Métodos Numéricos para Equações de Evolução

por

Josemeri Araujo Silva

IM/NCE - UFRJ 2009

Métodos Numéricos para Equações de Evolução

Josemeri Araujo Silva

Tese de Mestrado apresentada ao Instituto de Matemática, Núcleo de Computação Eletrônica da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Matemática

Orientador: Mauro Antônio Rincon

Rio de Janeiro Janeiro de 2009

Métodos Numéricos para Equações de Evolução

por

Josemeri Araujo Silva

Dissertação submetida ao Corpo Docente do Núcleo de Computação Eletrônica -Instituto de Matemática da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários para a obtenção do grau de Mestre.

Aprovada por:

Mauro Antônio Rincon, D.Sc. - IM/UFRJ (Orientador)

Marcello Goulart Teixeira, D.Sc. - IME (Co-orientador)

Carlos Frederico Fragoso de Barros e Vasconcellos, D.Sc. - UFRJ

Alexandre Loureiro Madureira, D.Sc. - LNCC

Rigoberto Gregório Sanabria Castro, D.Sc. - UENF

Rio de Janeiro, RJ - Brasil 2009 Silva, Josemeri Araujo.

Métodos Numéricos para Equações de Evolução / Josemeri Araujo Silva.

- Rio de Janeiro, 2009.

137 f.; il.

Dissertação (Mestrado em Informática) - Universidade Federal do Rio de Janeiro, Instituto de Matemática, Núcleo de Computação Eletrônica, 2009.

Orientador: Mauro Antônio Rincon

Co-orientador: Marcello Goulart Teixeira

1. Introdução - Teses. 2. Resultados Básicos - Teses. 3. Caso Unidimensional -

Teses. 4. Método dos Elementos Finitos - Teses. 5. Simulações Numéricas -

Teses. 6. Caso Bidimensional - Teses. 7. Simulações Numéricas - Teses.

I. Mauro Antônio Rincon(Orient.). II. Marcello Goulart Teixeira (Co-orient.).

III. Universidade Federal do Rio de Janeiro.Instituto de Matemática. Núcleo

de Computação Eletrônica. IV. Título.

Aos meus pais Benedito e Lourdes

Agradecimentos

À Deus, pois sem Ele nunca teria conseguido tantas vitórias.

Ao professor e orientador Mauro Antonio Rincon por toda a ajuda e conhecimentos transmitidos durante o desenvolvimento deste trabalho.

Aos professores Ricardo Fuentes Apolaya e Marcello Goulart Teixeira, pois não foram apenas professores. Foram grandes amigos, incentivadores e conselheiros.

À Deyse e Regina, que sempre me ajudaram nas mais diversos circunstâncias.

Aos meus pais Benedito e Lourdes pela incentivo constante, carinho e compreensão nos momentos mais difíceis.

Aos colegas de mestrado, especialmente Bianca e Alessandro, pela motivação e valiosas sugestões.

À CAPES pelo apoio financeiro, sem o qual seria impossível desenvolver este trabalho.

Resumo

Nesta dissertação estudamos Métodos Numéricos para as Equações de Evolução do tipo parabólico e hiperbólico, utilizando como modelo a equação do Calor e a equação da Onda, no caso unidimensional e bidimensional. Para a resolução dos modelos no espaço, aplicamos o Método dos Elementos Finitos e estudamos a formulação forte e fraca dos problemas. Para a resolução dos modelos no tempo, introduzimos o Método de Diferenças Finitas, com o Método Generalizado Trapezoidal, para a equação do Calor e o Método de Newmark, para a equação da Onda. Programas computacionais foram implementados usando a linguagem C e alguns exemplos númericos serão mostrados para ilustrar o comportamento das soluções obtidas.

Abstract

In this dissertation we study numeric method for evolution equations of the parabolic and hyperbolic type, using as model the Heat equation and the Wave equation, with fixed frontiers, in the one unidimensional and two-dimensional. For the resolution of the models in space, we apply it Method of the Finite Elements and we study the formulation strong and weak of the problems. For the resolution of the models in time, we introduce Method of Finite Differences, with it Generalized method Trapezoidal, for the equation of the Heat and the Method of Newmark, for the equation of the Wave. Computational programs were implemented using the language C and some numerical examples will be shown to illustrate the behaviour of the obtained solutions.

Sumário

1	Intr	odução	0	14
	1.1	Propos	sta de Pesquisa	14
		1.1.1	Caso Unidimensional	14
		1.1.2	Caso Bidimensional	15
	1.2	Descri	ção dos Capítulos	17
2	Equ	ıação d	lo Calor	16
	2.1	Formu	lação do problema	16
	2.2	Métod	o dos Elementos Finitos	19
		2.2.1	Formulação Variacional	19
		2.2.2	Método de Galerkin	19
		2.2.3	Existência e Unicidade de Solução	22
	2.3	Função	o de Interpolação	26
	2.4	Integra	ação Numérica	30
	2.5	Matriz	zes Locais A^e_{ab} , B^e_{ab} e Força Local F^e_a	31
		2.5.1	Matriz Local A^e_{ab}	32
		2.5.2	Matriz Rigidez Local B^e_{ab}	33
		2.5.3	Vetor Força Local F_a^e	35
	2.6	Matriz	zes Globais A, B e Força Global F	36
		2.6.1	Matriz Global A	37
		2.6.2	Matriz Rigidez Global B	39
		2.6.3	Vetor Força Global F	39
	2.7	Métod	o das Diferenças Finitas	42
	2.8	Métod	os Numéricos	43
		2.8.1	Método de Euler	43
		2.8.2	Método de Crank-Nicolson	45

		2.8.3	Método Generalizado Trapezoidal: (θ -Métodos)	45	
	2.9	Condig	ção de Fronteira \ldots \ldots \ldots \ldots \ldots \ldots \ldots	47	
	2.10	Simula	ações Numéricas	49	
		2.10.1	Exemplo 1	50	
		2.10.2	Exemplo 2	56	
		2.10.3	Exemplo 3	59	
3	Equ	ação d	la Corda de	33	
	3.1	Formu	lação do problema	63	
	3.2	Métod	o dos Elementos Finitos	63	
		3.2.1	Formulação Variacional	63	
		3.2.2	Método de Galerkin	64	
		3.2.3	Existência e Unicidade de Solução	66	
	3.3	Métod	os Numéricos	70	
		3.3.1	Método da Diferença Central	71	
		3.3.2	Família de Métodos Implícitos - Aproximação $\theta\text{-Newmark}$	72	
	3.4	Simula	ações Numéricas	73	
		3.4.1	Exemplo 1	73	
		3.4.2	Exemplo 2	79	
4	Equ	ação d	lo Calor - Caso Bidimensional	82	
	4.1	Formu	lação do problema	82	
	4.2	Métod	o dos Elementos Finitos	83	
		4.2.1	Formulação Variacional	83	
		4.2.2	Método de Galerkin	84	
	4.3	Discre	tização do Domínio	86	
	4.4	Interp	olação dos Dados Iniciais	92	
	4.5	Função	o de Interpolação	95	
	4.6	Transf	ormação Isoparamétrica	97	
	4.7	Quadr	atura Gaussiana 10	01	
	4.8	Matriz	zes Locais M_{ab}^e , N_{ab}^e e Força Local F_a^e	101	
		4.8.1	Matriz Local M^e_{ab}	01	
		4.8.2	Matriz Rigidez Local N_{ab}^e	02	
		4.8.3	Vetor Força Local F_a^e	03	
	4.9	Matriz	zes Globais M, N e Força Global F	11	

	4.10	Iétodos Numéricos	15
	4.11	Erro da Solução Numérica	16
		.11.1 Norma $L^{\infty}(0,T;L^2(\Omega))$ e seminorma $H^1(\Omega)$	16
	4.12	imulações Numéricas	17
5	Equ	ção da Onda - Caso Bidimensional 12	22
	5.1	formulação do problema	22
	5.2		23
		.2.1 Formulação Variacional	23
		.2.2 Método de Galerkin \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 12	24
	5.3	Construção do sistema linear	26
	5.4	nterpolação dos Dados Iniciais 12	27
	5.5		29
	5.6	imulações Numéricas	30
6	Con	lusão 13	34
Bi	bliog	afia 13	35

Lista de Figuras

2.1	Função base	28
2.2	Função base local	28
2.3	$u^{h}(0.5,t) \in u(0.5,t) = \frac{1}{\pi^{2}}e^{-t}$	51
2.4	$u^{h}(0.5, t) \in u(0.5, t), \text{ para } t \in [0.50, 0.51]$	52
2.5	Gráfico de $u^h(x,t)$ para (2.2.6)	52
2.6	$u^{h}(0.5,t) \in u(0.5,t) = \frac{1}{\pi^{2}} e^{-(\alpha \pi^{2} + \beta)t} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	53
2.7	$u^{h}(0.5,t) \in u(0.5,t)$, para $t \in [0, 0.02]$	54
2.8	Gráfico de $u^h(x,t)$ para (2.2.6)	54
2.9	$u^{h}(0.5,t) \in u(0.5,t) = \frac{1}{8} \cos(\pi t) \dots \dots$	57
2.10	$u^{h}(0.5,t) \in u(0.5,t), \text{ para } t \in [0.50, 0.51]$	58
2.11	Gráfico de $u^h(x,t)$ para (2.2.6)	58
2.12	$u^{h}(0.5,t) \in u(0.5,t) = (cos(\pi t) + sen(\pi t)) \dots \dots \dots \dots \dots \dots \dots$	60
2.13	$u^{h}(0.5,t) \in u(0.5,t)$, para $t \in [0.50, 0.51]$	60
2.14	Gráfico de $u^h(x,t)$ para $\theta = \frac{1}{2}$	61
3.1	$u^{h}(0.5,t) \in u(0.5,t) = cos(\pi t)$	74
3.2	$u^{h}(0.5,t) \in u(0.5,t)$, para $t \in [0.50, 0.51]$	75
3.3	Gráfico de $u^h(x,t)$ para (3.2.5)	75
3.4	$u^{h}(0.5,t) \in u(0.5,t) = \cos(\sqrt{\alpha + \frac{\beta}{\pi^{2}}}\pi t)$	76
3.5	$u^{h}(0.5,t) \in u(0.5,t), \text{ para } t \in [0.50, 0.51]$	77
3.6	Gráfico de $u^h(x,t)$ para (3.2.5)	77
3.7	$u^h(0.5,t)$ e $u(0.5,t)$ quando Δt = 0.01 e h = 0.1 e quando Δt = 0.25 e	
	$h = 0.1 \dots \dots$	79
3.8	Gráfico de $u^h(x,t)$ para (3.2.5)	79
3.9	$u^{h}(0.5,t) \in u(0.5,t) = \frac{1}{16}(t+1)$	80
3.10	$u^{h}(0.5,t) \in u(0.5,t)$ para $t \in [0.50, 0, 51]$	80

4.1	Malha de elementos retangulares	88
4.2	Um quadrilátero	95
4.3	Função de interpolação	96
4.4	Transformação isoparamétrica	98
4.5	Normais externas	105
4.6	Matriz global M	114
4.7	Gráfico de $u^h(\boldsymbol{x},t), t = 0 \dots \dots$	120
4.8	Gráfico de $u^h(\boldsymbol{x},t), t = 0.5 \dots \dots$	120
		100
5.1	Grafico de $u^n(\boldsymbol{x},t), t = 0 \dots \dots$	132
5.2	Gráfico de $u^h(\boldsymbol{x},t), t = 1 \dots \dots$	133

Capítulo 1

Introdução

Nesta dissertação estamos interessados em obter a existência e unicidade da solução, além do estudo numérico das Equações de Evoluções do tipo parabólico e hiperbólico, utilizando como modelo a equação do Calor e a equação da Onda. Para obter a solução numérica introduziremos o Método de Elementos Finitos no espaço e o Método da Diferenças Finitas no tempo. Trabalharemos com o caso unidimensional e bidimensional.

1.1 Proposta de Pesquisa

1.1.1 Caso Unidimensional

O problema parabólico modelo que estudaremos é da forma:

$$\begin{aligned}
 & (u_t(x,t) - \alpha u_{xx}(x,t) + \beta u(x,t) = f(x,t), \ \forall (x,t) \in (0,1) \times [0,T], \\
 & (u(0,t) = u(1,t) = 0, \qquad \forall t \in [0,T] \\
 & (u(x,0) = u_0(x), \qquad \forall x \in (0,1)
\end{aligned}$$
(1.1.1)

onde $\alpha \in \beta$ são constantes reais positivas e f = f(x, t) é uma fonte de calor, $u(0, t) \in u(1, t)$ representam as temperaturas na fronteira em cada instante t, ou seja, a temperatura nos extremos do intervalo são fixas e $u_0(x)$ é a temperatura inicial da barra. Vamos supor que $f = f(x, t) \in u_0(x)$ sejam funções regulares.

A solução u(x,t) representa a temperatura da barra em cada instante $t \in [0, T]$.

O problema hiperbólico modelo que estudaremos é da forma:

$$\begin{aligned} u_{tt}(x,t) - \alpha u_{xx}(x,t) + \beta u(x,t) &= f(x,t), \ \forall (x,t) \in (0,1) \times [0,T], \\ u(0,t) &= u(1,t) = 0, \qquad \forall t \in [0,T] \\ u(x,0) &= u_0(x), \qquad \forall x \in (0,1) \end{aligned}$$
(1.1.2)
$$u_t(x,0) &= u_1(x), \qquad \forall x \in (0,1) \end{aligned}$$

onde $\alpha \in \beta$ são constantes reais positivas e f = f(x, t) é a força atuando sobre a barra em cada instante $t \in [0, T]$, $u(0, t) \in u(1, t)$ representam as condições de fronteira em cada instante, $u(x, 0) = u_0(x)$ é a posição inicial da corda e $u_t(x, 0) = u_1(x)$ é a velocidade inicial da onda.

A solução u = u(x, t) representa a posição da corda em cada instante $t \in [0, T]$, que está presa nos extremos.

1.1.2 Caso Bidimensional

Seja $\Omega \subset \mathbb{R}^2$ um conjunto aberto com fronteira suave Γ . Os elementos de Ω são denotados por $\boldsymbol{x} = (x_1, x_2)$ e $\boldsymbol{n} = (n_1, n_2) = (n_{x1}, n_{x2})$. Assumimos que a fronteira Γ admite a decomposição $\Gamma = \overline{\Gamma_q \cup \Gamma_p}, \ \Gamma_q \cap \Gamma_p = \emptyset$. Denotamos por $q_i = q_i(x)$ o fluxo de calor. Assumimos que o fluxo de calor é dado pela lei de Fourier:

$$q_i = -\frac{\partial u}{\partial x_j}.$$

O problema que estudaremos será o de determinar no espaço das soluções $H^1(\Omega)$ uma função $u = u(\boldsymbol{x}, t)$ tal que

$$\begin{cases} u_t(\boldsymbol{x}, t) - \alpha \Delta u(\boldsymbol{x}, t) + \beta u(\boldsymbol{x}, t) = f(\boldsymbol{x}, t), \ (\boldsymbol{x}, t) \in \Omega \times [0, T] \\ u = q(\boldsymbol{x}), & \text{em } \Gamma_q \\ -q_i n_i = -\frac{\partial u}{\partial x_j} n_i = p(\boldsymbol{x}), & \text{em } \Gamma_p \\ u(\boldsymbol{x}, 0) = u_0(\boldsymbol{x}), \ \forall \ \boldsymbol{x} \in \Omega \end{cases}$$
(1.1.3)

onde $\alpha \in \beta$ são constantes reais positivas, a função $q(\boldsymbol{x})$ é conhecida em Γ_q e a função $p(\boldsymbol{x})$ é conhecida em Γ_p . A função $f = f(\boldsymbol{x}, t)$ representa uma fonte de calor, $u = q(\boldsymbol{x})$ representa a temperatura na fronteira, onde a temperatura nos extremos do intervalo

são fixas e $u_0(\boldsymbol{x})$ é a temperatura inicial da barra. Além disso, considere $p(\boldsymbol{x})$ e $q(\boldsymbol{x})$ suficientemente regulares de tal forma que pelo menos a solução $u(t) \in H^1(\Omega)$, para $t \geq 0$.

O problema hiperbólico que estudaremos será o de determinar no espaço das soluções $H^1(\Omega)$ uma função $u = u(\boldsymbol{x}, t)$ tal que

$$\begin{cases} u_{tt}(\boldsymbol{x},t) - \alpha \Delta u(\boldsymbol{x},t) + \beta u(\boldsymbol{x},t) = f(\boldsymbol{x},t), \ (\boldsymbol{x},t) \in \Omega \times [0,T] \\ u = q(\boldsymbol{x}), & \text{em } \Gamma_q \\ -q_i n_i = -\frac{\partial u}{\partial x_j} n_i = p(\boldsymbol{x}), & \text{em } \Gamma_p \\ u(\boldsymbol{x},0) = u_0(\boldsymbol{x}), & \forall \ \boldsymbol{x} \in \Omega \\ u_t(\boldsymbol{x},0) = u_1(\boldsymbol{x}), & \forall \ \boldsymbol{x} \in \Omega \end{cases}$$
(1.1.4)

onde $\alpha \in \beta$ são constantes reais positivas, a função $q(\boldsymbol{x})$ é conhecida em Γ_q e a função $p(\boldsymbol{x})$ é conhecida em Γ_p . Temos que $u(0,t) \in u(1,t)$ representam as condições na fronteira em cada instante t, $u_0(\boldsymbol{x})$ é a posição inicial da onda e $u_1(\boldsymbol{x})$ é a velocidade inicial da onda. Além disso, $p(\boldsymbol{x}) \in q(\boldsymbol{x})$ também são suficientemente regulares de tal forma que pelo menos a solução $u(t) \in H_0^1(\Omega)$.

Utilizamos métodos númericos para obtenção das soluções aproximadas. O Método de Elementos Finitos foi utilizado no espaço e como resultado, obtemos uma equação diferencial ordinária de primeira e segunda ordem para cada caso:

$$Ag' + Bg = F \quad (Calor) \tag{1.1.5}$$

$$Ag'' + Bg = F \quad (\text{Onda}) \tag{1.1.6}$$

onde $A \in B$ são matrizes e F o vetor força . A obtenção destas EDO's será descrita em detalhes nos Capítulos 2, 3, 4 e 5, para cada modelo estudado.

Para resolver as EDO's (1.1.5) e (1.1.6) utilizaremos o Método das Diferenças Finitas no tempo.

Para a equação do Calor aplicaremos o Método Generalizado Trapezoidal com os parâmetros de aproximação dado por:

$$g^{n+\theta} = \theta g^{n+1} + (1-\theta)g^n \qquad \mathbf{e} \qquad F^{n+\theta} = \theta F^{n+1} + (1-\theta)F^n, \qquad \theta \in [0,1]$$

onde θ é um parâmetro que pode ser determinado para obter melhor precisão e estabilidade. Fixamos alguns valores de θ , como $\theta = 0$ (Método de Euler Progressivo), $\theta = \frac{1}{2}$ (Método de Crank-Nicolson), $\theta = 1$ (Método de Euler Regressivo).

Para resolver a EDO (1.1.6) aplicaremos o Método de Newmark

$$g^{*n} = \theta g^{n+1} + (1 - 2\theta)g^n + \theta g^{n-1}$$

onde θ pode ser determinado para obter melhor precisão e estabilidade. Fixamos o valor de θ , como $\theta = 0$ (Método da Diferença Central), por exemplo.

Os Métodos de Diferenças Finitas serão descritos em detalhes nos Capítulos 2, 3, 4 e 5, para cada modelo estudado.

1.2 Descrição dos Capítulos

Este trabalho é constituido de 5 capítulos.

No capítulo 2 apresentamos o modelo unidimensional para a equação do calor com extremidades fixas. Explicaremos em detalhes o Método de Elementos Finitos e os Métodos de Diferenças Finitas que foram utilizados.

No capítulo 3 apresentamos o modelo unidimensional para a equação da corda com extremidades fixas. O Método de Diferenças Finitas utilizado será detalhado.

No capítulo 4 o modelo bidimensional para a equação do calor com temperatura fixa nos extremos será estudado. Explicaremos em detalhes o Método de Elementos Finitos e o Método de Diferenças Finitas empregado.

No capítulo 5 o modelo bidimensional para a equação da onda com extremidades fixas será estudado.

Exemplos númericos serão exibidos para cada caso.

Capítulo 2

Equação do Calor

2.1 Formulação do problema

O problema parabólico modelo de interesse consiste em encontrar uma solução fraca u = u(x, t) no espaço das soluções $L^{\infty}(0, T; H_0^1(\Omega))$ tal que

$$\begin{aligned} u_t(x,t) - \alpha u_{xx}(x,t) + \beta u(x,t) &= f(x,t), \ \forall (x,t) \in (0,1) \times [0,T] \\ u(0,t) &= u(1,t) = 0, \qquad \forall \ t \in [0,T] \\ u(x,0) &= u_0(x), \qquad \forall \ x \in (0,1) \end{aligned}$$
(2.1.1)

onde $\alpha \in \beta$ são constantes reais positivas, f = f(x, t) é uma fonte de calor, $u(0, t) \in u(1, t)$ representam as temperaturas na fronteira em cada instante t, ou seja, a temperatura nos extremos do intervalo são fixas e $u_0(x)$ é a temperatura inicial da barra. Vamos supor que $f = f(x, t) \in u_0(x)$ sejam funções regulares. A solução u(x, t) representa a temperatura da barra em cada instante $t \in [0, T]$, que está presa nos extremos.

A solução do Problema (2.1.1), para uma força $f \in L^2((0,T; L^2(0,1)))$, por exemplo, pode ser obtida usando o Método de Separação de Variáveis (Método de Fourier), no qual a solução u(x,t) é representada por uma série infinita, como mostraremos a seguir.

Pelo princípio de superposição de solução, vamos procurar soluções da forma

$$u(x,t) = \sum_{i=1}^{\infty} \varphi_i u_i(x,t)$$
(2.1.2)

A idéia é obter constantes φ_i tais que a condição inicial seja satisfeita, isto é, deseja-se obter constantes tais que

$$u(x,0) = \sum_{i=1}^{\infty} \varphi_i \, u_i(x,0)$$
(2.1.3)

Para obter as $u'_i s$, utiliza-se então o Método de Separação de Variáveis, que consiste em procurar soluções de (2.1.1) em forma separada, isto é, do tipo

$$u(x,t) = \phi(x) T(t)$$
 (2.1.4)

Para isso, impõe-se que (2.1.4) seja solução de (2.1.1) e resolve-se os problemas resultantes. Temos que reduzir o Problema (2.1.1) a um sistema de EDO's que, em princípio, sabemos resolver.

Se $u(x,t) = \phi(x) T(t)$ satisfaz a condição de fronteira, devemos ter $\phi(0) T(t) = \phi(1) T(t) = 0$ para todo $t \ge 0$. Então, se $\phi(0) \ne 0 \Rightarrow T(t) = 0$, $\forall t \in [0, \infty)$, obtendo-se apenas a solução trivial $\phi(x) T(t) = 0$, o que não ajuda na construção de uma solução.

É preciso exigir $\phi(0) = \phi(1) = 0$, pois desejamos soluções não-triviais.

Substituindo (2.1.4) em $(2.1.1)_1$, temos

$$\phi(x) T'(t) - \alpha \phi''(x) T(t) + \beta \phi(x) T(t) = 0$$
(2.1.5)

Dividindo esta equação por $\phi(x)T(t)$, segue que

$$T^{-1}(t) T'(t) - \alpha \phi''(x) \phi^{-1}(x) + \beta = 0$$

$$T^{-1}(t) T'(t) = \alpha \phi''(x) \phi^{-1}(x) - \beta$$
(2.1.6)

Mas $x \in t$ são variáveis independentes e cada lado de (2.1.6) depende de apenas uma delas. Portanto, ambos os membros de (2.1.6) devem ser constantes, ou seja, devemos ter

$$T^{-1}(t) T'(t) = \alpha \phi''(x) \phi^{-1}(x) - \beta = -\lambda$$
(2.1.7)

onde λ é uma constante chamada de Constante de Separação.

Então, conseguimos duas EDO's:

$$\begin{cases} T'(t) = -\lambda T(t), & t \in [0, T] \\ \phi''(x) = \frac{(-\lambda + \beta)}{\alpha} \phi(x), & x \in (0, 1) \end{cases}$$
(2.1.8)

Em $(2.1.8)_1$, temos que, para qualquer valor de λ , a função

$$T(t) = Ce^{(-\lambda t)} \tag{2.1.9}$$

é solução , onde C é uma constante arbitrária.

Impomos as condições de fronteira

$$\phi(0) T(t) = \phi(1) T(t) = 0, \quad t \in [0, T]$$

onde ϕ é solução da EDO

$$\phi''(x) = \frac{(-\lambda + \beta)}{\alpha} \phi(x), \quad x \in (0, 1).$$
(2.1.10)

Temos como solução de (2.1.10)

$$\phi(x) = a\cos(\sqrt{\lambda - \beta}x) + b\sin(\sqrt{\lambda - \beta}x)$$
(2.1.11)

onde $a \in b$ são constantes arbitrárias.

Daí,

$$\begin{cases} \phi(0) = 0 = a \\ \phi(1) = 0 = bsen(\sqrt{\lambda - \beta}) \end{cases}$$
(2.1.12)

Como a = 0, para obter soluções não triviais, é preciso tomar $b \neq 0$, e portanto, é preciso impor $sen(\sqrt{\lambda - \beta}) = 0$. Isto significa que os valores de $(\lambda - \beta)$ para os quais (2.1.10) tem solução não trivial são exatamente os que satisfazem $\sqrt{\lambda - \beta} = k\pi$, $k = 0, 1, 2, \cdots$.

Consequentemente, as únicas soluções não triviais de (2.1.10) são as funções

$$\phi_k(x) = bsen(k\pi x), \quad k = 0, 1, 2, \cdots$$

onde b é uma constante arbitrária diferente de zero.

Tomando $\lambda - \beta = k^2 \pi^2$ e substituindo em (2.1.9) temos

$$T_k(t) = C e^{(-k^2 \pi^2 + \beta)t}$$

onde podemos tomar, por exemplo, C = 1.

A superposição

$$u(x,t) = \sum_{k=1}^{\infty} \phi_k(x) T_k(t) = \sum_{k=1}^{\infty} sen(k\pi x) e^{(-k^2\pi^2 + \beta)t}, \quad 0 \le x \le 1$$

é então uma solução formal de (2.1.1), sem a condição inicial.

