥ be the wave function that contains all information of the molecular system. The eigenvalue

equation derived from the application of 7%, on W is:

otV = Erot U (2.22)

where E,,; are the eigenvalues of the rotational Hamiltonian, and represent the quantized rotational
energy levels.
At this point, it is useful to describe the commutation relations of J using the laboratory-fixed

coordinates X, Y and Z. First, J2 commutes with the components of J:

[ﬂ,fx_ = PI =T =0 (2.23a)

[ﬂ,fy' — Pl -y 2 =0 (2.23b)
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[fz,fz] — PJ—J 2 =0 (2.23¢)

On the other hand, the g-components of J do not commute among themselves. Alternatively, in

atomic units, they satisfy the following commutation relations:

U, Jy| =iJz (2.24a)
[y, J7] =ilx (2.24b)
(77, 0x] = ily (2.24c)

This shows that only J2 and one of the components (usually chosen as Jz) share a common set of
eigenfunctions v, which in Dirac notation are designated as |J,M). Starting from the commutation

rules, it is possible to obtain the following eigenvalue equations for J2 and Jz:

~

J2

IM)=J(J+1)|J,M) (2.25a)

Jz| .M =M

J,.M) (2.25b)

where the quantum number J is a non-negative integer and the quantum number M takes all
integer values between (M =J), M =J-1), M =J=2), ..., (M = =J). In the J,M representation,

the eigenvalues of J2 and J; are, respectively:

(JM|J2T,M) =T (J+1) (2.26a)

(J,M|Jz|J.M) =M (2.26b)

Let us consider now a symmetric top rotor, which is a rigid body containing two identical moment
of inertia, and a third one different. Examples of such molecules are NH3, CH3Cl, CH3CCH and
CgHg. The z component of the angular momentum, J;, in a molecule-fixed coordinate system also

commutes with J2. Thus, J2, J; and J, have a common set of eigenfunctions, which in Dirac notation
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is written as |J,K,M). The eigenvalues of jz’ Jz and J, are then:

(LK, M|J2|J,K.M) = J (J+1) (2.27a)
(J,K,M|I|1,K,.M) =K (2.27b)
(J,K,M|Jz|J,K,M) =M (2.27¢)

with K, as M, taking all integer values between (K =J), (K =J—-1), (K =J-2), ..., (K =-J).

The Hamiltonian for a symmetric top rotor is expressed by taking eq. 2.20 and making I, = I,:

A —f2+ Lo\ p (2.28)
o \2L 21 )R '

The eigenvalues of the rotational Hamiltonian of eq. 2.28 are given by:

1[J(J+1 11
Eor =Ejx = (J,K,M|Hypt|J,K,M) = > { ( ; ) + (I——I—) Kz} (2.29)
X Z X

By introducing the rotational constants A, B and C:

1
A=— 2.30

oL (2.30a)
B = ! (2.30b)

2L ‘
C= ! (2.30c)

21 '

Eq. 2.29 can be rewritten and simplified to as:

Ejx =BJ(J+1)+(A-B)K? (2.31)

for a prolate (American football-like) top (A > B = C), or to

Ejx =BJ(J+1)+(C-B)K> (2.32)
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Figure 2.4: Schematic figure containing oblate- and prolate-type symmetric top rotors.

for an oblate (pancake-like) top (A = B > ().

For a linear rigid-rotor, as I, =0 and I, = I, =1, eq. 2.31 is further simplified to:

E;=BJ(J+1) (2.33)

Molecules belonging to this class are all diatomic and linear polyatomic , such as CO,, CoH»
and interstellar polyynic chains. A similar energy expression is also observed for spherical rotors, in
which all three moments of inertia are equal. Examples of molecules pertaining to this class are CHy,
SF¢ and Cgp.

From eq. 2.33 and taking the transitions fromJ =0 —J = 1;J =1 — J = 2; etc., it is possible

to see that the difference between the energy levels is given by:

v=2B(J+1) (2.34)

and the separation between the levels is:

Av =2B (2.35)

Given that B is of the order of 30 GHz for small molecules (Shaw, 2007), these rotational tran-
sitions are in the middle of the microwave region. By determining the spacing of the energy levels,

one can also determine the rotational constant, the moment of inertia and, finally, the bond length. In
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Figure 2.5: The energy level diagram for a rotational spectrum. Adapted from Shaw (2007).

fact, gas-phase microwave spectroscopy is a very powerful technique for measuring bond lengths.

Fig. 2.5 shows a general scheme of the microwave spectrum. Transitions from (J = n) to (J =
n+1) are labeled as transitions from the R-branch, with R(n) = n — n+ 1, while transitions from
(J =n+1)to (J = n) are labeled as transitions from the P-branch, with P(n+1) =n+1 — n.

Fig. 2.6 shows the simulated rotational spectrum of the CO molecule at 40K. The lines in the
spectrum are regularly spaced, a feature called as rotational progression. For transitions involving
low J numbers, the separation between the energy levels is given by 2B and is ~ 115 GHz for CO.
This is not exactly true for high J values because for these cases the rigid rotor approximation is no
longer valid, as centrifugal distortion takes place. Furthermore, the intensity of the R(n) transitions
depend on the temperature, and for T = 40K R(4) shows the greatest intensity. The relative intensities
of the rotational transitions, therefore, can be used to identify the temperature of the surroundings
of the molecule, assuming that a local thermal equilibrium is valid. In the next sections, centrifugal

distortion and local thermal equilibrium will be described.
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Figure 2.6: Simulated spectrum of CO with a rotational temperature of 40 K.Adapted from Shaw (2007).

2.2.2 Centrifugal Distortion

As mentioned before, treating a molecule as a rigid rotor is only an approximation. As the degree
of rotational excitation is increased, the molecule experiences a centrifugal force that increases the
bond lengths and, consequently, the moment of inertia. This effect is known as centrifugal distortion,
and as a consequence the rotational constants are lowered. Therefore, the energy levels for high J
values are closer than expected from the rigid rotor approximation.

A convenient way of treating the effect of centrifugal distortion on the rotational spectra is ob-
tained by using perturbation theory (Puzzarini et al., 2010). In this treatment, the rotational Hamilto-

nian is expressed as:

Hror = jfrgt + *%fi/ist (2.36)

where .#0

"o; 18 the zero-order Hamiltonian given in eq. 2.20 and .77, , is the perturbation operator

that describes centrifugal distortion, which for a symmetric top rotor can be written as:
Hyy = =D yJ* =Dy J2J? - Dg J (2.37)
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where Dj, Djx and Dk are quartic centrifugal distortion constants. The corresponding energy

correction is given by:

Ejiy =~ [D112 (J+1)*+Dyxd (J+1)K? +DKK4] (2.38)

For a linear molecule, eq. 2.37 is simplified to:

A, =—DyJ* (2.39)

and the corresponding energy correction is:

El, =-DJ*(J+1) (2.40)
For a diatomic molecule, Dy in SI units is given by:

713

Dj=——
/ 4rkep® RS

(2.41)

where 7 is the reduced Planck constant, k is the force constant of the bond, y: is the reduced mass

of the molecule, c is the speed of light and Ry, is the equilibrium bond length of the molecule.

2.2.3 Rotational Selection Rules

In order to obtain the selection rules for rotational transitions, we first need to consider that
the nuclei movement can be decoupled from the electron movement, which is known as the Born-
Oppenheimer approximation (Atkins and Friedman, 2005). Presuming that the vibrations of the
molecule are much faster than the rotations, it is also possible to separate both motions. Without go-
ing into much detail, rotational transitions are induced by the interaction of molecular electric-dipole
components with the electric components of the radiation field. From that, we can immediately con-
clude that only polar molecules can have a pure rotational spectrum (Atkins and Friedman, 2005).

The selection rules for polar linear rotors are:

AJ=0,£1, AM=0,=£1 (2.42)

For polar symmetric rotors there is one additional selection rule:
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Figure 2.7: Simulated rotational spectrum of a) CH3OH and b) glycine. Adapted from Shaw (2007).

AK =0 (2.43)

Spherical rotors do not have permanent dipole moments and, therefore, do not show pure ro-
tational transitions. An homonuclear molecule such as H, therefore does not display pure dipolar
electric, rotational transitions. Note however that quadrupolar electric transitions are still possible
though, and are observed. They follow different selections rules (AJ = 0,42) and the line intensity
is much lower.

Centrifugal distortion and the progression of the transitions related to the quantum numbers J, M
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Figure 2.8: The microwave spectrum of the Orion nebula. Adapted from Shaw (2007).

and K give rise to complicated rotational spectra, as the ones exemplified in Fig. 2.7. The identifica-

tion of complex molecules through its rotational spectrum is, therefore, non-trivial.

The microwave identification of interstellar molecules is a very complicated task due to the pres-

ence of many molecules in the field of view in astronomical observations. The observed spectrum is

then a complicated mixture of allowed rotational transitions, as exemplified in Fig. 2.8.

A number of aspects should be considered for assigning rotational spectral lines, such as (Shaw,

2007):

e Doppler shift correction for the molecules;

e Determination of lines within the rotational progression;

e Molecules should be present in distinct environments within the source;

e Distinct isotopologues should be considered.
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2.2.4 Radiative Transfer and the Local Thermal Equilibrium

As mentioned before, the relative intensities of the rotational transitions depend on the tempera-
ture,and also on the gas density of the main collider, usually H,. Rotational energy levels within a
molecule are populated depending on the availability of energy from collision with other molecules.
In fact, molecular collision is related to the kinetic definition of temperature, and while collisions
dominate the energy exchange between levels, through excitation and de-excitation processes, it is
said that the system has local thermal equilibrium (LTE). The ratio between the population n; of the

state i and the population n; of the state j is then given by the Boltzmann Law:

ni g AE)
— ==Xxexp|———= (2.44)
nj o 8&j p< kT

where g; and g; are the degeneracies of the states i and j, respectively; AE is the difference
between the energy levels, kp is the Boltzmann constant and 7 is the temperature.

In LTE regime, the photon energy absorbed by the molecule is distributed across other molecules
by collisions before it is re-radiated by emission. The intensities of emitted and absorbed radiation
are not independent. A convenient way on describing the interaction of radiation with matter by the
emission and absorption of photons is given by the Einstein coefficients.

Let us consider a gas of atoms containing discrete energy levels E,, and E;. A system in the excited
state E, returns spontaneously to the lower level E; with a probability given by A,;. If n,, is the density
of the state u, the quantity n,A,; is the number of spontaneous decays per second in a unit volume.

Now consider that the average energy density of the radiation field is given by:

Anl

U—=_—"- (2.45)
c

where I is the average radiation intensity. The probability of the absorption of a photon of that
field is By, U, and the number of absorbed photons is 7;B;,U. In order to derive Planck’s law, another
emission process is necessary: n,B,;U, namely the stimulated emission. If the system is in stationary

state, the number of absorbed and emitted photons must be equal, leading to the following relation:

I’luAul +7’luB,dU = nlBluU (2.46)
—_——— ——
emission absorption

where A,;, B,; and By, are the Einstein coefficients, and must obey the following rules:
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B, = guBui (2.47a)

_ 8rh?

Ay

By (2.47b)

where g; and g, are the degeneracies of the lower and higher energy levels, respectively. A

complete description of the radiative transfer equations can be found in Elitzur (1992); Vastel (2016).

2.3 X-Ray Spectroscopy

2.3.1 Inner-shell Excitation

In this section, we present some fundamental aspects regarding the theory of inner shell excitation
and the calculation or the experimental determination of X-ray absorption spectra (Stchr, 1992). For
that purpose, we will start by defining X-ray photoabsorption cross section as a function of the photon

energy E, 0 pp-aps(E), Which is given by:

n
O ph—abs(E) = n—e X A (2.48)
P

where 7, is the number of excited core electrons per unit of time, n, is the number of incident
photons per unit of time and A is the effective area of the system. The photoabsorption cross sec-
tion, therefore, has the dimension of cm?. Similarly, o 4-ps can also be described by the following

equation:

_ l—\i—>f
Fx(E)

O ph—abs(E) (2.49)

where I';_, ¢ is the transition probability per unit of time, also known as transition rate, and Fx (E)
is the X-ray photon flux per unit of time per unit of area. The transition rate can be obtained by the
Fermi’s golden rule, which describes such quantity from an initial state i to a final state f as a result of
a weak perturbation .2#”. If .2 is an harmonic perturbation, the transition rate is essentially constant,

and is given by:
2
Disy =S [(£1£7]0)] 0 (Ep) (2.50)
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where (f|#”|i) is the matrix element of the perturbation between the final and initial states and
p (Ey) is the density of states at the energy E. A transition between different states with energies E;
and E is equal to a photon with energy hw being absorbed or emitted.

For a K-shell excitation, I'; . 7 is the number of electrons excited per unit of time from the 1s shell
to a final state | f), which can be a bound or a continuum state. The photoionization occurs if |f) is
related to a continuum state leading to the release of a free electron, called photoelectron.

For a plane electromagnetic wave with angular frequency w (= 27v), vector potential A and

electric field vector E, Fy, is given by the following equation:

A%w Egc

F., — —
ph &nhe  8mhw

(2.51)

where A( and E are the amplitudes of A and E, respectively. If I';_, / is the result of the interaction
of spinless particles of charge —e and mass m with the electromagnetic wave described in eq. 2.51,
the harmonic perturbation #” is given by:
, e

H="A p (2.52)

mc

where p is the sum of the linear momentum operators of the electrons:

P=)>_p (2.53)

By substituting eqgs. 2.50, 2.51 and 2.52 into eq. 2.49, and after some mathematical manipulation,

we obtain the following expression for o ,,_aps:

An2h* e 1

O ph—abs — 7%% <f |e pl i>|2p(Ef) (254)

where e is the unit vector of the plane electromagnetic wave.
Let us now define the optical oscillator strength, f, which is related to the X-ray photoabsorption
cross section by the following equation:
df 2me’ndf

= Cc=L =
T ph-abs dE mc dE

(2.55)

where C is the constant 1.0976 x 1076 cm? eV and df /dE is the differential oscillator strength

per photon energy. The oscillator strength measures the intensity of an energy resonance, and since f
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Figure 2.9: Absolute photoabsorption cross sections of benzene (Hitchcock et al., 1987) and biphenyl (this
work, see Chapter 5) as a function of the photon energy E (eV) around the Cls resonances. The inserted
figure shows the comparison of experimental and calculated oscillator strengths. Adapted from (Wang et al.,
2005).

for bound state transitions is given by:

2
f=—=(fle-pl)I’ (256)

the calculated oscillator strengths can be converted to cross sections by integrating eq. 2.55 and

introducing the energy density p(E}):

2me’h
mc

O ph—abs = fp(Eb) (2.57)

where p(Ep) is the density of final states with the bound state energy. At the ionization potential

IP):

p(Es) = p(Ey) (2.58)

and, therefore, eq. 2.54 is equal to eq. 2.57. By plotting the X-ray absorption cross section as
a function of the photon energy (Fig.2.9), the height of a bound state resonance peak is given by

O ph-abs» and the area of the peak is equal to the oscillator strength. The total oscillator strength for
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the electronic excitation of an atom or molecule is equal to the number of electrons N pertaining to

the atom or molecule:

Cdf(E) , .
Zn:fn + /IP SSdE =N (2.59)

—— N——

bound states continuum states

which is known as the Thomas-Reiche-Kuhn sum rule.
Finally, another important feature of the resonance peak in the cross section versus energy plot is
its full-width at half-maximum, FWHM. This quantity is related to the lifetime of the final state, 7,
which can be separated into two contributions:
1 1 1
—=—+— (2.60)

T Te Th

where T, is the lifetime of the excited electron within the molecular potential and 7y is the lifetime
of the inner-shell hole state. Using high resolution X-ray absorption spectra, it is possible to estimate
the core hole lifetime 75, from the measured FWHM of a bound state resonance, since for such tran-
sitions 7, = oco. For low-Z atoms, the characteristic lifetime of the K-shell excitation is in the range
of 107> —107'% 5. This value is around two orders of magnitude slower than a typical continuum
resonance, which is dictated by the lifetime of the resonantly trapped electron and is usually in the

10717 -1071¢ s range.

2.3.2 The K-shell spectra of molecules

The K-shell spectra of atoms and molecules are composed of a variety of resonances which cor-
respond to electronic transitions of a K-shell electron to states near the vacuum level (E,), whose
excitation energies are close to the ionization potential. Fig. 2.10 shows a schematic representation
of the effective molecular potential and the different types of final states for an atom (left) and for
a diatomic molecule (right). A closed shell atom in its ground state shows a huge amount of empty
Rydberg states just below E,, and a continuum of empty states above E,.. The same profile is observed
for core-excited atoms, in a way that the expected K-shell excitation spectrum resembles the top left
panel of Fig. 2.10. For a diatomic molecule, Rydberg states are also present below E,, and a con-

tinuum of empty states above E,. The lowest unoccupied molecular orbital (LUMO) of a diatomic
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Figure 2.10: Scheme of the effective energy potentials (bottom) and the K-shell spectra (top) of atoms (left)
and diatomic molecules (right). See text for details. Taken from Stohr (1992).

molecule is usually of m symmetry, with ¢ symmetry unoccupied orbitals being higher in energy.
Such orbitals are designed as 7* and o* (the asterisk indicates unfilled MO). Due to electron-hole
Coulomb interaction, the 7* state falls below E,, leading to the energy level diagram depicted in the
bottom right panel of Fig. 2.10.

We will now discuss the main features that appear in the K-shell spectra of molecules. These
are: 7* resonances; Rydberg (or mixed Valence-Rydberg) resonances; o* shape resonances; and

multi-electron features.

As the name suggests, m* resonances are only observed for molecules with 7 bonding. They are
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usually the lowest energy resonance structure in the K-shell spectrum, and its energy position falls
below the 1s ionization potential. For a given atom pair, the intensity of the 7* resonance changes
with the bond order between the atoms. Taking the C—-O bond, for example, the intensity of the 7*
resonance decreases by a factor of 2.3 at the C K-edge and by a factor of 1.3 at the O K-edge between
the triply-bonded CO and H,C=0O (Hitchcock and Brion, 1980b,a). This also reveals that, at the C
K-edge, the 7* resonance loses oscillator strength to the resonances associated with C—H bonds.

Between the 7* resonance and the ionization potential, several sharp but weak resonances can
be observed. These features correspond to excitations from the 1s electron to Rydberg orbitals, and
then correspond to Rydberg resonances. If hydrogen atoms are present in the molecule, these transi-
tions can also be related to a mixture of Rydberg and hydrogen-derived antibonding orbitals bearing
the same symmetry. These features then merge into a continuous feature at about 2 eV below the
ionization potential.

For some molecules, above the 1s ionization potential it is possible to observe broad resonance
features, which are known as o* shape resonances. Such transitions are related to the stabilization
of the excited state against immediate decay due to the presence of an energy barrier that arise from
the centrifugal part of the potential. This barrier separates the inner potential well of the molecule
from a shallower outer potential well (see Fig. 2.10).

Finally, it is important to mention that all electronic excitations are multi-electron in nature. This
points that some transitions involve the participation of "passive" electrons. The sudden creation of
the core-hole potential as the result of the "active" electron absorbing an X-ray photon may induce
excitation to a secondary "passive" electron. This leads to multi-electron features in the X-ray
absorption spectrum, which are generally separated into shake-up processes when the excited state is

a bound state, and shake-off processes when the passive electron is excited to a continuum state.
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Chapter 3

Objectives and Methods

3.1 Objectives

Eighty-three years have passed since the first interstellar molecule (CH) was identified (Swings
and Rosenfeld, 1937) — and now there is no doubt that we live in a molecular universe (Tielens,
2013). In the recent years, more than 200 molecules have been identified in the Universe, particularly
in the interstellar medium and in the circumstellar envelopes of evolved stars. Simple and "complex"
molecules, up to 13 atoms, both inorganic and organic, as well as fullerenes (Cgp and Cqq), are
present. The study of viable mechanisms of formation and destruction of chemical species, as well
as the identification of the molecular content in astrophysical objects, is completely necessary. The
general goals of this PhD thesis are enumerated as follows:

1. Application of experimental techniques (gas and condensed phase) to study the formation and
destruction of complex organic molecules in laboratory-simulated circumstellar environments.

2. Identification of the molecular (and ionic) content in star formation environments through radio
observations.

In this chapter, we show a brief description of the methods; the main characteristics of the equip-

ment (experimental and observational); data reduction techniques; and spectral analysis.
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3.2 Experimental Methods

3.2.1 Gas Phase Experiments
3.2.1.1 The Experimental Setup

The gas phase photon measurements were performed at the Brazilian Synchrotron Light Source
Laboratory (LNLS) using UV and soft X-ray photons selected by the Toroidal Grating Monochro-
mator (TGM) and the Spherical Grating Monochromator (SGM) beamlines at energies from 10.0 to
310.0 eV (Fig. 3.1).

The synchrotron radiation is generated by electrons with relativistic velocities u — ¢ orbiting
around a magnetic field B. In this process, the electrons lose energy by emitting photons tangent to

the orbit. The electron energies E are given by:

E = moc?y (3.1

where my is the resting mass of the electron and -y is given by the following expression:

V= (3.2)

The emission of photons by synchrotron process is characterized by a pulsating beam distributed
in a light cone of solid angle € = v~!, always tangent to the orbit of the electrons. In the LNLS
facilities, photons are made available in beamlines that surround the electron storage ring (Fig. 3.1).
These beamlines are equipped with monochromators, diffraction grids and crystals, ensuring greater
control, better selection and performance of the radiation energy range required for each experiment.

In the present thesis work we use photons from the TGM and SGM beamlines at energies around
the inner carbon K-shell to induce the processes of absorption, excitation, ionization and dissociation
in benzene (CgHg), cyclohexane (CgH,) and biphenyl (C12H;() molecules. The study of the interac-
tion of photon beam with molecular beam is done inside an ultra-high vacuum chamber installed at
the end of the beamline.

Fig. 3.2) shows a schematic diagram of the experimental set up inside the vacuum chamber with
the time-of-flight mass spectrometer (TOF-MS). The ions that are formed by ejection of an electron
after the interaction of the molecule with a photon, or produced from the fragmentation of the parent

ion, are directed and accelerated by the electric extraction field and focused by an electrostatic lens.
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Figure 3.1: Scheme of the beamlines of the Brazilian Synchrotron Light Source Laboratory (LNLS) facili-
ties.

After such processes, the ions enter a field-free drift tube (or time-of-flight tube) with 297 mm long

until reaching the detector.

3.2.1.2 The Time-Of-Flight Equations

The ions that reach the detector are discriminated by their mass-to-charge (m/q) ratio. Lighter
ions are faster than heavier ions, and the time-of-flight (TOF’) of each ion can be determined using

the Wiley-McLaren set of equations (Wiley and McLaren, 1955):
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Figure 3.2: Schematic diagram of the experimental set up inside the vacuum chamber with time-of-flight
mass spectrometer (TOF-MS), also showing the rack with associated electronic components.

TOF = 5] + Hh + I (3.3)
N =~ =~

extraction drift detection
where TOF is determined by the sum of the three components. In equation 3.3, #; is the time
corresponding to the acceleration of the ion in the extraction grid; t, is the time of the ion inside
the drift tube; and t3 is the response time of the acquisition (detection) system. The term #; can be
obtained by applying Newton’s third law to the electrostatic force experienced by an ion of charge ¢
induced by an electric field E:

F =qE =ma (3.4)

The ion acceleration a is then expressed as:
a=EL (3.5)
m
By knowing that a is the first derivative of the velocity over time:

dv
a— —
dr

y— / adt — / EL g (3.7)
m

(3.6)
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And, therefore:

Et
v = v+ A4 (3.8)
m

which leads to the following equation for the extraction time #:

tp:m;m<g> (3.9)

where vy and v; are the initial and final velocities in the extraction grid, respectively.

For the drift region, the velocity of the ions (v4,;/,) is obtained by applying the energy conservation
law. In this case, the kinetic energy K is equal to the electrostatic potential energy U obtained by the

particle as a consequence of the difference of potential (V; —V,) between the extraction grid and the

drift tube grid.
L
K - Emvd”'ft (3.103)
U=q(Vi-V,) (3.10b)
K=U (3.10c)
1

7m%ﬂ=ﬂ%—%) (3.10d)

Therefore:

q

Vdrift = 2(V1—V2)n—1 (3.11)
The time of the ion in the drift region, #,, is obtained by the following set of equations:
dxgrife
ift =~ 3.12
Vdrift dr ( a)
' : g11/2
/ dr = / [Q(Vl —Vz)—] dxgrifs (3.12b)
. . m
Therefore:
Xdrift (3.13)

m
hh= ————— X, | —
V2vi-vy) Vg
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where x4, 1s the length of the drift tube. By inspecting equation 3.13, it is possible to see
that ions are progressively separated in groups according to their m/q relation as they trespass the
field-free drift region between the extraction zone and the detector.

The times t; and t3 in equation 3.3 are negligible compared to t,. Therefore, TOF is approx-

imately equal to t;. As the difference of potential and the drift tube length are constant, we can

1) =A\/§ (3.14)
q

More details on the TOF equations can be seen in Guilhaus (1995).

approximate t , as:

3.2.1.3 Photoelectron Photoion Coincidence techniques (PEPICO, PEPIPICO and the Partial

Ion Coincidence Yield)

In the experiments, a uniform electric field was used to extract in opposite directions the pho-
toelectrons (PE) and photoions (PI) produced by the interaction of the beam with the sample. The
positive ionic charged species were accelerated and focused into a field-free drift time-of-flight tube
towards a micro-channel plate (MCP) detector disposed in a chevron configuration. The detection of
one of the photoelectrons by a second MCP detector provides the start signal, while the stop signals
are given by the detection of the photoions by a multi-hit fast time-to-digital converter (TDC) unit.
Thus, standard time-of-flight spectra were obtained using the photoelectron-photoion coincidence
(PEPICO) technique. The PEPICO spectrum can be considered as a single event mass spectrum. By
setting up the voltage of the collimating lens, it is possible to operate the spectrometer in a highly
discriminating condition, detecting only ions ejected along the spectrometer axis and providing an
easy and accurate method for the determination of the kinetic energy release (Maciel et al., 1997). An
example of PEPICO spectrum is shown in Fig. 3.3.

Photoionization of a prototypical molecule AB (Lindon et al., 2016) takes place by both direct

ionization (eq. 3.15a) and autoionization (eq. 3.15b):

AB + hv — AB" + e~ (3.15a)

AB + hv — AB* — ABY + ¢ (3.15b)
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Figure 3.3: Example of photoelectron-photoion coincidence (PEPICO) spectrum. Taken from Quitidn-Lara
(2016).

These processes account for non-dissociative photoionization. Additionally, the molecular ion

AB™ can undergo dissociation, in a process namely dissociative photoionization, or photodissociation:

AB" — A" + B (3.16)

In the photodissociation process, the molecular ion is broken, leading to the formation of a de-
tectable positive fragment A*, an undetectable neutral fragment (B) and a photoelectron. For a com-
plex molecule, distinct fragmentation channels from the molecular ion are possible. This leads con-
sequently to a mass spectrum with several peaks, each one related to a particular ionic fragment with
a specific mass-to-charge ratio.

For core-shell photoionization (Fig. 3.4), there is a third way in which the molecule can undergo
fragmentation. This is called the Auger process, and it happens when a secondary (or Auger) electron

is ejected as a consequence of the core-shell ionization, leading to a doubly-charged species:
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Figure 3.4: Schematic representation of the excitation and ionization processes in the inner shell. a) Pho-
toabsorption. b) Photoionization. c¢) Emission of an Auger electron. Taken from Quitidn-Lara (2016).

(ABY)* 282 AB™ 4 (3.17)

In this case, the emission of the second electron is due to the decay of an external electron that
occupy the empty level generated in the first ionization.

The doubly-charged species can undergo dissociation through distinct dissociation pathways, in-
volving two-body (AB), three-body (ABC) and even four-body (ABCD) mechanisms. A power-
ful approach for studying the fragmentation due to Auger processes is the PhotoElectron-Photolon-
Photolon coincidence (PEPIPICO, Fig. 3.5, Eland 1987).

The processes up to four-body mechanisms that can be studied through the PEPIPICO technique
are depicted below (Arion, 2008).

1. Two-Body Dissociation

The simplest scenario of a PEPIPICO fragmentation mechanism is the two-body process, which

results from the fission of two fragment ions from a doubly-charged species AB**:

ABY = AT + BT (3.18)

2. Three-Body Mechanisms
In three-body mechanisms, apart from the two charged fragments, the emission of one additional

neutral species from a doubly-charged ABC species also occur. Such dissociation can happen in three
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Figure 3.5: Example of photoelectron-photoion-photoion coincidence (PEPIPICO) spectrum.

distinct ways, namely:

2a. Concerted Three-Body Dissociation

ABC™" — AT + B"+ C (3.19)

2b. Three-Body Deferred Charge Separation

ABC™ — AB™ + C (3.20a)

AB™ — A" + BF (3.20b)

2¢. Three-Body Secondary Decay

ABC* — A' + BC' (3.21a)
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BCt - Bt + C

3. Four-body mechanisms

(3.21b)

In four-body mechanisms, two neutral species are formed from the dissociation of the doubly-

charged ABCD™ species. This can occur in four distinct ways, namely:

3a. Concerted Four-Body Dissociation

ABCD"" — A + Bf+ C"+ D

3b. Four-Body Deferred Charge Separation

ABCD"™" — ABC™ + D

ABC™ — AB™ + C

AB*™ — A" + BF

3c. Four-Body Secondary Decay after a Deferred Charge Separation

ABCD** — ABC™ + D

ABC™ — A" + BC*

BCt - Bt + C

3d. Four-body Secondary Decay in Competition

ABCD"™" — AB* + CD*

AB" — A + B
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Figure 3.6: Example of the contour map extracted from (PEPIPICO) spectrum. Adapted from Quitidn-Lara

(2016).

CD" - C"+D

(3.25¢)

All information provided by a PEPIPICO spectrum is identified by two-dimensional projections

(Fig. 3.5). The 2D spectrum shows the signal intensity (counts) as a function of the time-of-flight

of each ion (t; and #,). However, it is necessary to map the two-dimensional projections to extract

numerical parameters from both the original figure and the projections (Fig. 3.6).

The production of ionic fragments is determined by using a multiple Gaussian functions fitting

for obtaining the area of the peaks and the Partial Ion Yield (Fig. 3.7, PIY (%)), of each fragment-ion,

which is then obtained by the following equation:

PIY (%) =

A
100
[ZA?] .

(3.26)

where A7 is the area of each ion i and ) | A} is the sum of the areas of all peaks in the spectrum.

The uncertainties of the partial yields are estimated around 10%.
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Figure 3.7: Example of the multiple gaussian fitting from PEPICO spectrum. Adapted from Quitidn-Lara
(2016).

3.2.1.4 Photoionization and Photodissociation Cross Sections

Assuming that the fluorescence yield is negligible in the X-ray photon energy range due to the low
atomic number of carbon (Chen et al., 1981), and that all absorbed photons lead to non-dissociative
ionization (o ;) or dissociative ionization (o pj—q) Processes, o pp—qps can be divided into two distinct

contributions:

O ph—abs = O ph—i t Oph—d> (3.27)

where 0,4 accounts for all processes in which the ionization induced by the absorption of X-ray
photons leads to dissociation.
On the other hand, the non-dissociative photoionization cross section (o ,;,—;) can be discriminated

in two terms, depending on the degree of ionization:
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Ophei = O g i+ 00 (3.28)

ph—i

where o, . represents the process in which only the singly-charged parent ion is produced, while

ph—i

‘]

0 i Accounts for non-dissociative multiple ionization processes.

The o pjp-q, 0,,_; and ol ph values can be obtained by multiplying o ,—4s by the appropriate PIY

ph i
values, as shown in the following equations:

PIYy+
O';h_i = O ph—abs (W) (329&)
b pIYyge
+ +
Ot = Tpieavs | D05 |- (3.29b)
q=2
dmax
PIYy+ PIYyq+
Oph—-d = O ph—abs 100 Z 100 > (3.29¢)

where PIY)+ is the partial ion yield value related to the singly-charged parent ion, PIYyq+ is
related to the production of the parent ion of mass M in its charge state ¢ > 1 and g4 1S the maximum
charge state for which the multiple ionization process is observed. The PIY's of singly- and multiply-

and o

charged isotopologues were also taken into account in the calculation of the oF ph ;

ph—i Cross

sections, respectively. The full description of the determination of absolute cross sections can be found

elsewhere (Pilling et al., 2006; Fantuzzi et al., 2011; Monfredini et al., 2019).

3.2.1.5 Photodissociation Rates and the Half-life of Molecules

The determination of ;4 values is of significant importance for estimating the molecular abun-
dance in both interstellar and circumstellar environments. The decreasing of the abundance of a given
molecule subjected to a radiation field in the photon energy range E, —E| inside a gaseous dusty cloud

can be written as (Cottin et al., 2003; Boechat-Roberty et al., 2009a):

_dN

= Nk (3.30)

where N is the column density (cm™2) and kpn—a s the photodissociation rate (s™h, given by:
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1)
kph—d = A O'ph_d(E)Fx(E)dE (331)
1

where 0,_4(E) is the photodissociation cross section (cm?) and Fx (E) is the photon flux (pho-
tons cm2 eV~'s™"), both as a function of the photon energy E = hv.
Therefore, it is possible to determine the half-life of a given molecule by the following equation
(Andrade et al., 2010):
[n2

tl/Z == m (332)
p

In addition, we can also determine the photoionization rate, k,p;, given by:

E,
ks = / 0 i (E)E(E)dE (3.33)
E

where 0, (E) (cm?) is the photoionization cross section.

3.2.2 Condensed Phase Experiments

The condensed phase experiments with astrophysical ice analogues were carried out at the Labo-
ratério de Quimica de Superficies (LaQuiS) of the Federal University of Rio de Janeiro. The electron-
stimulated ion desorption technique (ESID, Ramsier and Yates 1991) was used to study desorbed
cations of pure samples of benzene (CgHg), cyclohexane (C¢Hj,), chlorobenzene (C¢HsCl) and a
solution of phenol (C¢H5OH) in methanol (CH3OH) at 89%. The samples were condensed on a steel
substrate at 125 K and bombarded by a pulsed electron beam. The positive ions desorbed from the
surface ice were analyzed by time-of-flight mass spectrometry (TOF-MS).

The experimental setup consists of an ultra-high vacuum chamber that operates at 1.0 x 10™ mbar
pressure. Integrated to the chamber, a manipulator allows a fine adjustment of the positioning of the
sample holder in XYZ. The ionizing source is an electron gun (Kimball Physics, ELG-2). Coupled
to the system, we have a residual gas analyzer (RGA), a time-of-flight mass spectrometer (TOF-MS)
and a system of cooling by continuous circulation of liquid nitrogen. The experimental setup diagram
can be seen in the Figure 3.8.

The injection process of the individual samples consists of a previous degassing through several

cycles of freezing-pump-thaw before its admission to the inside of the chamber. Into the chamber,
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Figure 3.8: Experimental setup of the condensed phase experiments. Adapted from Ribeiro et al. (2014).

the vaporized sample is monitored by the RGA while the ice analog is grown by direct condensation
of the samples on steel substrate cooled at 125K.

The TOF-MS is composed of an electrostatic extraction system, collimator lenses, a drift tube
of 25 cm of length and two micro-channel plate detectors (MCP) in chevron configuration. The
desorbed cations are extracted by a constant electrical potential (+1900 V) applied to the sample.
Before reaching the MCP detector, the positive ion beam drifts through three metal grids (nominal
transmission of 90%). The inlet grid of the TOF tube is grounded and positioned at 10 mm from the
sample surface.

Externally, a Hewlett-Packard pulse generator (HP 8116A) is responsible for starting and pulsing
the electron beam with a pulse time of 20 ns at 80 kHz of repetition frequency. Therefore, for the
arrival of ions, the external pulse generator participates in the start process of the signal from the
time-to-digital converter device (TDC), counting the signals within a 12.5 us period. More details
about the experimental setup are available in Ribeiro et al. (2014, 2015).

The signal analysis of the time-of-flight spectra was performed based on the same principle de-

scribed in the previous section. The ionic yield (¥;) of the desorbed fragments to gas phase were
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determined to applying the following equation:

A
Y, = (3.34)

Ne—
Npulses (pulses)

where A; is the area obtained by a Gaussian fit from each desorbed cation, N5 is the number

of start signals of the electron gun determined by the TDC device (1.2 x 10% pulses) and n,- is the
number of electrons incident at the electron beam from each start signal. The n.- value is obtained
by multiplying the incident current of the electron beam by the pulse period and dividing it by the
electron charge. In this case the value of the current is 6.7 nA, resulting in 5.23 x 10° incident

electrons.

3.3 Radioastronomical Line Observations

3.3.1 IRAM 30m Radiotelescope

The IRAM 30m radio telescope (Fig. 3.9) is operated by the French-German-Spanish Institute
for Millimeter Radio Astronomy (IRAM). It is located near Pico Veleta at an altitude of 2870 m in
the mountains of Sierra Nevada, Spain. It is the most sensitive single-dish telescope in the world that
observes the millimeter windows of the electromagnetic spectrum.

The structure of the radio telescope is composed of a 30m reflective paraboloid surface with a
surface accuracy of 0.08 mm and a pointing accuracy better than 2 arc seconds. The primary surface
is formed by the micrometric junction of 420 aluminum panels on a solid steel structure supported by

a concrete base that allows an alt-azimuth pointing (Baars et al., 1994).

3.3.2 Receivers

The frontend of the IRAM 30m radiotelescope offers three possible types of receivers: EMIR,
HERA and NIKA2. The EMIR spectral line receivers (Eight Mixer Receiver) operate in the atmo-
spheric windows at 3mm, 2, 1.3 and 0.9 mm, between 72GHz and 360 GHz. Each spectral window
is covered by a dedicated receiver, designated as E090, E150, E230 and E330 according to their
approximate center frequencies in GHz. The Heterodyne Receiver Array (HERA) consists of 9 dual-

polarization pixels arranged in the form of a center-filled square separated by 24 arcs. Finally, NIKA2
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Figure 3.9: IRAM 30m Radio Telescope cross section on concrete pedestal (A) Path traveled from the
object signal to the 30m primary reflective surface (B). Signal reflected in the secondary mirror (C) and
directed to the tertiary mirror (D). The focused signal contacts local receivers, amplifiers, and oscillator (E,
G, and H) contained in an insulated box cooled with a liquid nitrogen cryostat. Adapted from the doctoral
thesis of Mendoza (2014)
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is a dual band camera that comprises three arrays of Kinetic Inductance Detectors that operates si-
multaneously at wavelengths of 1 and 2 mm (Kramer, 2018).

The spectral line survey of IRAS 4A was carried out over six semesters from September 2012
to March 2015, as part of the Large Program ASAI (Lefloch et al., 2018) with the IRAM 30m tele-
scope. The observations of the band 72-80 GHz were obtained in January 2016. The broad-band
EMIR receivers E090, E150 and E230 were used to cover the three spectral windows at 3mm, 2mm
and 1.3mm. They were connected to the Fast Fourier Transform Spectrometers (FTS) in its low (200
kHz) spectral resolution mode. The observations at 3mm (72-116 GHz) and 2mm (126—-174 GHz)
bands were carried out simultaneously. The Imm (200-276 GHz) band was covered observing both
the lower sideband (LSB) and the upper sideband (USB) simultaneously. The frequency of the local
oscillator (LO) was regularly shifted by a fixed amount of 50 MHz, in order to allow easy identifica-

tion of lines from the image and signal bands in the spectrum.

3.3.3 Observing technique

The radiation from the astronomical sources is often only a small fraction of the total radiation
collected by the antenna receivers (Reichertz et al., 2001), which includes the contribution of the
atmosphere, which is time variable. A common method is to collect and then subtract the emission
of the atmosphere to the signal received "on source". This procedure is obtained by "switching" the
pointing direction of the telescope (main-beam) in the sky between the astronomical source and a
nearby position, supposed to be (astronomically) emission free. This new position contains approx-
imately the same total power in the main lobe of the antenna but does not contain the source. The
spatial and temporal emission fluctuations are canceled after source sensitive detection, provided that
the broadband emission from sky, ground or continuum sources are similar at both positions (Wilson
et al., 2009).

With this method it is possible to reduce very efficiently the contribution of the sidelobes of the
antenna and atmospheric fluctuations. It is highly effective if baseline waves are a problem. For com-
pact sources, a variant of this method is the wobbler switching, very useful for the noise suppression
(Wilson et al., 2009; Wilson, 2013). One common method to minimize instability effects consists in
using of a rapidly wobbling of the secondary mirror which alternatively points the telescope beam to
an adjacent position on the sky.

Most of the observations were carried out using the so-called Wobbler Switching mode with a
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nutating subreflector, in order to ensure very flat baselines. This is at the cost of a nearby reference
position, 3 arcmin from the protostellar core, and whose location with respect to the protostar varies
with time. It turned out that, for abundant molecular species their emission is extended enough to
be non-negligible towards the reference position. This affects mainly CO and '3CO. For that reason,
the observations of the 112—-116 GHz band were carried out in Position Switching mode, adopting a
reference position fixed with respect to the protostellar core, which was checked to be almost free of
line emission.

The observations were calibrated by monitoring regularly (every 10 to 15 min) the atmospheric
transmission. At the IRAM 30m telescope, the intensities measured by the receivers are expressed in
units of antenna temperature 7, corrected for atmospheric attenuation and sky coupling. The con-
version from instrumental count units to 7 is performed using the standard chopper-wheel method
(Kutner and Ulich, 1981). More details about the calibration procedures at the IRAM 30m telecope
can be found in the report of Kramer (1997, 2018). The instrumental uncertainties at the IRAM 30m
are typically 10%, 15% and 20% for lines at 3mm, 2mm and Imm, respectively (Lefloch et al., 2018).

For the subsequent line analysis and radiative transfer modelling, flux intensities were expressed
in units of main-beam antenna temperature Ty, adopting the values of Forward efficiency F, s, and

Beam efficiency B,/ tabulated by the IRAM observatory.

3.3.4 Data reduction

As explained in Lefloch et al. (2018), the data reduction was performed using the GILDAS/CLASS
software developed at IRAM. A simple flat baseline was first subtracted to each spectrum. We dis-
carded spectra with a very high noise or obvious calibration problems. From comparing every scan
with their (50 MHz LO) frequency shifted counterpart, spurious signals from the image band could be
identified and removed. The resulting scans were then averaged in order to produce the final spectral
bands. Overall, we could obtain an excellent sensitivity in all three millimeter bands, with a final rms

in the range 2mK to SmK per interval of 1 km/s, depending on the frequency.

3.3.5 Line identification

We used the CASSIS software (Vastel et al., 2015) to identify the molecular line content, which
is based on the Cologne Database for Molecular Spectroscopy (CDMS) and Jet Propulsion Lab (JPL)

databases. We considered all the lines detected with an intensity higher than 30. We examine in this
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thesis the molecular content based on the molecular line identification performed in the three bands
of the line survey.

In order to derive significant information on the molecules observed in the source, such as the
excitation temperature and the column density with respect to Hy, we obtained the rotational diagram
of each species. This term refers to a plot of the column density per statistical weight of a number
of molecular energy levels, as a function of their energy above the ground state (see Goldsmith and
Langer 1999). In a local thermodynamic equilibrium (LTE) regime, it corresponds to a Boltzmann
distribution, for which a plot of the natural logarithm of N, /g, versus E, /kp yields a straight line
with a slope of 1/T,y:

Ny Nior E,

In— =In —
8u Q(Tmt) kBTmt

where N, is the population of molecules in the energy level u, g, is the statistical weight of u,

(3.35)

N,o¢ is the total population of molecules, Q(7T,,,) and T, are respectively the rotational partition
function and the rotational temperature of the molecule, E, is the energy of the level u and kg is
the Boltzmann constant. A rotational diagram can be useful to determine whether the emission is
optically thick or thin, whether the level populations are described by LTE, and to determine what

temperature describes the population distribution in the event that LTE applies (Vastel et al., 2015).
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Chapter 4

Experimental Results I: Cyclohexane (Gas

Phase)

4.1 Hydrogenated Benzene and Super-Hydrogenated PAHs

As discussed in more detail in Chapter. 1, polycyclic aromatic hydrocarbons (PAHs) are molecular
archetypes that can be classified according to the number of fused benzene (CgHg) rings that make up
the base structure (Scott, 2015). These molecules are identified by spectral features due to stretching
and bending vibrations (Allamandola et al., 1989; Peeters et al., 2002; Yang et al., 2017b). Frequently,
such features are accompanied by bands at 3.4 and 6.9 um, characteristic of C—H and C—C aliphatic
bonds (Zhang and Kwok, 2014) and emitted by hydrogenated PAHs, H,,-PAHs (Zhang and Kwok,
2014).

The stability of H,-PAHs and their role as catalysts in the formation of H; in different astrophys-
ical environments are of special interest in astrophysics and astrochemistry, and the subject of an
intense debate (Reitsma et al., 2014; Gatchell et al., 2015; Cazaux et al., 2016; Wolf et al., 2016).
Le Page et al. (2003) studied the hydrogenation and charge state of PAHs in diffuse clouds, and con-
cluded that the size of the PAH influences the stability of highly hydrogenated species. More recently,
it was shown that the hydrogenation of the coronene cation, C24HJ1F'2, follows a site-selective sequence,
leading to the appearance of magic numbers of attached hydrogen atoms (Cazaux et al., 2016). Be-
sides, Reitsma et al. (2014) verified that although the carbon backbone of a super-hydrogenated PAH
is locally weakened, its deexcitation by H loss protects the PAH from fragmentation.

Some studies pointed that the addition of peripheral hydrogen atoms in PAHs could impart a
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greater stability to these molecules in interstellar and circumstellar photodissociation regions (PDR).
Gatchell et al. (2015) and Wolf et al. (2016), however, have shown that carbon backbone frag-
mentation was actually increased in collision and photoinduced experiments with super- and fully-
hydrogenated pyrene cations (CjgH})). Their results, therefore, point out to a failure of the hydro-
genation protection mechanism, at least for small H,-PAHs.

There is still no consensus in the literature about the role of peripheral H atoms to the photosta-
bility of H,-PAHs. While there are some evidences that the addition of peripheral hydrogen atoms
in PAHs could impart a greater stability to these molecules in interstellar and circumstellar PDRs
(Reitsma et al., 2014), other studies suggest that the carbon backbone fragmentation increases signif-
icantly in super- and fully-hidrogenated PAHs of small size (Gatchell et al., 2015; Wolf et al., 2016).
In any case, some of the electronic and structural properties of such macromolecules are expected to
be already present in their smallest units. Benzene, the basic building block of a PAH, is composed
of an aromatic ring with sp>-type carbon atoms occupying the vertices of a regular hexagon (Martin
and Scott, 2015). It is one of the most studied systems in chemistry, due to its several remarkable
structural, electronic and reactivity properties (Cardozo et al., 2014; Papadakis and Ottosson, 2015).
In opposition to alkenes and acyclic polyenes, the first hydrogenation step of benzene in its ground
state is endothermic, which is attributed to aromaticity loss (Papadakis et al., 2016). In fact, the partial
hydrogenation of benzene is not favored from the thermodynamic point of view, and the development
of catalysts and processes to account for this transformation is still the focus of scientific inquiry
(Foppa and Dupont, 2015). The complete hydrogenation of CgHg (Figure 4.1) is accompanied by a
change in the type of the C atoms (from sp” to sp>-type), as all 7 electrons of the valence space are
now being used to form the new C-H o bonds. This process is exothermic by 208 kJ mol~! (Carey

and Sundberg, 2007), and ultimately leads to the formation of the cyclohexane (C¢H|;) molecule.

4.2 The Cyclohexane (C¢H12) Molecule

The fully-hydrogenated counterpart of benzene, cyclohexane (C¢H», see Fig. 4.1), is an aliphatic
organic molecule of the cycloalkane group. It is formed by covalent o bonds of six sp>-type C atoms
and twelve H peripheral atoms. Due to the nature of the sp>-type orbitals, C¢H;, does not form a
planar hexagonal structure. The three-dimensional potential energy surface and the conformational

analysis of the neutral CgH|, molecule have been the focus of several studies, such as the ones
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Cyclohexane

Benzene (Aliphatic)
(Aromatic)

Figure 4.1: Schematic diagram of the complete hydrogenation reaction of benzene.

developed by Leventis et al. (1997) and Kakhiani et al. (2009). To summarize, there are two potential
energy minima for the most stable conformer, which is the chair structure of D3; symmetry (see
Figure 4.2). These minima can interconvert through six different metastable twist-boat structures
of D, symmetry. The interconversion between one of the chair conformers and each of the twist-
boat structures follow through either of two transition states: one of C, symmetry and the other
of C; symmetry, usually identified as a half-chair conformer. Finally, two twist-boat conformers
are connected via a boat transition-state structure of C,, symmetry. A simplified version of such
transformations is also depicted in Fig. 4.2.

In this chapter, we study the stability of cyclohexane (CgHj;) to ionizing and dissociative ef-
fects of UV and X-ray radiation. From the experimental data, we determined the main fragmentation
pathways, as well as the photoionization and photodissociation cross sections of CqHj,. We briefly
describe the geometries of singly-charged CgHi, species, and the consequences of generating such
species from the ionization of cyclohexane in the ISM. From the photon flux in the photodissociation
region of the planetary nebula NGC 7027, we contrast the stability and survival rates of cyclohexane
and benzene (CgHpg) in this carbon-rich object (Bernard-Salas et al., 2001; Bernard-Salas and Tielens,
2005; Wesson et al., 2010). Whenever possible, we extrapolate our results to the chemistry of PAHs
and H,-PAHs in circumstellar environments. It is worth mentioning that bands related to the men-
tioned polycyclic molecules have already been detected in NGC 7027 (Bernard-Salas et al., 2001;
Goicoechea et al., 2004; Boersma et al., 2009; Tielens, 2008; Lau et al., 2016), thus providing an

appropriate astrophysical environment for such analysis.
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Figure 4.2: Simplified potential energy surface of cyclohexane. Adapted from Rzepa (2012).

Table 4.1: Partial Ion Yield, PIY (%), as a function of the photon energy in the UV region (10-16 eV). Only
the fragments with intensity greater than 1% were shown, except the ions H} and H.

PIY (> 1%), per energy (eV)

m/a Attribution 108 114 124 13 14 16
28 CQHZ - - - - - 1.4
41 C;H: - - - - - 109
42 C3Hy - - 45 63 91 127
43 Cs3HY - - 19 32 51 52
55 C4Hy - - 30 40 54 90
56 C,Hy - - 227 295 341 29.8
57 C4HS - - 19 19 22 19
69 CsHy - - 59 67 90 51
83 CeHT, - - - 22 17 16
84 CeH}, 938 939 534 419 272 184
85 BCcsH, 62 61 28 24 15 12
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Figure 4.3: Selected mass spectra of the cyclohexane molecule recorded at UV (10-146 eV). The color
variation indicates differences in the intensity of the peaks. For each energy the counts are normalized with
respect to that of the parent ion, C¢H7.

4.3 Ionization and Fragmentation of Cyclohexane

4.3.1 Ultraviolet (UV)

The UV results were thoroughly described in Quitidn-Lara (2016). For contextualization with the
X-ray results, a brief discussion is also given herein.

Fig. 4.3 shows the production of C¢H7, as a function of the photon energy in the UV range (10.8
eV to 200.0 eV). For energies close to the first Ionization Potential (IP) of cyclohexane (9.8 eV, as
determined by Dewar and Worley 1969), the photodissociation process is poorly activated. The PIY
value of the parent ion decreases by a factor of almost 9 in the UV range, remaining only 4.5% at
200.0 eV.

A significant production of C4HY is observed when the production of C¢H7, starts to drop fast
at around 12.4 eV (see Figure 4.3). That is, the original molecular ion breaks up through the loss of

a neutral ethylene (CoHy) unit. The loss of only hydrogen atoms from the parent ion (CgH,', n=1-
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Table 4.2: Partial Ion Yield, PIY (%), as a function of the photon energy in the UV region (20-200 eV).
Only the fragments with intensity greater than 1% were shown, except the ions H3" and Hj.