Impondo a condição inicial, temos

$$u(x) = \sum_{k=1}^{\infty} b_k sen(k\pi x), \quad 0 \le x \le 1.$$

O problema numérico é a convergência lenta da série de Fourier, mesmo quando usada a denominada Transformada Rápida de Fourier. Essa é uma das razões para introdução do Método de Elementos Finitos.

2.2 Método dos Elementos Finitos

2.2.1 Formulação Variacional

Seja $D(0,1) = \{v \in C_0^{\infty}(0,1); v(0) = v(1) = 0\}$ o espaço das funções testes com suporte compacto em (0,1). Note que a função v = v(x) somente depende da variável x. Multiplicando a primeira equação de (2.1.1) por $v \in D(0,1)$ e integrando em (0,1) obtém-se

$$\int_0^1 u_t(t)v \, dx - \alpha \int_0^1 u_{xx}(t)v \, dx + \beta \int_0^1 u(t)v \, dx = \int_0^1 f(t) \, v \, dx, \quad \forall v \in D(0,1) \quad (2.2.1)$$

Integrando por partes e denotando a forma bilinear a(u, v) por

$$a(u,v) = \alpha \int_0^1 u_x v_x \, dx + \beta \int_0^1 uv \, dx \tag{2.2.2}$$

associado a norma

$$||u||_{a}^{2} = \alpha ||\nabla u||^{2} + \beta ||u||^{2}$$

e denotando

$$(f,v) = \int_0^1 f(t) v \, dx \tag{2.2.3}$$

então, o Problema (2.1.1), é equivalente a determinar u = u(x, t) satisfazendo

$$(u_t, v) + a(u, v) = (f, v), \ \forall v \in H_0^1(0, 1)$$
$$u(0, t) = u(1, t) = 0, \qquad \forall t \in [0, T]$$
$$(u(0), v) = (u_0, v), \qquad \forall v \in H_0^1(0, 1)$$

onde $(2.2.4)_3$ representa a temperatura inicial de uma haste.

Note que estamos usando a propriedade de densidade do espaço D(0,1) em $H_0^1(0,1)$ e denotando u(x,t) por $u \in u(x,0) = u(0)$.

2.2.2 Método de Galerkin

O Método de Galerkin consiste em aproximar o espaço das soluções $H_0^1(\Omega)$ por um subespaço de dimensão finita. Para aproximarmos tal espaço, definimos um subespaço V_m gerado pelos m primeiros elementos da base do espaço de Hilbert $H_0^1(\Omega)$, ou seja,

$$V_m = [\varphi_1, \varphi_2, \varphi_3, \cdots, \varphi_m] \tag{2.2.5}$$

onde $[\varphi_i]_{i\in\mathbb{N}}$ é uma base de $H_0^1(\Omega)$.

Buscamos uma solução aproximada $u_h = u_h(x,t)$ do Problema (2.1.1), no subespaço V_m .

Problema Aproximado

Considere o Problema (2.2.4), redefinido no subespaço V_m . Queremos determinar uma solução $u_h = u_h(x, t) \in V_m$, tal que,

$$\begin{cases} (u'_{h}(t), v) + a(u_{h}(t), v) = (f(t), v), \ \forall \ v \in V_{m} \subset H_{0}^{1} \\ u_{h}(0, t) = u_{h}(1, t) = 0, \qquad \forall \ t \in [0, T] \\ (u_{h}(0), v) = (u_{0h}, v) \longrightarrow u_{0} \text{ forte em } H_{0}^{1}(0, 1). \end{cases}$$

$$(2.2.6)$$

Como $u_h(x,t) \in V_m$, então ele pode ser representado por

$$u_h(x,t) = \sum_{i=1}^{m} g_{im}(t)\varphi_i(x).$$
 (2.2.7)

е

$$u'_{h}(x,t) = \sum_{i=1}^{m} g'_{im}(t)\varphi_{i}(x), \quad \varphi_{i}(x) \in V_{m}$$
 (2.2.8)

A condição inicial $(2.2.6)_3$ significa que:

$$u_{0h} = \sum_{i=1}^{m} (u_0, \varphi_i) \varphi_i \longrightarrow u_0 = \sum_{i=1}^{\infty} (u_0, \varphi_i) \varphi_i, \text{ em } H^1_0(0, 1), \text{ quando } m \to \infty$$

onde $g_{im}(0) = (u_0, \varphi_i)$. Observe que no problema aproximado a variável tempo ainda é contínua e que os produtos internos (.,.) são definidos somente na variável espacial x.

Para se obter a solução aproximada $u_h(x,t) \in V_m$ é necessário determinar os coeficientes $g_{im}(t)$. Substituindo u_h e u'_h dados em (2.2.7) e (2.2.8), respectivamente, em (2.2.6)₁ temos

$$\left(\sum_{i=1}^{m} g'_{im}(t)\varphi_i(x), v\right) + a\left(\sum_{i=1}^{m} g_{im}(t)\varphi_i(x), v\right) = (f(t), v), \ \forall v \in V_m \subset H^1_0$$
(2.2.9)

Como (.,.) é definido em V_m , podemos escrever

$$\sum_{i=1}^{m} g'_{im}(t) \Big(\varphi_i(x), v\Big) + \sum_{i=1}^{m} g_{im}(t) a\Big(\varphi_i(x), v\Big) = (f(t), v), \ \forall v \in V_m \subset H^1_0, \quad (2.2.10)$$

Podemos, em particular, tomar $v = \varphi_j$. Logo,

$$\sum_{i=1}^{m} g'_{im}(t) \Big(\varphi_i(x), \varphi_j(x)\Big) + \sum_{i=1}^{m} g_{im}(t) a\Big(\varphi_i(x), \varphi_j(x)\Big) = \Big(f(t), \varphi_j(x)\Big)$$
(2.2.11)

Definindo as matrizes

$$A = A_{ij} = \left(\varphi_i(x), \varphi_j(x)\right), \quad B = B_{ij} = a\left(\varphi_i(x), \varphi_j(x)\right) \quad e \quad F = F_j = \left(f(t), \varphi_j(x)\right),$$
(2.2.12)

obtemos o seguinte sistema de equações diferenciais ordinárias

$$\sum_{i=1}^{m} g'_{im}(t) A_{ij} + \sum_{i=1}^{m} g_{im}(t) B_{ij} = F_j, \quad \text{para} \quad j = 1, \cdots, m$$
 (2.2.13)

que pode ser escrito na seguinte forma matricial:

$$\begin{cases}
Ag'_{m}(t) + Bg_{m}(t) = F(t), & \forall t \in [0, T] \\
g_{m}(t) = 0 & (2.2.14) \\
g_{m}(0) = \left((u_{0}, \varphi_{1}), (u_{0}, \varphi_{2}), \cdots, (u_{0}, \varphi_{m}) \right) = g_{0m}
\end{cases}$$

onde $g_m(0)$ é a condição inicial, $g_m(t) = (g_{1m}(t), g_{2m}(t), \cdots, g_{mm}(t))^T$ é o vetor incógnita. Assim temos um sistema de *m* equações diferenciais ordinárias.

Para cada m, o sistema (2.2.14) tem uma única solução local $g_m(t), t \in [0, T_m]$, e pelo Teorema de Caratheodory, obtemos a solução $u_h(x, t) = \sum_{i=1}^m g_{im}(t)\varphi_i(x)$ do problema (2.2.6) em V_m .

De (2.2.1), (2.2.2) e (2.2.3), as matrizes A, B e o vetor força F podem ser dados por:

$$A_{ij} = \int_0^1 \varphi_i \varphi_j \, dx \tag{2.2.15}$$

$$B_{ij} = \int_0^1 \left(\alpha \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_i \varphi_j\right) dx \qquad (2.2.16)$$

$$F_j = \int_0^1 f \,\varphi_j \, dx \tag{2.2.17}$$

Para estender a solução local para todo $t \in [0, T]$, segue o teorema (2.1) abaixo.

2.2.3 Existência e Unicidade de Solução

Usando o Método de Faedo-Galerkin, estudaremos a existência e unicidade de solução para o problema (2.2.4). Para estender a solução local $\forall t \in [0, T]$, segue o teorema:

Teorema 2.1. Seja $f \in L^2(0,T;L^2(0,1))$ e $u_0 \in H^1_0(0,1)$, então existe uma única solução $u : [0,T] \times (0,1)$, u converge para a solução do problema aproximado (2.2.4) satisfazendo as seguintes condições:

(i)
$$u \in L^2(0,T; H^1_0(0,1)) \cap C^0(0,T: L^2(0,1))$$

(ii) $\frac{d}{dt}(u(t),v) + a(u(t),v) = (f,v), \quad \forall v \in H^1_0(0,1) \ em \ L^2(0,T)$
(iii) $u(0) = u_0.$

Demonstração:

A idéia da demonstração consiste em mostrar que existe uma sequência de soluções $u_h(x,t)$ do problema aproximado, (2.2.6), pertencentes ao subespaço V_m que são limitadas, independente de m, possibilitando mostrar que essa sequência converge para solução exata u(x,t), quando $m \to \infty$, significando que cada vez mais o subespaço V_m se aproxima do espaço $H_0^1(0,1)$. Obtemos tal resultado na seção anterior.

O próximo passo é demonstrar que as soluções são limitadas independentemente de $m \in t$, que permitirão estender a solução em todo intervalo [0, T] e obter a convergência da sequência u_h para u, solução do problema original no sentido do teorema. Para isso são necessários algumas estimativas:

Estimativa 1: Considere $v = u_h(t) \in V_m$ em (2.2.6). Então obtemos:

$$(u'_h(t), u_h(t)) + a(u_h(t), u_h(t)) = (f(t), u_h(t)).$$
 (2.2.18)

Mas

$$\frac{d}{dt}|u_h(t)|^2 = 2\Big(u'_h(t), u_h(t)\Big)$$
(2.2.19)

е

$$a\Big(u_h(t), u_h(t)\Big) = \alpha ||u_h(t)||^2 + \beta |u_h(t)|^2; \qquad (2.2.20)$$

onde estamos usando a equivalência entre as normas $H^1(0,1) \in L^2(0,1)$ no espaço $H^1_0(0,1)$. Por outro lado, da desigualdade de Schwarz temos

$$\left(f(t), u_h(t) \right) = \int_0^1 f(t) u_h(t) dx \le \left(\int_0^1 |f(t)|^2 \right)^{1/2} \left(\int_0^1 |u_h(t)|^2 \right)^{1/2}$$

$$\le |f(t)|_{L^2(0,1)} |u_h(t)|_{L^2(0,1)} \le \frac{1}{4\beta} |f(t)|^2 + \beta |u_h(t)|^2;$$

$$(2.2.21)$$

na última desigualdade usamos a seguinte desigualdade elementar:

$$ab \le \frac{a^2}{4\varepsilon} + \varepsilon b^2,$$
 (2.2.22)

onde a e b são constantes reais, ε é uma constante positiva e considerando $\varepsilon = \beta$, a = f(t)e $b = |u_h(t)|$. Substituindo os resultados em (2.2.18), obtemos

$$\frac{1}{2}\frac{d}{dt}|u_h(t)|^2 + \alpha ||u_h(t)||^2 \le \frac{1}{4\beta}|f(t)|^2.$$
(2.2.23)

Integrando a desigualdade em 0 a $t, t < T_m$, obtemos

$$\frac{1}{2}|u_h(t)|^2 + \alpha \int_0^t ||u_h(t)||^2 \le \frac{1}{2}|u_h(0)|^2 + \frac{1}{4\beta} \int_0^t |f(t)|^2.$$
(2.2.24)

Considere as constantes positivas $\{c_1, c_2, c_3, c_4\}$, definidas por: $c_1 = \min\{1/2, \alpha\}$, $|u_h(0)|^2 \le c_2 ||u_h(0)||^2$, $c_3 = \max\{c_2, 1/(4\beta)\}$ e $c_4 = c_3/c_1$.

Então a desigualdade acima pode ser escrita na forma:

$$|u_m(t)|^2 + \int_0^t ||u_h(t)||^2 \le c_4 \Big(||u_h(0)||^2 + \int_0^t |f(t)|^2 \Big)$$
(2.2.25)

Mas por hipótese $u_h(0) = u_{0h}$ converge forte para $u_0 \in H_0^1(0, 1)$, u_{0h} é limitada em $H_0^1(0, 1)$, para *m* suficientemente grande. Temos também que $f \in L^2(0, T; L^2(0, 1))$ e portanto o segundo termo do lado direito é limitado. Dessa forma podemos escrever a desigualdade na forma:

$$|u_h(t)|^2 + \int_0^t ||u_h(t)||^2 \le c_5, \qquad (2.2.26)$$

a constante c_5 é positiva e independe de $t \in m$.

De (2.2.3) obtemos do primeiro e segundo termos respectivamente que

- (i) u_h é limitada em $L^{\infty}(0,T;L^2(0,1))$
- (ii) u_h é limitada em $L^2(0,T; H_0^1(0,1)),$

independentemente de m. Note que podemos estender a limitação ao intervalo (0, T), pois a limitação independe do tempo t.

Estimativa 2: Considere $v = u'_h(t) \in V_m$ em (2.2.8). Então obtemos:

$$\left(u_{h}'(t), u_{h}'(t)\right) + a\left(u_{h}'(t), u_{h}'(t)\right) = \left(f(t), u_{h}'(t)\right).$$
(2.2.27)

Mas

$$\left(u_{h}'(t), u_{h}'(t)\right) = |u_{h}'(t)|^{2},$$
 (2.2.28)

$$a\left(u_{h}(t), u_{h}'(t)\right) = \frac{1}{2\alpha} \frac{d}{dt} \|u_{h}(t)\|^{2} + \frac{1}{2\beta} \frac{d}{dt} |u_{h}(t)|^{2} = \frac{1}{2} \frac{d}{dt} a\left(u_{h}(t), u_{h}(t)\right).$$
(2.2.29)

e usando a desigualdade de Schwarz, juntamente com a desigualdade elementar (2.2.3) com $\varepsilon = 1/2$, obtemos

$$\left(f(t), u_h'(t)\right) \le \frac{1}{2} \left(|f(t)|^2 + |u_h'(t)|^2\right)$$
 (2.2.30)

Substituindo temos;

$$|u_h'(t)|^2 + \frac{d}{dt} a\left(u_h(t), u_h(t)\right) \le |f(t)|^2$$
(2.2.31)

Integrando a desigualdade em 0 a $t, t < T_m$, obtemos

$$\int_0^t |u_h'(t)|^2 + a\Big(u_h(t), u_h(t)\Big) \le a\Big(u_h(0), u_h(0)\Big) + \int_0^t |f(t)|^2$$
(2.2.32)

Note que

$$a\left(u_h(0), u_h(0)\right) = \alpha \|u_h(0)\|^2 + \beta |u_h(0)|^2 \le c_6 \|u_h(0)\|^2, \qquad (2.2.33)$$

onde $c_6 = \max\{\alpha, \hat{c}\beta\}$ sendo \hat{c} é a constante da desigualdade $|u_m(0)|^2 \leq \hat{c} ||u_h(0)||^2$.

Por hipótese $u_h(0) = u_{0h}$ é limitada em $H_0^1(0,1)$ e $f \in L^2(0,T; L^2(0,1))$. Então o lado direito é limitada por uma constante, independentemente de m e t, permitindo concluir que:

- (iii) u'_h é limitada em $L^2(0, T; L^2(0, 1))$
- (iv) u_h é limitada em $L^{\infty}(0,T;L^2(0,1)\cap H^1_0(0,1)) = L^{\infty}(0,T;H^1_0(0,1))$

O espaço $H_0^1(0,1)$ tem imersão compacta em $L^2(0,1)$ e das estimativas (ii) e (iii), segue do Teorema de Aubin-Lions, que a sequência $u_h \in C^0([0,T; L^2(0,1)))$. Como esse espaço é um espaço métrico completo, então da sequência limitada u^h podemos extrair uma subsequência u_{ν} , que converge forte para u quase sempre em $[0, T] \times (0, 1)$, ou seja,

$$\lim_{\nu \to \infty} \max_{0 \le t \le T} |u_{\nu}(t) - u(t)|_{L^2(0,1)} = 0$$
(2.2.34)

Note que se a subsequência u_{ν} converge então toda sequência u_h também converge. Desde que $u \in C^0([0,T; L^2(0,1))$ então faz sentido tomar u(0) e além disso

$$u_0 = \sum_{i=1}^{\infty} (u_0, \varphi_i) \varphi_i = u(0)$$
 (2.2.35)

Vimos que $u \in L^2(0,T; H^1_0(0,1)) \cap C^0(0,T; L^2(0,1))$ e que $u_0 = u(0)$.

Convergência do Sistema Aproximado

Vamos mostrar que a sequência u_h converge para $u \in L^2(0,T; H^1_0(0,1))$.

De fato, como u_h é limitada em $L^2(0,T; H^1_0(0,1))$, então podemos extrair uma subsequência de u_m também denotada por u_h , a qual converge para uma função $u \in L^2(0,T; H^1_0)$. Isto significa que

$$\int_0^T ((u_h(t), v))\theta(t)dt \to \int_0^T ((u(t), v))\theta(t)dt, \quad \forall v \in H_0^1(0, 1) \in \forall \theta \in L^2(0, T).$$
(2.2.36)

Usando a forma bilinear temos a forma equivalente

$$\int_0^T a(u_h(t), v)\theta(t)dt \to \int_0^T a(u(t), v)\theta(t)dt, \quad \forall v \in H_0^1(0, 1) \in \forall \theta \in L^2(0, T) \quad (2.2.37)$$

Para o outro termo envolvendo a derivada no tempo temos da estimativa (iii), que u'_h é limitada em $L^2(0,T; L^2(0,1))$, o que significa

$$\int_0^T \frac{d}{dt}(u_h(t), v)\theta(t) \ dt \to \int_0^T \frac{d}{dt}(u(t), v)\theta(t)dt, \quad \forall v \in H_0^1(0, 1) \in \forall \theta \in L^2(0, T)$$
(2.2.38)

De (2.2.3) e (2.2.3), fazendo $m \to \infty$ tem-se que

$$\int_0^T \frac{d}{dt} (u_h(t), v)\theta(t) dt + \int_0^T a(u_h(t), v)\theta(t) dt \to \int_0^T \frac{d}{dt} (u(t), v)\theta(t) dt + \int_0^T a(u(t), v)\theta(t) dt$$
(2.2.39)

para todo $v \in H_0^1(0,1)$ e para todo $\theta \in L^2(0,T)$. Do Lema Du Bois Raymond, ver [8] obtemos que

$$\frac{d}{dt}(u_h(t), v) + a(u_h(t), v) \to \frac{d}{dt}(u(t), v)) + a(u(t), v), \quad \forall v \in H_0^1(0, 1)$$
(2.2.40)

em $L^2(0,T)$. Como o subespaço V_m é denso em $H^1_0(0,1)$, concluí-se que o sistema aproximado (2.2.6) converge quando $m \to \infty$ para o sistema (2.1.1), ou seja

$$\frac{d}{dt}(u_h(t), v) + a(u_h(t), v) - (f, v) \to \frac{d}{dt}(u(t), v) + a(u(t), v) - (f, v), \quad \forall v \in H_0^1(0, 1)$$
(2.2.41)

em $L^{2}(0,T)$

Unicidade

Resta provar a unicidade de solução. Suponha que existem duas soluções, tal que $u_1(x,t) \neq u_2(x,t)$ e considere $w(x,t) = u_1(x,t) - u_2(x,t)$. Substituindo no problema (2.1.1), obtemos

$$\begin{cases} w_t(x,t) - \alpha w_{xx}(x,t) + \beta w(x,t) = 0, \ \forall (x,t) \in (0,1) \times [0,T] \\ w(0,t) = w(1,t) = 0, \qquad \forall t \in [0,T] \\ w(x,0) = 0 \qquad \forall x \in (0,1), \end{cases}$$
(2.2.42)

que é equivalente a forma,

$$(w_t, v) + a(w, v) = 0, \ \forall v \in H_0^1(0, 1)$$

$$w(0) = 0 \quad \forall v \in H_0^1(0, 1).$$
(2.2.43)

Tomando v = w em (2.2.43) e integrando de 0 a t, obtemos

$$\frac{1}{2}|w(t)|^2 + \int_0^t ||w(s)||^2 ds = 0$$
(2.2.44)

Como os dois termos do lado esquerdo são positivos, w = 0 é a única solução possível para igualdade. Ou seja, $u_1(x,t) = u_2(x,t)$.

2.3 Função de Interpolação

Para obtenção das matrizes A_{ij} , B_{ij} e o vetor força F_j , precisamos definir explicitamente as funções φ_i , base do subespaço V_m do espaço $H_0^1(0, 1)$.

Utilizamos uma aproximação por polinômios, por ser bastante conveniente, pois possuem propriedades interessantes, como a de função analítica, que torna possível o cálculo de derivadas, de qualquer ordem, dos polinômios. Em geral, as funções bases w_i do subespaço V_m das soluções aproximadas são polinômios de grau k (se k = 1, 2 e 3 temos, respectivamente as funções bases lineares, quadráticas e splines cúbicas) definidas em cada elemento finito Ω_e . Para considerar explicitamente a dependência do grau do polinômio k, definimos o espaço de elementos finitos $V_m^k(\Omega) \cap C^0(\Omega)$, onde

$$V_m = V_m^k(\Omega) = \{ v_h \in V; v_h^e \in P_k(\Omega_e) \},\$$

e v_h^e denota a restrição de v_h ao elemento $e \in P_k$ é o conjunto dos polinômios definidos em Ω_e , com graus menores ou iguais a k na variável x.

O objetivo principal na escolha de φ_i é fazer com que as matrizes A_{ij} e B_{ij} sejam matrizes especiais com muitos elementos nulos, obedecendo uma certa ordem. Este tipo de matriz é denominada matriz esparsa e o sistema linear resultante, em geral, é bem condicionado.

Nesse trabalho, as funções base φ_i escolhidas são funções de interpolação linear por partes satisfazendo a seguinte condição:

$$\varphi_i(x_j) = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases}$$
(2.3.1)

onde $x_j \in [0, 1]$ é denominado nó. Os nós são pontos discretos do intervalo [0, 1], sendo cada intervalo $[x_i, x_{i+1}]$ considerado um elemento finito e.

Tomando m + 1 divisões em [0,1] definimos o passo

$$h_i = x_{i+1} - x_i, \qquad i = 1, \cdots, m$$
 (2.3.2)

No caso dos nós serem equidistantes, $h_i = h = 1/m$.

Em cada nó *i*, definimos a função linear φ_i por partes satisfazendo a condição (2.3.2), ou seja, φ_i para $i = 1 \cdots m$ é definida por:

$$\varphi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} = \frac{x - x_{i-1}}{h_{i-1}}, & \forall x \in [x_{i-1}, x_{i}] \\ \frac{x - x_{i+1}}{x_{i} - x_{i+1}} = \frac{x_{i+1} - x}{h_{i}}, & \forall x \in [x_{i}, x_{i+1}] \\ 0, & \forall x \notin [x_{i-1}, x_{i+1}] \end{cases}$$
(2.3.3)

As funções φ_i podem ser representadas geometricamente como mostrado na Figura (2.1).

De (2.3.3), podemos calcular a derivada de φ_i em relação a x, obtendo-se:

$$\frac{\partial \varphi_i}{\partial x}(x) = \begin{cases} \frac{1}{h_{i-1}}, & \forall x \in (x_{i-1}, x_i) \\ -\frac{1}{h_i}, & \forall x \in (x_i, x_{i+1}) \\ 0, & \forall x \notin (x_{i-1}, x_{i+1}) \end{cases}$$
(2.3.4)

Figura 2.1: Função base

Problema Local

Uma forma mais apropriada de determinar a solução aproximada do Problema (2.2.6), é através de soluções locais. Para obtermos tais soluções locais precisamos considerar uma partição do domínio Ω em subregiões Ω_e tal que

$$\Omega = \bigcup_{e=1}^{m} \Omega_e, \quad \Omega_e \cap \Omega_s = \emptyset, \ e \neq s$$

Considere $\Omega = (0, 1)$ uma discretização não necessariamente uniforme dada por

$$x_{i+1} = x_i + h_i, \qquad i = 1, 2, \cdots, m$$

onde $x_1 = 0$ e $x_{m+1} = 1$, devido as condições de fronteira.

Para cada intervalo $[x_i, x_{i+1}]$, considere um elemento e denominado elemento finito e as coordenadas locais $[x_1^e, x_2^e] = [x_i, x_{i+1}]$. Geometricamente, os m elementos podem ser representados como na Figura (2.2).

Figura 2.2: Função base local

Para cada intervalo local $[x_1^e, x_2^e]$ do elemento e, definimos a função de interpolação

local $\varphi_a^e(x)$ dada por:

$$\varphi_{a}^{e}(x) = \begin{cases} \varphi_{1}^{e} = \frac{x_{2}^{e} - x}{h_{e}}, & \forall x \in [x_{1}^{e}, x_{2}^{e}] \\ \varphi_{2}^{e} = \frac{x - x_{1}^{e}}{h_{e}}, & \forall x \in [x_{1}^{e}, x_{2}^{e}] \\ 0, & \forall x \notin [x_{1}^{e}, x_{2}^{e}] \end{cases}$$
(2.3.5)

onde $h_e = x_2^e - x_1^e$.