PIY (> 1%), per energy (eV)

m/q Altribution 20 50 80 100 146 200.0
T T T 42 47 5 39 44
2 HY ~ 02 03 04 03 04
3 H; - 0 01 0 o1
15 CH} ~ 60 59 59 41 42
26 CHY L 19 27 41 47
27 C,HY ~ 108 109 129 14 127
28 C,HF 27 7 5 65 4 38
29 C,H! 16 36 42 51 32 42
38 CHE .. 24 22
39 C3HY ~ 89 90 76 115 129
40 C3HE 19 16 21 22 29
41 C3HE 151 155 164 127 144 115
42 C3HY 94 48 43 64 37 3.1
43 C3H: 47 21 19 27 16 12
50 CiHY L .14 12
51 CHY . .16 16
53 CHE - 15 13 11 17 18
54 C4HF 13 14 11 11 14 14
55 CH: 96 55 49 42 36 34
56 CHE 268 10 112 98 55 60
57 CH: 7 - - )
69 CsHE 40 17 11 13 - ]
83 CoHY, 4 - - ;
84 CeHT, 174 71 53 55 46 45
85 BcesHy, 1.0 - - - - -

8) as well the loss of one carbon atom (CsH,}, n=1-8) are inhibited, as observed by their low relative
amounts (see Tables 4.1 and 4.2). The production of C4Hy reaches a maximum value (34.1%) at 14.0
eV and then it starts to decrease, reaching 26.8% at 20.0 eV. In this energy range, the production of
C4HZ more than double, from 4% to 9%. This indicates that part of the closed-shell C4H% production
comes through the loss of a hydrogen atom from the open-shell C4H{" radical cation system. Other
significant ions produced in the 14.0 eV to 20.0 eV energy range are the CsHy (M™-CH;), C3H{'
(M*—C3Hg) and C3HZ species.

At 100.0 eV, the production of ions from the ethyl (C,H,)), methyl (CH}) and hydrogen (H})
groups begins to increase. The most produced ion is the C3HZ species, followed by C,H} (M*—

C4Hj) and C4Hy". The production of the cyclopropenyl molecule C3HY becomes significant at 100.0
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Figure 4.4: Selected mass spectra of the cyclohexane molecule recorded at soft X-ray photons (280-307
eV). The color variation indicates differences in the intensity of the peaks. For each energy the counts are
normalized with respect to that of the parent ion, C¢H7;.

eV and at 200.0 eV this species is the most produced one.

By comparing the present results with the PIY of the literature data of the National Institute of
Standards and Technology (NIST, Johnson III 2013), we verified that the fragmentation pattern at 70
eV electron energy resembles already the one induced by photons of 16 eV. It is also interesting to
note that at the electron impact of 70 eV (or photon impact of 16 eV) the abundance of the aromatic

ring parent ion is twice that of the cyclohexane parent ion.

4.3.2 X-Rays

The fragmentation pattern observed in the soft X-ray region around the Cls resonance energy is
significantly different from that measured in the UV region. From 284.8 eV to 307.0 eV, more than
90% of the ion yield comes from the light fragment ions contribution, from the CH; (and H;") to
C3H; groups. The parent ion production ranges (see Figure 4.5 for comparison) from merely 0.6%

(307.0 eV) to 1.4% at the C1s resonance energy (287.7 eV). This profile contrasts reasonably with
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Figure 4.5: Production (Partial Ion Yield, PIY) of C¢H7; as a function of the photon energy. Left in the UV
range: the red triangle and the blue star indicate the values of C¢H}, and C¢H{ respectively, both obtained
from the NIST database (Johnson III, 2013). Right in the X-rays range: comparison of the yields of ionized
cyclohexane with ionized benzene (blue dots taken from Boechat-Roberty et al. 2009a). The ionization
energies of cyclohexane (290.12 eV) and benzene (290.24 eV) are also indicated (Kolczewski et al., 2000).
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Figure 4.6: Comparison between the mass spectra of cyclohexane (red) and benzene (blue) at the respective
Cls resonance energies.
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Figure 4.7: Normalized abundances of the C¢H; group produced by the fragmentation of cyclohexane and
benzene at 301.0 eV.

the one presented by the parent ion of benzene, for which a production of 5.4% was observed at 282.4
eV, a value more than five times larger than the average production of the parent ion of cyclohexane
at the Cls edge. These values reveal a higher propensity of cyclohexane to photodissociate after
absorbing a soft X-ray photon in the Cls edge. This tendency is related to the higher molecular
rigidity of benzene and its parent ion, in comparison to cyclohexane and its ionization product. By
far, the most relevant fragments produced by the photodissociation of cyclohexane are C3H and
C,HZ, related to cyclopropenyl cation (Zhao et al., 2014) and protonated acetylene (Glassgold et al.,
1992), respectively.

Figure 4.6 shows the comparison of the different ions resulting from the fragmentation of benzene
and cyclohexane at the C1s resonance energy. By analyzing the production of the parent ion and other
CeH;" species, it is possible to see that the main difference between benzene and cyclohexane is that
the backbone fragmentation is significantly more pronounced in the latter. This result evidences that
the hydrogenated benzene molecule shows, after X-ray photoionization, a higher tendency of disso-
ciation than its aromatic counterpart. Consequently, a high production of ions pertaining to the CH,

C,H;; and C3H,; groups is observed for cyclohexane. In fact, the formation of CHJ, C;Hj and C3HJ
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Table 4.3: Partial Ion Yield, PIY (%), as a function of the photon energy around C 1s resonance in the soft
X-rays region. Only the ionic fragments with intensity greater than 1% were shown, except the H3, H} and
parent ion C¢H7.

PIY (> 1%), per energy (eV)

m/q Altribution 2848 2877 3000 301.0 307.0
| H* 100 82 92 95 93
> HY 08 07 07 07 06
3 H! o1 01 01 01 0.1
14 CHY 12 10 14 12 12
15 CHY 85 53 82 78 75
26 CoHY 74 65 83 85 80
27 C,H} 186 174 178 175 16.
28 C,HE 42 39 48 42 39
29 C,H: 20 23 21 25 21
37 CiH 24 29 27 24 34
38 C3HY 53 34 35 31 42
39 C;H: 124 148 128 142 125
40 C;HE 20 24 18 16 20
41 C;H: 57 64 62 67 52
4 C;HY 15 11 11 12
50 C,HY 25 34 26 24 34
51 C,H: 18 27 22 24 23
53 C,H: 113 12 14 -
63 CsH} ) - 10 10 15
84 CoHY, 00 14 08 09 06

are particularly high for C¢H;, compared to aromatic systems, such as benzene (Boechat-Roberty
et al., 2009a) and toluene (C7Hg, Monfredini et al. 2016). On the other hand, the fragmentation of
benzene into the ionic species C4H; to C¢H is significantly more pronounced. Concerning the H,
series, the H" production is relatively the same for both species. In turn, Hy" and HY are much more
efficiently produced from the break up of the aliphatic structure than from benzene.

A comparison between the fragmentation pattern of benzene and cyclohexane around the parent
ion m/q value at 301 eV photon impact is shown in Figure 4.7. For benzene, all C¢H,, cations were
observed, and the most abundant ions are the CsH*, CeHY", CsHZ and C¢H{". For cyclohexane, the
results are quite different. Several of the CqH,, cations were absent, such as CgH}", CgH}", CgHY',
CeHY and CgH7. These results indicate that stable CsH,, ionic structures are not directly achievable
from the molecular rearrangement of cyclohexane after ionization. The most relevant CgH,, ions

produced by photodissociation of CgH, are CsH}" and CH?Y and C¢H7,.
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4.4 The C¢H;, Molecular Ion

Structural and spectroscopic properties of the singly charged cyclohexane radical cation, CeH7,
and similar cycloalkane cations have been exhaustively studied by both Ion Cyclotron Resonance
(ICR) techniques (Dunbar, 1984) and collisional activation measurements (Borchers et al., 1977).
Dunbar (1976) has shown that strong optical absorptions in the visible region could be observed
for gas-phase radical cations of saturated hydrocarbons. In contrast, radical cations originated from
linear alkenes present weak visible absorptions and strong UV peaks. For cyclohexane and larger
cycloalkane rings, the optical spectrum is similar to n-alkanes, which indicates that they retain their
ring structures upon ionization. A profile similar to alkenes is observed for cyclopentane (CsH () and
smaller cycloalkane rings, indicating that a ring-opening isomerization occurs in these radical ions
prior to fragmentation (Benz and Dunbar, 1979).

The ring opening mechanisms for the cyclopentane and cyclohexane radical cations have been
studied by van der Hart (2001) using ab initio calculations. The author showed that the ring opening
barrier heights in both cases are comparable, being significantly lower than the ionization energies.
Although these results could not explain the ICR experimental results, they suggest that open-chain
radical cations are accessible by the photoionization of neutral cyclohexane. Moreover, it was also
shown by van der Hart (2001) that some of the acyclic C¢H7, radical cations are thermodynamically
more stable than six- or five-membered rings. Since there was no previous information about which
isomer represents the ground state of the parent ion of cyclohexane, a careful computational analysis
was made by our collaborators in order to identify the most stable isomers. These results were recently
published (Fantuzzi et al., 2019) and, since they are relevant for the discussion of this chapter, they
will be briefly discussed.

Fig. 4.8 (top panel) shows all acyclic C¢Ho™ structures obtained by Fantuzzi et al. (2019), as well
as their respective enthalpy values at 298 K, AH,9g. The enthalpies of their optimized neutral analogs
are also shown in Fig. 4.8 for comparison. The global minimum energy structure (1*) at the coupled
cluster (CCSD(T)/cc-pVTZ//IMO06-2X/cc-pVTZ(-f)) level of theory is the tetramethylethylene radical
cation. The main geometrical features of 17 are a central C—C bond length of 1.420 A — an interme-
diate value between typical single and double bonds — and a CCCC torsional angle of ~ 13° between
any two vicinal methyl groups. For comparison, these values are, respectively, 1.348(1) A and below
1° for neutral tetramethylethylene, as taken from low-temperature crystal X-ray determination (Boese

et al., 1992). The presence of such alkyl groups aids in the stabilization of the one-electron 7 bond of
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Figure 4.8: Optimized structures of the acyclic (top panel) and cyclic (bottom panel) C¢H;,* radical cations
obtained by us (Fantuzzi et al., 2019). The values in parentheses are the relative enthalpy at 298 K (AH,og,
kcal.mol™") calculated at the CCSD(T)/cc-pVTZ//MO06-2X/cc-pVTZ(-f) level of theory, with respect to the
global minimum energy isomer (1*). The AH,og values of the respective optimized neutral species are also
shown for comparison. The global minimum for neutral CgHj> is cyclohexane in the chair conformation
(13). For 1*", we also include the CCCC torsional angle, 6234. Taken from Fantuzzi et al. (2019).
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17, and ultimately could be responsible for making this structure the global minimum of C¢Hjo™. In
fact, this is the only structure among the ones studied in which the one-electron 7 bonding involves
only tertiary carbon atoms. In contrast, the neutral tetramethylene molecule is 14.7 kcal mol~! less
stable than the cyclohexane in the chair conformation (13), the global minimum energy structure of
CeHi2.

The first singly-charged low-lying isomer (2%, AHy9g = 9.1 kcal mol™!) is the 2-methyl-2-pentene
radical cation. It is slightly more stable than the singly charged 3-methyl-2-pentene species (3*,
AH,g = 9.4 kcal mol™), and 2.8 kcal mol™! below in enthalpy with respect to its conformer 4™
(AHs9g = 11.9 kcal mol™"). The lower thermodynamic stability of structures 2*'-4" in comparison

to 17 can be attributed to the lower substitution level of the radical cations, for which the one-electron
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7 bonds are formed by a tertiary and a secondary carbon atom.

The next set of acyclic low-lying isomers (5"-8+) are more than 17 kcal mol~! less stable than
17, and just slightly different in energy among each other. While in the singly charged structures
5% (trans-4-methyl-2-pentene radical cation, AHp9g = 17.3 kcal mol™ 1), 7+ (cis-4-methyl-2-pentene
radical cation, AH,og = 18.2 kcal mol™") and 8" (2-hexene radical cation, AH,9g = 18.5 kcal mol™")
the one-electron 7 bonds are formed by two secondary carbon atoms, in 6% (2,3-dimethyl-1-butene
radical cation, AHs9g = 17.9 kcal mol™!) such bonding motif is found for a primary and a tertiary
carbon atom. These results support the idea that the substitution level on the carbon atoms influences
the stability of the one-electron 7 bonding in hydrocarbon radical cations.

In addition to the acyclic radical cation structures that bear relation to linear and branched neutral
alkenes, we have found low-lying cyclic structures containing from three- to six-membered rings.
These structures are shown in the bottom panel of Figure 4.8. The isomers 13" (AH»93 = 24.0 kcal
mol™!) and 16" (AHyg = 30.5 kcal mol™!) are related, respectively, to the chair and twist-boat
structures of neutral cyclohexane. However, due to Jahn-Teller instability, both ionic species are less
symmetric than their neutral counterparts. In fact, Electronic Paramagnetic Resonance (EPR) studies
on the radical cation of cyclohexane have shown that the chair structure distorts to a Caj, symmetry A g
ground state with two elongated C—C bonds in low-temperature solid matrices (Shiotani et al., 1991).
According to our results, the elongated bond lengths in the optimized twist-boat C¢Hi,*" are 1.625 A.
Although greater than the average C—C single bond, this distance is significantly smaller than the
ones obtained for alkyl-stabilized species. Moreover, these six-membered rings are among the least
stable cyclic isomers obtained by us (Fantuzzi et al., 2019), a dramatic change in comparison to the
relative energies of their neutral structures. In opposition to the stability trend among neutral CgH1»,
branched three-membered rings are the most stable cycloalkanes. Structure 97 (AH»9g = 12.7 kcal
mol™!) is the 1,1,2-trimethylcyclopropane radical cation, which is 11.3 kcal mol™' more stable than
the singly-charged chair-like cyclohexane. From the structural point of view, the most interesting
feature of 9" is the presence of an elongated C'-C? bond of 1.906 A. Such elongation suggests the
presence of a one-electron sigma bond, which is stabilized by the methyl substituents. In fact, 9%
is the only isomer among the cycloalkane radical cations studied herein in which such elongated
bond involves a tertiary and a quaternary carbon atom, which may explain its relatively high stability.
In the case of isomers 107 (AHyg = 17.8 kcal mol™), 11* (AHa9g = 19.1 kcal mol™') and 12*

(AH,9g = 20.9 kcal mol™"), the elongated bond involves two tertiary carbon atoms, and the enthalpy
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values differ by approximately 3 kcal mol~!. The C3 ring backbone of these isomers resembles the
trimethylene cyclopropane radical cation as described in the works of Roth (1987, 1992). The authors
also discussed the existence of a m complex C3Hg" structure in which two C—C bonds are lengthened
and the third one shortened. Substitution on the Cj3 ring leads to the predominance of the trimethylene
case over the latter and no m complex structure for the distinct singly-charged trimethylcyclopropane
isomers was found.

Isomer 147 (AHyog = 26.0 kcal mol™!) is the 1,2-dimethylcyclobutane radical cation. In this
case, the elongated C—C bond distance is 1.964 A, and, as in 10*-12"", it involves two tertiary carbon
atoms. Among the C¢H|,™ isomers, 15% (methylcyclopentane radical cation, AH,9g = 27.1 kcal
mol™") has the longest C—C bond: 2.150 A Its high enthalpy value can be attributed to the fact that
only one methyl group is stabilizing the one-electron sigma bond, which involves a tertiary and a
secondary carbon atom.

In summary, the computational results point that the global minimum of the CqH, radical cation
(1*") is a highly branched structure. The first alkyl branched molecule detected in the interstellar
medium was the isopropyl-cyanide (i-C3H7CN) species, in a study developed by Belloche et al.
(2014). The present results suggest that, in a PDR region, the photoionization of CsH|, could in-
duce the formation of the mentioned highly branched radical cation. Since methyl substituents help
in the stabilization of carbocations and radical centers, it is expected that the molecular rearrangement
that follows the photoionization process of both cyclic and open chain hydrocarbons could lead to an

enhancement of branched molecules in PDR regions.

4.5 Absolute Photoionization and Photodissociation Cross Sec-

tions

Before going into details on the determination of the photoionization and photodissociation cross
sections, it is interesting to compare the absolute X-ray photoabsorption cross sections of benzene
and its hydrogenated analogues, as shown in Figure 4.9. A strong photoabsorption peak is observed
for benzene at 285.2 eV, with a maximum value of 2.6x 1077 ¢cm?2. This feature is attributed to a
K-shell transition from a Cls orbital to the lowest unnocupied 7* orbital of ey, symmetry (Horsley
et al., 1985). The shape of this transition, together with additional features in the K-shell spectra

related to the splitting of 7* and o* resonances, has been used to prove the aromatic character of
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Figure 4.9: Absolute photoabsorption cross sections as a function of the number of H atom. Top: ben-
zene (CgHg, blue), 1,3-cyclohexadiene (CgHg, green), 1,4-cyclohexadiene (CgHg, dark cyan), cyclohexene
(CeHjo, pink) and cyclohexane (CgH,, red), adapted from the Hitchcock database (Hitchcock et al., 1986,
1987; Hitchcock and Riihl, 1989; Hitchcock and Mancini, 1994). Bottom: comparison between the areas
of the Cls— 7* resonance bands after a Gaussian fitting procedure. The red line is an adjusted exponential
decay curve, with a coefficient of determination R? =0.9978.

heterocyclic rings (Stéhr, 1992), such as borazine (Doering et al., 1986). A second peak (287.2 ¢V,
4.4x107'% ¢cm?) is also observed for benzene in Figure 4.9, which is assigned to a transition to a 3p

Rydberg orbital (Horsley et al., 1985).
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Figure 4.10: Dissociative ionization (photodissociation) o4 (filled circle), non-dissociative single ioniza-
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as a function of the X-rays energies. Top: cyclohexane (red); bottom: benzene (blue). The dotted lines are
an offset of the photoabsorption cross section, only to guide the eyes. The photoabsorption cross section

values are obtained from Hitchcock et al. (1987) and Hitchcock et al. (1986) for benzene and cyclohexane,
respectively. See details in text.

The increase in the number of hydrogen atoms from benzene (CgHg) to the isomers 1,3- and 1,4-
hexadiene (CgHg) is followed by a significant decrease in the photoabsorption cross section values at
the respective C1s— 7* resonance energies. This trend is also observed for the more hydrogenated
six-membered ring molecules, cyclohexene (C¢H) and cyclohexane (C¢Hj,). In the case of the
latter, besides the reduction in the cross section value, there is also a significant displacement of the
resonance energy to a higher photon energy value from 285.2 eV to 287.7 eV (Figure 4.9-top). The

absence of a peak around 285 eV comes from the fact that there is no sp’-like atom in cyclohex-
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ane, and the feature in 287.7 eV is attributed to a transition to the 4a;7* (CH,) orbital (Hitchcock

et al., 1986), whose maximum value is 7.7x107'® cm?

. By fitting the Cls— 7* resonance bands
with Gaussian functions and integrating, an exponential decay profile between the integrated pho-
toabsorption cross sections and the number of hydrogen atoms in the CgH,, molecules is observed.
The fluorescence yield can be assumed as negligible, due to the low C atomic number (Chen et al.,
1981). Moreover, since typical K-shell core hole lifetimes of light elements are in the femtosecond
range (Drescher et al., 2002), and therefore some orders of magnitude faster than a vibrational pe-
riod, it is possible to conclude that photorelaxation of the neutral molecule by internal conversion and
energy redistribution into vibrational modes, such as the one described by cationic excited states of
PAHs (Marciniak et al., 2015), is also negligible. Finally, given the fact that these core hole states are
embedded in the electronic continua of ionic states (Carravetta et al., 1988), we can conclude that the
only relaxation channels of such metastable highly excited states are photoionization and photodis-
sociation processes. Therefore, the high photoabsorption cross section of benzene in comparison
to cyclohexane could also impart a higher photodissociation rate, depending on the intensity of the
photon flux at the C1s resonance edge of benzene.

The absolute cross sections of cyclohexane and benzene at the Cls edge are shown in Figure
4.10 and Table 4.4. The photoabsorption cross-section value of cyclohexane at the Cls resonance
energy, 7.7x 107'® cm? (Hitchcock et al., 1986), is about half of the benzene one, which is 2.6x 1077
cm? (Hitchcock et al., 1987). Since a stronger photoabsorption leads to higher photoionization and
photodissociation cross sections, the addition of peripheral hydrogen atoms to the aromatic moiety
could afford a greater stability against X-ray dissociation. These values are used to determine the
survival rates of both molecules in the PDR of the planetary nebula NGC 7027, which are discussed

in the following section.

4.6 Survival of Cyclohexane in the PDR of the Planetary Nebula
NGC 7027

NGC 7027 is a young carbon-rich planetary nebula, as already discussed in 1. Fig.4.11 shows a
schematic diagram of the geometric regions of NGC 7027 composed by superimposing visible and
infrared images obtained by Hubble Space Telescope (HST) (Latter et al., 2000). The figure also

indicates the main regions of the nebula (HII region, photodissociation region or neutral shell and
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Table 4.4: Absolute photoabsorption (o), photodissociation (o ,4) and photoionization (o ;) cross sec-
tions of cyclohexane and benzene. The o, values are obtained from Hitchcock et al. (1986) and Hitchcock

et al. (1987). The 1 symbol indicates the C1s resonance energies.

Energy (eV) O pha (sz) O phd (sz) O phi (sz)
Cyclohexane

284.8 1.6x10720  1.6x10720 1.5x10722
287.77 7.7x10718  7.6x10718  1.1x107"
300.0 8.1x10718 8.0x107'8 6.6x10720
301.0 7.7x10718  7.6x10718  6.6x10720
Benzene

282.4 23x10720 22x10720 1.2x1072!
285.21 2.6x10717  2.5%10717  1.1x107'8
289.1 7.8x10718  7.6x1071% 2.0x1071?
301.0 92x107"% 9.0x107'® 14x107"?

’ R ~ 0,0175 pc '

Figure 4.11: Schematic diagram of the geometric regions of NGC 7027, image from (Latter et al., 2000)
and regions adapted from (Hasegawa et al., 2000).

the wind region), including some of the molecules and ions observed in the photodissociation region.
Physical values and quantities are approximate, adapted from (Hasegawa et al., 2000).

The central star promotes a chemically rich medium. This implies that different reaction mecha-
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nisms could be taking place, both in the gas phase and on the surface of grains. Ultimately, such an
environment could uphold the formation of complex ions and organic molecules, among them PAHs
(Herbst and van Dishoeck, 2009).

In order to know the X-ray photon flux (Fy) values in the PDR of NGC 7027 we used the equa-

tions:

Lx

Fy=—7"—
X 47r2hy

e 4.1

where 7.0 x 103! erg s7! is the integrated X-ray luminosity from 0.2 to 2.5 keV, reported by
(Montez and Kastner, 2018), r = 5.21x10' ¢m is the distance from the central star to a position
inside the PDR (Agundez et al., 2010) and 7x is the X-ray optical depth, given by Deguchi et al.
(1990):

E —2.67
X = Ty <O 6keV) (4.2a)
74 = 4.6x107 Ny, (4.2b)

which accounts for the absorption due to materials on the envelope along a radius. In eqgs. 4.2a
and 4.2b, 74 is the UV optical depth of dust grains at 1000 A, proposed by Morris and Jura (1983),
the factor av = 0.054 for energies below 0.6 keV, and Ny, is the column density of H, for which
we adopted the value of 1.3x10?' cm™ obtained by Agiindez et al. (2010). The energy 0.6 keV
corresponds to the oxygen Ols absorption edge (Deguchi et al., 1990).

Figure 4.12 shows the X-ray optical depth in the PDR of NGC 7027, its photon flux with and
without the attenuation and the estimated half-life times of cyclohexane and benzene in this object.
The X-ray optical depth ranges from 2.4 (282.0 eV) to 0.3 (600.0 eV), which shows that the object
is essentially transparent for energies above the Ols resonance energy. In the vicinity of the Cls
resonance energies, the attenuated photon flux values range from 7.4x10% cm™s~leV~! to 1.1x10°
cm2s~'eV~l. Although the maximum X-ray attenuated photon flux is not located in the C1s edge, the
photoabsorption cross sections significantly decay after the inner shell excitation energies (Sakamoto
et al., 2010). Therefore, the half-life times obtained in this chapter are a good estimation of the X-ray
survival rates of the molecules in NGC 7027.

We estimate that the half-life time of cyclohexane is 3.5x 103 years in the Cls resonance energy

(287.7 eV, see Table 4.5), more than three times higher than the half-life of benzene at 285.2 eV
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Figure 4.12: Top: X-ray optical depth, Ty, in the photon energy range from 280 to 600 eV. Middle: X-ray
photon flux, FX(E ), with and without attenuation in the same photon energy range, arriving to the PDR
of the planetary nebula NGC 7027 in a position r from the central star of 5.21x10'6 cm. The pink circles
indicate the energies studied herein. Bottom: Half-life times, 7, /,, of CgHj, (red circles) and C¢Hg (blue
triangles) at energies around the Cls resonance of each molecule (lines are included to guide the eye).

(1.1x10% years). This large distinction is directly related to differences in the photoabsorption cross
sections of both molecules at the mentioned energies (7.7 x 107! ¢cm? for cyclohexane and 2.6 x 10717
cm? for benzene). On the other hand, in the vicinity of the C1s resonance energy, the survival of both

molecules is practically the same. By integrating the half-life time curves of both molecules and
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Table 4.5: Photodissociation &, and photoionization rates k;, as well as the half-lives, 7, 5, of cyclo-
hexane and benzene under X-ray photon fluxes, Fy (E), in NGC 7027. The 1 symbol indicates the Cls

resonance CIlCI'giCS .

Energy (eV) Fx(E) (em™s™)  kppa (s kppi (s 112 (y1)
Cyclohexane

284.8 7.9%10° 1310714 1.2x1071%  1.7x10°
287.71 8.3x10° 6.3x10712 89x1071* 3.5%x10°
300.0 1.0x10° 8.1x10712 6.7x107'* 2.7x103
301.0 1.0x 106 7.8x1071%2 6.8x107'"% 2.8x103
Benzene

282.4 7.5%10° 1.6x1071% 9.2x10710 1.4x10°
285.21 7.9%x10° 19107 8.7x1071  1.1x103
289.1 8.5%x10° 6.5x10712 1.7x1073 3.4x103
301.0 1.0x 106 93x1071%2 14x1073 24x103

comparing the areas, it is possible to see that the survival of cyclohexane in the Cls edge is ~ 20%
higher than that of benzene. Since the abundances of interstellar molecules depend on both their
formation and destruction rates, we suggest that the richness of interstellar benzene in comparison to
its fully hydrogenated counterpart comes from more effective mechanisms of formation, such as the
one described by Jones et al. (2011). This result indicates, therefore, that the addition of peripheral
atoms in the basic PAH unit could impart a greater X-ray stability in photodissociation regions.

At this point, it is important to make a comparative analysis of the findings discussed in the last
paragraph with the ones presented in Figs. 4.6 and 4.7, as they could be naively interpreted as contra-
dictory. From the figures, it is shown that the backbone fragmentation of cyclohexane is significantly
more pronounced than the one of benzene. This means that once photoabsorption has taken place, the
fully hydrogenated molecule is more likely to photodetach its carbon skeleton. In other words, the
survival probability of cyclohexane is smaller than that of benzene after the photoabsorption process.
However, the benzene molecule has a strong absorption feature at the Cls edge (see Figure 4.9). This
feature disappears entirely when additional hydrogen atoms are inserted into the carbon backbone.
Consequently, the photoabsorption cross section of benzene is larger than cyclohexane, which ulti-
mately leads to a higher efficiency of dissociation for the aromatic molecule. The protective effect of
additional hydrogen atoms is, therefore, related to a damping out process of the strong absorption fea-
ture of benzene. The extrapolation of such finding to PAHs of high molecular mass will be discussed

in the next subsection.
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4.7 Survival of Super-Hydrogenated PAHs in PDRs

In previous subsections we shown that, after an X-ray photoabsorption process, the cyclohexane
molecule is almost entirely dissociated, as the average partial ion yield of C¢H7; is around 1%. The
carbon backbone rigidity of benzene, on the other hand, is responsible for keeping the partial ion
yield values around 5% at the Cls resonance energy. In fact, only after a double ionization process
the six-membered ring is surpassed by a different structure as the global minimum. In this case, it
acquires a pentagonal-pyramidal carbon arrangement (Jasik et al., 2014; Fantuzzi et al., 2017a). As
the carbon backbone size increases, the resistance of super-hydrogenated PAHs towards dissociation
is also expected to increase. The fragmentation of perhydropyrene (C;gHy¢) will still be greater than
the one of pyrene (C;gHjo), as the collision experiments developed by Gatchell et al. (2015) suggest,
but not so pronounced as the one of CqH;,. However, by increasing even more the number of carbon
atoms, the fragmentation of the carbon backbone in an H,-PAH could be reduced to a secondary
process, being exceeded by hydrogen elimination to ultimately form a PAH ion, as suggested by
Reitsma et al. (2014) in experiments with coronene (Co4H /7). In this scenario, the excess of peripheral
H atoms acts as a protection mechanism for the PAH structure.

Parallel to the mechanism proposed by Reitsma et al. (2014), an auxiliary photostabilization
mechanism could be present in super-hydrogenated PAHs. The strong photoabsorption cross section
of the C1s— 7* resonance energy of benzene (2.6x107!7 ¢cm?) is more than three times higher than
the one of cyclohexane (7.7 x 1078 ¢cm?). This is a common feature of aromatic molecules, as shown
in Figure 4.12, and is expected to be present in the X-ray photoabsorption spectra of PAHs. In com-
parison, adamantane (C;oHj¢), a polycyclic fully-hydrogenated non-aromatic hydrocarbon, does not
have such feature. In fact, the spectral profile of adamantane shows several resemblances to the one
of cyclohexane, as so its dissociative ionization (Candian et al., 2018). In this perspective, we suggest
that an auxiliary protection mechanism could exist in super-hydrogenated PAHs. By decreasing the
X-ray photoabsorption cross section, an H,-PAH molecule will also have a smaller photodissociation
cross section, which ultimately enhances its photostability in PDR regions. This mechanism, to the
best of our knowledge, proposed for the first time in the literature, should contribute to explaining
the existence of hydrogenated PAHs in interstellar and circumstellar media. The importance of such
mechanism in comparison to the one described by Reitsma et al. (2014) will be the focus of a future

study.
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Figure 4.13: Absolute photoabsorption cross sections of benzene (CgHg, blue), cyclohexane (CgHj,, red)
naphthalene (C;oHg, cyan), adamantane (CioH;¢, wine), phenanthrene (C14H;¢, pink) and pyrene (C;¢H;0,
orange), adapted from the Hitchcock database (Hitchcock and Mancini, 1994).
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Chapter 5

Experimental Results II: Biphenyl (Gas
Phase)

5.1 The Biphenyl Molecule

Biphenyl (C1,Hjg, or phenylbenzene, see Figure 5.1) is an aromatic molecule composed of two
phenyl (CgHs") radical groups connected by a C—C sigma bond. Despite its apparent simplicity, the
molecule has received significant attention in the last decades due to its fundamental, environmental
and technological properties. It is the main precursor of polychlorinated biphenyls (PCBs), a toxic and
complex mixture of Cl-containing biphenyl derivatives/congeners whose stability towards thermal
and biochemical degradation led to its worldwide accumulation after ubiquitous industrial use (Safe,
1994; Kania-Korwel et al., 2004; Faroon and Ruiz, 2016). Biphenyl is also used as a model for the
conducting polymer poly(p-phenylene), PPP (Berresheim et al., 1999), playing a central role in the
development of molecular electronic devices (Baldo et al., 1999; Jia et al., 2005; Holman et al., 2005;
Venkataraman et al., 2006), tridimensional dendrimers (Lo et al., 2003, 2008; Stoltzfus et al., 2018)
and macrocycles (Korich et al., 2014). However, the reactivity and electronic properties of biphenyl
and substituted biphenyl compounds depend significantly on the torsional angle (¢) between the two
phenyl rings (Pacios and Gémez, 2006). While in the gas phase ¢ is around 44° as observed by
experiments (Suzuki, 1959; Almenningen et al., 1985; Bastiansen and Samdal, 1985) and calculations
(Héfelinger and Regelmann, 1987; Tsuzuki and Tanabe, 1991), smaller ¢ values down to almost 0°
are observed both in solution and solid state (see, for example, Robertson 1961; Cheng et al. 1972).

The origin of the twisted conformation is usually attributed to the interplay between m-conjugation,
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Figure 5.1: Molecular structure of biphenyl molecule

which drives the system to a coplanar (¢ = 0°) structure, and steric repulsion of the hydrogen atoms
in ortho position, which should favor a perpendicular conformation (¢ = 90°). The role of sterics,
conjugation and hydrogen bonding to the equilibrium structure of biphenyl is still matter of debate
(Matta et al., 2003; Poater et al., 2006; Herndndez-Trujillo and Matta, 2007; Johansson and Olsen,
2008; Jenkins et al., 2015; Li et al., 2018; Popelier et al., 2019), thus evidencing the challenging
nature of the molecule.

Biphenyl is also very interesting from the astrochemical point of view. Although the molecule
was not unambiguously detected in the interstellar medium (ISM) up to this date, biphenyl is pointed
as an important building block for the formation of polycyclic aromatic hydrocarbons (PAHs), whose
infrared emission features are largely present in the spectra of both galactic and extragalactic sources
(Tielens, 2008). The synthesis of phenanthrene (C;4H|¢) in the circumstellar envelope of Asymptotic
Giant Branch (AGB) stars, for instance, could be achieved starting from biphenyl and following the
hydrogen-abstraction/acetylene-addition (HACA) mechanism (Yang et al., 2017b). A series of HACA
steps with biphenyl also as precursor could lead to the formation of pyrene (Ci6Hjp), from which
systematic ring fusions could trigger the formation of more complex PAHs and two-dimensional
graphene-type structures (Zhao et al., 2018). In planetary nebulae, where the relatively high transla-
tional temperature (> 1000 K) of molecules enables reactions with entrance barriers, biphenyl could
be produced either from a single radical-neutral collision event involving the phenyl radical (C¢Hs")
and the benzene (C¢Hg) molecule (Scaiano and Stewart, 1983; Park et al., 1999; Zhang et al., 2008;
Shukla et al., 2008, 2011), or from the radical-radical reaction of two CgHjs" species (Park and Lin,
1997; Tranter et al., 2010; Constantinidis et al., 2015; Zhao et al., 2016). Laboratory experiments
of hydrogenated amorphous carbon nanoparticles simulating the deposition conditions of the diffuse

ISM revealed the presence of biphenyl together with other aromatic molecules containing benzene
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rings linked by distinct bridging groups (Duley and Hu, 2012). The importance of biphenyl and
polyphenyl-type molecules as viable precursors of PAHs has motivated theoretical studies on their
infrared spectra modeling (Talbi and Chandler, 2012; Martin-Drumel et al., 2014). Furthermore,
several studies revealed that the system is a major component of carbonaceous chondrite meteorites
(Hayatsu et al., 1977; Basile et al., 1984; Mimura, 1995; Sephton, 2002; Yabuta et al., 2007; Matthew-
man et al., 2013; Huang et al., 2015; Sephton et al., 2018). Biphenyl was also observed in experiments
simulating a prebiotic scenario of icy planetary bodies under reducing primordial atmosphere (Menor-
Salvén et al., 2008), and in the refractory residues of UV-irradiated ice mixtures of HyO:benzene
and H,O:NHj:naphthalene (Materese et al., 2015). Taken together, these studies demonstrate that
biphenyl could play an important role in processes relevant to both interstellar and prebiotic chem-
istry.

In this chapter, we examine the production of singly- and doubly-charged hydrocarbon molecular
ions triggered by X-ray photons at energies around the carbon C1s resonance energy on biphenyl, the
simplest system composed of phenyl radicals connected by C—C single bonds. The main differences
observed for biphenyl in comparison to benzene and naphthalene, the latter composed of two fused
benzene rings in a Cygp-skeleton, are highlighted. We analysed dissociation events that result from
single and double photoionization processes. The outcomes of our results to the survival of biphenyl
in the context of planetary nebulae are analysed. Since the doubly-charged C1,H;o>* molecule has the
same mass-to-charge ratio as the phenylium cation (CgHs™"), we could not discriminate in our experi-
ments the signals that are related to the parent doubly-charged system. However, we could identify a
number of fragment ions originated from double coincidence events, and hence from the dissociation
of a doubly-charged C1,H;o>* parental species. We therefore applied quantum chemistry calculations
in order to map the most stable C;,H 102" molecular structures and to obtain the thermochemistry of
selected fragmentation pathways starting from the biphenyl dication. To the best of our knowledge,

this is the first study in which the C1,H;o>* minimum energy landscape is systematically explored.

5.2 Single Ionization and Fragmentation of Biphenyl

Figure 5.2 (top and bottom panels) shows the single coincidence mass spectra of biphenyl (Cj2Hjq)
at 275 and 310 eV. The intensities are normalized with respect to the counts of the C1,Ho*" parental

ion. We could easily discriminate distinct groups of peaks, each one related to a distinct C,,H,,* fam-
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Figure 5.2: Time-of-flight mass spectra in normalized counts of biphenyl at 275 eV (top) and 310 eV
(bottom)

ily. In order to quantify the production of each individual ion to the overall mass spectrum, we used
a multiple Gaussian function fitting procedure to calculate the Partial Ion Yield, PIY.

The PIY values are shown in Fig. 5.3 and Table 5.1. For 275 eV, energy below the Cls res-
onance (285.07 eV, Minkov et al. 2005), the spectrum is dominated by the C¢Hs* ([M—C¢Hs]",
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m/q = 77) ion signal with PIY = 12.2%. This species is produced directly from the dissociation of
the carbon-carbon bond that connects both phenyl moieties, whose bond breakage leads also to the
formation of the C¢Hs" radical. The appearance energy of C¢Hs™ was calculated as 21.28 eV by
Jochims et al. (1997), and the ion is scarcely produced in the 70 eV photoelectron spectrum (Wallace,
2011). The potential energy surface of CcHs™* was thoroughly explored by Peverati et al. (2016). The
global minimum energy structure is the aromatic six-membered ring molecule with singlet multiplic-
ity, calculated as 25 to 40 kcal mol~! lower in energy than its triplet counterpart (Hrusik et al., 1997;
Nicolaides et al., 1997; Patzer et al., 2010; Peverati et al., 2016). The next singlet C¢Hs™ isomer is the
ethynylcyclobutenylium system, lying 26.0 kcal mol~! above the six-membered ring (Peverati et al.,
2016). These results strongly suggest, therefore, that the C¢Hs* molecular ion produced in our experi-
ments retains the aromatic structure. By inspecting the shape of the peak m/q= 77, it was not possible
to discriminate any signal coming from the parent dication. However, we do observe a multitude of
signals in our PEPIPICO experiments, as well as fractional m/q values in PEPICO spectra, which
are characteristic of fragmentation processes starting from a doubly-ionized excited state of the par-
ent molecule. Apart from dissociation, a fraction of the doubly-ionized parent molecules could also
undergo electronic relaxation processes and accommodate the excess of positive charge on a rigid,
non-dissociated structure. More experiments are necessary in order to investigate the production of
C12H,, multiply charged species.

Among the other CgHn™ ions, only C¢Hs™ ([M—C¢Hg]*", m/q = 76) has a PIY value greater than
5% at275eV (PIY =7.4%). This species is probably the ortho-benzyne cation, in which two adjacent
carbon atoms of the six-membered rings are not bonded to hydrogen. By combining DFT and high-
level multireferential approaches, Kaiser et al. (2018) revealed that C¢Hs* has a twisted boat-like
geometry with C; symmetry. Starting from an ionized biphenyl molecule, the ion could be formed by
an initial inter-ring hydrogen migration followed by the cleavage of the central carbon-carbon bond.

The second most prominent ion at 275 eV corresponds to the parental ion C;oHo™ ([M]™, m/q
= 154), with PIY = 9.4%. Early studies using transient and time-resolved resonance Raman spec-
troscopy suggested that the structures of both the radical cation and the radical anion of biphenyl
have planar or nearly planar structures in solution (Buntinx and Poizat, 1989; Sasaki and Hamaguchi,
1994). A similar conclusion for the isolated radical cation was obtained by Erickson et al. (1995),
which determined torsional angles of less than 10° for the Cj,H o™ species absorbed in distinct solid

matrices. As for computational studies, Rubio et al. (1995) performed C,,-symmetry constrained ge-
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Figure 5.3: Partial ion yield, PIY (%), measured at 275 eV (top) and 310 eV (bottom)

ometry optimizations of Cj;Hio*" at the complete active space self-consistent field (CASSCF) level
and used the structures as model systems for investigating charge defects in PPP. Further studies em-
ploying full geometry optimizations at the DFT level revealed that the C,H ;o™ radical cation has
actually a non-planar structure, with torsional angles ranging from ¢ = 17.5° to ¢ = 20.5° (Furuya
et al., 1998; Arulmozhiraja and Fujii, 2001; Tachikawa and Kawabata, 2003). However, as revealed
in this work, the biphenyl structure (A.3*") is not the global minimum of the C,H;o*" system (see
section 3.2), being 19.9 kcal mol~! less stable than the singly-charged acenaphthene ion (A.1*"). This
structure is composed of a naphthalene carbon backbone, with a bridging ethylene group connecting

the positions 1 and 8. We therefore expect that the parent ion detected in our experiments underwent
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Figure 5.4: Comparison of the production of ionic fragments of carbon backbone families C,, (n=1-12) of
biphenyl molecule in 275 and 310 eV.

loss of molecular integrity after isomerization to the global minimum of the Cj,Hj¢™ system.
Buchanan et al. (1980) generated the acenaphthene radical cation CjoHj¢™ in pure molten anti-
mony trichloride medium, and obtained its electron paramagnetic resonance (EPR) spectrum for the
first time. The photodissociation of Cj2Ho* upon visible and UV radiation was studied by Ekern
et al. (1998), revealing that the ion does not isomerize during the process, but loses one or two hy-
drogen atoms from the ethylene bridge. The latter process gives rise to the acenaphthylene radical
cation (C1oHg™), whose spectroscopic and photochemical properties were determined by Banisaukas
et al. (2003). Both Cj2Ho* (m/q = 153) and Cj;Hg* (m/q = 152) ions are also observed in our
experiments, and may suggest that they are generated mainly after isomerization of the biphenyl rad-
ical cation to the acenaphthene structure. In their experiments, Banisaukas et al. (2003) were able
to remove up to four hydrogen atoms from C,H ", and showed that the two lower-mass ions with
m/q = 151 and m/q = 150 are not formed from the dehydrogenation of C1,Hg*". While C;,H;" (m/q
= 151) is formed from H; loss of C1,Ho*, C1oHg™ (m/q = 150) is produced entirely from the single
hydrogen loss from Cj;H7*. In our experiments, while a small production of C1,H7* is observed

(PIY =2.6% at 275 eV), there is no evidence of the fourth dehydrogenation of the parent ion.
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Apart from [M]*, [M-H,]* and [M—C¢H, ", we can also observe families of molecular ions
containing all numbers of backbone carbon atoms from one to twelve, especially C4H,,", C3H,,* and
C,H,,*. However, among these species, only C3Hz" ([M—CoH7]*, m/q = 39, PIY = 6.0%), C4Hy™
([M—CgHgl*, m/q = 50, PIY = 5.2%) and C4H3* ([M—CgH7]*, m/q = 51, PIY = 6.4%) have PIY
values greater than 5% at 275 eV.

The C3H3™ species is probably the aromatic cyclopropenyl cation, which is considered a key
intermediate for hydrocarbon formation in the ISM (Agtindez and Wakelam, 2013; Zhao et al., 2014).
The production of such species from the dissociative photoionization of biphenyl is almost two-
fold greater than the one observed for naphthalene at the same incident photon energy of 275 eV
(Monfredini et al., 2019), which is probably related to the higher carbon backbone structural rigidity
of the latter.

The bottom panel of Figure5.3 shows the PIY values at 310 eV. After the Cls resonance energy,
we observe a significant decrease in the production of CgHs* and C¢Hy", whose PIY values drop
down to 4.6%. While the signal coming from CgHy* at 310 eV is around 60% of the one observed
at 275 eV, the CgHs™ species is reduced to merely 38% of its previous value. This indicates that
both species are more susceptible to further dissociation pathways when the incident photon energy
is higher than the Cls resonance energy. As a consequence, fragments with smaller numbers of
carbon backbone atoms (from C;H,,* to CsH,") are increased, as shown in Fig. 5.4. The C3H3™,
C4H,* and C4H3™ molecular ions, for example, show an increase in their PIYs to values above
7%. A similar process, although less pronounced, is observed when comparing the parent ion and
smaller fragments. The CoH " signal for an incident energy of 310 eV is reduced to PIY = 7.3%,
which is followed by an increase in the yield of the carbon backbone families from C;H,* to Cy1H,,*.
The highest PIY among ions from these families are the very unsaturated C;H,™ ([M—CsHg]*", m/q
=86, PIY = 1.0%) and C;H3" ([M—CsH7]", m/q = 87, PIY = 1.3%) systems. The most stable
C7H,™ species presents a linear polyynic HC7H open-chain structure (Fulara et al., 1995; Miihlhauser
et al., 2003). The global minimum of C;H3*, on the other hand, is predicted as a C4H-substituted
cyclopropenyl ring (Chakraborty et al., 2014). Taken together, these results suggest that ring-opening

dissociative photoionization pathways are more active for photon energies above the Cls resonance.
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Table 5.1: PIY (per cent) of biphenyl, organized per mass-to-charge ratio and photon energy.

m/q Attribution PIY (%) m/q  Attribution PIY (%)
275eV 310eV | 275eV  310eV

1 H* 1.04 120 | 76 CgHy* 7.41 4.62
2 Hy* 002 004 | 77 CeHs* 12.19  4.60
12 C* 008 027 | 78 CeHg* 1.61 0.52
13 CH* 008 023 | 79 CgH7* - 0.23
14 CH,* 002 013 | 84 c,* - 0.26
15 CH;* 062 076 | 85 C/H* - 0.59
24 Cy* - 0.15 | 86 C;H,* 0.78 1.04
25 CH* 0.15 044 | 87 C7H3* 0.83 1.29
26 CyH,* 293 402 | 88 C;H,* 037 042
27 CH3* 412 428 | 89 C;Hs* 038  0.33
28 CoH,* 0.17 020 | 90 C/Hg* 0.21 0.26
36 C3* 007 041 | 91 C,H7* 005  0.13
37 C3H* 179 284 | 97 CgH* - 0.17
37.5  CgH3?* 023 084 | 98 CgH,* 0.31 0.58
38 C3Hy* 269 354 | 99 CgH3* 030 053
38,5  CgHs?* 030 043 | 100 CgHy* 0.14 026
39 C3H3* 594  7.00 | 101 CgHs* 0.14  0.15
40 C3Hy* 0.13  0.14 | 102 CgHg" 0.76 0.6l
41 C3Hs* 022 022 | 103 CgH;* 038  0.44
43 C3Hg* 006 031 | 109 CoH* - 0.05
44 C3H7* 0.10 028 | 110 CoH,* 0.06  0.27
49 C4H* 0.69 1.18 | 111 CoH3* 0.00  0.12
50 C4Hy* 517 7.02 | 112 CoHy* 0.10  0.11
51 C,H3* 6.43 714 | 113 CoHs* 009 022
52 C, Hy* 1.50 142 | 114 CoHg* 0.71 0.15
53 C4Hs* 042 043 | 115 CoH7* 040  0.72
55 C4He" 0.21 0.49 116 CoHg™ - 0.23
60 Cs* 0.31 045 | 126  CjoHg" 037  0.39
61 CsH* 0.98 170 | 127  CyoH7* 0.60  0.55
62 CsHy* 1.71 2.69 | 128  CjoHgt 0.60  0.48
63 CsH3* 290 331 | 129  CoHot 029  0.28
64 CsHy* 3.61 271 | 139 CpH7* 0.11 0.17
65 CsHs* 086 028 | 140  C;Hg* 002  0.12
66 CsHg* 0.31 0.32 | 151 CioH,* 028 029
70 CsHjo* 0.41 059 | 152  CpHgt 2.12 1.51
72 Cs* - 028 |153  CpHy" 2.56 1.73
73 CgH* 0.63 135 | 154  CpHjot 9.40  7.30
74 CeHy* 1.55 230 | 155 BCCyHpt  4.61 4.17
75 CgH3™ 2.32 224 | 156 BCyCioHpp™  1.06  0.55
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Figure 5.5: Normalized time-of-flight mass spectra of ionic fragments from biphenyl at 275 eV and 310
eV (top) and benzene at 282 ¢V and 301 eV (bottom) with m/q = 71—79. The inserted figures highlight
the identification of ionic fragments with 2+ charge: C¢H3?* (m/q = 37.5) and C¢Hs>* (m/q = 38.5) for
biphenyl; from CgH,?* (m/q = 37) to '3CCsHg?* (m/q = 39.5) for benzene.

5.3 Multiply-Charged Ions and Double Coincidence Mass Spec-
tra of Biphenyl

In our experiments with biphenyl (see top panels of Fig. 5.5), we were also able to identify signals
containing fractional mass-to-charge ratios related to the doubly-charged ions CeHz>" (IM—CgH71%",
m/q = 37.5) and CgHs>" ([M—CgHs]**, m/q = 38.5). The phenyl radical dication C¢Hs>* was com-
putationally studied by Zyubina et al. (2002), and has C,, symmetry and ?A, electronic state, with
spin density delocalized throughout the 7 space of the six-membered carbon ring. However, to the

best of our knowledge, there is no systematic study on the thermodynamic stability of neither CgHs>*
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Figure 5.6: Partial Double Coincidence Yield (PDCY) contour map obtained from PEPIPICO measure-
ments of biphenyl with respect to the number of carbon atoms (N¢) of each fragment at 275 eV (left panel)
and 310 eV (right panel).

nor C¢Hz2* isomers up to this date. The detection of CeHs2" reveals that dissociation processes
were activated after the formation of a multiply-charged Ci2H/¢ species, such as C1oH 0% or even
CioHio ™. Starting from the doubly-charged parent dication, the formation of CeHs2* would indicate
that the carbon-carbon central bond could be cleaved not only leading to homolytic charge separation
and formation of two C¢Hs™ species, but also to heterolytic charge separation and formation of the
radicals C¢Hs?* and C¢Hs'.

The C¢H32* and CgHs2* radical dications are also observed in similar experiments conducted by
us with benzene (see bottom panels of Fig. 5.5) and naphthalene (Monfredini et al., 2019) in the sur-
roundings of their respective Cls resonance energies. For benzene we could actually observe signals
coming from C¢H,>" dications with 2 < n < 6. The global minimum energy isomer of C¢Hg>" is
the pentagonal pyramidal structure of singlet multiplicity (Hogeveen and Kwant, 1973; Jasik et al.,
2014; Malischewski and Seppelt, 2017; Fantuzzi et al., 2017b; Klein et al., 2018). In turn, the most
stable CgH4%" isomer is the triafulvene dication, where two cyclopropenyl aromatic rings are per-
pendicularly connected by a single carbon-carbon bond (Lammertsma and Schleyer, 1988). Finally,
Burdick et al. (1985) computed potential energy curves for linear HC¢H?* ions, and showed that the

dissociation into two C3H™ units has the lowest dissociation barrier (5.77 V). However, to the best of
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our knowledge, the minimum energy landscape of CgH,2" isomers has not been explored up to date.
Due to experimental limitations, we could not discriminate if molecular dications with even number
of hydrogen atoms are also produced from the dissociative photoionization of biphenyl. However,
we believe that the signals of these species are hindered by the counts of the singly-charged ions of
the same mass-to-charge ratio. We therefore conclude that more experiments are needed in order to
elucidate the formation of other multiply-charged species from bipheny].

In Fig. 5.6, we compare the production of singly-charged species generated from a photoelectron-
photoion-photoion coincidence event for a photon energy before and after the C1s resonance. For that
purpose, we plot the Partial Double Coincidence Yield (PDCY) of the species with respect to the num-
ber of carbon atoms (N¢) of each fragment. The PDCY is obtained by integrating the counts in the
PEPIPICO map of a particular ion-ion coincidence. It indicates the probability of the fragmentation
pathway that leads to the respective ions starting from a double photoionization event.

For 275 eV, we show that the main fragmentation channels lead to the formation of [CsH,* +
C3H,, "1 (9.1%), [C4H,,* + CoH,,, "] (8.8%) and [Ce¢H,,* + C4H,,,*] (8.1%). In the first channel, neu-
tral fragments with a total number of four carbon atoms are produced, most probably two C,H;
molecules. In turn, the formation of [C4H,,* + C,H,,*] in coincidence indicates that half of the carbon
content is released as neutral fragments, most probably in the form of benzene (C¢Hg), phenyl (CeHs ')
or three CoH> units. Finally, the last channel suggests the liberation of a neutral CoH», fragment.