A função de interpolação $\varphi_i(x)$ apresentada em (2.3.3) é a junção das funções de interpolação local φ_2^{e-1} e φ_1^e , ou seja,

$$\varphi_{i}(x) = \begin{cases} \varphi_{2}^{e-1}, & \forall x \in [x_{1}^{e-1}, x_{2}^{e-1}] = [x_{i-1}, x_{i}] \\ \varphi_{1}^{e}, & \forall x \in [x_{1}^{e}, x_{2}^{e}] = [x_{i}, x_{i+1}] \\ 0, & \forall x \notin [x_{i-1}, x_{i+1}] \end{cases}$$
(2.3.6)

Denotando por A, matriz de ordem $(m \times m)$, B a matriz de ordem $(m \times m)$ denomidada matriz rigidez e F o vetor de ordem $(m \times 1)$ denominado de vetor força, onde

$$A = \sum_{e=1}^{m} A_{ab}^{e}, \qquad B = \sum_{e=1}^{m} B_{ab}^{e} \qquad e \qquad F = \sum_{e=1}^{m} F_{a}^{e}.$$
(2.3.7)

Restringindo as matrizes A, B e o vetor força F a cada elemento e, temos:

$$A^{e}_{ab} = \int_{x^{e}_{1}}^{x^{e}_{2}} \varphi^{e}_{a}(x)\varphi^{e}_{b}(x) \, dx \tag{2.3.8}$$

$$B_{ab}^{e} = \int_{x_{1}^{e}}^{x_{2}^{e}} \left(\alpha \frac{d\varphi_{a}^{e}(x)}{dx} \frac{d\varphi_{b}^{e}(x)}{dx} + \beta \varphi_{a}^{e}(x)\varphi_{b}^{e}(x) \right) dx$$
(2.3.9)

$$F_a^e = \int_{x_1}^{x_2} f\varphi_a^e(x) \, dx \tag{2.3.10}$$

para $1 \leq a, b \leq 2$.

Denominamos por A^e_{ab} a matriz local de ordem (2×2) , B^e_{ab} a matriz rididez local de ordem (2×2) e F^e_a o vetor força local de ordem (2×1) .

2.4 Integração Numérica

Para facilitar a montagem das matrizes locais apresentadas em (2.3.8) e (2.3.9) e do vetor força apresentado em (2.3.10), utilizaremos um método de integração numérica. Neste contexto, o método mais apropriado para o cálculo das integrais é o da Quadratura Gaussiana com dois pontos ζ_1 e ζ_2 , no interior, cuja integral é exata para polinomios de grau ≤ 3 . Para maiores detalhes sobre a Quadratura Gaussiana veja [2].

A Quadratura Gaussiana no caso unidimensional é dada por

$$\int_{-1}^{1} q(\zeta_l) \, d\zeta = \sum_{l=1}^{N} q(\zeta_l) w_l,$$

onde N é o número de pontos de integração, ζ_l é a coordenada e w_l é o peso associado a ζ_l . Quando N = 2, então, $\zeta_1 = -\frac{\sqrt{3}}{3} = -\zeta_2$ e $w_1 = w_2 = 1$. Nestas condições, o erro de integração é dado por

$$E_G = \frac{1}{135} \frac{d^4 q(\zeta)}{d\zeta^4}$$

e a integral é calculada por

$$\int_{-1}^{1} q(\zeta) \ d\zeta \approx q\left(-\frac{\sqrt{3}}{3}\right) + q\left(\frac{\sqrt{3}}{3}\right)$$

Desde que o intervalo de integração da função q seja o intervalo fechado [-1,1], então, para calcular as matrizes locais e o vetor força local do elemento e, cujas coordenadas são dadas por $[x_1^e, x_2^e]$, precisamos fazer a seguinte transformação isoparamétrica:

$$\xi : [x_1^e, x_2^e] \to [-1, 1]$$
$$x \longmapsto \xi(x) = \frac{1}{h_e} (2x - x_1^e - x_2^e)$$
(2.4.1)

onde $h_e = x_2^e - x_1^e$. A função inversa ξ^{-1} de ξ é dada por

$$x^{e}: [-1,1] \to [x_{1}^{e}, x_{2}^{e}]$$

 $\xi \longmapsto x^{e}(\xi) = \frac{1}{2}(x_{1}^{e} + x_{2}^{e} + h_{e}\xi)$ (2.4.2)

Além disso,

$$\frac{dx^e}{d\xi} = \frac{h_e}{2} \tag{2.4.3}$$

Iremos, então, calcular as matrizes locais e o vetor força local.

2.5 Matrizes Locais A_{ab}^e , B_{ab}^e e Força Local F_a^e

Para os (m + 1) nós da discretização de $\Omega = (0, 1)$ temos *m* elementos. Logo, de (2.3.7)

$$A = \sum_{e=1}^{m} A_{ab}^{e}, \qquad B = \sum_{e=1}^{m} B_{ab}^{e} \qquad e \qquad F = \sum_{e=1}^{m} F_{a}^{e}.$$

No intervalo $[x_1^e, x_2^e]$, as únicas funções de interpolação não nulas são as funções $\varphi_1^e \in \varphi_2^e$, definidas em (2.3.5). Assim, na matriz local A_{ab}^e os únicos elementos não necessariamente nulos são os elementos A_{11}^e , A_{12}^e , $A_{21}^e \in A_{22}^e$ que pertencem a e-ésima e (e+1)-ésima linhas e colunas. Logo, temos que:

1

$$e e + \downarrow \downarrow \downarrow$$

$$A^{e} = \begin{bmatrix} 0 & & & 0 \\ & A_{11}^{e} & A_{12}^{e} & \\ & A_{21}^{e} & A_{22}^{e} & \\ 0 & & & 0 \end{bmatrix} \begin{bmatrix} \leftarrow & e \\ \leftarrow & e+1 \\ & \leftarrow & e+1 \end{bmatrix}$$

Os elementos A_{11}^e , A_{12}^e , A_{21}^e e A_{22}^e podem ser representados respectivamente por A_{ee}^e , $A_{e,e+1}^e$, $A_{e+1,e}^e$ e $A_{e+1,e+1}^e$. Analogamente, o mesmo ocorrerá com a matriz B^e . O vetor F^e terá os únicos elementos não necessariamente nulos sendo F_1^e e F_2^e . Assim,

$$F_a^e = \begin{bmatrix} 0, \cdots, 0, F_1^e, F_2^e, 0, \cdots, 0 \end{bmatrix}^t$$

onde $F_1^e = F_e^e$ e $F_2^e = F_{e+1}^e$.

Consideremos as submatrizes $A_{ab}^e \in B_{ab}^e$ matrizes de ordem $(2 \times 2) \in F_a^e$ um vetor de ordem (2×1) formados pelos coeficientes e coordenadas não nulos, ou seja,

$$A^{e} = \begin{bmatrix} A_{11}^{e} & A_{12}^{e} \\ A_{21}^{e} & A_{22}^{e} \end{bmatrix}, \qquad B^{e} = \begin{bmatrix} B_{11}^{e} & B_{12}^{e} \\ B_{21}^{e} & B_{22}^{e} \end{bmatrix} \qquad e \qquad F^{e} = \begin{bmatrix} F_{1}^{e} \\ F_{2}^{e} \end{bmatrix}$$
(2.5.1)

As matrizes $A_{ab}^e \in B_{ab}^e$ são matrizes padrão dos elementos e e somente serão diferentes se $h_e = x_2^e - x_1^e$ for diferente para cada elemento e.

2.5.1 Matriz Local A_{ab}^e

A matriz local A^e_{ab} , simétrica, é dada por (2.3.8) como sendo

$$A^e_{ab} = \int_{x^e_1}^{x^e_2} \varphi^e_a(x) \varphi^e_b(x) \ dx$$

 $\operatorname{com} 1 \le a, b \le 2.$

Aplicando a transformação isoparamétrica (2.4.1) em (2.3.8) e lembrando que de (2.4.3) temos

$$\frac{dx^e}{d\xi} = \frac{h_e}{2}$$

obtemos,

$$A_{ab}^{e} = \int_{-1}^{1} \frac{h_{e}}{2} \varphi_{a}^{e}(\xi) \varphi_{b}^{e}(\xi) \ d\xi = \int_{-1}^{1} q(\xi) \ d\xi = q\left(-\frac{\sqrt{3}}{3}\right) + q\left(\frac{\sqrt{3}}{3}\right)$$
(2.5.2)

onde,

$$q(\xi) = \frac{h_e}{2} \varphi_a^e(\xi) \varphi_b^e(\xi)$$

Para explicitarmos a função $q(\xi)$ precisamos definir a função de interpolação $\varphi_a^e(\xi)$ no intervalo [-1,1]. Por exemplo, usando polinômio de grau 1, temos:

$$\varphi_{a}^{e}(\xi) = \begin{cases} \varphi_{1}^{e}(\xi) = \frac{(1-\xi)}{2}, & \forall \xi \in [-1,1] \\ \varphi_{2}^{e}(\xi) = \frac{(1+\xi)}{2}, & \forall \xi \in [-1,1] \\ 0, & \forall \xi \notin [-1,1] \end{cases}$$
(2.5.3)

A função $\varphi_a^e(\xi)$ apresentada em (2.5.3) para $\xi \in [-1, 1]$ é equivalente a função $\varphi_a^e(x)$ definida em (2.3.5) para $x \in [x_1^e, x_2^e]$.

Utilizando a função (2.5.3) em (2.5.2), obteremos os elementos da matriz local A^e dada por (2.5.1).

$$A_{ab}^{e} = \left[\begin{array}{cc} A_{11}^{e} & A_{12}^{e} \\ A_{21}^{e} & A_{22}^{e} \end{array} \right]$$

$$A_{11}^{e} = \int_{-1}^{1} q(\xi) \ d\xi = \frac{h_{e}}{2} \int_{-1}^{1} \varphi_{1}^{e}(\xi) \varphi_{1}^{e}(\xi) \ d\xi = \frac{h_{e}}{2} \int_{-1}^{1} \frac{(1-\xi)}{2} \frac{(1-\xi)}{2} \ d\xi$$
$$= \frac{h_{e}}{8} \int_{-1}^{1} (1-2\xi+\xi^{2}) \ d\xi = \frac{h_{e}}{3}$$
(2.5.4)

$$A_{12}^{e} = \int_{-1}^{1} q(\xi) \ d\xi = \frac{h_e}{2} \int_{-1}^{1} \varphi_1^{e}(\xi) \varphi_2^{e}(\xi) \ d\xi = \frac{h_e}{2} \int_{-1}^{1} \frac{(1-\xi)}{2} \frac{(1+\xi)}{2} \ d\xi$$
$$= \frac{h_e}{8} \int_{-1}^{1} (1-\xi^2) \ d\xi = \frac{h_e}{6}$$
(2.5.5)

Por se tratar de uma matriz simétrica temos que $A_{21}^e = A_{12}^e$.

$$A_{22}^{e} = \int_{-1}^{1} q(\xi) \, d\xi = \frac{h_{e}}{2} \int_{-1}^{1} \varphi_{2}^{e}(\xi) \varphi_{2}^{e}(\xi) \, d\xi = \frac{h_{e}}{2} \int_{-1}^{1} \frac{(1+\xi)}{2} \frac{(1+\xi)}{2} \, d\xi$$
$$= \frac{h_{e}}{8} \int_{-1}^{1} (1+2\xi+\xi^{2}) \, d\xi = \frac{h_{e}}{3}$$
(2.5.6)

De (2.5.4), (2.5.5) e (2.5.6) temos que a matriz de massa local ${\cal A}^e_{ab}$ é

$$A_{ab}^{e} = \frac{1}{6} \begin{bmatrix} 2h_{e} & h_{e} \\ h_{e} & 2h_{e} \end{bmatrix}$$
(2.5.7)

2.5.2 Matriz Rigidez Local B_{ab}^e

A matriz de rigidez local B^e_{ab} , simétrica, é dada por (2.3.9) como sendo

$$B_{ab}^{e} = \int_{x_{1}^{e}}^{x_{2}^{e}} \alpha \frac{d\varphi_{a}^{e}(x)}{dx} \frac{d\varphi_{b}^{e}(x)}{dx} + \beta \varphi_{a}^{e}(x)\varphi_{b}^{e}(x) dx$$
$$= \alpha \int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d\varphi_{a}^{e}(x)}{dx} \frac{d\varphi_{b}^{e}(x)}{dx} dx + \beta \int_{x_{1}^{e}}^{x_{2}^{e}} \varphi_{a}^{e}(x)\varphi_{b}^{e}(x) dx$$

para $1 \leq a, b \leq 2$.

Vamos escrever (2.3.9) como

$$B^e_{ab} = \alpha \ \hat{B}^e_{ab} + \beta \ \hat{A}^e_{ab} \tag{2.5.8}$$

onde

$$\hat{B}^e_{ab} = \int_{x_1^e}^{x_2^e} \frac{d\varphi^e_a(x)}{dx} \frac{d\varphi^e_b(x)}{dx} dx \qquad (2.5.9)$$

$$\hat{A}^{e}_{ab} = \int_{x_{1}^{e}}^{x_{2}^{e}} \varphi^{e}_{a}(x)\varphi^{e}_{b}(x) \, dx \tag{2.5.10}$$

Temos que a matriz B_{ab}^e é formada pela soma de duas matrizes. Assim, é apropriado estudar cada uma dessas matrizes separadamente.

Podemos observar que a matriz \hat{A}^e_{ab} definida em (2.5.10) é a mesma matriz definida em (2.3.8). Portanto, nos resta estudar a matriz \hat{B}^e_{ab} dada por (2.5.9). Aplicando a transformação isoparamétrica (2.4.2) em (2.5.9) e tomando

$$\frac{d\varphi_a^e}{dx} = \frac{d\varphi_a^e}{d\xi}\frac{d\xi}{dx} = \frac{d\varphi_a^e}{d\xi}\frac{2}{h_e}$$

obtemos

$$\hat{B}_{ab}^{e} = \int_{-1}^{1} \frac{2}{h_{e}} \frac{d\varphi_{a}^{e}}{d\xi} \frac{2}{h_{e}} \frac{d\varphi_{b}^{e}}{d\xi} \frac{h_{e}}{2} d\xi = \int_{-1}^{1} q(\xi) d\xi = q\left(-\frac{\sqrt{3}}{3}\right) + q\left(\frac{\sqrt{3}}{3}\right)$$
(2.5.11)

onde,

$$q(\xi) = \frac{2}{h_e} \left(\frac{d\varphi_a^e(\xi)}{d\xi} \frac{d\varphi_b^e(\xi)}{d\xi} \right)$$

Para explicitarmos a função $q(\xi)$, precisamos definir a derivada da função de interpolação $\varphi_a(\xi)$ no intervalo [-1,1]. Derivando (2.5.3), obtemos

$$\frac{d\varphi_a^e(\xi)}{d\xi} = \begin{cases} \frac{\varphi_1^e(\xi)}{d\xi} = -\frac{1}{2} & \forall \xi \in [-1,1] \\ \frac{\varphi_2^e(\xi)}{d\xi} = \frac{1}{2} & \forall \xi \in [-1,1] \\ 0 & \forall \xi \notin [-1,1] \end{cases}$$
(2.5.12)

Utilizando a função (2.5.12) em (2.5.9), obteremos os elementos da matriz local \hat{B}_{ab}^{e} , que é simétrica.

$$\hat{B}_{ab}^{e} = \begin{bmatrix} B_{11}^{e} & B_{12}^{e} \\ \hat{B}_{21}^{e} & \hat{B}_{22}^{e} \end{bmatrix}$$

$$\hat{B}_{11}^{e} = \int_{-1}^{1} q(\xi) \, d\xi = \int_{-1}^{1} \frac{2}{h_{e}} \frac{d\varphi_{1}^{e}(\xi)}{d\xi} \frac{d\varphi_{1}^{e}(\xi)}{d\xi} \, d\xi = \int_{-1}^{1} \frac{2}{h_{e}} \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) \, d\xi$$

$$= \int_{-1}^{1} \frac{1}{2h_{e}} \, d\xi = \frac{1}{h_{e}}$$
(2.5.13)

$$\hat{B}_{12}^{e} = \int_{-1}^{1} q(\xi) \, d\xi = \int_{-1}^{1} \frac{2}{h_{e}} \frac{d\varphi_{1}^{e}(\xi)}{d\xi} \frac{d\varphi_{2}^{e}(\xi)}{d\xi} \, d\xi = \int_{-1}^{1} \frac{2}{h_{e}} \left(-\frac{1}{2}\right) \left(\frac{1}{2}\right) \, d\xi$$
$$= \int_{-1}^{1} -\frac{1}{2h_{e}} \, d\xi = -\frac{1}{h_{e}}$$
(2.5.14)

Por se tratar de uma matriz simétrica temos que $\hat{B}_{21}^e = \hat{B}_{12}^e$.

$$\hat{B}_{22}^e = \int_{-1}^1 q(\xi) \ d\xi = \int_{-1}^1 \frac{2}{h_e} \frac{d\varphi_2^e(\xi)}{d\xi} \frac{d\varphi_2^e(\xi)}{d\xi} \ d\xi = \int_{-1}^1 \frac{2}{h_e} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \ d\xi$$
$$= \int_{-1}^{1} \frac{1}{2h_e} d\xi = \frac{1}{h_e}$$
(2.5.15)

De (2.5.13), (2.5.14) e (2.5.15) temos que a matriz local \hat{B}^e_{ab} é

$$\hat{B}_{ab}^{e} = \begin{bmatrix} \frac{1}{h_{e}} & -\frac{1}{h_{e}} \\ -\frac{1}{h_{e}} & \frac{1}{h_{e}} \end{bmatrix}$$
(2.5.16)

Aplicando (2.5.16) e (2.5.7) em (2.5.8) temos

$$B_{ab}^{e} = \frac{\alpha}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\beta h_e}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
(2.5.17)

2.5.3 Vetor Força Local F_a^e

O vetor força local ${\cal F}^e_a$ é dado por (2.3.10) como sendo

$$F_a^e = \int_{x_1}^{x_2} f\varphi_a^e(x) \ dx$$

onde $1 \leq a \leq 2$.

Aplicando a transformação isoparamétrica (2.4.2)e a quadratura Gaussiana em(2.3.10)obtemos

$$F_1^e = \int_{x_1}^{x_2} f\varphi_1^e(x) \, dx = \int_{-1}^1 f\left(\frac{1}{2}(x_1^e + x_2^e + h_e\xi)\right) \varphi_1^e(\xi) \frac{h_e}{2} \, d\xi = \int_{-1}^1 q_1(\xi) \, d\xi$$
$$= q_1\left(-\frac{\sqrt{3}}{3}\right) + q_1\left(\frac{\sqrt{3}}{3}\right) \tag{2.5.18}$$

onde

$$q_1(\xi) = f\left(\frac{1}{2}(x_1^e + x_2^e + h_e\xi)\right)\varphi_1^e(\xi)\frac{h_e}{2}$$
(2.5.19)

onde $\varphi_1^e(\xi)$ é a função de interpolação do intervalo [-1,1]. Se tomarmos, em particular, a função de interpolação linear (2.5.3) obtemos

$$q_1(\xi) = \frac{h_e}{4} f\left(\frac{1}{2}(x_1^e + x_2^e + h_e\xi)\right)(1-\xi).$$
(2.5.20)

Analogamente, para ${\cal F}^e_2$ tem-se

$$F_2^e = \int_{-1}^1 q_2(\xi) \ d\xi = q_2\left(-\frac{\sqrt{3}}{3}\right) + q_2\left(\frac{\sqrt{3}}{3}\right)$$
(2.5.21),

onde

$$q_2(\xi) = f\left(\frac{1}{2}(x_1^e + x_2^e + h_e\xi)\right)\varphi_2^e(\xi)\frac{h_e}{2}$$
(2.5.22)

ou se tomarmos, em particular, a função de interpolação linear (2.5.3) obtemos

$$q_2(\xi) = \frac{h_e}{4} f\left(\frac{1}{2}(x_1^e + x_2^e + h_e\xi)\right)(1+\xi).$$
(2.5.23)

Para facilitar o cálculo de $q_1(\xi)$ e $q_2(\xi)$ podemos interpolar f utilizando as funções de interpolação $\varphi_a(\xi)$, a = 1, 2. De fato:

$$f(x^{e}(\xi)) = f(\xi) = \sum_{a=1}^{2} \varphi_{a}(\xi) f_{a}^{e}$$
(2.5.24)

onde $f_a^e = f(\xi_a)$. Logo,

$$F_{a}^{e} = \int_{x_{1}^{e}}^{x_{2}^{e}} f(x)\varphi_{a}^{e}(x) \, dx = \int_{-1}^{1} f(\xi)\frac{dx^{e}}{d\xi}\varphi_{a}(x^{e}(\xi)) \, d\xi = \int_{-1}^{1} \left(\sum_{b=1}^{2}\varphi_{a}(\xi)\varphi_{b}(\xi)\frac{dx^{e}}{d\xi}f_{b}^{e}\right) \, d\xi \tag{2.5.25}$$

Em particular, para a interpolação linear, temos

$$\varphi_1 = \frac{1}{2}(1-\xi)$$
 e $\varphi_2 = \frac{1}{2}(1+\xi)$

Por outro lado, $\frac{dx^e}{d\xi} = \frac{h_e}{2}$. Logo

$$F_a^e = \frac{h_e}{2} \left(\int_{-1}^1 \varphi_a(\xi) \varphi_1(\xi) f_1^e + \varphi_a(\xi) \varphi_2(\xi) f_2^e \right) d\xi$$
 (2.5.26)

Fazendo os cálculos, obtém-se os elementos do vetor força local F^e dado por

$$F^{e} = \begin{bmatrix} 2f_{1}^{e} + f_{2}^{e} \\ f_{1}^{e} + 2f_{2}^{e} \end{bmatrix}$$
(2.5.27)

2.6 Matrizes Globais A, B e Força Global F

Iremos agora para a montagem das matrizes globais a partir das matrizes locais, visto que de (2.3.7) temos

$$A = \sum_{e=1}^{m} A_{ab}^{e}, \qquad B = \sum_{e=1}^{m} B_{ab}^{e} \qquad e \qquad F = \sum_{e=1}^{m} F_{a}^{e}$$

2.6.1 Matriz Global A

Consideremos a matriz local definida em (2.3.8) e a função $\varphi_a(x)$ definida em (2.3.5) com $[x_1^e, x_2^e] = [x_e, x_{e+1}]$. Para calcularmos o coeficiente A_{ee} da matriz global A basta fazer i = j = e. Então:

$$A_{ee} = \int_0^1 \varphi_e(x)\varphi_e(x) \, dx$$
$$= \int_{x_{e-1}}^{x_e} \varphi_e(x)\varphi_e(x) \, dx + \int_{x_e}^{x_{e+1}} \varphi_e(x)\varphi_e(x) \, dx \qquad (2.6.1)$$

Em termos de contribuição local, obtemos

$$A_{ee} = \int_{x_1^{e-1}}^{x_2^{e-1}} \varphi_2^{e-1}(x) \varphi_2^{e-1}(x) \, dx + \int_{x_1^e}^{x_2^e} \varphi_1^e(x) \varphi_1^e(x) \, dx$$
$$= A_{22}^{e-1} + A_{11}^e \tag{2.6.2}$$

Logo, o coeficiente A_{ee} da matriz global A recebe contribuição dos elementos finitos $(e-1) \in e$, através da relação

$$A_{22}^{e-1} + A_{11}^e$$
, para $e = 2, 3, \cdots, m$ (2.6.3)

onde A_{22}^{e-1} e A_{11}^e são os coeficientes das matrizes locais A^{e-1} e A^e de ordem (2×2) .

De forma análoga, o coeficiente $A_{e,e+1}$ da matriz global é dado por

$$A_{e,e+1} = \int_0^1 \varphi_e(x)\varphi_{e+1}(x) \, dx = \int_{x_e}^{x_{e+1}} \varphi_e(x)\varphi_{e+1}(x) \, dx = \int_{x_1^e}^{x_2^e} \varphi_1(x)\varphi_2(x) \, dx = A_{12}^e$$
(2.6.4)

Assim, o coeficiente global $A_{e,e+1}$ recebe apenas a contribuição local do coeficiente A_{12}^e da matriz local do elemento e. Da mesma forma, o coeficiente $A_{e+1,e}$ recebe apenas a contribuição do coeficiente local A_{21}^e da matriz local do elemento e. Desta forma,

$$A_{e+1,e} = \int_0^1 \varphi_{e+1}(x)\varphi_e(x) \, dx = \int_{x_e}^{x_{e+1}} \varphi_{e+1}(x)\varphi_e(x) \, dx = \int_{x_1^e}^{x_2^e} \varphi_2(x)\varphi_1(x) \, dx = A_{21}^e$$
(2.6.5)

De forma geral, a contribuição local para os coeficientes da matriz global é dada pelo seguinte algoritmo:

Para
$$e = 2, 3, \cdots, m$$
, temos

 $A_{ee} = A_{22}^{e-1} + A_{11}^e$

$$A_{e,e+1} = A_{12}^{e}$$

$$A_{e+1,e} = A_{21}^{e}$$
(2.6.6)

Para os coeficientes A_{11} e $A_{m+1,m+1}$ relativo aos nós extremos, consideramos o seguinte:

$$A_{11} = \int_0^1 \varphi_1(x)\varphi_1(x) \, dx = \int_{x_1^1}^{x_2^1} \varphi_1(x)\varphi_1(x) \, dx = \int_{x_1^1}^{x_2^1} \varphi_1^1(x)\varphi_1^1(x) \, dx = A_{11}^1 \qquad (2.6.7)$$

Da mesma forma, temos

$$A_{m+1,m+1} = \int_{x_1^m}^{x_2^m} \varphi_2^m(x) \varphi_2^m(x) \, dx$$
$$A_{m+1,m+1} = A_{22}^m \tag{2.6.8}$$

De (2.6.6), (2.6.7) e (2.6.8) obtemos a matriz global A dada pelo algoritmo:

$$A_{11} = A_{11}^{1}$$

$$A_{ee} = A_{22}^{e-1} + A_{11}^{e} \quad e = 2, 3, \cdots, m$$

$$A_{e,e+1} = A_{12}^{e} \quad e = 2, 3, \cdots, m$$

$$A_{e+1,e} = A_{21}^{e} \quad e = 2, 3, \cdots, m$$

$$A_{m+1,m+1} = A_{22}^{m}$$
(2.6.9)

Sendo a matriz local ${\cal A}^e_{ab}$ dada em (2.5.7) por

$$A_{ab}^{e} = \frac{1}{6} \begin{bmatrix} 2h_{e} & h_{e} \\ h_{e} & 2h_{e} \end{bmatrix}$$

a matriz global obtida através da utilização do algoritmo (2.6.9) é

$$A = \begin{bmatrix} 2h_1 & h_1 & 0 & \cdots & 0 & 0\\ h_1 & (2h_1 + 2h_2) & h_2 & 0 & 0 & 0\\ 0 & h_2 & (2h_2 + 2h_3) & \ddots & 0 & 0\\ 0 & 0 & \ddots & \ddots & h_m & 0\\ 0 & 0 & 0 & h_m & (2h_m + 2h_{m+1}) & h_{m+1}\\ 0 & 0 & 0 & 0 & h_{m+1} & 2h_{m+1} \end{bmatrix}$$

O algoritmo apresentado em (2.6.9) é geral e sua utilização resultará numa matriz tridiagonal. Portanto, ele também será utilizado na construção da matriz de rigidez global.