By increasing the photon energy to 310 eV, a depletion of the [CsH,* + C3H,,*] and the [C¢H,,*
+ C4H,, ] channels is observed, as the PDCY values decrease to 5.1% and 3.8%, respectively. On the
other hand, the PDCY of the [C4H,,* + C,H,, "] channel increases to 15.9%, and dominates the double
coincidence plot. This result suggests that a separation of the two Cg rings (with or without hydrogen
migration) is the most probable fragmentation process starting from the double photoionization of
biphenyl after the C1s resonance. Other relevant pathways involve the formation of [CsH,* + CoH,,, "]
(13.2%) and [Ce¢H,," + CoH,,*] (12.0%). For the first case, neutral fragments with a total of five carbon
atoms are produced, such as cyclopentadiene (C5Hg), the CsHs radical or a combination of neutral
species containing C, and C3 backbones. Finally, the [C¢H,* + C,H,,*] channel is associated with

liberation of neutral species containing up to four carbon atoms, most probably two C,H; species.
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5.4 Fragmentation pathways of biphenyl dication from compu-
tations

In the previous section, we show that the production of [C4H,* + CoH,,*] from the dissociation
of a doubly-charged C,H;o”" is the dominant fragmentation route of biphenyl for energies above
the Cls resonance energy. This suggests that the carbon-carbon bond that connects both Cg rings is
cleaved after double ionization, with the release of a neutral C¢Hs™ or CgHg molecule and a doubly-
charged CeH,, %" ion (n =5 or 4, respectively), which is further dissociated leading to a photoin-
duced three-body decay process. In order to investigate the energetics of distinct channels related to
the mentioned fragmentation mechanism, our theoretical collaborators computed the electronic en-
ergy corrected by zero-point energy (E + ZPE) at the DFT (PBE0/def2-TZVP) and coupled-cluster
(CCSD(T)-F12/cc-pVTZ//PBE(0/def2-TZVP) levels of each one of the channels starting from the
doubly-charged biphenyl molecule. The fragment ions were computed for their respective global
minima and ground state multiplicities. The differences in energy among the pathways can be used
for identifying the thermodyamically preferred dissociation products. The computational results are
briefly discussed in this section.

Table 5.2 shows the thermochemistry of selected fragmentation pathways of the biphenyl dication.
The most stable pathway, as indicated by both DFT and CCSD calculations, involve the formation
of a neutral C¢Hg and the singly-charged ions C4H,"™ and CoH, ™. This indicates that hydrogen mi-
gration from one phenyl ring to the other must occur after the double ionization process in order
to allow the system to relax through the thermodynamically preferential route. The fragmentation
pathway involving release of neutral C¢Hs™ and the C4H,* and CoHz* molecular ions is 0.62 eV (at
the CCSD(T)-F12 level) higher in energy than the previous one, and is the most stable pathway in
which there is no hydrogen migration between the phenyl rings. This route is 0.29 eV less endoergic
than the one in which C4H3"" is formed together with C¢Hs™ and CoH,*. With the exception of the
pathway leading to C¢Hg + C4H* + CoH3™ (AE = 2.11 eV at the CCSD(T)-F12 level), all other frag-
mentations have AE greater than 4 eV in comparison to the least endoergic one. Taken together, our
results suggest that photoinduced three-body decay routes after double photoionization of biphenyl

contribute predominantly for the production of C4H,"™", C4H3", CoH,t and CoH3* .
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Table 5.2: Thermochemistry of selected fragmentation pathways of the biphenyl dication (B.3°*) at the
DFT (PBEOQ/def2-TZVP) and CCSD(T)-F12/cc-pVTZ//PBEQ/def2-TZVP levels.

DFT CCSD(T)-F12
E+ZPE (au) AE(eV) E+ZPE(au) AE(eV)

Fragmentation Pathway

CeHg + C4Hy™ + Co+ -461.48896 6.12 -461.22980 4.89
CeHg + C4H3™ + CoHY -461.51992 5.28 -461.23928 4.63
CeHg + C4Ho™ + CoH" -461.71395 0.00 -461.40938 0.00
Ce¢Hg + C4H' + CoH3™ -461.62156 2.51 -461.33185 2.11
Ce¢Hg + C4™ + CoH4™ -461.53499 4.87 -461.21010 542
Ce¢Hs + C4Hs* + Co* -461.44833 7.23 -461.18617 6.07
Ce¢Hs + C4Hy* + CoHF -461.45412 7.07 -461.16507 6.65
CeHs + C4Hs* + CoHpv -461.68397 0.82 -461.37803 0.85
CeHs + C4Hpt + CoHst -461.69464 0.53 -461.38657 0.62
CeHs + C4H* + CoHy ™ -461.56229 4.13 -461.26143 4.03
Ce¢Hs + C47 + CoHs* -461.50014 5.82 -461.17622 6.34

Table 5.3: Average values of photon flux (Fy), photodissociation rate (k,;—4) and half-life (t; /) of the
sources studied in this chapter.

(F) (kph-a) (t1/2)
Source (photons eV~ cm™ s71) (s7h (yr)
275 eV 310 eV 275 eV 310 eV 275 eV 310 eV
BD+30°3639 2.70 x 10* 4.62x10* 234x1075 539x 10713 246x107 1.07 x 10°
NGC 7027 1.80x 103 3.47x10° 1.56x107'0 3.80x 107" 3.70x10% 1.52x 10°
NGC 5315 9.01 x 103> 1.50x10* 7.81x1071% 1.75%x 10713 740x107 3.30x10°
NGC 40 1.54x10° 248 x10° 1.33x1071° 290x 10714 4.34x 108 1.99 x 10°

5.5 Absolute Photoionization and Photodissociation Cross Sec-

tions of Biphenyl

For the determination of photoionization (o ,;-;) and photodissociation (o ,,—4) cross sections, it
is necessary to know the photoabsorption (o ,,_aps) Cross section as a function of the photon energy.
The Cls spectra of biphenyl and benzene are very similar, as shown by Wang et al. (2005). There-
fore, we obtained the o ,;aps Values for the biphenyl molecule at 275 and 310 eV by doubling the
photoabsorption cross section of benzene taken from the core excitation database of the Hitchcock
Group (Hitchcock et al., 1987; Hitchcock and Mancini, 1994). For 275 eV and 310 eV, the 0 j—aps
values of biphenyl are 9.57 x 1072% and 1.26 x 10717 cm™, respectively.

The procedure for calculating the photoionization and photodissociation cross sections is de-
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scribed in chapter 3. For biphenyl, the absolute photodissociation cross sections, 7,4, Were calcu-
lated as 8.67 x 10729 cm™ at 275 eV and 1.17 x 10717 cm™ at 310 eV. The absolute single photoion-
ization cross sections, O';h_l-, on the other hand, are 9.00 x 1072! cm™2 for 275 eV and 9.20 x 1077
cm™ for 310 eV. In this chapter, the multiple photoionization cross sections are not estimated be-
cause they could not be quantified in our experiments, and their identification is only inferred through
the PEPIPICO spectra. Therefore, more experiments are necessary in order to quantify the spectral

contribution of these species.

5.6 Survival of biphenyl in the PDR of Planetary Nebulae

After obtaining the photoionization and photodissociation cross sections as described in the pre-
vious section, we proceed with the analysis of the stability of the biphenyl molecule in the pho-
todissociation region of some astrophysical objects. We selected four planetary nebulae with similar
evolutionary states, all of them presenting PAH emission features: BD+30°3639 (Allamandola et al.,
1989; Murashima et al., 2006; Zhang et al., 2008; Freeman and Kastner, 2016), NGC 7027 (Tie-
lens, 2008; Freeman and Kastner, 2016; Cruz-Diaz et al., 2019), NGC 5315 (Cohen and Barlow,
2005; Szczerba et al., 2001) and NGC 40 (Delgado-Inglada and Rodriguez, 2014). Such objects were
described in detail in Chapter 1.

We calculate the X-ray flux in 275 eV and 310 eV from the luminosity data reported in the
literature using the same procedure as the one described in Chapter 4. The X-ray optical depth, 7y, is
obtained from eq. 4.2.

We adopted the following molecular hydrogen column density values: Ny, = 1.20 x 10! cm?
for BD+30°3639, Ny, = 1.15 x 10?! ¢cm? for NGC 5315 and Ny, = 1.10 x 10?! cm? for NGC 40.
These values correspond to half of the ones reported in the literature for Ny. For NGC 7027, an H;

column density of Ny, = 1.3 X 10?! cm?

was taken from Agutndez et al. (2010). From these values,
we calculated the photodissociation and photodissociation rates and the half-life of biphenyl in the
four distinct PN sources.

In Figure 5.7 we show the estimated half-life values for the biphenyl molecule in the photodis-
sociation regions of the planetary nebulae BD+30°3639, NGC 7027, NGC 5315 and NGC 40. The

average values obtained for the photon fluxes, photodissociation rates and half-lives at 275 eV and

310 eV are shown in Table 5.3. For a photon energy of 275 eV, the half-lives of biphenyl in the plan-
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Figure 5.7: Half-life values of the biphenyl molecule after interaction with the X-ray photon flux of the
planetary nebulae NGC 40, NGC 5315, NGC 7027 and BD+30°3639. Each data in the figure represents a
specific value of distance between 0.1 to 0.6 pc from the central star.

etary nebulae studied herein vary from 2.46 x 107 years to 4.34 x 10 years, while for 310 eV these
values span from 1.07 x 10° years to 1.99 x 10° years. The half-lives at 275 eV are similar to the
ones estimated for amorphous hydrocarbons and PAHs in the interstellar medium, which are in the
range of 2—6 x 108 years (Jones et al., 2011; Parker et al., 2012). However, they are at least one order
of magnitude smaller than the injection timescales (2.5 x 10° years) of carbonaceous materials into
the interstellar medium by AGB stars and carbon-rich planetary nebulae (Jones et al., 1994, 1996).
Therefore, the attenuation of the X-ray flux due to the presence of grains seems not sufficient to ac-
count for the presence of biphenyl and small-sized PAHs in regions with high incidence of ionizing
photons. This is in line with previous works, such as Jones et al. (2011), which suggested that density
inhomogeneities in both pre- and post-shocked media could protect PAHs and enhance their life-
times in such hostile environments. Moreover, for hydrogenated and superhydrogenated PAHs, the
decrease of the photoabsorption cross sections around the Cls resonance energy due to the removal
of the strong Cls— 7* excitations may also contribute for increasing the lifetimes of such molecules

in the PDRs of planetary nebulae (Quitian-Lara et al., 2018), as discussed in Chapter 4. The char-
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acteristic infrared emission of PAHs may also have the contribution of aromatic fragments produced
from the dissociation of larger PAHs (Micelotta et al., 2011; Monfredini et al., 2019). Taken together,
these processes could contribute for the presence of PAH infrared emission features in astrophysical

environments bearing high-energy photon fluxes.
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Chapter 6

Experimental Results III: PAHs in AGNs

Active Galactic Nuclei (AGNs) are sources of both soft (0.2-2 keV) and tender (2-10 keV) X-ray
radiation, and contribute significantly to the extragalactic X-ray background (Comastri et al., 1995;
Mushotzky et al., 2000; Lubinski et al., 2016; Hickox and Alexander, 2018). The X-ray emission
mechanism is known to be powered by gas accretion on to a central supermassive black hole (Fer-
rarese and Ford, 2005; Zhang, 2005; Di Matteo et al., 2005; Barai et al., 2012), which is the basis
of the standard unification model for AGNs (Antonucci, 1993; Urry and Padovani, 1995) — for a
recent review, see Netzer 2015. The combination of a 0.2-10 keV radiation field and the presence
of PAHs in the AGN vicinity provides an interesting scenario in which laboratory investigation of
molecular photoionization and photodissociation in the X-ray energy range could provide important
information.

As mentioned in Chapter 1, PAHs have also been observed in a variety of extragalactic objects,
including in the circumnuclear regions of AGNs. The experimental studies of vacuum ultraviolet
(VUV) photoionization and photodissociation of PAHs were firstly reported at about thirty years ago
by Leach et al. (1989a,b), using time-of-flight mass-spectrometry and photoelectron-photoion coin-
cidence techniques. Jochims et al. (1994, 1996, 1999) have also investigated the VUV photostability
of PAHs and methyl-substituted PAHs. In addition, the competition between VUV photoionization,
photofragmentation and the photoproduction of dications in the context of interstellar PAH popula-
tion were discussed by Zhen et al. 2016. Using soft X-ray photons with energies around the C1s— 7*
resonance (285 eV), Reitsma et al. (2014); Reitsma et al. (2015) have investigated the fragmentation
of PAH cations. However, there is still a lack of information on the ionization and dissociation of

PAHs driven by photons of higher energies, which would be useful in the context of the circumnu-
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Figure 6.1: The polycyclic aromatic hydrocarbons studied in this work.

clear regions of AGNs. The photochemistry of these regions should be highly affected by a radiation
field with 0.2-10 keV photons due to its high penetration power, even through a gas with column
densities up to 10%* cm™2, such as X-ray dominated regions (XRD, see Usero et al. 2004) .

In this chapter, study the effect of X-ray photon interactions on the photodissociation and pho-
toionization rates of the PAH molecules shown in Fig. 6.1. The experiments were part of a previous
PhD thesis (Monfredini, 2015), while the determination of the photoionization and photodissociation

cross sections of the molecules depicted in this chapter were developed during the present thesis.

6.1 Photoabsorption, Photoionization and Photodissociation Cross

Sections of PAHs at 2500 eV

To the best of our knowledge, there is neither experimental nor theoretical data on the absolute
photoabsorption cross section of PAHs at 2500 eV. Even for benzene, which is the building block of
PAHs and one of the most emblematic molecular systems, such measurements have only been made
up to 800 eV (Rennie et al., 2000).

We obtained the o,qps values of the PAH molecules at 2500 eV by multiplying the photoab-
sorption cross section of the carbon atom (3.1 x 1072! cm?), taken from the literature (Henke et al.,
1982; Voit, 1992; Henke et al., 1993; Berkowitz, 2002), by the number of C atoms (N¢) that compose
the carbon backbone. The dependence of the absolute photoabsorption cross section with respect to
the number of carbon atoms in the backbone of the PAH is shown in Figure 6.2 (top) and the s

values for the molecules studied herein are presented in Table 6.1. As we can see, the o p—qps Values
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Figure 6.2: Top: Photoabsorption cross section (cm?) at 2500 eV as a function of the number of carbons
(N¢) for each molecule. Bottom: Cross-sections relative to naphthalene as a function of the number of
carbon rings.

at 2500 eV do not vary significantly for PAHs with N¢c= 10 to 16. On the other hand, the photoab-
sorption cross section at 2500 eV (3.1x1072° cm?) for the naphthalene molecule is about two orders
of magnitude smaller than at 310 eV (1.05x107'7 ¢cm?). In fact, it is known that low-energy X-ray
photons are more easily absorbed than high-energy X-ray photons (Wilms et al., 2000).

. and UZZ—:‘ values at 2500 eV for the PAHs studied

: +
The cross sections o ,,_apss O ph-d»> O ph—i» O i

herein are shown in Table 6.1. It is possible to see that the photodissociation of the carbon backbone
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Table 6.1: Cross-sections (cm?) for photoabsorption (0 ps-aps), photodissociation (o,;-4), total non-

dissociative photoionization (o ,-;), single photoionization (o

+

ph—i

) and non-dissociative multiple photoion-

ization (UZZ_i) for the following parent PAH molecules: naphthalene (C;gHg), anthracene (C4Hp), 2-
methyl-anthracene (C14H9CHj3) and pyrene (C;¢H), measured at energy of 2500 eV.

Cross Section (cm?)

Molecule + g+

O ph—abs O ph—d O ph—i 9 ph—i 9 ph—i
Naphthalene (C;oHg) 3.10x10720 3.05x1072% 535x107%2 6.94x10723 4.66x107%*
Anthracene (C4H,0) 434%x10720 426x10720 7.78x1072 8.99x 1072 6.88x 10722
2-Methyl-Anthracene (C14,H9CH3) 4.65x10720 4.59%x10720 6.27x10722 6.16x107%  5.66x 107
Pyrene (CisH)0) 496x10720 474%x10720 220x1072! 1.19x1072 2.09x1072!

(0 pn-a) accounts for the majority of the events that follow photoabsorption. Similarly, the partitioning

+

of o pj,_; into O i

and ag;:_i contributions also follows the trend already observed in the PIY's, which
indicates a preference of multiple over single non-dissociative photoionization at 2500 eV.

The relative weight of olq,;:_l. with respect to the increase of the number of rings in the carbon
backbone can be traced by analyzing the bottom panel of Figure 6.2. The plot shows the ratio between

T ph—d> U;h—i and az;;_l. and their respective values for naphthalene as the number of carbon rings varies

q+

from 2 to 4. While the ratios for 0,4 and o phei

;;h—i exhibit a monotonic growth in this range, o
appears to be significantly affected by the increase in the number of carbon rings. This suggests
that larger PAHs in X-ray fields can be found in their multiple ionization states. The astrophysical
implications of these results to the chemistry of circumnuclear regions of AGNs is discussed in the

next section.

6.2 Astrophysical Implications: PAHs in AGNs

6.2.1 Photodissociation of PAHs by X-rays in AGNs

In order to explain the emission of PAHs around AGNs, Voit (1992) proposed that these molecules
should be protected by a dense torus surrounding the X-ray source. It is known that the inflowing gas
onto a central AGN could form a circumnuclear disk (CND) in which star formation can take place.
The CND structure is expected to play an important role in the AGN obscuration, as suggested by
starburst disk models (Thompson et al., 2005; Ballantyne, 2008) and high-resolution observations,

such as the ones conducted by Izumi et al. (2018). Moreover, Kawakatu and Wada (2008) have shown
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Table 6.2: Some properties of the AGN sources studied herein. Ly stands for the X-ray luminosities in-
tegrated from 2-10 keV, while Fx are the respective average X-ray photon fluxes at 2500 eV (7, = 4.45)
within distances of 20-80 pc from the Seyfert nucleus.

Source Type Lx Fy
(eVsh (photons cm™2s™!)

Mrk 279 Syl  2.48x10% 6.68x10%
Mrk 334° Syl  1.37x10% 3.68x107
Mrk 3° Sy2  1.16x10% 3.12x108
NGC 5728 Sy2 9.42x103 2.54x107
NGC 7682¢ Sy2 3.28x10% 8.82x 100
NGC 1808° Sy2 3.13x10°! 8.41x10%

@ Vasudevan and Fabian (2009) ? Shu et al. (2007)
¢ Esparza-Arredondo et al. (2018) 4 Gu and Huang (2002)

that the circumnuclear disk might be in coincidence with the putative torus of the standard unification
model for AGNs. The authors also predicted that star formation — and consequently PAH emission
— is more likely to occur in the outer parts of a 100 pc-size torus. Using 8-m class telescopes and
Spitzer, Sales et al. (2013) and Esquej et al. (2014) shortened this distance to around a few pc, with
resolution of 26 pc. Additionally, using data from ALMA, Salak et al. (2017) mapped a molecular
torus by observing the CO(3-2) and CO(1-0) lines, with a radius of ~30 pc, around the central X-ray
source. These observations might be in coincidence with the PAH emission from Sales et al. (2013).

To the best of our knowledge, the photodissociation of PAHs due to interaction with high energy
photons (E > 1000 eV) has only been studied by extrapolation from indirect measurements. Such
estimates were based on PAH experiments with lower energy photons, up to the VUV range (Leach
et al., 1989a,b; Jochims et al., 1994, 1996, 1999), and on the photoabsorption profile of the C atom
in a photon energy range up to 30 keV (Henke et al., 1982, 1993). In addition, the interaction of
PAHs and their precursors with photons around the C1s— 7* resonance (285 eV) has been explored
by several authors (Rennie et al., 2000; Boechat-Roberty et al., 2009b; Reitsma et al., 2014; Reitsma
et al., 2015; Monfredini et al., 2016; Quitian-Lara et al., 2018). However, there is still a lack of data
when it comes to investigating the effects of keV photons on these astrophysically relevant molecules.

We applied our experimental data to estimate the stability of PAHs in the circumnuclear regions
of six different AGNs (Table 6.2): Mrk 279, Mrk 334, Mrk 3, NGC 5728, NGC 7682, and NGC 1808.
These AGNs were taken from the Sales et al. (2010) catalog, and all of them show emission in 8.6
pm, which is due to ionized PAHs (Draine and Li, 2001, 2007; Sales et al., 2010, 2013). The first two

entries are Seyfert 1 (Syl) AGNs, while the others are classified as Seyfert 2 (Sy2). In order to know
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the X-ray photon flux, Fx (photons cm™ s~!), at a given distance from the central source of the AGN

and for a given photon energy E = hv, we applied, for each object, the following equation:

" 4rrlhy

Fx e 6.1

where L, is the X-ray luminosity (eV s™') integrated from 2 to 10 keV, r is the distance from the
nucleus to a position between 20 to 80 pc inside the dust torus, and 7 is the X-ray optical depth.
Here, the 7, values were systematically varied from 7, = 0.0 to 7, = 10.0 in order to discuss the
importance of shielding to the survival of PAHs in AGNs. These values of 7, can be associated with

the respective H, column densities by considering the following equation:

7y = 205 (E)Npg, (6.2)

where o (E) is the X-ray photoabsorption cross section per H nucleus given by Gorti and Hol-

lenbach (2004):

n( E —2.594
og(E)=12x10" (lkeV) (6.3)

In the context of AGN:ss, the structure and dynamics of the ionic (H II), atomic (H I) and molecular
(H,) gases have been studied by three-dimensional hydrodynamic simulations which include radiative
feedback from the central source (Wada, 2012; Wada et al., 2016; Izumi et al., 2018). These studies
led to the development of the multi-phase dynamic torus model, in which a combination of dusty
outflows, inflows and failed winds give rise to a geometrically thick structure. Dense molecular
gases are distributed near the equatorial plane, whereas the atomic gas is more extended along the
vertical direction of the disk due to turbulence effects. In our approach, we are considering X-ray
obscuration by the mid-plane H; column density, which would more effectively protect PAHs from
photoprocessing.

Figure 6.3 (top) shows the Ny, values as a function of the X-ray optical depth according to eq.
6.2 (E = 2.5 keV). By taking Ny, = 2.0 x 10?> cm™2, which is the upper limit of the Hy column
density for NGC 1808 (Salak et al., 2018), we obtain that 7, ~ 4.45. Since this value is estimated
by considering an optically thick molecular mass, it will be used as a reference scenario for the six
AGN s studied herein. In addition to the datapoint related to the work of Salak et al. (2018), we also

highlight 7, values (and their corresponding Ny, estimates) proposed by different authors for distinct
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AGN sources. Except for 7 = 2.7 (Kara et al., 2017), all other values are higher than the upper limit
for Ny, estimated by Salak et al. (2018).

The photoabsorption (k,;—aps), photoionization (k,,-;) and photodissociation (k,,—4) rates s7h
of each PAH molecule, for a given distance r from the central source, are determined by multiplying

the respective cross section, o, (E), by the photon flux, F(E):

kpn = opn(E)Fx(E) (6.4)

where k ,, represents the rates (K pj—aps, Kpn—d Of Kpj—i) and 0, (E) can be the 0 pj—aps(E ), 0 pp-a (E)
or 0pp-i(E). They are determined by using the procedure described in Chapter 3. We obtained
these rates, as well as the respective half-lives, for naphthalene, anthracene, 2-methyl-anthracene and
pyrene at £ = 2500 eV in the AGN sources studied herein, as shown in Figure 6.5.

Figure 6.3 (bottom) shows the half-life estimates of pyrene (C;¢H¢) for distances between 20
and 80 pc from the nuclear region of NGC 1808. Each curve represents a different value for the
X-ray optical depth (0.0 < 7, < 10.0). For comparison, injection timescale estimates (2.5 x 10° yr,
see Jones et al. 1994) assuming carbon-rich AGB stars as the primary source of PAHs are also shown.
For 7, = 0.0, the half-lives span from merely 1.8 x 10* to 2.8 x 10° yr, which are at best four orders of
magnitude shorter than the PAH injection estimates. This large discrepancy illustrates the importance
of shielding effects by the dusty torus in order to account for the survival of PAHs in such X-ray
luminous sources. These values are weakly affected if an optically thin dust model is considered. For
e = 2.7 (N, = 1.2 x 10?3 cm™2), the half-life values span from 2.6 x 107 to 4.2 x 10° yr, which are
still significantly shorter than the injection times of Jones et al. (1994). This value of 7, was obtained
by Kara et al. (2017) after using a thermal Comptonization model to estimate the corona electron
temperature of Ark 564, a narrow-line Seyfert 1 AGN.

The half-life estimates are still unsatisfactory even if 7, = 4-6 values are considered. For 7, =
4.45, which is related to the upper limit value of Ny, = 2 x 10?3 cm™2 for NGC 1808 (Salak et al.,
2018), the half-lives are in the range of 1.5x10° yr to 2.5x 107 yr. For 7, = 5.0 (Ng, =2.2x 1023
cm™2), the half-lives span from 2.6 x 10° to 4.2 x 107 yr, while for 7, = 6.0 (Ny, = 2.7 x 10?3 cm™2)
they range from 7.1 x 10° to 1.1 x 10% yr. These values of X-ray optical depths are associated with
microquasar and AGN coronae. A scattering optical depth value of 5.0, for example, was found for
the Comptonizing corona of the microquasar GRS 1915+105 (Ueda et al., 2009), while a 7, = 6.0

value was used by Kamraj et al. (2018) in conjunction to theoretical constrains from Petrucci et al.
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of the distance (pc) from the central source of NGC 1808. Distinct X-ray optical depth values (7y) were
considered. The horizontal dashed line is the PAH injection timescale estimate of 2.5 x 10” yr (Jones et al.,
1994), which is shown for comparison. See text for details.
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Figure 6.4: Half-life values of the PAH molecules studied herein after interaction with the X-ray radiation
field (7, = 4.45) of selected AGNs. Each datapoint refers to a specific distance in the 20-80 pc range from
the Seyfert nucleus.

(2001) to describe the coronal properties of a sample of NuSTAR-observed Seyfert 1 AGNs.
The survival time of pyrene towards the inner region of NGC 1808 is only compared to the PAH
injection timescale of Jones et al. (1994) if very high X-ray optical depth values, such as 7, = 9.0

(Ng, = 4.0 x 102 cm™2) and 7, = 10.0 (Ng, = 4.5 % 102 cm™2), are considered. For 7, = 9.0, the

half-lives vary from 1.4 x 10% to 2.3 x 10” yr, while for 7, = 10.0 these values span from 3.9 x 108 to
6.2 x 10° yr. Although these high values of 7, were reported in the literature for some objects, such
as the AGN corona of NGC 4151 (Petrucci et al., 2001) and ultra-luminous X-ray sources (ULXs,
see Miller et al. 2014), they are overly unrealistic for the purposes of this work. By taking the results
of Figure 6.3 altogether, the X-ray shielding mechanism by the torus seems to be insufficient to
account for the existence of pyrene and other small-size PAHs in the inner regions of AGNs. In fact,
given the large differences in the injection and destruction timescales, our results point out that a
more sophisticated interplay between PAHs and dust grains should be considered. In the following
paragraphs, we briefly discuss two possible, non-exhaustive, scenarios in which dust grains could

aid the production and survival of PAHs in the circumnuclear vicinity of AGN sources. Although

153



based on experimental and observational findings described by several authors, the feasibility of these
processes is, for practical reasons, still speculative. A quantitative assessment of the role of dust in
the survival of PAHs is far beyond the scope of this work.