2.6.2 Matriz Rigidez Global B

A matriz de rigidez local é dada em (2.5.17) por

$$\hat{B}_{ab}^{e} = \frac{\alpha}{h_{e}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\beta h_{e}}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
$$B_{ab}^{e} = B1_{ab}^{e} + B2_{ab}^{e}$$
(2.6.10)

Aplicando o algoritmo (2.6.9) nas matrizes $B1^e_{ab}$
e $B2^e_{ab}$ separadamente, obtemos:

Matriz B1

$$B1 = \begin{bmatrix} \frac{\alpha}{h_1} & -\frac{\alpha}{h_1} & 0 & \cdots & 0 & 0\\ -\frac{\alpha}{h_1} & (\frac{\alpha}{h_1} + \frac{\alpha}{h_2}) & -\frac{\alpha}{h_2} & \cdots & 0 & 0\\ 0 & -\frac{\alpha}{h_2} & (\frac{\alpha}{h_2} + \frac{\alpha}{h_3}) & \ddots & 0 & 0\\ 0 & 0 & \ddots & \ddots & -\frac{\alpha}{h_m} & 0\\ 0 & 0 & 0 & -\frac{\alpha}{h_m} & (\frac{\alpha}{h_m} + \frac{\alpha}{h_{m+1}}) & -\frac{\alpha}{h_{m+1}}\\ 0 & 0 & 0 & 0 & -\frac{\alpha}{h_{m+1}} & \frac{\alpha}{h_{m+1}} \end{bmatrix}$$
(2.6.11)

Matriz B2

$$B2 = \begin{bmatrix} \frac{\beta h_1}{3} & \frac{\beta h_1}{6} & 0 & \cdots & 0 & 0\\ \frac{\beta h_1}{6} & \left(\frac{\beta h_1}{3} + \frac{\beta h_2}{3}\right) & \frac{\beta h_1}{6} & \cdots & 0 & 0\\ 0 & \frac{\beta h_2}{6} & \left(\frac{\beta h_2}{3} + \frac{\beta h_3}{3}\right) & \ddots & 0 & 0\\ 0 & 0 & \ddots & \ddots & \frac{\beta h_m}{6} & 0\\ 0 & 0 & 0 & \frac{\beta h_m}{6} & \left(\frac{\beta h_m}{3} + \frac{\beta h_{m+1}}{3}\right) & \frac{\beta h_{m+1}}{6}\\ 0 & 0 & 0 & 0 & \frac{\beta h_{m+1}}{6} & \frac{\beta h_{m+1}}{3} \end{bmatrix}$$
(2.6.12)

Através da utilização do algoritmo (2.6.9) a matriz de ridigez global é obtida pela soma de (2.6.11) e (2.6.12):

$$B = B1 + B2 \tag{2.6.13}$$

2.6.3 Vetor Força Global F

Consideremos o vetor força local definido em (2.3.10). Usando a função $\varphi_a(x)$ definida em (2.3.5), com $[x_1^e, x_2^e] = [x_e, x_{e+1}]$, vamos calcular o coeficiente F_e do vetor força global

F. Então:

$$F_{e} = \int_{0}^{1} f(x)\varphi_{a}^{e}(x) \, dx = \int_{x_{e-1}}^{x_{e+1}} f(x)\varphi_{a}^{e}(x) \, dx = \int_{x_{1}^{e-1}}^{x_{2}^{e-1}} f(x)\varphi_{2}^{e-1}(x) \, dx + \int_{x_{1}^{e}}^{x_{2}^{e}} f(x)\varphi_{1}^{e}(x) \, dx$$
$$= F_{2}^{e-1} + F_{1}^{e}$$
(2.6.14)

Para $F_1 \in F_{m+1}$, temos

$$F_1 = \int_0^1 f(x)\varphi_1(x) \, dx = \int_{x_1^e}^{x_2^e} f(x)\varphi_1^1(x) \, dx = F_1^1 \tag{2.6.15}$$

$$F_{m+1} = \int_0^1 f(x)\varphi_{m+1}(x) \, dx = \int_{x_1^e}^{x_2^e} f(x)\varphi_2^m(x) \, dx = F_2^m \tag{2.6.16}$$

De (2.6.14), (2.6.15) e (2.6.16) obtemos o vetor força global dado pelo algoritmo

$$F_{1} = F_{1}^{1}$$

$$F_{e} = F_{2}^{e-1} + F_{1}^{e}, \quad e = 2, 3, \cdots, m$$

$$F_{m+1} = F_{2}^{m}, \quad e = 2, 3, \cdots, m$$
(2.6.17)

Para obter F_e explicitamente, calculemos F_2^{e-1} e F_1^e . Usando a interpolação local da função f(x) dada por

$$f(x) = \sum_{a=1}^{e} \varphi_a^e(x) f_a^e$$

onde $f_a^e = f(x_a^e)$, podemos escrever:

$$F_1^e = \int_{x_1^e}^{x_2^e} f(x)\varphi_1^e(x)\,dx = f_1^e \int_{x_1^e}^{x_2^e} (\varphi_1^e(x)\varphi_1^e(x))\,dx + f_2^e \int_{x_1^e}^{x_2^e} (\varphi_2^e(x)\varphi_1^e(x))\,dx \quad (2.6.18)$$

onde $f_1^e = f(x_1^e) = f(x_e)$ e $f_2^e = f(x_2^e) = f(x_{e+1})$.

De (2.3.5) temos,

$$\int_{x_1^e}^{x_2^e} (\varphi_1^e(x))^2 \, dx = \frac{h_e}{3} \tag{2.6.19}$$

$$\int_{x_1^e}^{x_2^e} (\varphi_2^e(x)\varphi_1^e(x)) \, dx = \frac{h_e}{6} \tag{2.6.20}$$

Substituindo em (2.6.18), conclui-se que

$$F_1^e = \frac{h_e}{3}f_1^e + \frac{h_e}{6}f_2^e \tag{2.6.21}$$

De forma análoga, temos

$$F_2^e = \int_{x_1^e}^{x_2^e} f(x)\varphi_2^e(x)\,dx = f_1^e \int_{x_1^e}^{x_2^e} \left(\varphi_1^e(x)\varphi_2^e(x)\right)\,dx + f_2^e \int_{x_1^e}^{x_2^e} \left(\varphi_2^e(x)\right)^2\,dx$$

$$=\frac{h_e}{6}f_1^e + \frac{h_e}{3}f_2^e \tag{2.6.22}$$

Portanto, a força ${\cal F}_e$ é dada por

$$F_e = F_2^{e-1} + F_1^e = \frac{h_{e-1}}{6} (f_1^{e-1} + 2f_2^{e-1}) + \frac{h_e}{6} (2f_1^e + f_2^e), \quad e = 2, 3, \cdots, m$$
(2.6.23)

De (2.6.15) e (2.6.16), F_1 e F_{m+1} são calculados por

$$F_{1} = \int_{x_{1}^{e}}^{x_{2}^{e}} f(x)\varphi_{1}^{1}(x) dx = f_{1}^{1} \int_{x_{1}^{e}}^{x_{2}^{e}} (\varphi_{1}^{1}(x))^{2} dx + f_{2}^{1} \int_{x_{1}^{e}}^{x_{2}^{e}} (\varphi_{2}^{1}(x)\varphi_{1}^{1}(x)) dx$$
$$= \frac{h_{1}}{3} f_{1}^{1} + \frac{h_{1}}{6} f_{2}^{1}$$
(2.6.24)

isto é,

$$F_1 = F_1^1 = \frac{h_1}{6} (2f_1^1 + f_2^1)$$
(2.6.25)

е

$$F_{m+1} = \int_{x_1^e}^{x_2^e} f(x)\varphi_2^m(x)\,dx = f_1^m \int_{x_1^e}^{x_2^e} \left(\varphi_1^m(x)\varphi_2^m(x)\right)\,dx + f_2^m \int_{x_1^e}^{x_2^e} \left(\varphi_2^m(x)\right)^2\,dx \quad (2.6.26)$$
$$-\frac{h_m}{2}f_1^m + \frac{h_m}{2}f_1^m + \frac{h_m}{2}f_1^m \quad (2.6.27)$$

$$=\frac{h_m}{6}f_1^m + \frac{h_m}{3}f_2^m \tag{2.6.27}$$

ou seja,

$$F_{m+1} = F_2^m = \frac{h_m}{6}(f_1^m + 2f_2^m)$$
(2.6.28)

Portanto, o vetor força global ${\cal F}$ é dado por

$$F = \left[F_1, \cdots, F_{m+1} \right]^T$$

Em particular, se a malha é uniforme tem-se:

$$F_{1} = \frac{h}{6}(2f_{1}^{1} + f_{2}^{1})$$

$$F_{e} = \frac{h}{6}(f_{1}^{e-1} + 4f_{1}^{e} + f_{2}^{e}), \quad e = 2, 3, \cdots, m$$

$$F_{m+1} = \frac{h}{6}(f_{1}^{m} + 2f_{2}^{m})$$

2.7 Método das Diferenças Finitas

Seja $f(t) \in C^{n+1}(0,T)$. Do teorema de Taylor, podemos expandir a função f(t) na forma:

$$f(t + \Delta t) = f(t) + \Delta t f'(t) + \frac{\Delta t^2}{2!} f''(t) + \frac{\Delta t^3}{3!} f'''(t) + \frac{\Delta t^4}{4!} f^{iv}(t) \cdots$$
 (2.7.1)

e de forma análoga

$$f(t - \Delta t) = f(t) - \Delta t f'(t) + \frac{\Delta t^2}{2!} f''(t) - \frac{\Delta t^3}{3!} f'''(t) + \frac{\Delta t^4}{4!} f^{iv}(t) \cdots$$
 (2.7.2)

Somando os termos (2.7.1) e (2.7.2), obtemos

$$f(t - \Delta t) - 2f(t) + f(t + \Delta t) = \Delta t^2 f''(t) + O(\Delta t^4), \qquad (2.7.3)$$

onde $O(\Delta t^4)$ denota todos os termos de potência quatro ou superior de t. Assumindo que estes termos são pequenos quando comparados com potências inferiores de t ($t \ll 1$) e negligenciando os termos do lado direito, temos a seguinte aproximação para a segunda derivada da função,

$$f''(t) \simeq \frac{1}{\Delta t^2} \Big(f(t + \Delta t) - 2f(t) + f(t - \Delta t) \Big),$$
 (2.7.4)

com o erro da aproximação de ordem $O(\Delta t^2)$. A aproximação (2.7.4) é denominada Diferença Central.

Por outro lado, podemos obter uma aproximação centrada para a primeira derivada de função f(t), fazendo a diferença entre os termos (2.7.1) e (2.7.2), ou seja

$$f(t + \Delta t) - f(t - \Delta t) = 2\Delta t f'(t) + O(\Delta t^3),$$

e dessa forma temos a seguinte aproximação central para a primeira derivada

$$f'(t) \simeq \frac{1}{2\Delta t} \Big(f(t + \Delta t) - f(t - \Delta t) \Big), \qquad (2.7.5)$$

com erro de aproximação de ordem $O(\Delta t^2)$.

Desprezando os termos com potência dois ou superior de Δt em (2.7.1) e (2.7.2), temos também as seguintes aproximações para a primeira derivada:

$$f'(t) \simeq \frac{1}{\Delta t} \Big(f(t + \Delta t) - f(t) \Big)$$
 (Diferença Progressiva ou Adiantada), (2.7.6)

$$f'(t) \simeq \frac{1}{\Delta t} \Big(f(t) - f(t - \Delta t) \Big)$$
 (Diferença Regressiva ou Atrasada), (2.7.7)

sendo ambos os erros das aproximações de ordem O(h).

Notação: Suponhamos que f é uma função das variáveis independentes $x \in [a, b]$ e $t \in [0, T]$ e seja a seguinte discretização uniforme: $a = x_0 < x_1 < \cdots x_M = b$ e $0 = t_0 < t_1 < \cdots t_N = T$, onde $h = x_{i+1} - x_i$ e $\Delta t = t_{n+1} - t_n$, são denominados passos. Assim h = (b - a)/M e $\Delta t = T/N$ e cada elemento discreto pode ser obtido por,

$$x_i = x_0 + ih, \quad i = 1, 2, \cdots, M$$

 $t_n = n\Delta t, \quad n = 1, 2, \cdots, N.$

Vamos denotar a função f nos pontos discretos (x_i, t_n) da seguinte forma:

$$f(x_i, t_n) = f(x_0 + ih, n\Delta t) = f_i^n.$$

Ao aplicar o Método de Elementos Finitos no espaço obtemos um sistema de equações diferenciais ordinárias cuja variável é o tempo t. Esse sistema será resolvido pelo Método das Diferenças Finitas. Para evitar a profusão de índices, vamos suprimir em (2.2.14) o índice m. Considere, então, o sistema de m equações diferenciais ordinárias nos tempos discretos t_n , onde $t_n = n\Delta t$, $n = 0, 1, \dots N$.

$$\begin{cases} Ag'(t_n) + Bg(t_n) = F(t_n), & n = 0, 1, \cdots, N \\ g(0) = g_0 \end{cases}$$
(2.7.8)

2.8 Métodos Numéricos

Vamos agora introduzir alguns dos métodos mais conhecidos da literatura para a resolução numérica do sistema (2.7.8).

2.8.1 Método de Euler

Na diferença regressiva temos que,

$$(g'(t))_{t=t_n} = \left(\frac{\partial g(t)}{\partial t}\right)_n = \frac{1}{\Delta t} \left(g^n - g^{n-1}\right), \tag{2.8.1}$$

onde a função g somente depende da variável tempo $t = t_n$. Substituindo a aproximação no sistema (2.7.8) e usando a notação dada, obtemos:

$$\frac{1}{\Delta t}A(g^n - g^{n-1}) + Bg^n = F^n, \qquad n = 1, 2 \cdots N$$
(2.8.2)

ou equivalentemente

$$(A + \Delta tB)g^n = \Delta tF^n + Ag^{n-1} = b^n, \qquad n = 1, 2, \dots N$$
 (2.8.3)

Algoritmo 1:

Para inicialização do método iterativo regressivo, faz-se n = 1 em (2.8.3), obtendo-se

$$(A + \Delta tB)g^1 = \Delta tF^1 + Ag^0 = b^1,$$

Mas $F^1 = (f(x, t_0), w_j(x))$ é conhecida para todo $x \in g^0 = g(0)$ é a condição inicial dada. Assim, resolvendo o sistema determina-se g^1 e sucessivamente obtemos todos os $g^n, n = 2, \dots, N.$

Já na diferença progressiva temos que,

$$(g'(t))_{t=t_n} = \left(\frac{\partial g(t)}{\partial t}\right)_n = \frac{1}{\Delta t} \left(g^{n+1} - g^n\right), \tag{2.8.4}$$

Substituindo (2.8.4) em (2.7.8) e usando a notação dada, obtemos:

$$\frac{1}{\Delta t}A(g^{n+1}-g^n) + Bg^n = F^n, \qquad n = 0, 1, 2\cdots(N-1)$$
(2.8.5)

ou equivalentemente

$$Ag^{n+1} = (A - \Delta tB)g^n + \Delta tF^n = b^{n+1}, \qquad n = 0, 1, 2, \dots (N-1)$$
(2.8.6)

Algoritmo 2:

Da mesma forma, iniciamos o método iterativo progressivo fazendo n = 0 em (2.8.6), e obtemos

$$Ag^1 = (A - \Delta tB)g^0 + \Delta tF^0 = b^1,$$

Temos que $F^0 = (f(x, t_1), w_j(x))$ é conhecida e $g^0 = g(0)$ é a condição inicial dada. Assim, resolvendo o sistema, determina-se g^1 e sucessivamente obtemos todos os g^n , $n = 1, \dots, (N-1)$.

Note que ao usar o método das diferenças regressivas, o erro de aproximação no tempo é de $O(\Delta t)$.

O método que descreveremos a seguir tem uma precisão melhor pois a ordem do erro é $O(\Delta t^2)$

2.8.2 Método de Crank-Nicolson

O método considera a diferença progressiva (2.8.4) para o termo g'(t), mas nos outros termos que dependem de t e não envolve derivadas no tempo, é feita a seguinte aproximação pela média aritmética,

$$g^{n+\frac{1}{2}} = \frac{1}{2}(g^n + g^{n+1})$$
 e $F^{n+\frac{1}{2}} = \frac{1}{2}(F^n + F^{n+1}).$ (2.8.7)

Fazendo as substituições em (2.7.8) obtemos:

$$\frac{A}{\Delta t} \left(g^{n+1} - g^n \right) + \frac{B}{2} \left(g^{n+1} + g^n \right) = \frac{1}{2} \left(F^{n+1} + F^n \right), \tag{2.8.8}$$

que é equivalente a

$$(A + \frac{\Delta t}{2}B)g^{n+1} = (A - \frac{\Delta t}{2}B)g^n + \frac{\Delta t}{2}(F^{n+1} + F^n) = b^{n+1}, \qquad n = 0, 1, \dots (N-1)$$
(2.8.9)

Algoritmo:

Para inicialização do método iterativo, faz-se n = 0 em (2.8.9), obtendo-se

$$(A + \frac{\Delta t}{2}B)g^{1} = (A - \frac{\Delta t}{2}B)g^{0} + \frac{\Delta t}{2}(F^{1} + F^{0}) = b^{1},$$

Porém, $F^0 = (f(x, t_0), w_j(x))$ e $F^1 = (f(x, t_1), w_j(x))$ são conhecidas para todo xe $g^0 = g(0)$ é a condição inicial dada. Assim, resolvendo o sistema, determina-se g^1 e sucessivamente obtemos todos os g^n . Como a função f(x, t) para todo x e para todo t é conhecida então F^n e F^{n+1} são conhecidos para todo n.

Pode se mostrar que o esquema (ver [7],[14],[15]) tem ordem de convergência $O(\Delta t^2)$.

2.8.3 Método Generalizado Trapezoidal: (θ-Métodos)

Considere agora a mesma aproximação do esquema de Crank-Nicolson, substituindo a média aritmética pela média ponderada:

$$g^{n+\theta} = \theta g^{n+1} + (1-\theta)g^n$$
 e $F^{n+\theta} = \theta F^{n+1} + (1-\theta)F^n$, $\theta \in [0,1]$. (2.8.10)

Algoritmo 1:

Fazendo as substituições em (2.7.8) obtemos a seguinte família de métodos,

$$\left(A + \theta \Delta tB\right)g^{n+1} = \left(A - (1-\theta)\Delta tB\right)g^n + \Delta t\left(\theta F^{n+1} + (1-\theta)F^n\right) = b^{n+1}, \quad (2.8.11)$$

para $n = 0, 1, \cdots, (N - 1).$

Para inicialização do método iterativo, fazemos n = 0 em (2.8.11) e obtemos

$$\left(A + \theta \Delta tB\right)g^{1} = \left(A - (1 - \theta)\Delta tB\right)g^{0} + \Delta t\left(\theta F^{1} + (1 - \theta)F^{0}\right) = b^{1},$$

Temos que no tempo t = 0, a temperatura inicial $g^0 = g(0)$ e a força $F^0 = (f(x, t_0), w_j(x))$ e $F^1 = (f(x, t_1), w_j(x))$ são conhecidas para todo x. Assim, resolvendo o sistema, determina-se g^1 . Para calcular as soluções nos tempos $n = 1, 2, \dots (N-1)$, basta resolver o sistema (2.8.11) para cada n.

Um outro método, conhecido como preditor-corretor, pode ser utilizado, onde o cálculo da derivada $g'(t_n)$ é considerado.

Algoritmo 2:

Considere o seguinte algoritmo:

$$\begin{cases}
Av^{n+1} + Bg^{n+1} = F^{n+1} \\
g^{n+1} = g^n + \Delta t v^{n+\theta} \\
v^{n+\theta} = \theta v^{n+1} + (1-\theta)v^n,
\end{cases}$$
(2.8.9)

onde v^n e g^n são aproximações de $g'(t_n)$ e $g(t_n)$ respectivamente e $F^{n+1} = F(t_{n+1})$, Δt é o incremento do tempo e $\theta \in [0, 1]$ é um parâmetro.

O problema computacional é determinar $g^{n+1} \in v^{n+1}$ a partir dos valores conhecidos do tempo anterior $g^n \in v^n$.

Inicialização do Algoritmo

No tempo t = 0 a temperatura inicial g^0 é conhecida. Então, g'(0) pode ser determinado fazendo $t = t_0 = 0$ em $(2.7.8)_1$, ou seja

$$Ag'(0) + Bg(0) = F(0) \Leftrightarrow Ag'(0) = F^0 - Bg^0$$

Resolvendo o sistema linear, determina-se $g'(0) = v^0$.

Para $n = 0, 1, \dots, (N - 1)$ o procedimento para determinar a solução aproximada é dividido nas seguintes etapas:

(i) Definimos um preditor para g^{n+1} na forma:

$$\widetilde{g}^{n+1} = g^n + (1-\theta)\Delta t v^n$$

(ii) De $(2.8.9)_2$ e $(2.8.9)_3$ tem-se que

$$g^{n+1} = g^n + \Delta t v^{n+\theta} = g^n + \Delta t \left(\theta v^{n+1} + (1-\theta)v^n \right) = \tilde{g}^{n+1} + \theta \Delta t v^{n+1}$$

(iii) Substituindo (ii) em $(2.8.9)_1$, temos

$$\left(A + \theta \Delta t B\right) v^{n+1} = F^{n+1} - B\tilde{g}^{n+1}$$

Resolvendo o sistema linear obtém-se v^{n+1} . Com v^{n+1} calculado, então os valores de g^{n+1} são determinados por (ii). E assim sucessivamente para $n = 0, 1 \cdots (N-1)$.

Podemos notar que:

- (i) Se $\theta = 0$, obtemos o Método de Euler Progressivo (2.8.6);
- (ii) Se $\theta = 1/2$, obtemos o Método de Crank-Nicolson (2.8.9);
- (iii) Se $\theta = 1$, obtemos o Método de Euler Regressivo (2.8.3).

Convergência do Método Generalizado Trapezoidal

A análise de estabilidade da família de métodos foi analisada em [1][7], e dada pelo seguinte teorema.

Estabilidade

- **Teorema 2.2.** (i) Se $\theta \in [\frac{1}{2}, 1]$ então o Método Generalizado Trapezoidal é incondicionalmente estável, ou seja, não existe qualquer restrição ao passo Δt .
 - (ii) Se $\theta \in [0, \frac{1}{2}[$ então o Método Generalizado Trapezoidal é condicionalmente estável, ou seja, o passo Δt deve satisfazer a seguinte condição:

$$\Delta t < r(\theta),$$

2.9 Condição de Fronteira

As matrizes globais $A \in B$ obtidas anteriormente através das matrizes locais $A^e \in B^e$ e o vetor força global F obtido através do vetor local F^e tiveram as condições de fronteira do problema (2.2.14) negligenciadas. Do problema (2.2.6) temos as condições de fronteira dadas pela segunda equação que devem ser respeitadas, ou seja

$$g(t) = 0$$
, para $x = 0 e x = 1$ (2.9.1)

Portanto, as resoluções de (2.8.3), (2.8.6) e (2.8.9) precisam respeitar a condição (2.9.1).

Considere o sistema (2.8.11)

$$(A + \theta \Delta tB)g^{n+1} = (A - (1 - \theta)\Delta tB)g^n + \Delta t (\theta F^{n+1} + (1 - \theta)F^n)$$
$$= b^{n+1}, \quad \text{para } n = 0, 1, \cdots, (N - 1)$$

e denotando por \tilde{A} a matriz

$$\tilde{A} = (A + \theta \Delta t B) \tag{2.9.2}$$

Pela substituição de (2.9.2) em (2.8.11) obtemos

$$\tilde{A} q^{n+1} = b^{n+1}$$

que corresponde a

$$\tilde{A} = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} & 0 & 0 & 0 \\ \tilde{A}_{21} & \tilde{A}_{22} & \ddots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \tilde{A}_{m,m} & \tilde{A}_{m,m+1} \\ 0 & 0 & 0 & \tilde{A}_{m+1,m} & \tilde{A}_{m+1,m+1} \end{bmatrix} \begin{bmatrix} g_1^{n+1} \\ g_2^{n+1} \\ \vdots \\ g_m^{n+1} \\ g_{m+1}^{n+1} \end{bmatrix} = \begin{bmatrix} b_1^{n+1} \\ b_2^{n+1} \\ \vdots \\ b_m^{1} \\ b_{m+1}^{n+1} \end{bmatrix}$$

Portanto, no sistema linear $\tilde{A} g^{n+1} = b^{n+1}$ de ordem (m+1), as constantes g_1^{n+1} e g_{m+1}^{n+1} são conhecidas e assim passamos a ter (m-1) incógnitas $g_2^{n+1}, \dots, g_m^{n+1}$ para as quais queremos determinar a solução.

Como a matriz global \tilde{A} é de ordem $(m + 1) \times (m + 1)$ e o vetor b possui (m + 1) componentes, devemos transformar o sistema linear (2.8.8) de forma a assegurar que as condições $g_1^{n+1} = g_{m+1}^{n+1} = 0$ sejam satisfeitas. Assim, a primeira linha do sistema linear (2.8.11) é dada por

$$\tilde{A}_{11}g_1^{n+1} + \tilde{A}_{12}g_2^{n+1} = b_1^{n+1}$$

É importante forçar o sistema para satisfazer a condição $g_1^{n+1} = 0$. Tomando $\tilde{A}_{11} = 1$, $\tilde{A}_{12} = 0 e b_1^{n+1} = 0$, a igualdade é verdadeira e satisfaz $g_1^{n+1} = 0$. Para a segunda linha temos

$$\tilde{A}_{21}g_1^{n+1} + \tilde{A}_{22}g_2^{n+1} + \tilde{A}_{23}g_3^{n+1} = b_2^{n+1}$$
$$\tilde{A}_{22}g_2^{n+1} + \tilde{A}_{23}g_3^{n+1} = b_2^{n+1} - \tilde{A}_{21}g_1^{n+1}$$

após os cálculos tomamos $\tilde{A}_{21} = 0$.

Da mesma forma, para a última e a penúltima linha é suficiente assumir

$$\tilde{A}_{m+1,m+1} = 1, \quad \tilde{A}_{m+1,m} = 0 \quad e \quad b_{m+1}^{n+1} = 0$$

Portanto, o sistema que satisfaz as condições de fronteira é dado por

$$\tilde{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \tilde{A}_{22} & \tilde{A}_{23} & 0 & 0 & 0 \\ 0 & \tilde{A}_{32} & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & \tilde{A}_{m-1,m} & 0 \\ 0 & 0 & 0 & \tilde{A}_{m,m-1} & \tilde{A}_{m,m} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} g_1^{n+1} \\ g_2^{n+1} \\ \vdots \\ g_m^{n+1} \\ g_m^{n+1} \\ g_{m+1}^{n+1} \end{bmatrix} = \begin{bmatrix} b_1^{n+1} \\ b_2^{n+1} \\ \vdots \\ b_m^{n} \\ b_m^{n+1} \\ b_{m+1}^{n+1} \end{bmatrix}$$

O sistema pode então ser resolvido.

Como a matriz A é simétrica e tridiagonal, o Método de Eliminação de Gauss é bastante apropriado para resolver o sistema, sendo o número de operações da ordem O(n).

2.10 Simulações Numéricas

Alguns exemplos numéricos serão mostrados nesta seção para ilustrar características do problema associado a Equação do Calor no caso unidimensional com fronteira fixa.

Vimos que resolver o Problema (2.2.6), ou seja, encontrar $u^h(x,t)$ implica em encontrar uma solução aproximada do Problema (2.2.4) e, assim, resolver o Problema (2.1.1). Vamos considerar o Problema (2.1.1).

Para calcularmos a força externa f(x,t), basta substituir a solução exata u(x,t), que definimos a priori, e suas derivadas na primeira equação de (2.1.1). Um programa computacional em linguagem C foi implementado para a obtenção dos resultados. O conhecimento da solução exata possibilita o cálculo do erro definido por

$$E(x_i, t_n) = u(x_i, t_n) - u^h(x_i, t_n)$$
(2.10.1)

As normas $L^{\infty}(0,T;L^2(\Omega))$ e $H^1(\Omega)$ do erro E são definidas por

$$E_{L^{\infty}(0,T;L^{2}(\Omega))} = \max_{t_{n}\in[0,1]} \left(\int_{\Omega} |E|^{2} dx \right)^{1/2}$$
(2.10.2)

е

$$E_{L^{\infty}(0,T;H^{1}(\Omega))} = \max_{t_{n}\in[0,1]} \left(\int_{\Omega} (|E|^{2} + |\frac{dE}{dx}|^{2}) \, dx \right)^{1/2}$$
(2.10.3)

para todo $i = 1, \cdots, m \in n = 1, \cdots, N$.

Para o caso discreto com a malha uniforme $h = h_i = x_{i+1} - x_i$, temos as normas

$$E_{L^{\infty}(0,T;L^{2}(\Omega))} = \max_{t_{n}\in[0,1]} \left(h\sum_{i=1}^{m} |E_{i}|^{2} dx\right)^{1/2}$$
(2.10.4)

е

$$E_{L^{\infty}(0,T;H^{1}(\Omega))} = \max_{t_{n}\in[0,1]} \left(h \sum_{i=1}^{m} (|E_{i}|^{2}) + h \sum_{i=1}^{m} (|\frac{\partial E_{i}}{\partial x}|^{2}) \, dx \right)^{1/2}$$
(2.10.5)

Para os exemplos numéricos 1, 2 e 3, a seguir, consideraremos uma barra subdivida em 10 elementos finitos e o passo de tempo $\Delta t = 0.001$.

2.10.1 Exemplo 1

Considere a temperatura inicial da barra dada por

$$u(x,0) = u_0(x) = \frac{1}{\pi^2} \operatorname{sen}(\pi x)$$
(2.10.6)

e a solução exata u(x,t) dada por

$$u(x,t) = \frac{1}{\pi^2} sen(\pi x) e^{-at}$$
(2.10.7)

Observe que a solução exata definida em (2.10.7) satisfaz a condição inicial (2.10.6). Note que

$$f(x,t) = \begin{cases} sen(\pi x)e^{-at} \left[-\frac{a}{\pi^2} + \alpha + \frac{\beta}{\pi^2} \right], & \text{se} \quad a \neq \alpha \pi^2 + \beta \\ 0, & \text{se} \quad a = \alpha \pi^2 + \beta \end{cases}$$
(2.10.8)

Vamos analisar o primeiro caso, onde $a \neq \alpha \pi^2 + \beta$, o que implica em f(x, t) não nula. Em particular, se tomarmos $a = \alpha = \beta = 1$, temos

$$u(x,t) = \frac{1}{\pi^2} sen(\pi x) e^{-t}, \qquad (2.10.9)$$

que implica em

$$f(x,t) = sen(\pi x)e^{-t}$$
(2.10.10)

Figura 2.3: $u^h(0.5,t) \in u(0.5,t) = \frac{1}{\pi^2}e^{-t}$

A Figura (2.3) mostra que as soluções aproximadas encontradas estão bem próximas da solução exata quando x = 0.5 e $t \in [0, 1]$, para $\theta = 1$ (Método de Euler - Regressivo), $\theta = \frac{1}{2}$ (Método de Crank-Nicolson), $\theta = 0.25$ e $\theta = 0$ (Método de Euler - Progressivo). Já a Figura (2.4) mostra o mesmo resultado que o obtido na Figura (2.3), porém, reduzimos o intervalo de t, onde $t \in [0, 01]$, para melhor visualização do comportamento das soluções aproximadas e exata, para cada Método de Diferenças Finitas empregado.

A partir desse resultado temos a segurança que a solução do Problema (2.2.6) está sendo obtida corretamente.

A Figura (2.5) representa a solução $u^h(x,t)$ para $x \in [0,1]$ e $t \in [0,1]$, com $\Delta t = 0.001$, h = 0.1 e $\theta = \frac{1}{2}$.

Agora, passemos a analisar o segundo caso, onde

$$u(x,t) = \frac{1}{\pi^2} sen(\pi x) e^{-(\alpha \pi^2 + \beta)t}$$
(2.10.11)

Figura 2.4: $u^h(0.5,t)$ eu(0.5,t),para $t\in[0.50,0.51]$

Figura 2.5: Gráfico de $u^h(x,t)$ para (2.2.6)

o que implica em f(x,t) nula. Considere $\alpha = \beta = 1$.

Figura 2.6: $u^h(0.5,t) \in u(0.5,t) = \frac{1}{\pi^2} e^{-(\alpha \pi^2 + \beta)t}$

A Figura (2.6) mostra as soluções aproximadas e exata com a força nula em x = 0.5e $t \in [0, 1]$, para diferentes valores de θ . Reduzimos o intervalo de t, onde t agora varia entre 0 e 0.02, na tentativa de melhor observamos as soluções, como mostra a Figura (2.7).

A Figura (2.8) representa a solução $u^h(x,t)$ para $x \in [0,1]$ e $t \in [0,1]$, com $\Delta t = 0.001$, h = 0.1 e $\theta = \frac{1}{2}$.

Convergência Numérica

Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento $h = \frac{(x_{m+1} - x_1)}{Nel}$, onde $0 = x_1 < x_2 < \cdots < x_{m+1} = 1$, $x \in [0, 1]$ e Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha.

Dentro os métodos estudados, o Método de Crank-Nicolson mostrou melhor desempenho quando f(x,t) é não nula. Para valores de $\theta \in [\frac{1}{2}, 1]$, obtivemos resultados incondicionalmente estáveis, com a convergência da solução $u^h(x,t)$, variando os valores de h. Porém, para valores de $\theta \in [0, \frac{1}{2})$, os resultados são condicionalmente estáveis, havendo

Figura 2.7: $u^h(0.5,t)$ eu(0.5,t),para $t\in[0,0.02]$

Figura 2.8: Gráfico de $u^h(\boldsymbol{x},t)$ para (2.2.6)

	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
$\theta = 1$	0.001	0.1	0.000007	0.000006
(Euler	0.001	0.05	0.000005	0.000005
Regressivo)	0.001	0.02	0.000007	0.000007
	0.001	0.01	0.000008	0.000008
$\theta = 0.5$	0.001	0.1	0.000001	0.000001
(Crank	0.001	0.05	0.000000	0.000000
Nicolson)	0.001	0.02	0.000002	0.000002
	0.001	0.01	0.000003	0.000003
	0.001	0.1	0.000002	0.000002
$\theta = 0.25$	0.001	0.05	diverge	diverge
	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge
$\theta = 0$	0.001	0.1	0.000005	0.000004
(Euler	0.001	0.05	diverge	diverge
Progressivo)	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge

Tabela 2.1: Análise dos resultados para $f(\boldsymbol{x},t)$ não nula

	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
$\theta = 1$	0.001	0.1	0.000121	0.000105
(Euler	0.001	0.05	0.000201	0.000187
Regressivo)	0.001	0.02	0.000279	0.000270
	0.001	0.01	0.000287	0.000283
$\theta = 0.5$	0.001	0.1	0.000451	0.000389
(Crank	0.001	0.05	0.000107	0.000099
Nicolson)	0.001	0.02	0.000016	0.000015
	0.001	0.01	0.000003	0.000003
	0.001	0.1	0.000616	0.000532
$\theta = 0.25$	0.001	0.05	diverge	diverge
	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge
$\theta = 0$	0.001	0.1	0.000782	0.000675
(Euler	0.001	0.05	diverge	diverge
Progressivo)	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge

divergência da solução quando utilizamos, por exemplo, $\Delta t = 0.001$ e h > 0.0667, para $\theta = 0.25$, como mostra a Tabela (2.1).

Tabela 2.2: Análise dos resultados f(x,t) nula

Analogamente, quando f(x,t) = 0, o melhor resultado é observado para o Método de Crank-Nicolson, como mostra a Tabela (2.2).

2.10.2 Exemplo 2

Consideremos, agora, a temperatura inicial da barra dada por

$$u(x,0) = u_0(x) = \frac{1}{8} \operatorname{sen}(\pi x)$$
(2.10.12)

e a solução exata u(x,t) dada por

$$u(x,t) = \frac{1}{8} sen(\pi x) \cos(\pi t)$$
 (2.10.13)

Observe que a solução exata definida em (2.10.13) satisfaz a condição inicial (2.10.12).

Figura 2.9: $u^h(0.5, t) \in u(0.5, t) = \frac{1}{8} \cos(\pi t)$

A Figura (2.9) mostra que as soluções aproximadas encontradas estão bem próximas da solução exata quando x = 0.5 e $t \in [0, 1]$, para $\theta = 1$ (Método de Euler - Regressivo), $\theta = \frac{1}{2}$ (Método de Crank-Nicolson), $\theta = 0.25$ e $\theta = 0$ (Método de Euler - Progressivo).

Na Figura (2.10) temos o mesmo resultado que o obtido na Figura (2.9), porém, reduzimos o intervalo de t, onde $t \in [0.50, 0.51]$, para melhor visualização do comportamento das soluções aproximadas e exata, para cada Método de Diferenças Finitas empregado. A partir desse resultado temos a segurança que a solução do Problema (2.2.6) está sendo obtida corretamente.

O gráfico (2.11) representa a solução $u^h(x,t)$ para $x \in [0,1]$ e $t \in [0,1]$, com $\Delta t = 0.001$, h = 0.1 e $\theta = \frac{1}{2}$.

Convergência Numérica

Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento $h = \frac{(x_{m+1} - x_1)}{Nel}$, para Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha.

Obtivemos melhor resultado com o Método de Crank-Nicolson como mostar a Tabela (2.3), onde observamos que o erro é inversamente proporcional ao tamanho da malha.

Para valores de $\theta \in [\frac{1}{2}, 1]$, obtivemos resultados incondicionalmente estáveis, com a

Figura 2.10: $u^h(0.5,t)$ eu(0.5,t),para $t\in[0.50,0.51]$

Figura 2.11: Gráfico de $u^h(\boldsymbol{x},t)$ para (2.2.6)

	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
$\theta = 1$	0.001	0.1	0.000465	0.000401
(Euler	0.001	0.05	0.000119	0.000110
Regressivo)	0.001	0.02	0.000067	0.000065
	0.001	0.01	0.000069	0.000068
$\theta = 0.5$	0.001	0.1	0.000484	0.000418
(Crank	0.001	0.05	0.000114	0.000105
Nicolson)	0.001	0.02	0.000018	0.000018
	0.001	0.01	0.000007	0.000007
	0.001	0.1	0.000499	0.000431
$\theta = 0.25$	0.001	0.05	diverge	diverge
	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge
$\theta = 0$	0.001	0.1	0.000518	0.000447
(Euler	0.001	0.05	diverge	diverge
Progressivo)	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge

Tabela 2.3: Análise dos resultados

convergência da solução $u^h(x,t)$, variando os valores de Δt e h. Porém, para valores de $\theta \in [0, \frac{1}{2})$, houve divergência da solução quando utilizamos, por exemplo, $\Delta t = 0.001$ e h > 0.0667, para $\theta = 0.25$

2.10.3 Exemplo 3

Consideremos a temperatura inicial da barra dada por

$$u(x,0) = u_0(x) = sen(\pi x)$$
(2.10.14)

e a solução exata u(x,t) dada por

$$u(x,t) = sen(\pi x)(cos(\pi t) + sen(\pi t))$$
(2.10.15)

A solução exata definida em (2.10.14) satisfaz as condições iniciais (2.10.15).

As Figuras (2.12) e (2.13) representam as soluções exata e aproximada no ponto x = 0.5, para $\theta = 1$ (Método de Euler - Regressivo), $\theta = \frac{1}{2}$ (Método de Crank-Nicolson),

Figura 2.12: $u^h(0.5,t)$ e $u(0.5,t)=(cos(\pi t)+sen(\pi t))$

Figura 2.13: $u^h(0.5, t) \in u(0.5, t)$, para $t \in [0.50, 0.51]$

 $\theta = 0.25$ e $\theta = 0$ (Método de Euler - Progressivo). Na Figura (2.12), o intervalo de t analisado varia entre [0,1] e na Figura (2.13), vemos que o intervalo t é [0.50,0.51], onde podemos analisar melhor o resultado.

Observe que a solução exata e aproximada encontradas estão bem próximas. Podemos garantir que o método empregado é convergente para a solução.

Figura 2.14: Gráfico de $u^h(x,t)$ para $\theta = \frac{1}{2}$

A Figura (2.14) representa a solução $u^h(x,t)$ para $x \in [0,1]$ e $t \in [0,1]$, com $\Delta t = 0.001$, h = 0.1 e $\theta = \frac{1}{2}$.

Convergência Numérica

Analisaremos o comportamento do erro da solução aproximada obtida no Exemplo 3. Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento $h = \frac{(x_{m+1} - x_1)}{Nel}$, para Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha. O erro é calculado nas normas $L^{\infty}(0, T; H^1(\Omega))$ e $L^{\infty}(0, T; L^2(\Omega))$.

Pode-se observar pela Tabela 2.4 que o erro é inversamente proporcional ao tamanho da malha. Observamos que o Método de Crank-Nicolson apresentou os melhores resultados entre os métodos estudados, como já era esperado.

Para valores de $\theta \in [\frac{1}{2}, 1]$ obtivemos resultados satisfatórios com a convergência da

	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
$\theta = 1$	0.001	0.1	0.005254	0.004536
(Euler	0.001	0.05	0.001346	0.001248
Regressivo)	0.001	0.02	0.000829	0.000804
	0.001	0.01	0.000815	0.000802
$\theta = 0.5$	0.001	0.1	0.005472	0.004724
(Crank	0.001	0.05	0.001285	0.001192
Nicolson)	0.001	0.02	0.000208	0.000202
	0.001	0.01	0.000072	0.000071
	0.001	0.1	0.005645	0.004873
$\theta = 0.25$	0.001	0.05	diverge	diverge
	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge
$\theta = 0$	0.001	0.1	0.005855	0.005055
(Euler	0.001	0.05	diverge	diverge
Progressivo)	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge

Tabela 2.4: Análise dos resultados

solução $u^h(x,t)$, variando os valores de Δt e h. Porém, para valores de $\theta \in [0, \frac{1}{2})$ houve divergência da solução quando utilizamos, por exemplo, $\Delta t = 0.001$, h > 0.0536, para $\theta = 0.25$.

Capítulo 3

Equação da Corda

Neste capítulo faremos um estudo semelhante ao apresentado no capítulo 2, trabalhando agora com a Equação da Corda com fronteira fixa.

3.1 Formulação do problema

O problema hiperbólico modelo que estudaremos será o de determinar no espaço das soluções $H_0^1(0, 1)$, para cada t, uma função $u = u(x, t) \in L^{\infty}(0, T; H_0^1(\Omega))$ tal que:

$$\begin{cases}
 u_{tt}(x,t) - \alpha u_{xx}(x,t) + \beta u(x,t) = f(x,t), \ \forall (x,t) \in (0,1) \times [0,T] \\
 u(0,t) = u(1,t) = 0 & \forall t \in [0,T], \\
 u(x,0) = u_0(x) & \forall x \in (0,1), \\
 u_t(x,0) = u_1(x) & \forall x \in (0,1).
\end{cases}$$
(3.1.1)

onde $\alpha \in \beta$ são constantes reais positivas e f = f(x, t) é a força atuando sobre a barra em cada instante $t \in [0, T]$, $u(0, t) \in u(1, t)$ representam as condições de fronteira em cada instante, $u(x, 0) = u_0(x)$ é a posição inicial da corda e $u_t(x, 0) = u_1(x)$ é a velocidade inicial da corda.

A solução u = u(x, t) representa a posição da corda em cada instante $t \in [0, T]$.

3.2 Método dos Elementos Finitos

3.2.1 Formulação Variacional

Seja $D(0,1) = \{v \in C_0^{\infty}(0,1); v(0) = v(1) = 0\}$ o espaço das funções testes com suporte compacto em (0,1). Note que a função v = v(x) somente depende da variável x.

Multiplicando a primeira equação de (3.1.1) por $v \in D(0,1)$ e integrando em (0,1) obtém-se

$$\int_0^1 u''(t)v \, dx - \alpha \int_0^1 u_{xx}(t)v \, dx + \beta \int_0^1 u(t)v \, dx = \int_0^1 f(t) \, v \, dx, \quad \forall v \in D(0,1) \quad (3.2.1)$$

Integrando por partes e denotando,

$$a(u,v) = \alpha \int_0^1 u_x(t)v_x \, dx + \beta \int_0^1 u(t)v \, dx, \qquad (3.2.2)$$

com a norma induzida definida por $\|u\|_a$ e

$$(f,v) = \int_0^1 f(t) v \, dx , \qquad (3.2.3)$$

então (3.1.1) é equivalente a determinar u = u(x, t) satisfazendo

$$\begin{cases} (u'', v) + a(u, v) = (f, v), \forall v \in H_0^1(0, 1) \\ (u(0), v) = (u_0, v), \quad \forall v \in H_0^1(0, 1) \\ (u'(0), v) = (u_1, v), \quad \forall v \in H_0^1(0, 1). \end{cases}$$
(3.2.4)

3.2.2 Método de Galerkin

Utilizaremos o Método de Faedo-Galerkin, apresentado na Seção (2.2), para obter o problema aproximado.

Problema Aproximado

Considere o Problema (3.2.4), redefinido no espaço das soluções V_m . Queremos determinar uma solução $u_h : [0,T] \to V_m$ solução do seguinte sistema

$$\begin{cases} (u_h''(t), v) + a(u_h(t), v) = (f(t), v), \ \forall v \in V_m \\ u_h(0, t) = u_h(1, t) = 0, \qquad \forall t \in [0, T] \\ u_h(0) = u_{0h} \to u_0 \text{ forte em } H_0^1(0, 1) \\ u_h'(0) = u_{1h} \to u_1 \text{ forte em } L^2(0, 1) \end{cases}$$
(3.2.5)

Como $u_h(x,t) \in V_m$, então ele pode ser representado por

$$u_h(x,t) = \sum_{i=1}^{m} g_{im}(t)\varphi_i(x).$$
 (3.2.6)

е

$$u_{h}''(x,t) = \sum_{i=1}^{m} g_{im}''(t)\varphi_{i}(x), \quad \varphi_{i}(x) \in V_{m}$$
(3.2.7)

Para se obter a solução aproximada $u_h(x,t) \in V_m$ é necessário determinar os coeficientes $g_{im}(t)$. Substituindo $u_h \in u''_h$ dados em (3.2.6) e (3.2.7), respectivamente, em (3.2.5)₁ temos

$$\left(\sum_{i=1}^{m} g_{im}''(t)\varphi_i(x), v\right) + a\left(\sum_{i=1}^{m} g_{im}(t)\varphi_i(x), v\right) = (f, v), \ \forall v \in V_m$$
(3.2.8)

Como (.,.) são definidos em V_m , podemos escrever

$$\sum_{i=1}^{m} g_{im}''(t) \Big(\varphi_i(x), v\Big) + \sum_{i=1}^{m} g_{im}(t) a\Big(\varphi_i(x), v\Big) = (f, v), \ \forall v \in V_m,$$
(3.2.9)

Podemos, em particular, tomar $v = \varphi_j$. Logo,

$$\sum_{i=1}^{m} g_{im}''(t) \Big(\varphi_i(x), \varphi_j(x)\Big) + \sum_{i=1}^{m} g_{im}(t) a\Big(\varphi_i(x), \varphi_j(x)\Big) = \Big(f(t), \varphi_j(x)\Big)$$
(3.2.10)

Definindo as matrizes

$$A = a_{ij} = \left(\varphi_i(x), \varphi_j(x)\right), B = b_{ij} = a\left(\varphi_i(x), \varphi_j(x)\right) \in F = f_j = \left(f(t), \varphi_j(x)\right),$$
(3.2.11)

obtemos o seguinte sistema de equações diferenciais ordinárias

$$\sum_{i=1}^{m} g_{im}''(t) \ a_{ij} + \sum_{i=1}^{m} g_{im}(t) \ b_{ij} = f_j, \quad \text{para} \quad j = 1, \cdots, m$$
(3.2.12)

que pode ser escrito na seguinte forma matricial:

$$\begin{cases}
Ag''_{m}(t) + Bg_{m}(t) = F(t), & \forall t \in [0, T] \\
g_{m}(0) = \left((u_{0}, \varphi_{1}), (u_{0}, \varphi_{2}), \cdots, (u_{0}, \varphi_{m}) \right) = g_{0m}
\end{cases}$$
(3.2.13)

onde $g_m(0)$ é a condição inicial, $g_m(t) = (g_{1m}(t), g_{2m}(t), \cdots, g_{mm}(t))^T$ é o vetor incógnita. Assim temos um sistema de *m* equações diferenciais ordinárias.

Para cada m, o sistema (3.2.13) tem uma única solução $g_m(t)$ e pelo Teorema de Carathéodory, portanto, obtemos a solução $u_h(x,t) = \sum_{i=1}^m g_{im}(t)\varphi_i(x)$ do Problema (3.2.4), em V_m . Note que a solução $u_h(x,t)$ é local, desde que, o tempo $t \in [0, T_m[, T_m > 0$

De (3.2.2) e (3.2.3), as matrizes A, B e o vetor força F podem ser dados por:

$$A_{ij} = \int_0^1 \varphi_i \varphi_j \, dx \tag{3.2.14}$$

$$B_{ij} = \int_0^1 \left(\alpha \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_i \varphi_j\right) dx \qquad (3.2.15)$$

$$F_i = \int_0^1 f \,\varphi_i \, dx \tag{3.2.16}$$

3.2.3 Existência e Unicidade de Solução

A existência e unicidade de soluções locais do Problema (3.1.1) são dadas pelo Teorema a seguir.

Teorema 3.1. Dados $f \in L^2(0,T; L^2(0,1))$, $u_0(x) \in H^1_0(0,1)$ $e \ u_1(x) \in L^2(0,1)$, então existe uma única solução $u : \mathbb{Q} = [0,T] \times (0,1) \to \mathbb{R}$ para o Problema (3.1.1) satisfazendo a seguinte condição:

$$(i) \ u \in L^{\infty}(0,T;H^1_0(0,1))$$

(*ii*)
$$u' \in L^{\infty}(0,T;L^2(0,1))$$

(iii)
$$u'' \in L^2(0, T; H^{-1}(0, 1))$$

(iv) $\frac{d}{dt}(u'(t), v) + a(u(t), v) = (f, v), \quad \forall v \in H^1_0(0, 1). *$
(v) $u(x, 0) = u_0(x), \quad u'(x, 0) = u_1(x), \quad \forall x \in (0, 1).$

* {A igualdade deve ser entendida no sentido das distribuições em (0, T), representada por D'(0, T)}.

Demonstração:

Antes de iniciar a demonstração, vamos verificar se faz sentido os dados iniciais $u(x,0) = u_0(x) \in H_0^1(0,1)$ e $u'(x,0) = u_1(x) \in L^2(0,1)$. Com efeito, seja u(x,t)satisfazendo as condições do teorema. Usando as condições (i) e (ii), obtemos que $u \in C^0([0,T]; L^2(0,1))$ e $u \in C^s([0,T]; H_0^1(0,1))$ e de (ii) e (iii) obtemos que $u' \in$ $C^0([0,T]; H^{-1}(0,1))$ e $u' \in C_s([0,T]; H_0^1(0,1))$, e assim faz sentido calcular u(x,0) e u'(x,0). Pelo Teorema de Carathéeodory, o sistema de equações diferencias ordinárias possui uma solução local $u_h(t)$, $\forall t \in [0, t_m[, 0 \leq t_m < T]$. Para prolongar a solução ao intervalo [0, T], são necessárias algumas estimativas, que se seguem.