In the first scenario, namely PAH-to-dust adsorption, we suggest that small-size PAHs formed in
the circumnuclear environments of AGNs should be adsorbed onto the dust grains, where they could
grow or rebuild themselves by chemical reactions driven by thermal- and/or photo-processing. In the
gas-phase, these species could be produced, for instance, following barrierless reactions typical of
low-temperature chemistry (Jones et al., 2011; Parker et al., 2012; Kaiser et al., 2015; Lee et al., 2019).
On the surface of grains, small-size PAHs could undergo molecular growth by bottom-up chemical
reactions, such as the ones described by Zhao et al. (2016); Johansson et al. (2018). Top-down
routes of PAH formation, including the path depicted by Merino et al. (2014) involving graphitized
grain surfaces exposed to atomic hydrogen, may also play a role. Large-size PAHs formed either by
bottom-up or top-down processes could be desorbed from the grains and ejected into the gas-phase.
Although these species are also subject to carbon backbone dissociation due to interaction with the
radiation field, a substantial part of their fragments is expected to exhibit vibrational features typical
of aromatic hydrocarbons (Micelotta et al., 2011). Similarly, large fragments of PAHs are detected
after the interaction of ions with carbonaceous dust analogues, as recently shown by Pino et al. (2019).
As the size of the parent PAH increases, more photon events are necessary in order to dissociate the
whole set of fragments featuring the mentioned vibrational modes. As a consequence, the molecular
vibrations of such a cascade of fragments would also contribute to the overall IR emission signatures
of PAHs detected in AGNss.

Another possible mechanism in which dust grains could contribute to PAH survival, herein men-
tioned as the PAH-to-dust incorporation mechanism, is the one previously depicted by Postma et al.
(2010) to account for the presence of PAHs in supernova ejecta. In this case, small-size PAHs could be
incorporated into the growing dust grains, which could function as PAH reservoirs. The detection of
PAHs in individual circumsolar graphite grains extracted from meteorites (Bernatowicz et al., 1996;
Messenger et al., 1998) provides experimental evidence for the viability of such a process. However,
as mentioned before, our results are not able to estimate the relative contribution of the distinct sce-
narios mentioned herein to the overall mechanism which allows PAHs to survive in the circumnuclear
regions of AGNs, and whose explanation is still unknown. In this perspective, more work is needed

to shed a light on this question, as well as to evaluate the importance of the PAH-to-dust adsorption

154



and incorporation processes discussed herein.

In order to compare the half-life results of pyrene in NGC 1808 with the other molecules and AGN
sources studied in this work, we obtained 7, /, as a function of the photon flux for an X-ray optical
depth of 7, = 4.45. These results are summarized in Figure 6.4. We could not see any significant
difference in the half-life values by increasing the size of the carbon backbone. This is probably
due to the fact that we spanned only small-size PAH molecules. For medium- and large-size PAHs,
although the X-ray photoabsorption cross sections are increased in comparison to the smaller ones
(see Figure 6.2, top panel), a large number of dissociation pathways will have, as products, PAHs with
a smaller number of carbon atoms. Ultimately, this will contribute to increase the half-life of PAHs
in our AGN sources. A similar consideration was done by Micelotta et al. (2011) when assuming that
the PAH is destroyed by cosmic rays only if the dissociation is followed by the ejection of at least 1/3
of the initial PAH carbon content.

From Figure 6.4, it is also possible to see that the half-life values are severely affected by the
X-ray photon flux experienced by the molecules at a given distance from the central region of the
AGN. In spite of considering attenuation of the X-ray radiation field by a dusty torus with moderate
optical depth, the lifetime of PAHs spanned values from 10% to 102 yr. Even in the best-case scenario,
the half-life is still shorter than injection timescale estimates of Jones et al. (1994) by a factor of ~20.

The highest #, /, values (107-108 yr) are obtained for NGC 1808, which also presents the smallest
X-ray luminosity (3.13 x 10°! eV s~!, Esparza-Arredondo et al. 2018) among the AGNs studied
herein and, consequently, the smallest average X-ray photon flux at 2500 eV (8.41x10% photons
cm™2 s7h). This nearby barred starburst, which is located at a distance of 10.8 Mpc (Tully, 1988), is
known to have molecular gas outflow from a compact (r < 200 pc) circumnuclear disk, as well as a
500 pc gaseous ring (Salak et al., 2016). A dynamically driven evolutionary scenario, in which star
formation is triggered by the gravitational collapse and cloud-cloud collisions that follow molecular
cloud accretion onto this 500 pc ring, was proposed by Salak et al. (2017). More recently, the authors
have also identified new dense gas tracer lines, which corroborates the existence of a velocity gradient
in the outflow direction (Salak et al., 2018). PAH emission lines were observed in this object even at
small distances (26 pc) from the Seyfert nucleus (Sales et al., 2013), for which our half-life values
are merely 100 yr.

In contrast to NGC 1808, the shortest half-life times (NIO2 yr) are obtained for Mrk 279, which
presents the highest average X-ray photon flux at 2500 eV (6.68 x 10% photons cm™ s~'). The ab-
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Figure 6.5: Photoabsorption and photoionization rates (s~') of the PAHs studied herein as a function of the
average photon flux Fy of the distinct AGN sources. The Fx values are taken at 2500 eV (7, = 4.45) within
distances of 20-80 pc from the Seyfert nucleus.

sorption features of this very luminous Syl galaxy, which is located at 128.6 Mpc (Scott et al., 2004),
are consistent with the presence of a warm absorber, most likely a dusty torus (Ebrero et al., 2010).
Moreover, weak PAH emission features have been independently observed in Mrk 279 by different
groups (Santos-Lle6 et al., 2001; Sales et al., 2010).

The determined half-lives of PAHs in the remaining AGN sources span from ~ 103 yr to ~10° yr.
Once more, these values suggest that a more complex interplay between PAHs and dust grains should

be present in order to account for the survival and detection of PAHs in AGNSs.

6.2.2 Multiple Ionization of PAHs in AGNs

The strong X-ray radiation fields that are generated in the central regions of AGNs can easily
destroy PAHs, as discussed in the previous section. However, PAHs are substantially formed in such
environments, and a conclusive solution for this apparent dichotomy is, to the best of our knowledge,
still unknown. In fact, observation of PAH emission in the kpc-scaled circumnuclear vicinity of
AGNs have been commonly used to track the presence of star forming activity (Peeters et al., 2004;
Stierwalt et al., 2014; Alonso-Herrero et al., 2014; Esparza-Arredondo et al., 2018). This is due to

the fact that the UV radiation emitted from young massive O- and B-stars is able to vibrationally
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excite PAHs (Peeters et al., 2004). The underlying mechanism was recently studied by Marciniak
et al. (2015), which have shown that UV-excited PAHs undergo ultrafast non-adiabatic relaxation
through internal conversion processes that couple the electronic and vibrational degrees of freedom.
The mid-IR emissions coming from excited PAHs are used as star formation tracers in AGNs because
emission from the accretion process contaminates the traditional tracers, such as UV emission, H «
and Pa a.

In addition to the destruction pathway, Jensen et al. (2017) have recently shown that the AGN
Seyfert nucleus could act as a central excitation source of PAHs within 10-500 pc from the nuclear
region. According to their findings, the interaction of shielded PAHs with the radiation field emitted
from the AGN can vibrationally excite such molecules, which could undermine the PAH emission as
a star forming tracer within the kpc distance range from the central region.

Besides destruction and vibrational excitation, our results point to a third fate of the PAH molecules
that are formed within the inner regions of AGNs. Since the removal of two electrons from the aro-
matic moiety weakens both the C—H bonding and the cohesion of the carbon skeleton, the production
of such metastable species could enhance fragmentation by activating Coulomb explosion dissocia-
tion pathways (Voit, 1992). This is corroborated by our results with 2500 eV photons, which show
a plethora of low-mass fragments in significantly yield when compared to the mass spectra taken at
lower photon energies (see Monfredini et al. 2019 for comparison between the mass spectra of naph-
thalene at 275, 310 and 2500 eV). On the other hand, our results also suggest that the production of
stable multiply charged ions increases as a function of N¢. In contrast to doubly charged diatomics,
for which metastability is achieved through the formation of strong covalent bonding aided by polar-
ization effects (Fantuzzi et al., 2017b), the charge density in polyatomic species can be distributed
through a large number of atoms (Cohen et al., 1988). Therefore, by increasing the carbon backbone
of the PAH, it is expected that the respective dication (or even higher order charge states) is more
easily stabilized through charge alternation.

Finally, we discuss the possibility of forming multiply charged PAHs in the surroundings of
AGNSs. Figure 6.5 shows a comparison between the photoabsorption rate (Kpj—qps), the single non-
dissociative photoionization rate (k;h_i) and the multiple non-dissociative photoionization rate (k?);—i)
of the PAHs studied herein in the selected AGN sources. In order to show only one datapoint for
each AGN source, we replaced the X-ray photon flux (Fx) of eq. 6.4, which depends on the distance

from the central Seyfert nucleus, by the average X-ray photon flux (Fx) shown in Table 6.2, which
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is the average flux within 20-80 pc for each one of the sources. It is possible to see that, irrespective
of the source, the kﬁ_i values are significantly greater than the corresponding k;h_i ones, evidencing
the high tendency of these systems to form multiply charged states. In addition, it is possible to see
that the multiple non-dissociative photoionization rate of pyrene is remarkably higher than the ones
of the other PAHs. These results suggest that stable multiply charged PAHs could be formed in the
circumnuclear regions of AGNss.

Neutral and ionized PAHs present large differences in the relative intensities of their resulting IR
spectra (Allamandola et al., 1999; Tielens, 2008). However, there is still no evidence for a unam-
biguous identification between singly and doubly charged PAHs in the ISM (Zhen et al., 2017). The
precise determination of the charge state of PAHs is a relevant astrophysical feature, which is also
corroborated by our results. Further studies aiming at the spectral signature of these multiply charged

species should be developed in the nearby future.
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Chapter 7

Experimental Results I'V: Condensed Phase

Up to this date, more than 200 molecules have been detected in the interstellar medium (Miiller
et al., 2018). The presence of large chemical structures (>5 atoms) in these environments illustrates
the existence of physical effects and chemical mechanisms that contribute to the formation and stabil-
ity of different molecular species, in spite of the high UV and X-ray radiation fields (Deguchi et al.,
1990; Jones et al., 2011; Micelotta et al., 2010a,b; Reitsma et al., 2014; Oberg, 2016; Quitian-Lara
et al., 2018; Monfredini et al., 2019).

In Chapter 1, we reviewed some routes for molecular formation in the interstellar medium. Chem-
ical reactions in condensed phase involving the participation of radicals and neutral molecules play a
major role in the formation of complex organic molecules (COMs) in low-temperature environments
(Herbst and van Dishoeck, 2009; Tielens, 2005). In this context, radicals are easily formed on the
surface of interstellar ices from the interaction with UV photons and other sources of ionization and
dissociative radiation (Fig. 7.1, Burke and Brown 2010; Fedoseev et al. 2012). Ions and radical
species react quickly with other moieties to form more complex molecules (Garrod et al., 2008; Fe-
doseev et al., 2012; Oberg, 2016). For example, the hydrogenation of diatomic molecules, such as
CO and NO, can lead to the formation of COMs, such as methanol (CH3OH, (Chuang et al., 2016)),
glycolaldehyde (CH,OHCHO, (Li et al., 2017)), ethyleneglycol (HOCH,;CH;,OH, (Li et al., 2017))
and hydroxylamine (NH>,OH), an amino acid precursor (Li et al., 2017; Sorrell, 2001; Congiu et al.,
2012). These examples highlight the importance of condensed phase reactions for the formation of
complex organic molecules.

In addition to the chemistry of COMs, condensed phase reactions also play an important role

in the formation and evolution of PAHs in distinct astrophysical environments. Recent laboratory
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Figure 7.1: Schematic representation of an astrophysical ice and some examples of processes that can
occur on its surface. Credits: Center for Space and Habitability (CSH), Universitit Bern. https :
/ /www.csh.unibe.ch/services/infographics /index.ng.html.

simulation experiments show that aromatic molecules, such as benzene (C¢Hg), naphthalene (CioHg)
and phenanthrene (C14Hjg), can be efficiently formed from the interaction of acetylene (CoH,) ice
analogues with cosmic-rays at low temperatures (Abplanalp et al., 2019). Photochemical reactions on
astrophysical ice surfaces can lead to saturation of carbon chains and hydrogenation of PAHs (Sorrell,
2001; Henning, 2010; Herbst and van Dishoeck, 2009; Tielens, 2005; Congiu et al., 2012; Chuang
et al., 2016; Li et al., 2017). Additionally, laboratory simulations of meteoritic organic globule ana-
logues suggest that such structures are actually the final products in the evolution of carbonaceous
matter as a consequence of the coagulation of interstellar PAHs. (Saito and Kimura, 2009). As
they are observed in protoplanetary disks (Seok and Li, 2017) and in the ISM, understanding the
low-temperature formation and fate of non-substituted PAHs, as well as those of PAHs carrying sub-
stituent groups, are of significant importance.

In this chapter, we apply experimental methods to examine the interaction of a high energetic
electron beam with benzene (Ce¢Hg), chlorobenzene (CgH5Cl), phenol (C¢HsOH) and cyclohexane
(CeH12) solid samples, simulating electron-driven chemical transformations that occur on the surface
of astrophysical ices. To the present date, only preliminary results are obtained, which are briefly
shown in the following sections. The experimental setup is described in Chapter 3. Briefly, the

samples were condensed at a temperature of 125 K on a steel substrate and were subjected to ioniza-
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Figure 7.2: Overview of the mass spectrum (0-90 m/q) of fragments desorbed to the gas phase from benzene
(blue), chlorobenzene (green), cyclohexane (red) and phenol (purple) condensed at a temperature of 125 K,
and subjected to an electron beam impact of 2.3 keV.

tion after electron beam impact of 2.3 keV using the Electron-Stimulated-Ion-Desorption technique
(ESID, Ramsier and Yates 1991). The desorbed fragments were analyzed by TOF-Mass spectroscopy.
All condensed phase experiments with astrophysical ice analogues were carried out at the Laboratdrio

de Quimica de Superficies (LaQuiS) of the Federal University of Rio de Janeiro.

7.1 Hydrogenation and Deprotonation of Substituted Benzene

Rings in Astrophysical Ice Analogs

Figure 7.2 shows an overview of the mass spectrum (0-90 m/q) of cations desorbed to the gas
phase of pure samples of benzene (CgHg), cyclohexane (CgHj;), chlorobenzene (CqHs5Cl) and a
solution of phenol (C¢H5OH) in methanol (CH30H) at 89%. The fragmentation pattern is dependent

on the nature of the substituents. However, in all cases it is possible to identify the H; (n = 1-3)
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Figure 7.3: Schematic diagram of the complete protonation and deprotonation reaction of benzene
molecule.

ions, as well the Cn family groups C; (12—15 a.m.u.), C; (24-30 a.m.u.), C3 (36—44 a.m.u.), C4
(48—58 a.m.u.), C5 (60—72 a.m.u.) and C¢ (72—86 a.m.u.).

From now on, we will focus on the identification of fragments with masses around 72 to 86 a.m.u.
By analyzing this m/q range for the mentioned compounds, it is possible to verify the influence of
the substituent group on the loss and gain of hydrogen by the aromatic ring. Figure 7.3 shows a
schematic diagram of the process of deprotonation or dehydrogenation (loss of H) and protonation
or hydrogenation (gain of H) of the benzene ring. The experimental results reveal that both reaction
pathways are active in the experimental conditions, as C¢Hn™ ionic fragments featuring partial or
complete loss of hydrogenation, as well as featuring partial or complete saturation, were detected.

Fig.7.4 shows the 72 to 86 a.m.u. region of the mass spectrum of all samples obtained herein. For
benzene (top-left panel), the protonated benzene ion, C¢H7" (or CsHgH™) is predominantly formed.
Moreover, as introduced in the previous paragraphs, it is possible to see that both hydrogenation
and dehydrogenation processes are active. The most produced ions after C¢Hg dehydrogenation are
the benzyl cation, C¢Hs™, and the C¢H" species. The formation of C¢Hy*, CgHs*, CcHo™ and the
cyclohexatriyne cation, Cg*, is also observed. On the other hand, hydrogenation was observed until
the complete loss of aromaticity, with the formation of the cyclohexane cation CgHj,* and protonated
cyclohexane (CgHi,H™) species. It is worth mentioning that such remarkable hydrogenation process
is not observed in gas phase experiments. We suggest that cyclohexane, as well as other alkanes

and cycloalkanes, could be formed as a desorption product of benzene-rich astrophysical ices. The

162



1.5 v T v T v T v T v T v T v 4.5

Benzene

Cyclohexane

(C.H, )H*

6 12

Normalized counts
Normalized counts

Chlorobenzene
. ]
CSHS E
2 ; C.H 3
g 1.0 CSH s 6 1l 3
[] ke
(3} Q
= 5
N +
% CH, §
E 0.5 €8 6 1 - 2
’6 C.H, \ g A (CsHu)H+
4 ‘e 2 v . C, :o ¢
L M CEH: U 4 A A csH:z P
v Y /0 ' v v ‘] vd . "‘ A
‘ v v Y Y Y Y \/
0.0 " T T T y T T T . T T T
72 74 76 78 80 82 84 86
m/q m/q

Figure 7.4: Production of fragments from m/q = 72—86 desorbed to the gas phase from condensed samples
of benzene (top-left panel), chlorobenzene (bottom-left panel), cyclohexane (top-right panel) and phenol
(bottom-right).

relative ionic desorption yields, normalized with the mass of the benzene molecule (78) are shown in
Fig. 7.5.

Figure 7.4 (bottom-left panel) shows the region of the mass spectrum of chlorobenzene with
masses from 72 to 86 a.m.u. This region particularly shows the result of the ejection of the Cl atom
(possibly as Cl' or HCI) from the parent molecule. The profile of the mono-substituted benzene with
a chlorine atom shows a noteworthy resemblance to the one of benzene. As in the previous case,
CeH7™ is predominantly formed and the benzyl cation (CgHs*) is one of the most abundant moieties
of the Cg family group. The latter species is formed directly by the loss of the halogen atom of
chlorobenzene. The formation of dehydrogenated products is active up to the cyclohexatriyne cation
(Ce*), and the C¢H* species is predominantly formed by such process. The formation of protonated

CeH,,* species on the surface of frozen chlorobenzene is active from n = 6 to n = 13. The formation
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of species with odd number of hydrogens is preferential, which is related to the closed-shell nature of
their electronic configurations, in contrast to the ions with even number of hydrogens.

In the bottom-right panel of Figure 7.4, we show the formation of protonated and deproto-
nated species after ejection of OH (possibly as OH™ or H,O) from the parent molecule of phenol
(CeHs5OH). The results reveal that the protonation and deprotonation processes are both active. Sim-
ilarly to the previous cases, the fragments mostly produced from dehydrogenation are C¢Hs* and
CgH". The formation of CgH,*, C¢H3™ and C¢Hy™ are also observed, but not as significant as the
ones observed for benzene and chlorobenzene. Again, hydrogenation of the aromatic ring up to the
saturation limit is also observed, being the fragments with odd number of hydrogens more produced
than the ones with an even number of hydrogens.

Taking into account that protonation is active up to the saturation limit, it is quite reasonable to
suggest that such highly hidrogenated species would be formed after the breakage of the carbon ring
backbone, leading to the formation of acyclic structures. Such ring opening mechanism would facili-
tate the formation of tertiary carbocations, which could aid in the charge stabilization of the monopos-
itive species. It is worth mentioning that the production of dehydrogenated and hydrogenated species
of the type C¢H,,C1* (for chlorobenzene) and C¢H,OH" (for phenol) are also produced in our exper-
iments. However, their intensities are significantly smaller than the ones of C¢H,,*. This reveals that
both hydrogenation and dehydrogenation are more active after nucleofuge (CI and OH) elimination,
suggesting that dissociation of these groups is probably the first step of both pathways.

The top-right panel of Figure 7.4 shows the production of C¢H,* species from the cyclohexane
parent molecule. The loss of one hydrogen atom, leading to the formation of CgH;;*, is the main
fragmentation pathway toward this series. Other closed-shell species, such as CgHy*, C¢H7* and
CgHs*, are also substantially produced. The abundance of the cyclohexane parent ion and the C¢Hg*
species are quite similar, which suggests that the production of neutral benzene from a cyclohexane
ice is more feasible from the deprotonation of a benzyl (C¢H7*) ion than from the electron attachment
into a desorbed CgHg™ species.

Finally, Figure 7.6 shows the formation of highly hydrogenated C¢H,,* (n = 13—15) species from
the cyclohexane experiments. We show that the hydrogenation process in cyclohexane ices is effective
up to the formation of CgH;s*. This is a clear evidence that after the electron impact the cyclohexane
ring is cleaved, which leads to the formation of an acyclic ionic structure. In fact, in a recent pub-

lication we have shown that such open chain structures are among the most stable C¢H,* isomers,
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Figure 7.5: Absolute ionic desorption yields, normalized with the mass of the benzene molecule (78 a.m.u).
Benzene (blue), chlorobenzene (green), cyclohexane (red) and phenol (purple).
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Figure 7.6: Formation of highly hydrogenated C¢H,: (n = 13— 15) species from the cyclohexane experi-
ments. Adapted from Quitidn-Lara et al. (2018).
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and the global minimum is attributed to the 2,3-dimethyl-2-butene (or tetramethyl-ethylene) radical
cation (Quitidn-Lara et al., 2018; Fantuzzi et al., 2019), a highly branched structure. In fact, the first
alkyl branched molecule detected in the interstellar medium was the isopropyl-cyanide (Cz3H7CN)
species, in a recent study developed by Belloche et al. (2014). We suggest, therefore, that the des-
orption of fragments produced from hydrogenation processes in cyclohexane-rich astrophysical ices

could enhance the abundance of branched molecules in the ISM and CSM.
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Chapter 8

Observational Results: The Protostellar Core

IRAS 4A

There is convincing observational evidence, based on e.g. isotopic studies, that the small objects
of our Solar system (comets and asteroids) have retained, at least partially, the chemical composition
of the early phases of the protosolar nebula (Pizzarello and Huang, 2005; Cleeves et al., 2014), pos-
sibly in its prestellar phase, before the onset of the gravitational collapse. Recently, the study of the
composition of Comet 67P by the Rosetta space mission has revealed the presence of numerous com-
plex organic molecules, including glycine, the simplest amino-acid, with relative abundances similar
to those observed in the interstellar medium (Altwegg et al., 2016). These and many other examples
illustrate unambiguously that chemistry in space is efficient and leads to the formation of complex
organics, which may have been inherited by the small bodies of our Solar System from the earliest
stages of star formation. Therefore, it is important to characterize the chemical composition of pro-
tostellar environments and to understand its evolution with the formation of stars similar to our own
sun (Lefloch et al., 2018).

The data described herein were obtained using the IRAM 30m radio telescope from a highly
sensitive survey of the Class O protostellar core IRAS 4A, in the spectral windows 72-115 GHz, 130-
172 GHz, 205-272 GHz, as part of the Large Program ASAI. The goal of ASAI was to investigate the
emergence and the evolution of molecular complexity along the formation of solar-type protostars.
This was achieved through unbiased spectral surveys of a carefully selected sample of ten template
sources, which cover the full formation process of solar-type stars, from the prestellar phase to the late

protostellar phase, including jets and outflows. In this chapter, we present the results of the molecular

167



survey of IRAS 4A (see Chapter 1), the brightest protostar of the ASAI sample and a template for

astrochemical studies of solar-type star formation.

8.1 Identification of the Molecular Species in IRAS 4A

The final line spectra of IRAS 4A in the 3mm, 2mm and Imm bands display a large number of
emission lines, as shown in Figs. 8.1, 8.2, 8.3. The complete spectrum of the source can be seen in
Appendices A, B and C.

Molecular lines were identified and analyzed using the version 5.1 of the software CASSIS de-
veloped at IRAP (Toulouse, France) for that purpose (Vastel et al., 2015). For the lines identification,
we used the Cologne Database for Molecular Spectroscopy (CDMS; Miiller et al. (2005)) and the Jet
Propulsion Laboratory (JPL) catalogues (Pickett et al., 1998). In this survey we consider only the

lines detected with an intensity equal or greater than 30.

8.1.1 CASSIS

The CASSIS (Centre d’ Analyse Scientifique de Spectres Instrumentaux et Synthétiques) software
(CESR and IRAP, 2019), developed by CESR/IRAP since 2005, allows the analysis of single disk
spectra, with four main tools (Fig.8.4):

1. Line identification tool. This module allows spectral exploration and identification of chemi-
cal species through local spectroscopic databases (mainly CDMS, JPL, NIST, Vastel).

2. Prediction of spectra tool. This module allows spectra prediction from any single disk tele-
scope using local spectroscopic databases and integrated model information.

3. Data comparison tool. This module allows comparison of telescope (or laboratory) data with
a variety of models.

4. Rotational diagram tool. This module allows the determination of the physical parameters
of the source after generation of the rotational diagram plot. These diagrams are used for obtaining
estimated values of column densities and excitation temperatures of molecular species (both with
error bars).

In order to adjust the line profiles, the internal formalism of CASSIS defines the opacity of the
line as a function of the column density and the excitation temperature (Vastel, 2016). Assuming the

latter as a constant along the line of sight, we have :

168



0-} i I T 1 T | T T 1 1 I i ¥ ] T

0cs D,CS c—CqHy
o Hes' CH,CCH
~-0.05 18
< HC®o CH,DOH
Fs
Om ik & g T ok ot ol kit i o 0 kb
85000 85100 85200 85300 85400 85500
Rest Frequency (MHz)
0»}. T H H H H H H I H H H H I H H I H T
v o—CaHy NHpD
£0.05 [HoCO* C,H
‘o L—l 29,
e Si0
0 ) 1 i b A " s e
85500 85800 85700 85800 85800 58000
Rest Frequency (MHz}
0«3‘ T H H I H H H H I H H H H I H T . ¥ T ]
H e | :
o 15 ]
Mg [HCTON| SO CCS -
e HCOpH
O Pt sl { i L { L o ik :" il t :
86000 861060 86200 88300 86400 86500
Regt Frequency (MHz)
0‘ }. ¥ 1 H H H H H [ His{};’ H H [ H
HCO Sio
£0.05 Voo HCO
*e:s: HCOOH  CH,0H
0y il : 1 1 | 0
86500 88600 88700 86800
Rest Frequency (MHz)
Ga}— T H [ H H H H I H H H H I l
HN'CC >
[ 0.05 CCH
* E
& CHLOCHO 1
o “‘U h L 1 I ) 1 | 5“ H‘ : [ il AHV‘
87000 87100 87200 873200 87400 87500

Fest Frequency (MHz)

Figure 8.1: Final line spectrum detected between 85000 and 87500 MHz towards IRAS 4A in the 3mm
band. The main lines, with intensities higher than 30, are identified. Intensities are expressed in units of
Antenna temperature 7.
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where @, is the line profile with [ ®,dv = 1, By, is the probability of the absorption of a photon,
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Figure 8.2: Final line spectrum detected between 156500 and 158000 MHz towards IRAS 4A in the 2mm
band. The main lines, with intensities higher than 30, are identified. Intensities are expressed in units of
Antenna temperature 7).

B,; is the probability of stimulated emission of a photon, and n; (n,) is the density of the state [ (u).
For more details, see Chapter 2).
For a Gaussian line fit, we can express the opacity 7,; as a function of the cloud depth z by the

following equation:

3

Auc ¢ (nlgu > !
Tu\Z) = ny, —1 dZ 8.2
u(2) 8r3Av/T/2VIn2 Jo - \ g ®-2
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Figure 8.3: Final line spectrum detected between 250500 and 253000 MHz towards IRAS 4A in the Imm
band. The main lines, with intensities higher than 30, are identified. Intensities are expressed in units of
Antenna temperature 7).

where Aw, in velocity units, is the FWHM of the observed line. Integrating on the line of sight,

we have the opacity at the line center, 79:

2

8u c
To = =—
O & 8m2An/a/2VIn2

where Av, in frequency units, is the FWHM of the observed line, and N, is the column density of

AN, (1 —exp ! kBTw> (8.3)
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Figure 8.4: Image of the graphical framework of CASSIS 5.1.1 software

highlighted. Adapted from CESR and IRAP (2019).

the lower state.

We used Gaussian profiles to fit all the emission lines detected in IRAS 4A spectra. For the

chemical identification of the emission line we use the CDMS and JPL catalogues.

8.1.2 Line profile fitting

Inspection of individual profiles in the line survey leads to identification of three types of profiles,
as can be seen in Figs. 8.1, 8.2 and 8.3: narrow line component (N), double narrow plus wide (N +
W) components, and multi-component, hyperfine profiles (hfp). This is illustrated in Figs. 8.5, 8.6

and 8.7. The physical interpretation of these kinematical components is presented in the next section.
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Figure 8.5: Example line profile fit (N type) with a single narrow emission.

We also encountered a few special cases, like e.g. CO and 13C0, in which a strong absorption feature
was detected (Fig. 8.8). As discussed in Chapter 3, these features are caused by contamination from
the reference position during the data acquisition in Wobbler Switching mode. In those few cases,
we discarded the contaminated spectral line profiles and made use of the "clean" spectra obtained in
Position-Switching mode for the subsequent analysis. The determination of the physical parameters
of the different chemical species identified in the source is strongly linked to the type of line profile.
Emission lines with a single component, such as those in Fig. 8.5, allow a proper fitting.

The presence of multiple components generates a greater dispersion in the rotational diagram.
Since they are actually tracing physically different components, the analysis was performed separately

for each component.

8.1.3 Rotational Diagram Analysis

The rotational diagram draws the distribution of the column densities of the different energy
levels of a chemical species as a function of the energy levels (Goldsmith and Langer, 1999; Vastel,
2016). Under the conditions of local thermodynamical equilibrium (LTE), the distribution follows a
Boltzmann distribution (see eq. 8.8), i.e. the natural log of the statistically weighted column density
(N, / gu) is a linear function of the level energy (E, /k). The slope of the line is inversely proportional

to the excitation temperature of the transition. Under LTE conditions, all transitions have the same
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Figure 8.7: Example of line profile adjustment (hfp type) with an emission of hyper-fine components.

excitation temperature, which is then referred to as the rotational temperature.
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Figure 8.8: Example of the CO emission line with the presence of strong absorption profiles.

For the rotational diagram, CASSIS estimates the column density in the upper state as:

’wkv? T
N, = / Tpdv X WA, X i (8.4a)
No—wx TR (8.4b)
e hC3Aul T '

where W is the integrated area, C; is the optical depth correction factor, and 7j, is the brightness
temperature of the molecular transition. With C; = 1 when the line is optically thin, 7, which is the

optical depth of the transition, can be written as:

AN, [ < hv ) 1] 8.5)
T = ex _— - .
8mv3Avy/T/2VIn2 P\ ks
where T,,, is the rotational temperature of the molecular transition. Assuming that hv/kg > 2.7

K, 7y is given by:

o 1 1—e
e ()]

For a molecule at LTE, the excitation temperatures of all the rotational transitions are identical,

1} X T (8.6)

175



equal to the rotational temperature and thus the population of each level is given by:

]Vtot ( _Eu )
“ Q(Tror)gu P kBTrol

Rewriting equation 8.7, one retrieves the Boltzmann Distribution law:

Ny . Nior Ey,
In— =In —
8u Q(Trot) kpTror

In order to obtain a reliable estimate of the physical parameters of a molecular species from a ro-

(8.8)

tational diagram analysis, the first step is therefore to measure the line parameters (velocity-integrated
flux, main-beam brightness temperature, linewidth) of all the molecular transitions identified in the
line survey. Once done, CASSIS produces a detailed .rotd file with the integrated area and the rms
values of all the transitions.

Then, a non-negligible difficulty consists in estimating properly the brightness temperature of the
molecular transitions, from the main-beam brightness temperature 7j;p. The latter is obtained from
the spectra delivered by IRAM 30m, which are expressed in antenna temperature 7, corrected for
atmospheric attenuation and sky coupling. The intensities are easily converted to main-beam antenna
temperature units Ty by applying the values of the forward efficiency Fe s (sky coupling) and the
beam efficiency B, sy, which are calibrated and monitored by the IRAM 30m staff.

The source brightness temperature, which is the "real" astrophysical quantity of interest, can
be rigorously obtained only though the deconvolution of the source intensity distribution from the
instrumental response, as is the case in interferometry. For single dish telescope observations, only an
approximate deconvolution is performed, which consists in adopting an idealized (simple) geometry
for the source distribution, usually uniform or gaussian-like. In the case of IRAS 4A, and based on
the previous observations of the cold molecular gas and dust in the source, we have adopted a uniform
source size of 100 arcs for all molecular transitions of low excitation (7,,; < 30K). This point is further
discussed in the next section. The value for the uncertainty of instrumental calibration is given by the
user. In this case, the instrumental uncertainties of IRAM 30m are typically 10%, 15% and 20% for
spectral bands at 3mm, 2mm and Imm, respectively (Lefloch et al., 2018). Then, the uncertainty of

the integrated area is calculated using the following formula:

AW = \/(cal/lOO x W)+ (rmsv/2 x FWHM x Av)? (8.9)
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where cal (%) is the calibration value, W (K km s71) is the integrated area, rms (K) is the noise
around the selected species, FWHM (km s™') is the full width at half maximum and Av (km s7!) is

the bin size. For more details see Vastel (2016).

8.2 Molecular Content

In this spectral survey, using the CDMS and JPL catalogues, a total of 92 molecular species
was detected, including main and rare isotopologues. A grand total of 1456 rotational transitions
was detected, where 1254 correspond to the narrow emission and 202 to the emission of the wide
component. The summary of the spectroscopic properties and observational parameters of all detected
lines are shown in Table D (also Appendix D).

Based on a careful analysis and fitting of the multi-component line profiles in the survey, we found
that line profiles can usually be divided as follows: a narrow (N) component with an FWHM of 2-3
km s~!, and a wide (W) with an FWHM ranging between 5 and 30 km s~!, arising from the molecular
outflow (see Lefloch et al. (2018)).

Of the 92 molecular species identified and analyzed in this survey, more than 80% display a
component with an excitation temperature below 30K. On the other hand, we observe that several
species, like e.g. CH30H, H,CS, HCCCN, H,CO and OCS display a second, higher excitation
temperature, of lower extent. However, it should be noted that some species, like SO and SO,, also
trace components of high-excitation, associated with the widest profiles (FWHM of 12-17 km s71).

The different molecular species identified in the survey were classified into five distinct groups
depending on the elemental content, following the classification proposed by Lefloch et al. (2018)
for the analysis of the 3mm ASAI data. The groups are C-bearing, O-bearing, N-bearing, S-bearing,
and X-bearing, where X represents either phosphorus or silicon (see Table 8.1). Each molecule was

assigned to a specific group:

e C-bearing: C,H,

O-bearing: C,H,0,

N-bearing: C,H,O,N;

S-bearing: C,H,O.N,S,

X-bearing: P-, Si-
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Table 8.1: Summary of the molecular content of the ASAI line survey of IRAS 4A. Total number of species
and lines detected (all isotopes included) per each elemental group.

Group  No.species No.lines D B3C BN 70 Bo 33s 3¥s 29j

S-bearing 26 228 4 2 1 2 6
N-bearing 25 218 6 3 4

O-bearing 31 701 7 6 3 5

C-bearing 7 99 1
X“-bearing 3 6 1

4 P- and Si-bearing species

The detection of rare isotopologues depends on the instrumental sensitivity and the emitting gas
column density. Therefore, the number of main isotopologues and molecular lines detected is an ex-
cellent indicator of the molecular complexity. The number of rare isotopologues is high for some el-
emental groups, like S-bearing and O-bearing species, for which the total number of detected species
is 26 and 31, with a number of rare isotopologues species of 15 and 19, respectively. The deuterated
isotopologues are also commonly found in both molecular families (see Table 8.1).

In the framework of this thesis, and due to the limited amount of time, we have analysed only
the gas properties associated with the narrow line component, using the rotational diagram technique.
In a first step, we have assumed a size of 100 arcs for the emitting region, in other words, that the
emission arises from an extended molecular gas layer. In practice, it means that the main-beam
brightness temperature of the molecular transitions is equal to the brightness temperature, which is
the true astrophysical parameter. However, complementary to the catalog, the lines with medium and

wide profiles are also included in Table D (see Appendix D).

8.2.1 O-Bearing Molecules

The line survey of IRAS 4A shows a remarkable dominance of O-bearing species, among which
Complex Organic Molecules (COMs) such as CH3;0H, CH3;CHO, CH30OCHO and chemically related
species such as HyCO, H,CCO, with a total of 701 identified rotational frequency lines. Table 8.2 lists
the physical parameters obtained for each of the identified O-bearing species. Among the 31 distinct
species identified, 21 have rare isotopologues. Deuterium is the most commonly found isotopologue
with 7 molecular species, followed by '*C and '80 with 6 and 3, respectively. In fact, a high content
of O-bearing species is a characteristic feature of hot corinos (Bottinelli et al., 2007; L6épez-Sepulcre

et al., 2017). The number of deuterated species is also an important piece of information as it reveals
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the past history of the protostellar material frozen onto the dust grains and subsequently released in
the gas phase as a consequence of the gas warm-up around the protostar and/or protostellar shocks
between the ejected material (jets and outflows) and the parental envelope.

CO lines and its isotopologues are commonly used to trace the low-density gas distribution in
envelopes and outflows of low-mass protostars. Conversely, a molecule such as CH3OH, with a large
dipole moment, allows to probe a wide range of physical conditions. For example, low excitation
transitions of CH3OH are sensitive to the gas density, while highly excited lines are sensitive to both
the kinetic temperature and the gas density (Parise et al., 2006). This is because of the spectroscopic
properties of the molecule. The rotational transitions are characterized by two quantum numbers
(J,K) and the transitions obey the selection rules, AJ, AK = 0,£1. The rotational transitions span a
wide range of spontaneous emission Einstein coefficient A;;, with the consequence that their optical
depths may vary considerably (Goldsmith and Langer, 1999). In the IRAS 4A line survey, we have
detected CH3OH transitions with upper energy levels ranging between 5K and 600K.

Fig. 8.9 shows the rotational diagram of CH3OH and its '3C- and D-isotopologues. After elimi-
nation of lines blended with transitions of other molecular species, scatter remains in the distribution
of CH30OH fluxes. The population distribution in the CH3OH rotational diagram shows three regimes
of excitation, each of them can be fitted in a first approximation by a straight line. Each regime is

n.on

associated with a physical component of "low", "warm", and "high" excitation.

e The cold component is detected in the E,, range between 5 and 40K. It has a column density

Ncr,on = 1.2 (£ 0.5)x 10" cm™2 and an excitation temperature T, = 16.9 (4= 4.3)K.

e The warm component is detected in the E,,, range between 40 and 80K. It has a column density

Newon = 1.2 (£ 1.3)x 10'* cm™ and an excitation temperature T, = 40.7 (£ 25.5) K.

e The hot component is detected at E,,, higher than 80 K. It has a column density Ncy,op = 2.2
(£ 0.4)x 10" cm™ and an excitation temperature T,, = 185.5 (£ 26.1) K.

The parameters of the warm and hot components are merely indicative as an accurate determina-
tion must take into account the actual size of their respective emitting region. In this survey we use
a standard source size of 100 arcs, therefore hot regions are expected to be more compact, with sizes
around 2 arcs. The identification of these regimes of excitation is actually revealing the presence of
aradial gradient of excitation inside the protostellar envelope of IRAS 4A. Molecular emission maps
at high angular resolution are necessary to address this point.

The detected transitions of the rare '3C- and D- isotopologues cover a narrower range of excita-
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Figure 8.9: Rotational diagram of CH30H, '3CH30H, CH,DOH and CH3CHO identified in IRAS 4A with
a source size of 100 arcs.

tion, with E,, between 5 and 160 K. In this range of E,,,, we also detect two excitation components in
their respective rotational diagrams (Fig.8.9). The excitation temperature of the cold and warm com-
ponents of CH30H and its isotopologues are in rather good agreement. The column density of the
main isotope of CH3OH is in good agreement with the reported value, which is x (cp,0n) = 1.1 1078
(Koumpia et al., 2017), for Ny, = 1.6 x 10%* cm™ (Moret et al., 2013; Bottinelli et al., 2007). We note
that these excitation temperatures are also similar to those measured in CH3CHO and H,CCO.

The case of methyl formate CH;OCHO is very illustrative of the difficulties inherent to this kind
of analysis, without information on the exact spatial distribution of the emission. As can be seen in
Fig. 8.10, a simple rotational diagram analysis with a source size of 100 arcsec yields two excitation

components of about 40K and 800K, respectively. The presence of an extended (100 arcsec !) gas
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Figure 8.10: Rotational diagram of HOCO*, CH;OCHO, H,CCO and HCOOH identified in IRAS 4A with
a source size of 100 arcs.

layer of 800K is absurd, obviously, not to mention that no other species in the survey, in particular
CH3OH, displays any similar high-excitation component. The most simple explanation is that the
size of the CH3;0OCHO emitting region is actually smaller. Indeed, repeating the population diagram
analysis with a size of 20 arcsec, we obtain an excitation temperature of about 150K for the high-
excitation component, which is physically much more reasonable and in reasonable agreement with

the results of the other O-bearing tracers, like CH;OH.

8.2.2 S-Bearing Molecules

Sulfur-bearing molecules are the second most abundant species in IRAS 4A, after O-bearing

species. The list of detected S-bearing species is given in Table 8.3 with a total of 228 molecular
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Table 8.2: O-bearing species (including rare isotopologues) identified in IRAS 4A with a source size of 100
arcs.

< 30K < 70K > 70K
id Species Tex (K) N (cm™) Ter (K) N (cm™) Tex (K) N (cm™2)
19002 HDO 154.1 1.1x1013

28503 CcoO 4.4 1.1x10'6

29004 HCO — —

29501 3co 9.6 4.3%1012

29503 clo 28.8(12.0) 1.4(0.2)x 10"

29507 HCO 7.1 6.6x10'?

30001 c'®o0 17.3 2.9x10

30002 H"3Co 9.7 2.1x10'2

30505 HC"0 — —

30004 H,CO 10.8(1.0) 2.8(0.6)x10"3 171.2(72.8)  1.0(0.3)x 10
30510 DCO 7.5(1.0)  5.0(1.2)x10'2

31001 HC'®0 9.9(3.4) 2.7(1.5)x10"

31002 H'3CO 15.6(3.5) 1.6(0.7)x10'?

31003 HDCO 12.6(2.0) 2.2(1.1)x10"3

30503 13¢170 — —

31502 Beiso 69.9 1.8x 10

31504 H,COH 29.4 7.1x 10!

32003 CH;OH 16.9(4.3) 1.2(0.5)x10' 40.7(25.5) 1.2(1.3)x10'¥% 185.5(26.1) 2.2(0.4)x 10"
32004 H,C'%0 18.3(4.2) 4.0(1.7)x 10"

32006 D,CO 14.2(1.8) 3.3(0.8)x10'? 91.9(19.6)  5.6(0.7)x10'?
33004  CH,DOH 19.9(2.6) 2.3(0.4)x10"3 88.0(24.9)  6.3(1.4)x10"3
33502  '3CH;0H 17.2(3.1)  1.2(0.4)x 103  69.8(11.1) 1.8(0.4)x10"3

42501 H,CCO 29.8(4.7) 7.9(1.5)x10'? 80.2(12.0) 9.5(2.1)x10'?
44003 CH;CHO 21.0(1.6)  9.5(1.0)x 10'2 85.5(9.1)  1.2(0.1)x10"3
45010 HOCO 17.42.1) 8.5(1.5)x 10!

46004 C,HsOH 40.2(12.4) 1.8(0.5)x10"3

46005 HCOOH 40.3(4.2)  5.5(0.6)x10'2

46008  CH3OCH; 54.1(15.4) 4.5(1.2)x10"3

58003 CH3COCHj; — —

60003  CH30CHO 37.7(4.0) 2.0(0.2)x10'3  804.0(161.1) 1.8(0.4)x10'4

60501 CH»(OH)CHO — —

lines. Among the 26 species identified, 15 are rare isotopologues. In the S-bearing group, **S is the
most commonly found rare isotope, being found in 6 molecular species. The second most abundant
is deuterium, which is found in 4 S-bearing molecular species.

Simple S-bearing molecules are detected in different astrophysical objects (Pineau des Forets
etal., 1993; Fuente et al., 2016; Gorai, 2018; Lefloch et al., 2018; Jacobsen et al., 2019). These species

are widely used to trace shocks in star forming regions in dense clouds (Pineau des Forets et al.,
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1993; Gorai, 2018). Usually the abundance of SO, and SO molecules increases significantly with
the presence of shocks (Gorai, 2018). S-bearing species are often used to date chemical evolutionary
timescales (CCS/NHj3) and to constrain various physical processes: temperature (SO, SO,, OCS), X-
ray irradiation (SO), grain processing (SO/H;S, SO/SO5), and turbulent transport (CCS/CO). Thus,
these species can be considered as excellent multi-tracers (Pineau des Forets et al., 1993; Gorai, 2018;
Semenov et al., 2018).

On the other hand, the abundance and the nature of the main sulfur carriers on the grains is still
very debated. Recent models of dark cloud chemistry by Vidal et al. (2017) show that depending on
the age of the cloud, the main reservoir of sulfur could either be atomic sulfur in the gas phase or
HS and H;S in icy grain bulks. In the gas phase, H,S participates as a precursor in the formation of
SO and S;0 through sputtering or thermal evaporation (Pineau des Forets et al., 1993; Fuente et al.,
2016). So far, only two molecules were identified in solid phase: OCS and SO;, with OCS being the
only unambiguous identification in the infrared (Fuente et al., 2016). Observations of the protostellar
ice by the James Webb Space Telescope (JWST) will hopefully bring some strong constraints on the
grain mantle composition.

Fig. 8.11 shows the rotational diagrams of SO, 3350, 34S0, and the S'80 with a source size of
100 arcs and the Fig. 8.12 shows the rotational diagrams of the SO, OCS and CCS molecules with a
source size of 100 arcs and 20 arcs. The detected transitions of all the molecular species in 100 arcs
probe a similar range of E,,, between 5 and 100K, except for the OCS and OC?*S with transitions
detected from the energy levels higher E,, to 150K.

In Figs. 8.11 and 8.12, we can see that the rotational diagrams of the isotopologues of SO, CCS
and SO, can be fitted by a single component in the range of excitation considered. The estimated SO
column density is 1.1(£0.2)x 10'* cm™2, while that of CCS is 2.8(40.6)x 10'? cm™. The latter has
column density values comparable in magnitude to the 33S and 3*S isotopes of SO. From Fig. 8.11,
we can see that the excitation temperatures of SO, 34S0 and S'80 are around 10K, while for 33SO
this value is around 20K.

The cases of OCS and the isotopologue OC3*S are more complex. As can be seen in Table 8.3,
assuming a source size of 100 arcs was considered, OCS and OC3*S do not present any low excitation
component.

At 100 arcs, in the OCS population diagram we detect two components (Fig. 8.12). The low-

excitation component has a column density of 4.3(£0.2) x 103 cm™ and a T, of 30.4 (+1.0)K.
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Figure 8.11: Rotational diagrams for different SO isotopologues with a source size of 100 arcs.

These values are in the same range of E,, as the SO isotopologues. On the other hand, the second,
high-excitation component has a column density of 4.7(%1.7) x 10'3 cm™ and excitation temperature
of 60.0(£ 11.4)K, which is detected in a higher range of E,,, above 80K. The analysis of 0C3*S at
100 arcs also reveals two component. The first, with an excitation temperature of around 47K, is
determined in the range of £}, = 15—50K. This result is not consistent at all with OCS nor with the
other S-bearing species.

If the lower excitation components derived for OCS and OC>*S are in rough agreement (30K
and 47K, respectively), the high-excitation temperatures fully disagree (60K and 340K, respectively).
The second component of OC3*S at 100 arcs shows a high excitation temperature much greater than
the warm component of the OCS and the hot component of the CH3OH. However, the excitation

conditions are expected to be the same in the same range of E,,. Again, like for CH30CHO, we
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Table 8.3: S-bearing species (including rare isotopologues) identified in IRAS 4A with a source size of 100

arcs.

< 30K < 70K > 70K
id  Species T (K) N (cm™) Ter (K) N (cm™) Tex (K) N (cm™2)
34502  H,S 47.2 4x1013

35502  HDS 10.8 1.1x10"3

36504  H*S 56.2 1.1x10"3

36503  D,S

44001 CS 12.9(1.7) 2.3(0.5)x10"3

45501 3¢S 5.8 2.9%10'2

45005 HCS 14.4(2.3) 6.9(1.9)x10'!

45502  C¥S  12.6(2.7) 8.3(3.0)x10'!

46001  C3*S  29.3(9.0) 4.7(1.1)x 10"

46509 H,CS 17.0(1.1) 1.2(0.2)x10'3 46.8(7.6) 1.5(0.7)x10"3

47504 HDCS 15.7(0.7) 3.5(0.3)x10'2

48001 SO 11.6(0.7) 1.1(0.2)x 104

48010  SO™  9.8(0.6) 5.4(0.7)x10'2

48507 D,CS 14.1(1.8) 2.5(0.5)x10'?

48508 H,LC*S  9.3(2.4) 1x1012

48510 CH3SH 20.3(6.3) 4.8(1.7)x10'2

49501  33SO  24.0(4.5) 4.5(0.7)x10'2

50001 3*SO  10.7(0.8) 8.3(1.7)x10'2

50002 S0  8.7(2.7) 1.6(0.9)x10'2

56007 CCS  15.5(1.5) 2.8(0.6)x10'?

60001  OCS 30.4(1.0) 4.3(0.2)x10'3  60.0(11.4) 4.7(1.7)x10"3
61502 0'cCs 62.8(7.9) 5.1(1.0)x10'2

62001 OC3*sS 46.7(8.6) 4.6(0.6)x10'2 338.7(256.1) 1.2(0.3)x10"3
64002 SO,  13.1(1.2) 1.4(0.3)x10'3 54.7(24.0) 1.4(0.8)x10!3

66002 SO,  9.4(0.9) 1.1(0.1)x10'2

68001 CCCS 12.7(3.4) 1.0(0.8)x10!?

propose that the OCS emission arises from a smaller region than the 100 arcsec initially assumed.

If we adopt a typical source size of 20 arcs, the excitation temperatures in the E,, range of 5-

100K are now 23.8 (+2.0)K for OCS and 26.8 (£2.5)K for OC3*S. When we adjust the font size

to 20 arcs we get a more consistent result, with excitation temperatures of 71.3 (£60.3)K and 96.6

(£57.5)K for OCS and OC34S, respectively, in the E,, range of 80-120K. These results are now

consistent between different isotopologues and they are also consistent with the results obtained for

other S-bearing species and for CH3OH. These results are much more realistic and show that the high

excitation components in IRAS 4A are more compact and need to be studied in more detail.

To summarize, the population diagram analysis OCS has revealed features similar to those of
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Figure 8.12: Rotational diagram of selected S-bearing molecules identified in IRAS 4A with a source size
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Figure 8.13: Rotational diagram of the complex organic molecule CH3SH identified in IRAS 4A.

CH3O0H. As it probes a wide range of excitation, we can detect two physical components with dif-
ferent T,,. We note that the other S-bearing species cover a narrower range of excitation conditions,
with E,, less than 55K. For this reason, the second OCS component is missed by the other S-bearing
species. The first OCS component is of low excitation with T= 20-30 K. The second OCS compo-
nent is of higher excitation with T ~ 70—-90K. More precisely, OCS may reveal or the presence of a
temperature gradient across the protostellar envelope. A crude estimate of the low-excitation region
size of 20 arcs is provided by the condition of consistency between the OCS and OC3*S analysis.
This implies that the emission at an excitation temperature of 70-90K most likely arises from a re-
gion smaller than 20 arcs in size. We speculate that the difference of size in the emission of OCS
with respect to SO could reflect radial variations of the envelope chemical composition as one gets
closer to the protostar. Emission maps of the S-bearing species at 10 arcs resolution with the IRAM
30m telescope and higher angular resolution with the NOEMA interferometer would help confirm
our interpretation.