Estimativa 1: Seja $v \in u'_h(t) \in V_m$ em $(3.2.5)_1$). Então

$$(u_h''(t), u_h'(t)) + a(u_h(t), u_h'(t)) = (f(t), u_h'(t)).$$

Mas

$$\frac{1}{2}\frac{d}{dt}|u_h'(t)|^2 = (u_h''(t), u_h'(t)),$$

e

$$\frac{1}{2}\frac{d}{dt}\|u_h(t)\|_a^2 = a(u_h(t), u_h'(t)),$$

usando a desigualdade de Schwarz e elementar temos

$$(f(t), u'_h(t)) \le \frac{1}{2} (|f(t)|^2 + (|u'_h(t)|^2))$$

Substituindo termo a termo e multiplicando por 2 obtemos;

$$\frac{d}{dt}|u_h'(t)|^2 + \frac{d}{dt}||u_h(t)||_a^2 \le |f(t)|^2 + |u_h'(t)|^2$$

Integrando a inequação de 0 a t < T, obtemos

$$|u_h'(t)|^2 + ||u_h(t)||_a^2 \le |u_h'(0)|^2 + ||u_h(0)||_a^2 + \int_0^t |f(s)|^2 \, ds + \int_0^t |u_h'(s)|^2 \, ds$$

Por hipótese

1. $u'_{h}(0) = u_{1h}$ converge forte para u_{1} em $L^{2}(0, 1)$, o que significa $\lim_{m \to \infty} |u_{1h} - u_{1}| = 0$ 2. $u_{h}(0) = u_{0h}$ converge forte para u_{0} em $H^{1}_{0}(0, 1)$, então, $\lim_{h \to \infty} ||u_{0h} - u_{0}|| = 0$.

3.
$$f \in L^2(0,T;L^2(0,1))$$
 então $\int_0^t |f(s)|^2 ds \le \int_0^T |f(s)|^2 ds \le c$

Assim, podemos escrever que

$$|u_{h}'(t)|^{2} + ||u_{h}(t)||_{a}^{2} \le c_{1} \int_{0}^{t} |u_{h}'(s)|^{2} ds \le c_{1} \int_{0}^{T} |u_{h}'(s)|^{2} ds \qquad (3.2.17)$$

Logo da desigualdade de Gronwall segue que:

$$|u'_h(t)| \le c_2$$
, independente de $h \in t$

ou seja

$$(u'_h)$$
 é limitada no espaço $L^{\infty}(0,T;L^2(0,1)) \subset L^2(0,T;L^2(0,1)).$ (3.2.18)

Da limitação de u'_h em (3.2.17), conclui-se também que

$$\min\{\alpha,\beta\} \Big(\|u_h\| + |u_h| \Big) \le \|u_h\|_a = \alpha \|u_h\| + \beta |u_h| \le c.$$

Logo,

$$(u_h)$$
 é limitada em $L^{\infty}(0,T; H^1_0(0,1) \subset L^2(0,T; H^1_0(0,1)),$ (3.2.19)

independente de $h \in t$. As estimativas (3.2.18) e (3.2.19) são suficientes para prolongar a solução u_m ao intervalo [0, T].

Passagem do limite

De (3.2.18) e (3.2.19), sendo os espaços $L^2(0,T;L^2(0,1))$ e $L^2(0,T;H_0^1(0,1))$ completos, existem subsequências de $(u_h)_{h\in N}$, também denotadas por (u_h) tais que:

- 1. u_h converge fraco para $u \in L^2(0,T; H^1_0(0,1))$, denota-se, $u^h \rightharpoonup u$.
- 2. u'_h converge fraco para u' em $L^2(0,T;L^2(0,1))$, denota-se, $u'_h \rightharpoonup u'$.

Observação: Deve-se tomar cuidado com a segunda afirmação, na verdade precisamos provar que realmente $u'_h \rightarrow u'$. Com efeito suponha que $u'_h \rightarrow \chi \text{ em } L^2(0,T;L^2(0,1))$. Da primeira convergência temos que $u_m \rightarrow u$ em $L^2(0,T;H_0^1(0,1)) \subset L^2(0,T;L^2(0,1))$. Então consequentemente $u_m \rightarrow u$ em $D'(0,T;L^2(0,1))$. Por definição de distribuição, temos que $\frac{du_h}{dt} = u'_h \rightarrow \frac{du}{dt} = u'$ em $D'(0,T;L^2(0,1))$. Por outro lado $u'_m \rightarrow \chi$ em $L^2(0,T;L^2(0,1)) \subset D'(0,T;L^2(0,1))$. Assim da unicidade do limite conclui-se que $\chi = u'$.

Mostremos agora, que o sistema aproximado (3.1.1) converge para

$$\frac{d}{dt}(u'(t), v) + a(u(t), v) = (f, v), \quad \forall v \in H_0^1(0, 1) \quad \text{em} \quad D'(0, T)$$

Com efeito, usando a definição da convergência fraca em (3.2.19), tem-se que

$$\int_0^T (u'_m(t), w) dt \to \int_0^T (u'(t), w) dt \quad \forall w \in L^2(0, T; L^2(0, 1))$$

Tomando em particular $w(x,t) = \theta(t)v(x)$, com $\theta \in D(0,T) \subset L^2(0,T)$ e $v \in H^1_0(0,1) \subset L^2(0,1)$, e substituindo temos

$$\int_0^T (u_h'(t), v)\theta \ dt \to \int_0^T (u'(t), v)\theta \ dt \quad \forall v \in L^2(0, 1) \quad e \quad \forall \theta \in D(0, T).$$

De onde se conclui que

$$(u'_h(t), v) \to (u'(t), v), \text{ quando } h \to \infty \quad \text{em} \quad D'(0, T), \ \forall v \in L^2(0, 1).$$
 (3.2.20)

Logo

$$\frac{d}{dt}(u'_h(t),v) \to \frac{d}{dt}(u'(t),v), \text{ quando } h \to \infty \quad \text{em} \quad D'(0,T), \ \forall v \in L^2(0,1).$$
(3.2.21)

De forma análoga, em (3.2.18), tomando $w(x,t) = \theta(t)v(x)$, com $\theta \in D(0,T) \subset L^2(0,T)$ e $v \in H^1_0(0,1) \subset H^{-1}(0,1)$, e substituindo obtemos

$$\int_0^T ((u_h(t), v))\theta \ dt \to \int_0^T ((u(t), v))\theta \ dt \quad \forall v \in H_0^1(0, 1) \quad e \quad \forall \theta \in D(0, T).$$

Ou seja

$$\int_0^T a(u_h(t), v)\theta \ dt \to \int_0^T a(u(t), v)\theta \ dt \quad \forall v \in H_0^1(0, 1) \quad e \quad \forall \theta \in D(0, T).$$

Portanto

$$a(u_h(t), v) \to a(u(t), v)$$
, quando $m \to \infty$ em $D'(0, T), \forall v \in H^1_0(0, 1).$ (3.2.22)

De (3.2.20) e (3.2.21) temos a convergência procurada, ou seja,

$$\frac{d}{dt}(u'_h(t), v) + a(u_h(t), v) - (f, v) \to \frac{d}{dt}(u'(t), v) + a(u(t), v) - (f, v), \ \forall v \in H^1_0(0, 1) \ (3.2.23)$$
no sentido de $D'(0, T)$

Para estabelecer estimativa de erro na norma $L^2(\Omega)$, é necessário mais regularidade para a solução do problema (2.1.1). Para isso anunciaremos dois teoremas de regularidade cuja demonstração será omitida:

Teorema 3.2. Seja (Ω) um aberto e limitado do \mathbb{R}^n . Dados $f \ e \ \frac{\partial f}{\partial t} \in L^2(0,T;L^2(\Omega)),$ $u_0(x) \in H_0^1(\Omega) \bigcap H^2(\Omega) \ e \ u_1(x) \in H_0^1(\Omega), \ então \ existe \ uma \ única \ solução \ u \ : \ Q = [0,T] \times \Omega \to \mathbb{R}$ para o problema (2.1.1) satisfazendo a seguinte condição:

(i)
$$u \in L^{\infty}(0,T; H^1_0(\Omega) \cap H^2(\Omega))$$

(*ii*)
$$u' \in L^{\infty}(0, T; H_0^1(\Omega))$$

(*iii*) $u'' \in L^2(0, T; L^2(\Omega))$
(*iv*) $u'' - \alpha \Delta u + \beta u = f$, quase sempre em $Q = [0, T] \times \Omega$
(*v*) $u(x, 0) = u_0(x)$, $u'(x, 0) = u_1(x)$, $\forall x \in \Omega$.

Teorema 3.3. Seja (Ω) um aberto e limitado do \mathbb{R}^n . Dados $f \in L^2(0,T; H_0^1(\Omega)), u_0(x) \in H_0^1(\Omega) \cap H^2(\Omega)$ e $u_1(x) \in H_0^1(\Omega)$, então existe uma única solução $u : Q = [0,T] \times \Omega \to \mathbb{R}$ para o problema (2.1.1) satisfazendo a seguinte condição:

- (i) $u \in L^{\infty}(0,T; H^1_0(\Omega) \cap H^2(\Omega))$
- (*ii*) $u' \in L^{\infty}(0,T; H^1_0(\Omega))$
- (iii) $u'' \in L^2(0,T;L^2(\Omega))$
- (iv) $u'' \alpha \Delta u + \beta u = f$, quase sempre em $Q = [0, T] \times \Omega$
- (v) $u(x,0) = u_0(x), \quad u'(x,0) = u_1(x), \quad \forall x \in \Omega.$

A demonstração dos teoremas (3.2) e (3.3) podem ser encontradas em [1] e [9].

A escolha da função de interpolação, assim como o cálculo da integração numérica e das matrizes locais e globais para a equação da corda foram analisadas de forma análoga a equação do calor, nas Seções (2.3), (2.4), (2.5) e (2.6), respectivamente.

3.3 Métodos Numéricos

Usando (3.2.6) e (3.2.7) na equação $(3.2.5)_1$ obtemos o seguinte sistema de equações diferenciais ordinárias:

$$\begin{cases} Ag''_m(t) + Bg_m(t) = F(t), \quad \forall t \in [0, T] \\ g_m(0) = g_{0m} \quad g'_m(0) = g_{1m} \end{cases}$$

onde $g_m(t) = (g_{1m}(t), g_{2m}(t), \cdots, g_{mm}(t))^T$ é o vetor incógnita, g_{0m} é a posição inicial e g_{1m} é a velocidade inicial da onda. Assim temos um sistema de m equações diferenciais
ordinárias. Suprimindo o índice m do sistema e considerando os tempos discretos t_n , onde $t_n = n\Delta t$, $n = 0, 1, \dots N$, temos

$$\begin{cases}
Ag''(t_n) + Bg(t_n) = F(t_n), & \forall t \in [0, T] \\
g(0) = g_0 & g'(0) = v_1
\end{cases}$$
(3.3.1)

3.3.1 Método da Diferença Central

Usando Diferença Central (2.7.4) no sistema de equações para aproximar a segunda derivada obtemos que,

$$A\frac{\left(g^{n+1}-2g^n+g^{n-1}\right)}{(\Delta t)^2} + Bg^n = F^n \qquad n = 0, 1, \dots (N-1)$$
(3.3.2)

que é equivalente a

$$Ag^{n+1} = (2A - (\Delta t)^2 B)g^n + (\Delta t)^2 F^n - Ag^{n-1} \qquad n = 0, 1, \dots (N-1)$$
(3.3.3)

Algoritmo:

Para inicialização do método iterativo, faz-se n = 0 em (3.3.3), obtendo-se

$$Ag^{1} = (2A - (\Delta t)^{2}B)g^{0} + (\Delta t)^{2}F^{0} - Ag^{-1}$$
(3.3.4)

As matrizes $A \in B$ do lado direito são conhecidas e independentes de t, o passo Δt é dado, F^0 é a força, conhecida para todo tempo $t \in g^0$ é dado pela posição inicial da onda. O termo g^{-1} é obtido pela velocidade inicial g_1 . De fato considere a diferença centrada (2.7.5), ou seja,

$$(g'(t))_n = \frac{g^{n+1} - g^{n-1}}{2\Delta t}$$

Fazendo n = 0, temos

$$g'(0) = \frac{g^1 - g^{-1}}{2\Delta t} = v_1$$

onde g_1 é a velocidade inicial dada. Assim podemos obter o termo g^{-1} da relação

$$g^{-1} = g^1 - 2\Delta t v_1$$

Substituindo em (3.3.4), obtemos para primeira iteração o sistema

$$Ag^{1} = (A - \frac{(\Delta t)^{2}}{2}B)g^{0} + \frac{(\Delta t)^{2}}{2}F^{0} + \Delta tAv_{1}$$

Como a matriz é não singular então o sistema linear de m equações tem uma única solução $g^1 = (g_1^1, g_2^1, \dots, g_m^1)$. Para calcular as soluções nos tempos $n = 1, 2, \dots, N$, basta resolver o sistema (3.3.3) para cada n.

Assim, podemos obter

$$u(x_i, t) = \sum_{i=1}^m g_i(t)\varphi_i(x_i) = g_i(t).$$

As aproximações para a primeira e segunda derivadas em relação ao tempo são ambas de ordem $O(\Delta t^2)$.

Em Diferenças Finitas existe uma restrição chamada Condição CFL (Courant-Friedrichs-Lewy), que consiste em $\Delta t \leq h$, ou seja, existe $r \in \mathbb{R} \Rightarrow r = \frac{\Delta t}{h} \leq 1$.

3.3.2 Família de Métodos Implícitos - Aproximação θ-Newmark

Considere o sistema (3.3.1) e a seguinte aproximação para $(3.3.1)_1$

$$A\frac{(g^{n+1} - 2g^n + g^{n-1})}{(\Delta t)^2} + Bg^{*n} = F^{*n}$$
(3.3.5)

onde $g^{*n} = \theta g^{n+1} + (1 - 2\theta)g^n + \theta g^{n-1}$. Fazendo as substituições, obtemos o seguinte sistema algébrico de equações lineares

$$\left(A + \theta(\Delta t)^2 B \right) g^{n+1} = \left(2A - (1 - 2\theta)(\Delta t)^2 B \right) g^n - \left(A + \theta(\Delta t)^2 B \right) g^{n-1} + \left(\Delta t \right)^2 \left(\theta \left(F^{n+1} + F^{n-1} \right) + (1 - 2\theta) F^n \right)$$
(3.3.6)

para $n = 0, 1, \dots (N - 1).$

Algoritmo:

Para inicialização do método iterativo, fazemos n = 0 em (3.3.6) e obtemos

$$\left(A + \theta(\Delta t)^2 B\right) g^1 = \left(2A - (1 - 2\theta)(\Delta t)^2 B\right) g^0 - \left(A + \theta(\Delta t)^2 B\right) g^{-1}$$
$$+ \left(\Delta t\right)^2 \left(\theta \left(F^1 + F^{-1}\right) + (1 - 2\theta) F^0\right)$$

Mas, como vimos anteriormente, $g^{-1} = g^1 - 2\Delta t v_1$. Então, temos

$$\left(A + \theta(\Delta t)^2 B\right) g^1 = \left(A - \frac{1}{2}(1 - 2\theta)(\Delta t)^2 B\right) g^0 + \Delta t \left(A + (\Delta t)^2 \theta B\right) v_1$$

+
$$\frac{1}{2} \Delta t^2 \left(\theta \left(F^1 + F^{-1}\right) + (1 - 2\theta) F^0\right)$$

Temos que no tempo t = 0, a temperatura inicial $g^0 = g(0)$ e as forças $F^{-1} = (f(x,t_1), w_j(x))$, $F^0 = (f(x,t_0), w_j(x))$ e $F^1 = (f(x,t_1), w_j(x))$ são conhecidas para todo x. Assim, resolvendo o sistema, determina-se g^1 . Para calcular as soluções nos tempos $n = 1, 2, \dots (N-1)$, basta resolver o sistema (3.3.6) para cada n.

O método de aproximação acima é conhecido como Método θ -Newmark. Este método é um Método de Diferenças Finitas que foi apresentado por Newmark em 1959, e a partir de então vem sendo largamente utilizado para a resolução de problemas dinâmicos.

Note que, quando $\theta = 0$, obtemos o Método da Diferença Central.

Para que o esquema numérico (3.3.6) seja incondicionalmente estável no tempo é necessário que $\theta \geq \frac{1}{4}$. Ver [7] e [10].

3.4 Simulações Numéricas

Exemplos numéricos serão mostrados nesta seção para ilustrar algumas características do problema associado a Equação da Onda no caso unidimensional com fronteira fixa.

Vimos que resolver o Problema (3.2.5), ou seja, encontrar $u^h(x,t)$ implica em encontrar uma solução aproximada do Problema (3.2.4), e assim resolver o Problema (3.1.1).

Para calcularmos a força externa f(x,t), basta substituir a solução exata u(x,t), que definimos a priori, e suas derivadas na equação de $(3.1.1)_1$. Dada a solução exata, o erro entre a solução numérica e a exata será calculado nas normas $L^{\infty}(0,T;L^2(\Omega))$ e $L^{\infty}(0,T;H_0^1(\Omega))$, dados por (2.10.4) e (2.10.5).

Para os exemplos numéricos 1 e 2, a seguir, consideraremos uma barra subdivida em 10 elementos finitos, o passo de tempo $\Delta t = 0.001$ e as constantes $\alpha = \beta = 1$.

3.4.1 Exemplo 1

Consideremos a posição inicial e a velocidade inicial da corda dadas por

$$u(x,0) = sen(\pi x) \tag{3.4.1}$$

$$u_t(x,0) = 0 (3.4.2)$$

e a solução exata u(x,t) dada por

$$u(x,t) = sen(\pi x)cos(w\pi t) \tag{3.4.3}$$

Observe que a solução exata definida em (3.4.3) possui a condições iniciais (3.4.1) e (3.4.2).

Temos que

$$f(x,t) = \begin{cases} (-w^2\pi^2 + \alpha\pi^2 + \beta)sen(\pi x)cos(w\pi t), & \text{se} \quad w \neq \sqrt{\alpha + \frac{\beta}{\pi^2}} \\ 0, & \text{se} \quad w = \sqrt{\alpha + \frac{\beta}{\pi^2}} \end{cases}$$
(3.4.4)

Primeiramente, construiremos um exemplo numérico onde a força externa é não nula. Em particular, tomando $w = \alpha = \beta = 1$, temos

$$u(x,t) = sen(\pi x)cos(\pi t), \qquad (3.4.5)$$

que implica em

$$f(x,t) = sen(\pi x)cos(\pi t) \tag{3.4.6}$$

Figura 3.1: $u^h(0.5,t)$
e $u(0.5,t)=cos(\pi t)$

A solução aproximada encontrada está bem próxima da solução exata quando x = 0.5e $t \in [0, 1]$, para $\theta = 0$ (Método da Diferença Central), como mostra a Figura (3.1). Na Figura (3.2) reduzimos o intervalo de t, onde t varia entre [0.50, 0.51], pois assim temos uma melhor visualização das soluções exata e aproximada.

A partir desse resultado temos a segurança que a solução do Problema (3.2.5) está sendo obtida corretamente.

Figura 3.3: Gráfico de $u^h(x,t)$ para (3.2.5)

A Figura (3.3) representa a solução $u^h(x, t)$ ao longo do tempo t, ou seja, o movimento da corda com seus extremos fixos.

Agora, passemos a analisar o segundo caso, onde

$$u(x,t) = sen(\pi x)cos(\sqrt{\alpha + \frac{\beta}{\pi^2}}\pi t)$$
(3.4.7)

o que implica em f(x,t) nula. Considere $\alpha = \beta = 1$.

As Figuras (3.4) e (3.5) mostram as soluções aproximada e exata para a força nula em $x = 0.5, t \in [0, 1]$ e $t \in [0.50, 0.51]$, respectivamente quando $\theta = 0$ (Método da Diferença Central).

Na Figura (3.6) temos a representação da solução $u^h(x,t)$ para $x \in [0,1]$ e $t \in [0,1]$, com $\Delta t = 0.001$, h = 0.1 e $\theta = 0$.

Figura 3.5: $u^h(0.5,t)$ eu(0.5,t),para $t\in[0.50,0.51]$

Figura 3.6: Gráfico de $u^h(\boldsymbol{x},t)$ para (3.2.5)

Convergência Numérica

Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento $h = \frac{(x_{m+1} - x_1)}{Nel}$, onde $x \in [0, 1], 0 = x_1 < x_2 < \cdots < x_{m+1} = 1$ e Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha. Analisaremos a convergência para $\theta = 0$. O erro nas normas $L^{\infty}(0, T; L^2(\Omega))$ e $L^{\infty}(0, T; H_0^1(\Omega))$ será calculado conforme (2.10.4) e (2.10.5), respectivamente.

f(x,t)	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
	0.001	0.1	0.008874	0.007660
$sen(\pi x)cos(\pi t)$	0.001	0.05	0.001604	0.001486
	0.001	0.02	0.000737	0.000712
	0.001	0.01	0.000534	0.000517

Tabela 3.1: Análise dos resultados para f(x,t) não nula

f(x,t)	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
	0.001	0.1	0.009560	0.008252
0	0.001	0.05	0.001839	0.001704
	0.001	0.02	0.000721	0.000696
	0.001	0.01	0.000584	0.000565

Tabela 3.2: Análise dos resultados para f(x,t) nula

Vemos que o erro é inversamente proporcional ao tamanho da malha quando f(x,t)é não nula, assim como, para f(x,t) nula. Ou seja, quanto maior a discretização, menor o erro.

Observe, agora, a Figura (3.7), considerando que a força empregada é não nula.

Na figura da esquerda, utilizamos $\Delta t = 0.01$ e h = 0.1, ou seja, $\Delta t \leq h$. Veja que a solução $u^h(x,t)$ converge. Porém, quando utilizamos $\Delta t > h$, no nosso exemplo, $\Delta t = 0.25$ e h = 0.1, a solução $u^h(x,t)$ diverge. Este resultado está de acordo com a conhecida Condição CFL (Courant-Friedrichs-Lewy), onde o domínio numérico deve estar contido dentro do domínio de solução para haver convergência, isto é, existe $r \in \mathbb{R} \Rightarrow r = \frac{\Delta t}{h} \leq 1$.

Figura 3.7: $u^h(0.5,t)$
eu(0.5,t)quando $\Delta t=0.01$ eh=0.1e quand
o $\Delta t=0.25$ eh=0.1

3.4.2 Exemplo 2

Vamos considerar a posição inicial da corda e a velocidade inicial dadas por

$$u(x,0) = u_0(x) = x^2(x-1)^2$$
(3.4.8)

$$u_t(x,0) = u_1(x) = x^2(x-1)^2$$
(3.4.9)

e a solução exata u(x,t) dada por

$$u(x,t) = x^{2}(t+1)(x-1)^{2}$$
(3.4.10)

Figura 3.8: Gráfico de $u^h(x,t)$ para (3.2.5)

A Figura (3.8) mostra o movimento de uma corda que possui seus extremos fixos, ou seja, a posição $u^h(x,t)$ ao longo do tempo t. Já a Figura (3.9) representa as soluções exata e aproximada no ponto x = 0.5, para $\theta = 0$, h = 0.1 e $t \in [0, 1]$.

Figura 3.10: $u^h(0.5,t)$ eu(0.5,t) par
a $t\in[0.50,0,51]$

Utilizando o intervalo $t \in [0.50, 0.51]$ para as soluções exata e aproximada, podemos observar melhor o resultado obtido, como mostra a Figura (3.10).

Convergência Numérica

Analisaremos o comportamento do erro da solução aproximada para o exemplo 2. Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento h, onde $h = \frac{(x_{m+1}-x_1)}{Nel}$, para Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha.

O erro nas normas $L^{\infty}(0, T; L^{2}(\Omega)) \in L^{\infty}(0, T; H^{1}_{0}(\Omega))$ será calculado conforme (2.10.4) e (2.10.5), respectivamente.

	Δt	h	$E_{L^{\infty}(0,T;H^1_0(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega_{t}))}$
$\theta = 0$	0.001	0.1	0.000502	0.000431
Diferença	0.001	0.05	0.000200	0.000184
Central	0.001	0.02	0.000038	0.000036
	0.001	0.01	0.000029	0.000028

Tabela 3.3: Análise dos resultados

Observe pelos resultados da Tabela (3.3) que o erro é inversamente proporcional ao tamanho da malha. Aumentar o número de divisões no espaço, ou seja, refinar a malha, nem sempre implicará na melhora do resultado, conforme a condição CFL (Courant-Friedrichs-Lewy), a não ser que $\Delta t \leq h$.

Capítulo 4

Equação do Calor - Caso Bidimensional

Neste capítulo faremos um estudo semelhante ao apresentado no Capítulo 2, tratando agora o caso bidimensional da equação do calor com fronteira fixa.

4.1 Formulação do problema

Seja $\Omega \subset \mathbb{R}^2$ um conjunto aberto com fronteira suave Γ . Os elementos de Ω são denotados por $\boldsymbol{x} = (x_1, x_2)$ e $n = (n_1, n_2) = (n_{x1}, n_{x2})$. Assumimos que a fronteira Γ admite a decomposição $\Gamma = \overline{\Gamma_q \cup \Gamma_p}, \Gamma_q \cap \Gamma_p = \emptyset$. Denotamos por $q_i = q_i(x)$ o fluxo de calor. Assumimos que o fluxo de calor é dado pela lei de Fourier:

$$q_i = -\frac{\partial u}{\partial x_j}.$$

O problema que estudaremos será o de determinar no espaço das soluções $H^1(\Omega)$ uma função $u = u(\boldsymbol{x}, t)$ tal que

$$\begin{cases} u_t(\boldsymbol{x},t) - \alpha \Delta u(\boldsymbol{x},t) + \beta u(\boldsymbol{x},t) = f(\boldsymbol{x},t), \ (\boldsymbol{x},t) \in \Omega \times [0,T] \\ u = q(\boldsymbol{x}), & \text{em } \Gamma_q \\ -q_i n_i = -\frac{\partial u}{\partial x_j} n_i = p(\boldsymbol{x}), & \text{em } \Gamma_p \\ u(\boldsymbol{x},0) = u_0(\boldsymbol{x}), \ \forall \ \boldsymbol{x} \in \Omega \end{cases}$$
(4.1.1)

onde α e β são constantes reais positivas, a função $q(\boldsymbol{x})$ é conhecida em Γ_q e a função $p(\boldsymbol{x})$ é conhecida em Γ_p . A função $f = f(\boldsymbol{x}, t)$ representa uma fonte de calor, $u = q(\boldsymbol{x})$

representa a temperatura na fronteira, onde a temperatura nos extremos do intervalo são fixas e $u_0(\boldsymbol{x})$ é a temperatura inicial da placa. Além disso, considere $p(\boldsymbol{x})$ e $q(\boldsymbol{x})$ suficientemente regulares de tal forma que pelo menos a solução $u \in H^1(\Omega)$.