Finally in this section, we present the result of the rotational diagram of the methyl mercaptan
molecule (CH3SH, see Fig. 8.13). This is the only S-bearing complex organic molecule detected

in the spectral survey. The estimated column density of CH3SH is 4.8(+1.7)x 10'2 cm™2, with an
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excitation temperature of 20.3(£6.3)K. This species was observed in other star-forming regions, from
low-mass (IRAS16293-2422) to intermediate-mass (Cep E-mm) and high-mass (Sgr B2, G327.3-0.6)
(Linke et al., 1979; Gorai, 2018; Jacobsen et al., 2019; Lefloch et al., 2018; Sahu et al., 2019).

8.2.3 N-Bearing Molecules

In the cold and dense regions of protostellar and prestellar cores, the freeze out of molecular
species onto dust grains is commonly observed (see Bergin and Tafalla 2007; Ceccarelli et al. 2007 for
areview). This is the case of CO, CS, HCO*, H,CO, H,O for instance (Bergin and Langer, 1997). In
these objects, however, other species such as ammonia (NH3) and nitrenium (NoH") remain in the gas
phase for a longer time and their abundance may increase with the increase of the local density (Roueff
et al., 2005), following an opposite trend with respect to that observed for CO (Bergin and Langer,
1997; Belloche and André, 2004; Flower et al., 2006). It is now well established that the depletion
of heavy elements and the increase in the abundance of deuterated species are closely related, since
the adsorption of CO and other gas phase molecules in the grains surface facilitates the deuterium
redistribution by decreasing the destruction rate of deuterated molecular ions (Bacmann et al., 2003;
Ceccarelli et al., 2007; Roueff et al., 2005; Flower et al., 2006; Emprechtinger et al., 2009). An
interesting property of N-bearing species is that they have adsorption energies similar to the one of
CO. Therefore, one might expect them to freeze out in a similar way to CO (Flower et al., 2006;
Emprechtinger et al., 2009). The observed difference of behaviour remains to be understood.

We could identify a total of 218 rotational transitions from N-bearing species in the IRAS 4A
spectral line survey. In total, 25 molecular species were identified, of which 13 have rare isotopo-
logues. The list of identified N-bearing molecular species is presented in Table 8.4. Deuterium is the
rare isotopologue most commonly found, with 6 molecular species, followed by >N and '3C with 4
and 3, respectively.

Fig. 8.14 shows the rotational diagrams of HC3N, NS and CH3CN. Similarly to CH30H, the
rotational levels of CH3CN are characterized by the two quantum numbers (J,K). The dipole moment
of CH3CN is however much larger than of CH3OH, which implies that a much higher H, gas density
is needed for LTE conditions to be met. As a consequence, the rotational diagram of CH3CN presents
a structure more complex than that of CH3OH, further away from LTE, and which can be described as
series of the type K. Each series can be fitted by a straight line of slope 1/T,,. It appears that 7 series

K can be fitted by a gas component of similar excitation temperature Ty, in the range of 33 —55K.
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Figure 8.14: Rotational diagrams of HC3N, NS and CH3CN.

high excitation, in the range of T,, = 33 -55K.

in the low excitation components, indicating that these species are close to local thermodynamic
equilibrium. The detected emission traces a region with T, close to 10K, of lower excitation than

CH3CN, similar to the low-excitation component already reported in other molecular species.
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Table 8.4: N-bearing species (including rare isotopologues) identified in IRAS 4A with a source size of 100

arcs.

< 30K < 70K > 70K
id Species  Tex (K) N (cm™) Ter (K) N (cm™) Tex (K) N (cm™)
18004 NH,D  9.4(4.1) 2.4(2.5)x10"3 79.7 7.3%x10'2
26504 CN 4.7(0.4)  4.9(1.0)x 103
27001  HCN — —
27002  HNC 7.2 1.0x10"3
27505  BCN — —
28002 H"PCN  4.8(0.6) 4.7(1.7)x10'?
28003 HCN  6.6(1.4) 3.8(1.8)x10'!
28004  DCN 5.1(0.3) 4.5%10'2
28005 HN!C 6.3 2.1x10'2
28006 H'’NC 6.3 4.4x101
28508  DNC 6.2(0.3)  5.0(0.6)x 10'2
29005 N,H — —
30008 NO 13.4(1.4) 4.5(0.5)x10'#
30009  N,D 7.3(0.7)  3.5(0.5)x 10'2
30507 NNH 14.2 3.3x10'0
30508 NINH 18 3.5% 100
41001 CH3CN 44.6(7.1)  2.2(1.2)x10"3
43002 HNCO  22.1(1.7) 5.0(0.7)x10'2
43509 HCNO 11.8 9.8x10'0
43510 HOCN 4.6 1.2x10M
44006 DNCO 3.5 3.5%x10!2
45003 NH,CHO 21.6(6.2) 3.5(1.1)x10'" 42.2(37.8) 2.2(2.9)x10!2
46010 NS 8.6(0.3) 8.8(0.9)x10'2
51001  HC3N  16.3(0.8) 2.5(0.4)x10'? 71.9(67.4) 7.0(14.1)x 10"
52005 DC3N 37.9(26.0) 6.7(3.4)x10'0

is clear that the low excitation component of HCCCN can not account for the flux detected in the

transitions of high E,, (> 100K). We find direct evidence for the presence of a second, high-excitation

HCCCN component towards IRAS4A. Unfortunately, the data suffers some scatter, and the fit to this

8.2.4 C-Bearing Molecules

second component is rather poor, though compatible with the warm components of the '3CH30H and

CH,DOH.

The IRAS 4A content in C-bearing species is considerably less rich in terms of identified lines
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Figure 8.15: Rotational diagram of polyyne molecules identified in IRAS 4A at 100 arcs.

to 7 different species — of which 6 are main isotopologues and the last one contains deuterium —
are observed. Table 8.5 shows that most of the C-bearing molecules identified in IRAS 4A are of
the polyyne type. These molecules are highly unsaturated, and therefore present a high C/H ratio.
The linear molecules CCH, 1-C3H and C4H were identified in the source. Higher-order polyynes, the
ones containing five or more carbon atoms, were not detected in our survey. We also observe the
presence of the cyclic C-bearing molecules c-C3H and c-C3Hj, the former being a structural isomer
of 1-C3H. The presence of the unsaturated hydrocarbon propyne (CH3CCH), or methyl acetylene,
is also identified. The signature(s) of deuterated isotopologue(s) were detected in several C-bearing
species. Since these species form preferentially in the gas phase, the detection of the deuterated
counterparts indicate that they are tracing cold gas material, probably associated with the external

protostellar envelope of IRAS4A.
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Figure 8.16: Rotational diagram of hydrocarbon molecules identified in IRAS 4A at 100 arcs.

arcs.
< 30K < 70K
id Species  Tey (K) N (cm™) Ter (K) N (cm™)
25001 CCH 7.1(0.4)  5.4(0.6)x10'3
37002 1-C3H  14.0(5.8) 3.0(1.8)x10'
37003 c-C3H  3.8(0.3) 1.9(0.3)x10!2
38002 c¢-C3Hp, 15.7(1.2) 4.2(0.7)x10'2
39003 c-C3HD  7.9(1.0) 6.6(1.5)x10!!
40502 CH;CCH 38.8(1.8) 3.3(0.3)x10'3
49003 C,H 17.2(3.7) 6.3(2.2)x10!?

Table 8.5: C-bearing species (including rare isotopologues) identified in IRAS 4A with a source size of 100

Figs. 8.15 and 8.16 show the rotational diagram of all C-bearing molecules identified in IRAS

4A. The highest relative abundances with respect to Ny, are: CCH ( = 3.4x 107™); methyl acetylene,

192



23.6 —7T r 1 > 1 1 T 1 T 1T 1 " T 7 24.5 ! ! ! ! !
s T e N=9.0x10"cm? | ] e N=4.8(2.4)x10" cm?| |
23.4 - 4 _
‘ T,= 110K 24 % T, = 12.0(3.3) K ]
2324 4 )
23.0 _ B9 .
= 22.8- 4 3 | i
2 | e z 23.0 }
S 226 {1 5 ] l
I 225 -
22.4 - i .
4 PN \\} R T SIO \\\ 7
22,2 - . 22.0 % E
22.0 | @ g 4 | e ' 1
—7r1r - 1 - r - r 1~ 1 T 1T ™ 17 21.5 T T T T T T 4 T T T 4
5 6 7 8 9 10 M 12 13 14 15 5 10 15 20 25 30 35
Eup (K) Eup (K)

Figure 8.17: Rotational diagram of P-bearing and Si-bearing molecules identified in the protostellar object
NGC 1333 IRAS 4A.

CH3CCH (y = 2.0x107%) and C4H (x = 3.9x107'%). The cyclic C-bearing molecules c-C3H; (x =
2.6x10719) and ¢-C3H (x=1.2x 10719 have relatively lower abundances in comparison. This result

evidences that polyyne chains are the most common carbon reservoir among the C-bearing molecules

in the protostellar object NGC 1333 IRAS 4A.

8.2.5 X-Bearing Molecules: P and Si

In this section we report the identification of phosphorus- and silicon-bearing molecules. Phos-
phorus is a crucial element for prebiotic chemistry and for the development of life on Earth, Therefore,
the study of phosphorus in low-mass protostar regions such as IRAS 4A is important to understand
its role and properties in the early phases of the proto-Solar nebula.

Phosphorus-bearing species, such as HCP, PH3z, CP, CCP, PO and PN have been identified around
evolved stars and it was proposed that these last structures (PN and PO) are the main phosphorus
reservoirs in the gas phase (Agundez et al., 2007; Milam et al., 2008; Lefloch et al., 2016; Ziurys
et al., 2018).

Lefloch et al. (2016) conducted a systematic search for P-bearing molecules in star forming re-
gions of solar type. The authors detected both PO and PN. This was the first identification of PO in
a solar-type star forming region. The authors showed that both PO and PN were associated with a
shock region in the outflow powered by the low-mass class O protostar L1157-mm.

PN is the only P-bearing species which was detected towards IRAS 4A. Two weak PN emission
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Figure 8.18: Percentage of identified rotational lines per molecular group in IRAS 4A.

lines were identified, both with narrow line widths and low excitation (T,,= 11 K). (Fig.8.17). Unlike
L1157-mm, the narrow line widths of the line profiles exclude a shock origin for the PN material in
the envelope. The origin of this emission and the formation pathway of PN requires some work both
from modellers and observers.

For the sake of completeness, we mention the detection of SiO and its two are 298 and 39Si iso-
topologues, towards IRAS 4A (Fig.8.17). The presence of SiO in the IRAS 4A outflows had been
reported by several groups using both single-dish (Lefloch et al., 1998) and interferometric observa-
tions (Santangelo et al., 2015). The line profiles are very broad (up to 20 km s~!) and coincide very
well with those of CO, showing that SiO emission arises from the protostellar outflow. As explained
in the introduction of this Chapter, we concentrated our analysis on the chemical composition of the
protostellar envelope, and, for this reason, we did not model the SiO emission, as it arises from shocks
in the outflowing gas.

Tables 8.2, 8.3 8.4 and 8.5 shows a list of all O-, S-, N-, C-, P- and Si-bearing species identified in
IRAS 4A, including information of main isotopologues, rare isotopologues and isomeric structures.
The physical parameters such as excitation temperature and column densities are also in these tables.

The rotational frequencies identified per molecule are found in Table D (see Appendix D).
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Figure 8.19: Number of species identified per molecular group. Top panel: number of main and rare
isotopologues identified per group. Bottom panel: identification of rare isotopologue type per molecular
species

8.3 Summary

In summary, the analysis of the ASAI survey of IRAS 4A has allowed us to obtain a chemical and

physical description of the protostellar envelope. The molecular species identified at the source show
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Figure 8.20: Representative diagram of the morphology of IRAS 4A.

a clear dominance of the oxygen-bearing species, representing 56% of the total number of molecules
identified. Other important groups, such as sulfur- and nitrogen-bearing molecules, constitute 18%
and 17%, respectively (Fig. 8.18). Carbon-bearing molecules are responsible for 8% of the total
number of species that we identified, while X-bearing (X = P, Si) molecules account for merely 1%.

The analysis of species with rare isotopologues shows that deuterium is present in 4 of the 5
groups characterized in IRAS 4A. Similarly, we can see that the group of sulfur-bearing species has
the highest content of rare isotopologues species, with 15 in total, followed by the O-bearing and
N-bearing groups with a total of 13 each (Fig. 8.19)

The high number of rotational frequencies attributed to 92 different molecular species clearly
indicates that IRAS 4A is a chemically rich source. By using rotational diagram analysis, we show
that the object presents three distinct physical components (Fig. 8.20). The cold outer envelope, with
a size of ~ 100 arcs, is rich in simple molecular species with excitation temperatures below 30K. The
warm medium excitation component, with temperatures ranging from 40 to 60K, is the one where
complex organic molecules are identified. We estimate that such component has an approximate size
of 20 arcs, as described by the OCS molecule. Finally, we show the presence of a third component,
with excitation temperatures between 80 and 200K. This component is consistent with a dense and

hot compact region of the hot corino. Based on our analysis, we propose that the hot envelope has a
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size of ~ 0.2 arcs, as traced by the CH3;0OH molecule. Further interferometric observations would aid

in the morphological characterization of the hot and warm regions of IRAS 4A.

197



Chapter 9

Summary

9.1 Experimental Results

9.1.1 The Cyclohexane Molecule (C¢H;,)

In Chapter 4, we probed the stability of the fully hydrogenated benzene molecule, cyclohexane,
in circumstellar photodissociation regions. We obtained the fragmentation pattern of the CqHj, under
interaction with UV and X-ray photons. The production of the radical parent cation, as well as its
photodissociation products, were evaluated from 10.8 eV to 307.0 eV photon energy, and their pro-
duction was directly compared with the previous data of benzene, the basic unit of a PAH molecule.
The main geometrical features of the most stable structures of the parent ion C¢H|>™) were described.
We determined the absolute photoionization and photodissociation cross sections of cyclohexane, and
their values were compared to those of benzene. The astrochemical implications of the experimental
data and computational results were discussed in the context of the PDR region of the carbon-rich
planetary nebula NGC 7027, which provided insights into the photostability of super-hydrogenated
PAHs in such photon-rich environments.

A decreasing exponential profile is observed for the production of the parent ion of cyclohexane in
the range of energies from 10.8 eV to 200.0 eV, and its production is approximately half of benzene’s
parent ion around 16 eV. From 10.8 eV to 20.0 eV, ions from the C4H; and CsH; families are the
ones most produced, while in the UV range from 20.0 eV to 100.0 eV families with less amount of
carbon atoms are preferentially formed. For higher UV energies, the production of C3HJ becomes

significant, a trend which is also observed in the soft X-ray region. The astrochemically relevant H}
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and CH%r ions were also observed with reasonable abundances, likely formed from H* migration to
a CH, unit followed by dissociation. Stable CgH,, ions, on the other hand, are not efficiently formed
after the molecular rearrangements that follow the X-ray ionization process of neutral cyclohexane.
The smaller photoabsorption of cyclohexane in comparison to that of benzene is responsible for
its lower photoionization and photodissociation cross sections. By obtaining these absolute values
and combining them with the X-ray photon flux in the PDR of NGC 7027, it was possible to evaluate
the photoionization and photodissociation rates of cyclohexane, as well as its half-life time, in the
mentioned astrophysical object. We estimate that cyclohexane has a half-life time of 3.5x 10° years
in the Cls resonance energy of 287.7 eV. In the Cls edge, the survival of cyclohexane is ~ 20%
higher than that of benzene. Since the strong Cls— 7* aromatic transition of PAHs is expected to be
suppressed as the number of peripheral H atoms increases, such process will ultimately result in an
enhancement of the X-ray stability of H,-PAHs to photodissociation processes, which is described
herein as an auxiliary protection mechanism of super-hydrogenated PAHs. A damping out process
of the strong absorption feature of aromatic molecules is, thus, related to the protective effect of
additional hydrogen atoms in H,-PAHs. Finally, as the most stable C¢H7, structures are acyclic
branched species, we propose that the single photoionization of cyclohexane and other saturated

hydrocarbons could enhance the abundance of branched molecules in PDR regions.

9.1.2 The Biphenyl Molecule

In Chapter 5, we make use of mass spectrometry measurements, coincidence techniques and
astrochemical modeling to study the photoionization and photodissociation of biphenyl (C12Hig)
upon its interaction with soft X-ray photons in the edge of the inner-shell C1s resonance energy. The
molecule is composed of two phenyl rings connected by a C—C sigma bond in a non-planar fashion,
with a torsional angle ¢ between the CgHs rings of around 44°. Biphenyl is pointed as an important
building block of polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (Ci4Hjo) and
pyrene (Ci6Hjo), and could be produced in planetary nebulae by both radical-neutral and radical-
radical reactions in the gas phase. All measurements were performed using synchrotron radiation
at the Brazilian Synchrotron Light Laboratory, National Center for Energy and Materials Research
(LNLS/CNPEM), Campinas. Our results are compared with the ones previously obtained by our
group for benzene (CgHg) and naphthalene (CioHg), and discussed in the context of four planetary

nebulae featuring PAH infrared emission: BD+30°3639, NGC 7027, NGC 5315 and NGC 40.
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We show that the most produced singly-charged ion for a photon energy below the C1s resonance
is CgHs*. Such species is obtained by breaking the central C—C bond of biphenyl after the photoion-
ization process, and retains the six-membered ring aromatic structure. The second most prominent
ion is C1oHjp™, whose global minimum energy geometry is related to the singly-charged acenaph-
thene molecule, composed of a C,-bridged naphthalene. Since this structure (A.17") is almost 20 kcal
mol~! more stable than the biphenyl-like structure (A.3") as revealed by DFT and coupled-cluster
calculations obtained by collaborators, we expect that the measured C1,H ;o™ ion isomerizes to A.1%".
For a photon energy above the C1s resonance, these species are further dissociated into smaller frag-
ments, especially the open-chain species C4H,™ and C4H3™. This result suggests that ring-opening
photoionization pathways are more active for photon energies above the Cls resonance.

The doubly-charged ions CeH32" and CgHs52t were also unambiguously identified in our mass
spectrometry measurements. The detection of CgHs?" indicates that heterolytic charge separation
after cleavage of the central carbon-carbon bond in the doubly-charged parent ion is also active. By
using photoelectron photoion photoion coincidence (PEPIPICO) techniques, we were able to identify
that the main fragmentation processes after double ionization of biphenyl are related to the production
of a Cg-containing neutral species and singly-charged fragments containing 2 and 4 carbon atoms in
a three-body decay fashion.

By combining our mass spectrometry experiments with the absolute photoabsorption cross sec-
tions (0 p-abs) Measurements by the group of Hitchcock, we were able to determine the photoion-
ization (op,-;) and photodissociation (o p,—4) cross sections of biphenyl at 275 eV and 310 eV. The
Oph-a values were calculated as 8.67 x 10720 ¢cm™ and 1.17 x 1077 cm™ at 275 eV and 310 eV,
respectively. We used these values in combination to X-ray attenuation models due to the presence of
interstellar grains to obtain the photodissociation rates (k,;-¢) of biphenyl in distinct planetary nebu-
lae at several distances from the central star. These quantities were employed for the estimation of the
half-lives (¢, /,) of biphenyl at 275 eV and 310 eV in planetary nebulae featuring PAH emission. For
a photon energy of 275 eV, the half-lives of biphenyl span from 2.46 x 107 yr to 4.34 x 10® yr, while
for 310 eV they span from 1.07 x 10° yr to 1.99 x 10° yr. These values are, at best, similar to the ones
estimated for amorphous hydrocarbons and PAHs in the ISM (2—6 x 108 yr), but at least one order
of magnitude smaller than the injection timescales of carbonaceous materials into the ISM by AGB
stars and carbon-rich planetary nebulae (2.5 x 10° yr). These values suggest that other processes,

such as density inhomogeneities, should be considered to account for the presence of biphenyl and
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small-sized PAHSs in such hostile environments.

9.1.3 PAHsin AGNs

In Chapter 6, we examined the photoionization and photodissociation profiles of selected poly-
cyclic aromatic hydrocarbons (PAHs) upon their interaction with 2500 eV photons. The results are
discussed in the context of the chemistry of the circumnuclear regions of AGNs, which is the fo-
cus of our study. The measurements were performed by Dr. Thiago Monfredini as part of his PhD
thesis (Monfredini, 2015). The following molecules were studied: naphthalene (C;oHg), anthracene
(C14H19), 2-methyl-anthracene (C;4Hy9CHj3, or C;5H/,) and pyrene (C;6H;¢).

By using the PIY results obtained by Monfredini (2015), we could determine the photoionization
and photodissociation cross sections of the PAH molecules at 2500 eV. These values were used to
estimate the photoionization and photodissociation rates of PAHs in the circumnuclear regions (20-
80 pc) of six AGN sources with distinct X-ray fluxes. From the photodissociation rates, we could
estimate the half-lives of those molecules for different optical depth values of the X-ray photon flux.
These values were compared to the PAH injection timescale (2.5 x 10° yr) described by Jones et al.
(1994) assuming that the main sources of PAHs are carbon-rich AGB stars.

In spite of considering attenuation of the X-ray radiation field by a dusty torus associated with an
H, column density of 2 x 10?3 cm™2 (7 = 4.45), the lifetime of PAHs spanned values from 108 yr to
merely 10? yr. These results may indicate that, in order to circumvent molecular destruction, a more
sophisticated interplay between PAHs and dust grains should be considered. In this perspective, we
briefly describe two possible scenarios in which grains could assist in the survival of PAHs.

We could not see any significant difference in the half-life values by increasing the size of the
carbon backbone. This is probably due to the fact that we spanned only small-size PAH molecules
(10 < N¢ < 16). In addition, we show that the multiple photoionization rates are significantly greater
than the single ones, irrespective of the AGN source. These results suggest that an enrichment of
multiply charged ions caused by X-ray photoselection can occur in AGNs. The precise determination
of the charge state of PAHs based on specific spectral signatures should be developed in order to

confirm this photoselectivity mechanism.
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9.1.4 Condensed Phase

In Chapter 7, we show preliminary results of protonation and deprotonation processes in con-
densed phase of benzene and substituted benzene rings, such as chlorobenzene (C¢H5Cl), cyclohex-
ane and phenol (CgHsOH). Our results indicate that for benzene, chlorobenzene and phenol the
protonated benzene ion (C¢HY) is predominantly formed, and dehydrogenation is observed as far as
the formation of the cyclohexatriyne cation, C{. Apart from dehydrogenation, we also observe that
these molecules are capable of forming hydrogenated products up to the complete loss of aromaticity
on the carbon ring, resulting in the production of the cyclohexane cation (CsH{,) and the protonated
cyclohexane (C¢H o, H") species. For cyclohexane ices, we show that the hydrogenation process is ef-
fective up to the formation of C¢H7s, evidencing a ring opening mechanism activation after electron
impact. We suggest that highly hydrogenated molecules, such as alkanes and cycloalkanes, could
be formed in the ISM and CSM as desorption products of benzene- and substituted benzene-rich

astrophysical ices.

9.2 Observational Results

We have analyzed the full ASAI spectral line survey of IRAS 4A, carried out between 72 and
276 GHz with the IRAM 30m telescope. We have detected 92 molecular species, including the rare
isotopologues, and identified a grand total of 1456 rotational transitions including narrow and wide
components. We confirm the molecular richness previously reported by the ASAI team (Lefloch
et al., 2018). The spectrum is dominated by the emission of O-bearing molecular species. S-bearing
species are also found very abundant.

We could discriminate the signature of the protostellar core, characterized by narrow to mod-
erately narrow linewidths (2-5 km s~!) from the signature of the outflow powered by the protostar,
which display broader linewidths, up to 25-30 km s,

The molecular gas column densities and the rotational temperature of molecular species were
derived using the method of population diagram analysis (i.e. taking into account and correcting for
the line opacity effects in the rotational diagram).

When gathering the results of the population diagram analysis for the different elemental groups,
we see that the molecular line emission can be roughly classified into three components, each of them

with specific physical properties:
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e A component of low-excitation, with typical T,,= 10-30K. We interpret this component as the

external, cold and extended protostellar envelope.

e A component of moderate excitation, with typical T,.,= 40-60K. This component is best detected
in the high-excitation lines of molecular species E,, > 50K. This component is less extended
that the cold envelope. A crude estimate based on a multi-isotopologue OCS analysis suggests

a size of the order of 20 arcs.

e A component of high excitation, with typical T,= 80-200K. We could not constrain the size
of this component. We propose that this component arises from the inner protostellar region,
of hot and dense gas. Taquet et al. (2015) estimated a size of 0.2 arcs for the hot corino of
IRAS 4A, from PdBI observations. Their observations of CH3OH in the 2mm band yields an
excitation temperature in the range 150-250K, in rough agreement with the ASAI results. Given
the similarity of excitation temperature, the size estimated by Taquet et al. (2015) is probably a

reasonable estimate for the size of the ASAI emission.

This decomposition is somewhat arbitrary: variations are observed in the excitation temperatures
of molecular species, even within each group. It merely reflects the presence of a thermal and density
gradients inside the protostellar envelope of IRAS 4A. Observationally, it appears as a break in the
slope of rotational diagram best fits near E, ,= 50 K and E,,,= 100 K.

A strong chemical differentiation is observed between the three excitation components:

e The high excitation component is detected only in lines of CH;0H, CH,DOH CH3CHO and
OCS. For many molecular species, only transitions with E,, less than 50-60 K were detected.
The IRAS 4A study by Taquet et al. (2015) suggests that the lack of detection of more species
is essentially an observational bias due to our limited (though excellent single-dish) sensitivity.
The similarity of the CH30H excitation conditions indicates that we have detected the signature
of the hot corino of IRAS 4A, i.e. the region with a rich content in complex organic molecules
where the icy mantles evaporates of the dust grain. Due to the limited sensitivity of the IRAM

30m, the hot corino is detected only in a few molecular species.

e Carbon-bearing species are mainly detected in the cold outer envelope of low-excitation gas
(10K). The only species detected in the warm component is CH3CCH. We can exclude an
observational bias as the range of E,, is broad enough. Hence, some C-species disappear from

the gas phase towards the inner protostellar regions.
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Appendix A

IRAS 4A: Spectral Bands (3mm)
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Figure A.1: The images of the total spectrum, including the three spectral bands (72-115GHz, 130-172GHz,
205-272GHz) of the protostar region of class 0 IRAS 4A.
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Appendix B

IRAS 4A: Spectral Bands (2mm)
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Appendix C

IRAS 4A: Spectral Bands (1mm)
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