Se $\Gamma = \Gamma_q$, então a condição de fronteira é conhecida como condição de Dirichlet. Se $\Gamma = \Gamma_p$, então a condição de fronteira é conhecida como condição de Neumann. Se $\Gamma = \overline{\Gamma_p \cup \Gamma_q}$, então a condição de fronteira é conhecida como do tipo misto.

O problema (4.1.1) terá a solução determinada pelo Método dos Elementos Finitos no espaço e o Método de Diferenças Finitas no tempo.

Em [1] e [8], provou-se a existência e unicidade de solução do Problema (4.1.1).

4.2 Método dos Elementos Finitos

4.2.1 Formulação Variacional

Seja $D(\Omega) = \{v \in C_0^{\infty}(\Omega); v = 0 \text{ em } \Gamma_q\}$ o espaço das funções testes com suporte compacto em Ω . Multiplicando a primeira equação do Problema (4.1.1), por v, integrando em Ω e usando o **teorema da divergência**,

$$\int_{\Omega} \Delta u \, v \, d\Omega = -\int_{\Omega} \nabla u \nabla v \, d\Omega + \int_{\Gamma} q_i n_i \, v \, d\Gamma$$

conclui-se que

$$\int_{\Omega} u_t v \, d\Omega \,+\, \alpha \int_{\Omega} \nabla u \nabla v \, d\Omega \,+\, \beta \int_{\Omega} u v \, d\Omega = \int_{\Omega} f v \, d\Omega \,-\, \alpha \int_{\Gamma_p} p v \, d\Gamma, \quad \forall v \in D(\Omega)$$

$$\tag{4.2.1}$$

onde usamos que $-q_i n_i = -\frac{\partial u}{\partial x_j} n_i = p(x)$ em Γ_p e que v = 0 em Γ_q .

Denotando a forma bilinear a(u, v) por

$$a(u,v) = \alpha \int_{\Omega} \nabla u \nabla v \, d\Omega + \beta \int_{\Omega} uv \, d\Omega, \qquad (4.2.2)$$

е

$$(u_t, v) = \int_{\Omega} u_t v \, d\Omega \tag{4.2.3}$$

$$(f,v) = \int_{\Omega} f \, v \, d\Omega \tag{4.2.4}$$

$$(p,v) = \int_{\Gamma_p} p \, v \, d\Gamma \tag{4.2.5}$$

então (4.1.1) é equivalente a determinar $u = u(\boldsymbol{x}, t) \in H^1$ satisfazendo

$$\begin{cases} (u_t, v) + a(u, v) = (f, v) - \alpha(p, v), \ \forall v \in D(\Omega) \\ (u(0), v) = (u_0, v), \end{cases}$$
(4.2.6)

Note que estamos usando a propriedade de densidade do espaço $D(\Omega)$ em $H_0^1(\Omega)$ e denotando $u(\boldsymbol{x},t)$ por $u \in u(\boldsymbol{x},0) = u(0)$.

4.2.2 Método de Galerkin

Seja

$$H = \{ u \in H^1(\Omega); u = q \text{ em } \Gamma_q \}$$

$$(4.2.7)$$

Sejam $H_m \subset H$, $V_m \subset D(\Omega)$ subespaços de dimensão finita dos espaços de Hilbert H e $D(\Omega)$. Considere os elementos $u^h \in H_m$ satisfazendo a condição

$$u^{h} = w^{h} + q^{h}, (4.2.8)$$

onde $w^h \in V_m$ e q^h é uma função que satisfaz a condição de fronteira de u, ou seja,

$$q^{h}(x) = \begin{cases} q(x), & \forall x \in \Gamma_{q} \\ 0, & \forall x \notin \Gamma_{q} \end{cases}$$
(4.2.9)

Nestas condições, temos

$$u^h(x) = w^h(x) + q^h(x) = q(x), \quad \forall x \in \Gamma_q.$$

As funções $v^h \in V_m$ são, em geral, funções lineares por partes. Assim, para domínios em geral, a fronteira $\partial \Omega$ de Ω pode não coincidir com a fronteira aproximada Γ .

Restringindo a equação $(4.2.6)_1$ aos subespaços $V_m \in H_m$, temos

$$(u_t^h, v^h) + a(u^h, v^h) = (f, v^h) - \alpha(p, v^h)_{\Gamma}, \quad \forall \ v^h \in V_m$$
(4.2.10)

Por (4.2.8), temos

$$((w^{h} + q^{h})_{t}, v^{h}) + a(w^{h} + q^{h}, v^{h}) = (f, v^{h}) - \alpha(p, v^{h})_{\Gamma}, \qquad \forall v^{h} \in V_{m}$$
$$(w^{h}_{t}, v^{h}) + (q^{h}_{t}, v^{h}) + a(w^{h}, v^{h}) + a(q^{h}, v^{h}) = (f, v^{h}) - \alpha(p, v^{h})_{\Gamma}, \quad \forall v^{h} \in V_{m}$$

Levando em consideração que a função q depende apenas de x, temos que

$$q_t^h(x) = 0 \Rightarrow (q_t^h, v^h) = 0$$

Então,

$$(w_t^h, v^h) + a(w^h, v^h) = (f, v^h) - \alpha(p, v^h)_{\Gamma} - a(q^h, v^h), \quad \forall v^h \in V_m$$
(4.2.11)

Podemos, agora, formular o problema aproximado.

Problema Aproximado

Considere o Problema (4.2.6), redefinido no subespaço V_m . Queremos determinar uma solução $u^h = w^h + q^h \in H_m$, solução do seguinte sistema

$$\begin{cases} (w_t^h, v^h) + a(w^h, v^h) = (f, v^h) - \alpha(p^h, v^h)_{\Gamma} - a(q^h, v^h), & \forall v^h \in V_m \\ (u^h(0), v^h) = (u_{0h}, v^h) \longrightarrow u_0 \text{ forte em } H_0^1(0, 1). \end{cases}$$
(4.2.12)

Seja $\{\varphi_1, \varphi_2, \varphi_3, \cdots, \varphi_m\}$ uma base do subespaço V_m . Dessa forma, todo elemento $w_h \in V_m$ pode ser representado por

$$w^{h}(x,t) = \sum_{j=1}^{m} g_{jm}(t)\varphi_{j}(x), \quad \varphi_{j} \in V_{m}$$

$$(4.2.13)$$

e

$$w_t^h(x,t) = \sum_{j=1}^m g'_{jm}(t)\varphi_j(x), \quad \varphi_j \in V_m$$
(4.2.14)

Substituindo (4.2.13) e (4.2.14) em (4.2.12)₁, tem-se

$$\left(\sum_{j=1}^{m} g'_{jm}(t)\varphi_j, v^h\right) + a\left(\sum_{j=1}^{m} g_{jm}(t)\varphi_j, v^h\right) = (f, v^h) - \alpha(p, v^h)_{\Gamma} - a(q^h, v^h), \ \forall v^h \in V_m$$

$$(4.2.15)$$

A igualdade permanece válida tomando, em particular, $v^h = \varphi_i$, ou seja,

$$\left(\sum_{j=1}^{m} g'_{jm}(t)\varphi_j,\varphi_i\right) + a\left(\sum_{j=1}^{m} g_{jm}(t)\varphi_j,\varphi_i\right) = (f,\varphi_i) - \alpha(p,\varphi_i)_{\Gamma} - a(q^h,\varphi_i) \quad (4.2.16)$$

Da linearidade da forma a(.,.), segue que

$$\sum_{j=1}^{m} g'_{jm}(t) \left(\varphi_i, \varphi_j\right) + \sum_{j=1}^{m} g_{jm}(t) a \left(\varphi_i, \varphi_j\right) = (\varphi_i, f) - \alpha(\varphi_i, p)_{\Gamma} - a(\varphi_i, q^h)$$
(4.2.17)

Denotando

$$M_{ij} = \left(\varphi_i, \varphi_j\right), \quad 1 \le i, j \le m$$
 (4.2.18)

$$N_{ij} = a\Big(\varphi_i, \varphi_j\Big), \quad 1 \le i, j \le m \tag{4.2.19}$$

$$F_i = (\varphi_i, f) - \alpha(\varphi_i, p)_{\Gamma} - a(\varphi_i, q^h), \quad 1 \le j \le m$$
(4.2.20)

a formulação (4.2.12) pode ser escrita na forma matricial

$$\begin{cases} Mg'_{m}(t) + Ng_{m}(t) = F(t), & \forall t \in [0, T] \\ g_{m}(0) = \left((u_{0}, \varphi_{1}), (u_{0}, \varphi_{2}), \cdots, (u_{0}, \varphi_{m}) \right) = g_{0m} \end{cases}$$
(4.2.21)

onde $g_m(0)$ é a condição inicial, $g_m(t) = (g_{1m}(t), g_{2m}(t), \cdots, g_{mm}(t))^T$ é o vetor incógnita. Assim, temos um sistema de *m* equações diferenciais ordinárias.

De (4.2.2) a (4.2.5), as matrizes M, N e o vetor força F podem ser dados por:

$$M_{ij} = \int_{\Omega} \varphi_i \varphi_j \, d\Omega \tag{4.2.22}$$

$$N_{ij} = \int_{\Omega} \left(\alpha \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_i \varphi_j \right) d\Omega$$
(4.2.23)

$$F_i = \int_{\Omega} f \,\varphi_i \, d\Omega - \alpha(\varphi_i, p)_{\Gamma} - a(\varphi_i, q^h) \tag{4.2.24}$$

4.3 Discretização do Domínio

Consideremos uma partição do domínio Ω em subregiões Ω_e , de tal forma a satisfazer as condições

$$\Omega = \left(\bigcup_{e=1}^{\mathtt{Nel}} \Omega_e\right) \quad \mathrm{e} \quad \Omega_e \cap \Omega_k = \emptyset, \quad \mathrm{se} \quad e \neq k$$

onde Nel é o número total de elementos. Na partição do domínio definimos os nós globais $A, A = 1, 2, \dots,$ Nno, onde Nno é o número total de nós da malha.

Optamos por trabalhar com subregiões Ω_e retangulares, considerando 4 nós locais para cada elemento finito Ω_e .

Construção da Malha

Para a geração da malha, consideremos no domínio Ω um retângulo da forma $(a, b) \times (c, d)$. Os elementos finitos Ω_e , que serão representados por e, também serão retângulos. Para obter os elementos retangulares, basta subdividir os intervalos [a, b] e [c, d] e fazer o produto cartesiano. Há diversos tipos de malhas possíveis, tais como a malha geométrica, malha radical e em particular, a malha uniforme. Para gerar a malha uniforme, considere o seguinte procedimento: Define-se h = (b - a)/Nelx e k = (d - c)/Nely, onde Nelx e Nely são os números de elementos nas direções $x \in y$, respectivamente. Logo,

$$x_i = x_0 + ih, \quad i = 1, 2, \cdots, \text{Nelx}, \quad \text{com } x_0 = a,$$

 $y_j = y_0 + jk, \quad i = 1, 2, \cdots, \text{Nely}, \quad \text{com } y_0 = c.$

Assim,

$$[a,b] \times [c,d] = \bigcup_{i=0}^{\operatorname{Nelx}} [x_i, x_{i+1}] \times \bigcup_{j=0}^{\operatorname{Nely}} [y_j, y_{j+1}]$$

A subrotina DataInput faz a geração da malha uniforme, onde em particular, tomamos a = c = 0 e b = d = 1. Dessa forma, h = 1/Nelx e k = 1/Nely.

Para gerar malha não uniforme dentro da subrotina DataInput, basta entrar com as coordenadas $x \in y$ manualmente. A subrotina DataInput gera as posições (i, j) das coordenadas (x[i], y[j]), onde $i = 0, 1, 2, \cdots$, Nelx e $j = 0, 1, 2, \cdots$, Nely

Nó Global \mapsto Posição: Subrotina NoPos

O próximo passo é identificar o nó global A com a sua posição (i, j), obedecendo a enumeração sucessiva horizontal. A posição i do nó é o resto da divisão de (A - 1) por (Nelx + 1), que serão representados na linguagem C por

$$(i,j) = \operatorname{NoPos}(A),$$

onde

$$i = (A-1)\%(\text{Nelx}+1),$$

 $j = (A-1)/(\text{Nelx}+1).$

Por exemplo, considere a malha dada na Figura 4.1:

Temos, portanto, 25 nós globais, 16 elementos (representados por um círculo) e Nelx = Nely = 4. Por exemplo, o nó global A = 18 é representado pelo par ordenado (i, j) = (2, 3).

Posição \mapsto Nó Global: Subrotina PosNo

Esta subrotina faz o processo inverso da subrotina NoPos, isto é, dada a posição, identifica-se o nó global A,

$$A = \texttt{PosNo}(i, j),$$

21	22	23	24	25
(13)	(14)	(15)	(16)	
16	17	18	19	20
9	(10)	(11)	(12)	
11	12	13	14	15
5	6 7	8 (7)	8	10
$\left \begin{array}{c} 1 \\ 1 \end{array} \right $	2		$\left \begin{array}{c} 4 \\ 4 \end{array}\right $	5

Figura 4.1: Malha de elementos retangulares

através da relação

$$A = j\left(\texttt{Nelx} + 1\right) + i + 1$$

Assim, na posição (1, 4), temos o nó A = 22, considerando a malha anterior.

$Elemento \mapsto Posição: Subrotina ElmPos$

Para cada elemento e, temos 4 nós globais. Para identificá-lo é suficiente conhecer a posição de apenas um desses nós, que adotaremos neste caso, como sendo o menor nó global (veremos adiante que este nó global corresponde ao nó local a=1) do elemento e, dado pela relação:

Dado um elemento e, a sua posição (i, j) é dada pelo resto e o quociente da divisão. Temos

$$(i,j) = \operatorname{ElmPos}(e),$$

onde

$$i = (e-1)\%$$
 Nelx,
 $j = (e-1)/$ Nelx.

Por exemplo, considere o elemento e = 8 da malha anterior. Então, (i, j) = (3, 1). Observando a Figura 4.1, verifica-se que na posição (3, 1) temos o nó global A = 9 que é o representante do elemento e = 8. De forma análoga temos $e = 11 \Rightarrow (i, j) = (2, 2)$, que é a posição do nó A = 13.

Nó Local \mapsto Nó Global: Subrotina NoLG

A subrotina NoLG identifica os nós locais a = 1, 2, 3, 4 de cada elemento (retângulo) com os nós globais A da malha,

$$A = \texttt{NoLG}(a, e)$$

da seguinte forma:

Dado um elemento e, o primeiro passo é identificar sua posição através da subrotina anterior, (i, j) = ElmPos(e).

Sabemos então, que na posição (i, j) existe um nó global A que representa o elemento e. O nó global A será então o primeiro nó local a = 1 do elemento e. Assim, $a = 1 \Leftrightarrow (i, j)$. Para a = 2, temos o nó global (A + 1) que é identificado pela posição (i + 1, j). Para a = 3, temos a posição (i + 1, j + 1). Para a = 4, temos a posição (i, j + 1). Geometricamente, temos

Com a posição identificada, o nó A pode ser encontrado pela função PosNo. Considere a Figura 4.1 e o elemento e = 10. Então ,

$$NoLG(1, 10) = 12$$
, $NoLG(2, 10) = 13$,
 $NoLG(3, 10) = 18$, $NoLG(4, 10) = 17$.

A identificação é extremamente importante pois permite elaborar cálculos locais em cada elemento e e depois transportá-los para os nós globais, onde realmente a solução é obtida.

Número de Equações do Sistema: EqNo

Alguns nós globais podem ter seus valores prescritos, ou seja, a solução $u_A = u(A)$ pode ser conhecida devido às condições de fronteira. Assim, para estes nós não é necessário gerar equações no sistema. Desta forma, a subrotina EqNo identifica o nó global A com a sua correspondente equação eqn[A] no sistema e o número total de equações Neq do sistema. Assim, temos

$$I = \operatorname{EqNo}[A],$$

onde $I = 1, \dots, \text{Neq.}$ Por conveniência, para os nós onde os valores são prescritos, tomamos I = 0. É claro que o número de equações é menor ou igual ao número de nós globais, $\text{Neq} \leq \text{Nno.}$

Por exemplo, suponhamos que a solução $u_A = u(A)$ seja conhecida nos nós globais $A = \{2, 3, 8, 12, 22, 24\}$ da Figura 4.1. Então, tem-se que

А	1	2	3	4	5	6	7	8	9	10	11	12	13
eqn[A]	1	0	0	2	3	4	5	0	6	7	8	0	9
А	14	15	16	17	18	19	20	21	22	23	24	25	
eqn[A]	10	11	12	13	14	15	16	17	0	18	0	19	

Logo, temos 19 nós globais onde a solução não é conhecida e assim o número de equações Neq = 19. Podemos observar que o nó global A não corresponde, em geral, a A-ésima equação, como acontece no caso unidimensional. Se, em particular, no lugar da solução ser prescrita nos nós acima, tivermos derivada da solução prescrita nestes nós, então Neq = Nno, pois neste caso a solução é desconhecida em todos os 25 nós A da malha.

Valores de Fronteira: Fronteira, CondFront

Para cada nó global A, introduzimos as condições de fronteira do tipo Dirichlet e do tipo Neumann. Nas condições de fronteira do tipo Dirichlet, a solução $u_A = u(A)$ é prescrita no nó, enquanto na condição de fronteira de Neumann a derivada normal de u(x) no nó A é prescrita. Inicialmente precisamos identificar quais são os nós da fronteira do domínio. Para isso introduzimos a subrotina **Fronteira**.

Consideremos, por exemplo, o retângulo $[a, b] \times [c, d]$ sendo o domínio com as fronteiras definidas por:

$$\begin{split} \Gamma_1 &= \{(x,c) \in \partial\Omega; \ a \leq x \leq b\} \\ \Gamma_2 &= \{(b,y) \in \partial\Omega; \ c \leq y \leq d\} \\ \Gamma_3 &= \{(x,d) \in \partial\Omega; \ a \leq x \leq b\} \\ \Gamma_4 &= \{(a,y) \in \partial\Omega; \ c \leq y \leq d\} \end{split}$$

Então, precisamos identificar os nós pertencentes a cada uma das fronteiras Γ_i , independentes se são do tipo Neumann ou Dirichlet. A subrotina **Fronteira** tem essa função, além de quantificar os nós de cada fronteira pela expressão Nbn[i] (Número de nós da fronteira [i]). Assim, por exemplo, para a malha da Figura 4.1, temos os seguintes nós globais em cada fronteira:

$$\begin{split} \Gamma_1 &= & \{1,2,3,4,5\} & \mbox{Nbn}[1] = 5 \\ \Gamma_2 &= & \{5,10,15,20,25\} & \mbox{Nbn}[2] = 5 \\ \Gamma_3 &= & \{21,22,23,24,25\} & \mbox{Nbn}[3] = 5 \\ \Gamma_4 &= & \{1,6,11,16,21\} & \mbox{Nbn}[4] = 5 \end{split}$$

O próximo passo na subrotina CondFront, o operador deve definir as funções e as condições de fronteira do problema a ser implementado. O programa permite que sejam definidas, condições de fronteira de Dirichlet e Neumann em cada uma das fronteiras Γ_i , mediante duas opções:

(Dirichlet): typ (A) = 1, a solução é conhecida.

(Neumann): Bv, a derivada da solução é conhecida.

A partir da introdução dos dados da fronteira, a subrotina CondFront associa todos os nós de cada fronteira Γ_i aos seus valores e as formas de contribuição de cada tipo de fronteira na obtenção da solução numérica do problema.

Construção do sistema linear

Seja N o conjunto de nós da malha e N_q o conjunto dos nós do tipo 1, isto é, os nós para os quais a solução é conhecida. Então, o conjunto $N - N_q$ representa os nós para os quais a solução deverá ser determinada.

Seja $A \in N$ um nó global. Definimos sobre A uma função interpolante linear φ_A satisfazendo a condição:

$$\varphi_A(B) = \begin{cases} 1, \text{ se } A = B, \\ 0, \text{ se } A \neq B, \quad \forall B \in \mathbb{N} \end{cases}$$
(4.3.1)

Para $A \in N - N_q$, o conjunto das funções lineares φ_A geram um espaço vetorial linear por partes V^h que é um subespaço do espaço V. Assim, toda função $w^h \in V^h$ pode ser escrita por

$$w^{h}(x) = \sum_{B \in N - N_q} g_B \varphi_B(x). \tag{4.3.2}$$

De forma análoga, para a obtenção do sistema linear tem-se que:

$$\sum_{B \in N-N_q} (\varphi_A, \varphi_B) g'_B + \sum_{B \in N-N_q} a(\varphi_A, \varphi_B) g_B = (\varphi_A, f) - \alpha(\varphi_A, p)_{\Gamma} - a(\varphi_A, q^h), \ \forall A \in N - N_q$$

$$(4.3.3)$$

Variando os nós globais $A \text{ em } N - N_q$ tem-se um sistema linear com Neq equações. Para definir a matriz dos coeficientes é necessário estabelecer uma identificação entre o nó A e a sua equação através da subrotina EqNo. Seja

$$I = \operatorname{eqn}[A] \quad e \quad J = \operatorname{eqn}[B],$$

onde $1 \neq I, J, \neq$ Neq. Então, o sistema linear é definido por

$$\sum_{J=1}^{\text{Neq}} M_{IJ} \, g'_J + \sum_{J=1}^{\text{Neq}} N_{IJ} \, g_J = F_I, \qquad (4.3.4)$$

onde

$$M_{IJ} = (\varphi_A, \varphi_B), \tag{4.3.5}$$

$$N_{IJ} = a(\varphi_A, \varphi_B), \tag{4.3.6}$$

$$F_I = (\varphi_A, f) - \alpha(\varphi_A, p)_{\Gamma} - a(\varphi_A, q^h).$$
(4.3.7)

4.4 Interpolação dos Dados Iniciais

Para a equação da onda, a força f é definida em todo $\boldsymbol{x} = (x_1, x_2) \in \Omega$ e as funções q e p são definidas em todo $\boldsymbol{x} \in \Gamma_q$ e $\boldsymbol{x} \in \Gamma_p$, respectivamente.

Usando os polinômios φ_A , base do subespaço V_m como polinômios interpoladores, temos que

$$f^{h}(x) = \sum_{A \in N} \varphi_{A}(x) f_{A}, \qquad (4.4.1)$$

$$q^{h}(x) = \sum_{A \in N_{q}} \varphi_{A}(x)q_{A}, \qquad (4.4.2)$$

$$p^{h}(x) = \sum_{A \in N_{q}} \varphi_{A}(x) p_{A}, \qquad (4.4.3)$$

onde $f_A = f(x_A)$, $q_A = q(x_A)$ e $p_A = p(x_A)$. Usando a definição de $\varphi_A(x)$, temos então,

$$f_A = f^h(x_A), \quad q_A = q^h(x_A) \quad e \quad p_A = p^h(x_A).$$

Substituindo em (4.3.7), obtém-se

$$F_I = \sum_{B \in N} (\varphi_A, \varphi_B) f_B - \alpha \sum_{B \in N_q} (\varphi_A, \varphi_B) p_B - \sum_{B \in N_q} a(\varphi_A, \varphi_B) q_B.$$
(4.4.4)

Usando a definição dada em (4.2.24), temos

$$F_I = \sum_{B \in N} \int_{\Omega} \varphi_A \varphi_B f_B \, d\Omega - \alpha \sum_{B \in N_q} \int_{\Gamma_p} \varphi_A \varphi_B p_B \, d\Gamma_p - \sum_{B \in N_q} N_{AB} q_B. \tag{4.4.5}$$

De forma análoga, usando (4.2.22) e (4.2.23), podemos escrever (4.3.5) e (4.3.6), respectivamente, como

$$M_{IJ} = (\varphi_A, \varphi_B) = \int_{\Omega} \varphi_A \varphi_B \, d\Omega, \qquad (4.4.6)$$

$$N_{IJ} = a(\varphi_A, \varphi_B) = \int_{\Omega} \left(\alpha \nabla \varphi_A \nabla \varphi_B + \beta \varphi_A \varphi_B \right) d\Omega, \qquad (4.4.7)$$

onde I = eqn[A] e J = eqn[B].

Porém, a formulação (4.4.5), (4.4.6) e (4.4.7) para obtenção das matrizes M, Ne do vetor força F em todo o domínio Ω não é a mais conveniente. Um apropriado procedimento é definir as funções de interpolação φ_A para cada elemento finito e, onde φ_A é um polinômio interpolador em Ω_e e vale zero em $\Omega - \Omega_e$, onde Ω_e é o domínio do elemento e. Dessa forma, a função φ_A é denominada função de interpolação local e é denotada por φ_A^e . Usando a discretização do domínio Ω dado anteriormente, introduzimos as matrizes locais M_e , N_e e a força local F_e definidas para cada elemento finito e por

$$M_{IJ}^e = (\varphi_A^e, \varphi_B^e) = \int_{\Omega} \varphi_A^e \varphi_B^e \, d\Omega, \qquad (4.4.8)$$

$$N_{IJ}^{e} = a(\varphi_{A}^{e}, \varphi_{B}^{e}) = \int_{\Omega} \left(\alpha \nabla \varphi_{A}^{e} \nabla \varphi_{B}^{e} + \beta \varphi_{A}^{e} \varphi_{B}^{e} \right) d\Omega, \qquad (4.4.9)$$

$$F_I^e = \sum_{B \in N} \int_{\Omega} \varphi_A^e \varphi_B^e f_B \ d\Omega - \alpha \sum_{B \in N_q} \int_{\Gamma_p^e} \varphi_A^e \varphi_B^e p_B \ d\Gamma - \sum_{B \in N_q} N_{AB}^e q_B, \tag{4.4.10}$$

onde $I = \operatorname{eqn}[A]$, $J = \operatorname{eqn}[B]$ e $1 \le I, J \le \operatorname{Neq}$.

Logo, as matrizes globais M, Ne o vetor força F são obtidos por

$$M = \sum_{e=1}^{\text{Nel}} M^e, \quad N = \sum_{e=1}^{\text{Nel}} N^e, \quad F = \sum_{e=1}^{\text{Nel}} F^e.$$
(4.4.11)

As matrizes M_{IJ}^e , N_{IJ}^e e o vetor força F_I^e definidos em (4.4.8), (4.4.9) e (4.4.10) têm ordem (Neq×Neq), (Neq×Neq) e (Neq×1), respectivamente. Mas a função de interpolação

 φ_A^e tem suporte compacto em Ω_e , e assim as matrizes e o vetor força são nulos para todos os nós $B \notin \Omega_e$.

A desvantagem deste procedimento está no armazenamento das matrizes M^e , N^e e o vetor força F^e e também no número desnecessário de operações entre zeros. Faremos, então, a introducão dos nós locais.

Nós Locais

Considere Ω_e um retângulo como dado abaixo:

Localmente, define-se as funções de interpolação local dadas por

$$\varphi_a^e(\boldsymbol{x}_b^e) = \begin{cases} 1, \text{ se } a = b, \\ 0, \text{ se } a \neq b, \end{cases}$$
(4.4.12)

onde \boldsymbol{x}_{b}^{e} é a posição do nó local do elemento e. Para cada elemento e, definimos as matrizes locais $M^{e} = M_{ab}^{e}$, $N^{e} = N_{ab}^{e}$ e o vetor força local $F^{e} = F_{a}^{e}$ por

$$M_{ab}^e = (\varphi_a^e, \varphi_b^e) = \int_{\Omega_e} \varphi_a^e(x) \varphi_b^e(x) \, dx, \qquad (4.4.13)$$

$$N_{ab}^{e} = a(\varphi_{a}^{e}, \varphi_{b}^{e}) = \int_{\Omega_{e}} \left(\alpha \nabla \varphi_{a}^{e}(x) \nabla \varphi_{b}^{e}(x) + \beta \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) \right) dx, \qquad (4.4.14)$$

$$F_{a}^{e} = \sum_{b=1}^{4} \int_{\Omega_{e}} \varphi_{a}^{e}(x)\varphi_{b}^{e}(x)f_{b}^{e} d\Omega - \alpha \sum_{b=1}^{4} \int_{\Gamma_{p}^{e}} \varphi_{a}^{e}(x)\varphi_{b}^{e}(x)p_{b}^{e} d\Gamma - \sum_{b=1}^{4} N_{ab}^{e}q_{b}^{e}(x), \quad (4.4.15)$$

onde $1 \le a, b \le 4$.

A introdução do nó local permite obter uma matriz local M_{ab}^e e uma matriz local N_{ab}^e de ordem (4×4), que são submatrizes das matrizes M_{IJ}^e e N_{IJ}^e formadas pelos elementos não necessariamente nulos de M_{IJ}^e e N_{IJ}^e . Analogamente, o vetor F_a^e é formado pelas quatro coordenadas não necessariamente nulas de F_I^e . Estabelecendo uma relação entre os nós locais a e os nós globais A, determina-se a contribuição de cada elemento e na obtenção das matrizes globais M e N e do vetor força F. Além disso, é necessário relacionar o nó global A e a correspondente equação do sistema. Isto é feito pela subrotina EqNo, definida por

$$I = \operatorname{eqn}[A], \quad 1 \le I \le \operatorname{Neq}$$

A composição entre as duas relações nos permite relacionar o nó local a com o número da equação I correspondente, através de

$$I = \operatorname{eqn}[\operatorname{NoLG}(a, e)] = \operatorname{eqn}[A].$$

Variando $e = 1, 2, \cdots$, Nel, as matrizes globais M, N e o vetor força F do sistema linear são obtidos por

$$M = \sum_{e=1}^{\text{Nel}} M_{ab}^{e}, \quad N = \sum_{e=1}^{\text{Nel}} N_{ab}^{e}, \quad F = \sum_{e=1}^{\text{Nel}} F_{a}^{e}.$$
(4.4.16)

4.5 Função de Interpolação

Considere $\Omega_e \subset \Omega$ um quadrilátero representado como na Figura (4.2).

Figura 4.2: Um quadrilátero

Para cada Ω_e definiremos as funções teste ou função de interpolação, de tal forma que:

- (i) φ_a^e é de classe C^1 no interior de cada Ω^e ,
- (ii) φ^e_a é contínua no interior de cada elemento Γ_e da fronteira,

onde a = 1, 2, 3, 4 são nós de cada quadrilátero e $e = 1, 2, \dots$, Nel são os elementos da malha.

A enumeração dos vértices (nós) é ordenada no sentido anti-horário. Para cada lado do quadrilátero definiremos uma função de interpolação linear φ_a^e satisfazendo as condições i) e ii) e além disso, vamos impor as condições de interpolação:

$$\varphi_a(\boldsymbol{x}_b^e) = \begin{cases} 1, \text{ se } a = b, \\ 0, \text{ se } a \neq b, \end{cases}$$
(4.5.1)

onde $1 \le a, b \le 4$ e $x_b^e = ((x_1)_b^e, (x_2)_b^e).$

Observação: Para simplicar, passaremos a utilizar a seguinte notação

$$\boldsymbol{x} = (x, y) \Leftrightarrow \boldsymbol{x} = (x_1, x_2)$$
 (4.5.2)

Assim, de (4.5.2) e (4.5.1), temos que $\boldsymbol{x}_{b}^{e} = (x_{b}^{e}, y_{b}^{e}).$

Queremos determinar φ_1^e , φ_2^e , φ_3^e , φ_4^e , interpoladores lineares satisfazendo (4.5.1). Usando os polinômios de Lagrange, obtém

$$\begin{split} \varphi_1^e(x,y) &= \frac{(x-x_2^e)(y-y_2^e)}{(x_1^e-x_2^e)(y_1^2-y_2^e)},\\ \varphi_2^e(x,y) &= \frac{(x-x_1^e)(y-y_2^e)}{(x_2^e-x_1^e)(y_1^2-y_2^e)},\\ \varphi_3^e(x,y) &= \frac{(x-x_1^e)(y-y_1^e)}{(x_2^e-x_1^e)(y_2^2-y_1^e)},\\ \varphi_4^e(x,y) &= \frac{(x-x_2^e)(y-y_1^e)}{(x_1^e-x_2^e)(y_1^2-y_1^e)}, \end{split}$$

onde $\boldsymbol{x}_1^e = (x_1^e, y_1^e), \ \boldsymbol{x}_2^e = (x_2^e, y_1^e), \ \boldsymbol{x}_3^e = (x_2^e, y_2^e), \ \boldsymbol{x}_4^e = (x_1^e, y_2^e).$ A função de interpolação φ_a^e pode ser representada graficamente por

Figura 4.3: Função de interpolação

Em particular, quando o domínio é o quadrado biunitário $[-1, 1] \times [-1, 1]$, a função de interpolação φ_a tem a forma simples, ou seja, denotando

$$\xi_1 = (-1, -1), \quad \xi_2 = (1, -1), \quad \xi_3 = (1, 1), \quad \xi_4 = (-1, 1)$$

temos

$$\varphi_{a}(\xi,\eta) = \begin{cases} \varphi_{1}^{e}(\xi,\eta) = \frac{1}{4}(1-\xi)(1-\eta) = \frac{1}{4}(1-\xi-\eta) \\ \varphi_{2}^{e}(\xi,\eta) = \frac{1}{4}(1+\xi)(1-\eta) = \frac{1}{4}(1+\xi-\eta) \\ \varphi_{3}^{e}(\xi,\eta) = \frac{1}{4}(1+\xi)(1+\eta) = \frac{1}{4}(1+\xi+\eta) \\ \varphi_{4}^{e}(\xi,\eta) = \frac{1}{4}(1-\xi)(1+\eta) = \frac{1}{4}(1-\xi+\eta) \end{cases}$$
(4.5.3)

para $(\xi, \eta) \in [-1, 1] \times [-1, 1].$

Podemos observar que o polinômio interpolador $\varphi_a(\xi, \eta)$, a = 1, 2, 3, 4, no quadrado biunitário é mais simples. Assim, é conveniente fazer uma parametrização entre os diferentes elementos de Ω_e e o quadrado biunitário $[-1, 1] \times [-1, 1]$, denotado por Ω_b .

4.6 Transformação Isoparamétrica

Considere a seguinte aplicação

$$(\xi,\eta)\in\Omega_b\mapsto(x,y)\in\Omega_e$$

definida por

$$x(\xi,\eta) = \sum_{a=1}^{4} \varphi_a(\xi,\eta) x_a^e,$$
(4.6.1)

$$y(\xi,\eta) = \sum_{a=1}^{4} \varphi_a(\xi,\eta) y_a^e,$$
(4.6.2)

As funções (4.6.1) e (4.6.2) são biunívocas entre o quadrilátero Ω_e e o quadrado biunitário Ω_b .

Definindo

$$(\xi_1, \eta_1) = (-1, -1), \quad (\xi_2, \eta_2) = (1, -1), \quad (\xi_3, \eta_3) = (1, 1), \quad (\xi_4, \eta_4) = (-1, 1), 4.6.3)$$

$$(4.6.3)$$

então,

$$x(\xi_b, \eta_b) = \sum_{a=1}^{4} \varphi_a(\xi_b, \eta_b) x_a^e = \begin{cases} x_a^e, & \text{se} \quad a=b, \\ 0, & \text{se} \quad a\neq b. \end{cases}$$
$$y(\xi_b, \eta_b) = \sum_{a=1}^{4} \varphi_a(\xi_b, \eta_b) y_a^e = \begin{cases} y_a^e, & \text{se} \quad a=b, \\ 0, & \text{se} \quad a\neq b. \end{cases}$$

Observe a transformação, geometricamente, na Figura 4.4, onde $\boldsymbol{x} = \boldsymbol{x}(\xi) = (x, y)$ e $\xi = \xi(\boldsymbol{x}) = (\xi, \eta).$

Com a notação vetorial, as aplicações (4.6.1) e (4.6.2) podem ser dadas por

$$\boldsymbol{x}(\xi) = \sum_{a=1}^{4} \varphi_a(\xi) x_a^e, \qquad (4.6.4)$$

onde

$$\begin{aligned} x(\xi,\eta) &= \frac{1}{4} [(x_1^e + x_2^e + x_3^e + x_4^e) - (x_1^e + x_2^e - x_3^e - x_4^e) \eta - (x_1^e - x_2^e - x_3^e + x_4^e) \xi] \\ y(\xi,\eta) &= \frac{1}{4} [(y_1^e + y_2^e + y_3^e + y_4^e) - (y_1^e + y_2^e - y_3^e - y_4^e) \eta - (y_1^e - y_2^e - y_3^e + y_4^e) \xi] \end{aligned}$$

Figura 4.4: Transformação isoparamétrica

Para verificar a existência da função

$$\xi = \boldsymbol{x}^{-1} : \Omega_e \quad \to \quad \Omega_b$$
$$(x, y) \quad \mapsto \quad \xi(x, y) = (\xi, \eta)$$

usaremos o Teorema da Função Inversa. A função φ_a é diferenciável e portanto $\boldsymbol{x}(\xi)$ é diferenciável. Assim, podemos calcular o Jacobiano da transformação isoparamétrica dado por

$$J = \det \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{bmatrix} > 0$$
(4.6.6)

Como $\boldsymbol{x} = \Omega_b \to \Omega_e$ é bijetora e de classe C^1 (pois φ_a tem classe C^1) e o Jacobiano é positivo, então, o Teorema da Função Inversa garante a existência da função inversa $\boldsymbol{x}^{-1} = \boldsymbol{\xi} : \Omega_e \to \Omega_b$, com \boldsymbol{x}^{-1} de classe C^1 . Assim, temos um mapeamento entre os elementos finitos $\Omega_b \in \Omega_e$.

Cálculo do Jacobiano

A função de interpolação φ_a , dada em (4.5.3), pode ser representada em Ω_b na seguinte forma compacta

$$\varphi_a(\xi,\eta) = \frac{1}{4}(1+\xi_a\xi)(1+\eta_a\eta), \quad a = 1, 2, 3, 4, \tag{4.6.7}$$

 $\operatorname{com}(\xi_a, \eta_a)$ definida em (4.6.3).

Então, temos a derivada da função $\varphi_a(\xi)$ dada por

$$\frac{\partial \varphi_a(\xi)}{\partial \xi} = \begin{cases} \frac{\partial \varphi_1(\xi)}{\partial \xi} = \frac{-1}{4}, & \frac{\partial \varphi_1(\eta)}{\partial \xi} = \frac{-1}{4} \\ \frac{\partial \varphi_2(\xi)}{\partial \xi} = \frac{1}{4}, & \frac{\partial \varphi_2(\eta)}{\partial \xi} = \frac{-1}{4} \\ \frac{\partial \varphi_3(\xi)}{\partial \xi} = \frac{1}{4}, & \frac{\partial \varphi_3(\eta)}{\partial \xi} = \frac{1}{4} \\ \frac{\partial \varphi_4(\xi)}{\partial \xi} = \frac{-1}{4}, & \frac{\partial \varphi_4(\eta)}{\partial \xi} = \frac{1}{4} \end{cases}$$
(4.6.8)

O gradiente da função φ_a pode ser representado em Ω_b na seguinte forma compacta

$$\nabla \varphi_a(\xi, \eta) = \frac{1}{4} \bigg(\xi_a(1 + \eta_a \eta), \ \eta_a(1 + \xi_a \xi) \bigg), \quad a = 1, 2, 3, 4.$$
(4.6.9)

Assim, o gradiente da função $\varphi_a(\xi)$ é dado por

$$\nabla\varphi_a(\xi) = \begin{cases} \nabla\varphi_1(\xi) = \left(\frac{-1}{4}, \frac{-1}{4}\right) \\ \nabla\varphi_2(\xi) = \left(\frac{1}{4}, \frac{-1}{4}\right) \\ \nabla\varphi_3(\xi) = \left(\frac{1}{4}, \frac{1}{4}\right) \\ \nabla\varphi_4(\xi) = \left(\frac{-1}{4}, \frac{1}{4}\right) \end{cases}$$
(4.6.10)

Usando as funções $\boldsymbol{x}(\xi)$ definidas em (4.6.4) e $\nabla \varphi_a(\xi)$ em (4.6.9), podemos calcular o Jacobiano da transformação entre Ω_b e Ω_e da seguinte forma:

$$\left(\frac{\partial x}{\partial \xi}, \frac{\partial x}{\partial \eta}\right) = \sum_{a=1}^{4} x_a^e \left(\frac{\partial \varphi_a}{\partial \xi}(\xi, \eta), \frac{\partial \varphi_a}{\partial \eta}(\xi, \eta)\right) = \sum_{a=1}^{4} x_a^e \nabla \varphi_a(\xi, \eta), \quad (4.6.11)$$

$$\left(\frac{\partial y}{\partial \xi}, \frac{\partial y}{\partial \eta}\right) = \sum_{a=1}^{4} y_a^e \left(\frac{\partial \varphi_a}{\partial \xi}(\xi, \eta), \frac{\partial \varphi_a}{\partial \eta}(\xi, \eta)\right) = \sum_{a=1}^{4} y_a^e \nabla \varphi_a(\xi, \eta), \quad (4.6.12)$$

Utilizando $\nabla \varphi(\xi, \eta)$, podemos calcular o Jacobiano da transformação entre o quadrado biunitário Ω_b e o quadrilátero Ω_e . Quando Ω_e é um retângulo, o Jacobiano pode ser calculado por

$$J = \frac{1}{4}(x_2^e - x_1^e)(y_2^e - y_1^e) = \frac{1}{4}dx^e dy^e.$$
 (4.6.13)

Se os retângulos são uniformes, então o Jacobiano é constante para todo elemento, sendo, portanto, desnecessário o cálculo para cada elemento.

Gradiente da Função de Interpolação

Precisamos, agora, calcular $\nabla \varphi_a(x, y)$ no quadrado biunitário Ω_b , usando a transformação isoparamétrica. Temos que

$$\nabla \varphi_a(x,y) = \left(\frac{\partial \varphi_a^e}{\partial x}, \frac{\partial \varphi_a^e}{\partial y}\right)$$
$$\frac{\partial \varphi_a^e}{\partial x} = \frac{\partial \varphi_a^e}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial \varphi_a^e}{\partial \eta} \frac{\partial \xi}{\partial x}$$
$$\frac{\partial \varphi_a^e}{\partial y} = \frac{\partial \varphi_a^e}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial \varphi_a^e}{\partial \eta} \frac{\partial \xi}{\partial y}$$
(4.6.14)

Na forma matricial temos

$$\begin{bmatrix} \frac{\partial \varphi_a}{\partial x} \\ \frac{\partial \varphi_a}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} \\ \frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial \varphi_a}{\partial \xi} \\ \frac{\partial \varphi_a}{\partial \eta} \end{bmatrix}$$
(4.6.15)

O primeiro termo do lado direito de (4.6.15) pode ser calculado usando a matriz Hessiana x_ξ definida por

$$x_{\xi} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} -\frac{1}{4}(x_1^e - x_2^e - x_3^e + x_4^e) & -\frac{1}{4}(x_1^e + x_2^e - x_3^e - x_4^e) \\ -\frac{1}{4}(y_1^e - y_2^e - y_3^e + y_4^e) & -\frac{1}{4}(y_1^e + y_2^e - y_3^e - y_4^e) \end{bmatrix}$$
(4.6.16)

Da definição de $\boldsymbol{x}(\xi, \eta)$ dada por (4.6.1) e (4.6.2), calcula-se a matriz \boldsymbol{x}_{ξ} . Então, a inversa de \boldsymbol{x}_{ξ} é dada por

$$(\boldsymbol{x}_{\xi})^{-1} = \xi_{\boldsymbol{x}} = \begin{bmatrix} \frac{\partial \xi}{\partial \boldsymbol{x}} & \frac{\partial \xi}{\partial \boldsymbol{y}} \\ \frac{\partial \eta}{\partial \boldsymbol{x}} & \frac{\partial \eta}{\partial \boldsymbol{y}} \end{bmatrix} = \frac{1}{J} \begin{bmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial x}{\partial \eta} \\ -\frac{\partial y}{\partial \xi} & \frac{\partial x}{\partial \xi} \end{bmatrix} = \frac{1}{J} \, \bar{\boldsymbol{x}}_{\xi}, \quad (4.6.17)$$

onde $J = J(\xi, \eta) = \det(\boldsymbol{x}_{\xi}) \in \bar{\boldsymbol{x}}_{\xi}$ é a matriz adjunta de \boldsymbol{x}_{ξ} .

Substituindo em (4.6.15) temos

$$\frac{\frac{\partial \varphi_a}{\partial x}}{\frac{\partial \varphi_a}{\partial y}} = \frac{1}{J} \begin{bmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial x}{\partial \eta} \\ -\frac{\partial y}{\partial \xi} & \frac{\partial x}{\partial \xi} \end{bmatrix} \begin{bmatrix} \frac{\partial \varphi_a}{\partial \xi} \\ \frac{\partial \varphi_a}{\partial \eta} \end{bmatrix}$$
(4.6.18)

$$\begin{bmatrix} \frac{\partial \varphi_a}{\partial x} \\ \frac{\partial \varphi_a}{\partial y} \end{bmatrix} = \frac{1}{J} \begin{bmatrix} -\frac{1}{4} (y_1^e + y_2^e - y_3^e - y_4^e) & \frac{1}{4} (x_1^e + x_2^e - x_3^e - x_4^e) \\ \frac{1}{4} (y_1^e - y_2^e - y_3^e + y_4^e) & -\frac{1}{4} (x_1^e - x_2^e - x_3^e + x_4^e) \end{bmatrix} \begin{bmatrix} \frac{\partial \varphi_a}{\partial \xi} \\ \frac{\partial \varphi_a}{\partial \eta} \end{bmatrix}$$
(4.6.19)

A matriz $\boldsymbol{x}_{\xi}^{-1}$ calculada em (4.6.17) para quadriláteros pode ser simpificada se calculada para retângulos, pois as funções $\xi(x, y) \in \eta(x, y)$, neste caso, são dadas explicitamente por

$$\xi(x,y) = \frac{1}{dx_e} \left((x - x_1^e) + (x - x_2^e) \right), \tag{4.6.20}$$

$$\eta(x,y) = \frac{1}{dy_e} \left((y - y_1^e) + (y - y_2^e) \right).$$
(4.6.21)

Observe que (ξ, η) é um mape
amento entre o retângulo Ω_e e o quadrado biunitário
 Ω_b . Assim temos

$$(x_{\xi})^{-1} = \begin{bmatrix} \frac{\partial\xi}{\partial x} & \frac{\partial\xi}{\partial y} \\ \frac{\partial\eta}{\partial x} & \frac{\partial\eta}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{2}{dx_e} & 0 \\ 0 & \frac{2}{dy_e} \end{bmatrix}.$$
 (4.6.22)

Portanto,

$$\left(\frac{\partial\varphi_a}{\partial x}, \frac{\partial\varphi_a}{\partial y}\right) = \left(\frac{\partial\varphi_a}{\partial\xi}\frac{2}{dx_e}, \frac{\partial\varphi_a}{\partial\eta}\frac{2}{dy_e}\right).$$
(4.6.23)

4.7 Quadratura Gaussiana

Seja $f: \Omega_b \subset \mathbb{R}^2 \to \mathbb{R}$ uma função integrável, onde

$$\int_{\Omega_b} f \, d\Omega = \int_{-1}^1 \int_{-1}^1 f(\xi, \eta) \, d\xi d\eta.$$
(4.7.1)

Para o número de pontos interiores igual a dois nas direções $\xi \in \eta$, os pontos são

$$(\xi_1, \eta_1) = \left(\frac{-\sqrt{3}}{3}, \frac{-\sqrt{3}}{3}\right), \qquad (\xi_2, \eta_2) = \left(\frac{\sqrt{3}}{3}, \frac{-\sqrt{3}}{3}\right), \\ (\xi_3, \eta_3) = \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right), \qquad (\xi_4, \eta_4) = \left(\frac{-\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right),$$

com pesos

$$w_1 = w_2 = w_3 = w_4 = 1.$$

Logo, temos

$$\int_{\Omega_b} f(\xi, \eta) \, d\Omega = \sum_{k=1}^4 f(\xi_k, \eta_k).$$
(4.7.2)

4.8 Matrizes Locais M_{ab}^e , N_{ab}^e e Força Local F_a^e

4.8.1 Matriz Local M_{ab}^e

A matriz local M^e_{ab} é dada por (4.4.13) como sendo

$$M^{e}_{ab} = \int_{\Omega_{e}} \varphi^{e}_{a}(x)\varphi^{e}_{b}(x) \ d\Omega \tag{4.8.1}$$

onde $1 \leq a, b \leq 4$.

A matriz M_{ab}^e é uma matriz simétrica, portanto $M_{12}^e = M_{21}^e$, $M_{13}^e = M_{31}^e$, $M_{14}^e = M_{41}^e$, $M_{23}^e = M_{32}^e$, $M_{24}^e = M_{42}^e$ e $M_{34}^e = M_{43}^e$.

Aplicando a transformação isoparamétrica em (4.6.7) e lembrando que de (4.6.13) temos que o Jacobiano é dado por

$$J = \frac{1}{4}(x_2^e - x_1^e)(y_2^e - y_1^e) = \frac{1}{4}dx^e dy^e.$$

obtemos,

$$M_{ab}^{e} = \int_{\Omega_{b}} |J|\varphi_{a}^{e}(\xi)\varphi_{b}^{e}(\xi) \ d\Omega_{b}$$

$$(4.8.2)$$

sendo $\xi=(\xi,\eta)$ e 1
 $\leq a,b \leq 4.$

Utilizando a função de interpolação $\varphi_a(\xi, \eta)$ em (4.6.7), obtemos os elementos da matriz local M_{ab}^e . Porém, optamos por usar a quadratura Gaussiana.

4.8.2 Matriz Rigidez Local N_{ab}^e

A matriz rididez local N^e_{ab} é dada por (4.4.14) como sendo

$$N_{ab}^{e} = \int_{\Omega_{e}} \left(\alpha \nabla \varphi_{a}^{e}(x) \nabla \varphi_{b}^{e}(x) + \beta \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) \right) \, d\Omega$$

onde $1 \leq a,b \leq 4$ e pode ser escrita como

$$N_{ab}^{e} = \alpha \int_{\Omega_{e}} \nabla \varphi_{a}^{e}(x) \nabla \varphi_{b}^{e}(x) \ d\Omega + \beta \int_{\Omega_{e}} \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) \ d\Omega$$
$$= \alpha \ \hat{N}_{ab}^{e} + \beta \ \hat{M}_{ab}^{e} \tag{4.8.3}$$

onde

$$\hat{M}^{e}_{ab} = \int_{\Omega_{e}} \varphi^{e}_{a}(x)\varphi^{e}_{b}(x) \ d\Omega \tag{4.8.4}$$

$$\hat{N}^{e}_{ab} = \int_{\Omega_{e}} \nabla \varphi^{e}_{a}(x) \nabla \varphi^{e}_{b}(x) \ d\Omega \tag{4.8.5}$$

Temos que a matriz N_{ab}^e é formada pela soma de duas matrizes. Assim, é apropriado estudar cada uma dessas matrizes separadamente.

Podemos escrever a matriz \hat{N}^e_{ab} como

$$\hat{N}_{ab}^{e} = \int_{\Omega_{e}} \nabla \varphi_{a}^{e}(x) \nabla \varphi_{b}^{e}(x) \ d\Omega = \sum_{k,l=1}^{2} \int_{\Omega_{e}} \frac{\partial \varphi_{a}^{e}(x)}{\partial x_{k}} \frac{\partial \varphi_{b}^{e}(x)}{\partial x_{l}} \ dx \tag{4.8.6}$$

Como

$$\frac{\partial \varphi_a}{\partial x_k} = \frac{\partial \varphi_a}{\xi_i} \frac{\partial \xi_i}{\partial x_k}$$

tem-se

$$\hat{N}^{e}_{ab} = \sum_{i,j,k,l=1}^{2} \int_{\Omega_{b}} |J| \frac{\partial \varphi_{a}}{\partial \xi_{i}} \frac{\partial \xi_{i}}{\partial x_{k}} \frac{\partial \varphi_{b}}{\partial \xi_{j}} \frac{\partial \xi_{j}}{\partial x_{l}} \, d\Omega_{b}$$

$$(4.8.7)$$

Usando (4.6.23), obtém-se

$$\hat{N}_{ab}^{e} = \sum_{i,j=1}^{2} \frac{4|J|}{dx_{i}^{e} dx_{j}^{e}} \int_{\Omega_{b}} \frac{\partial \varphi_{a}}{\partial \xi_{i}} \frac{\partial \varphi_{b}}{\partial \xi_{j}} d\Omega_{b}$$
(4.8.8)

Definindo a matriz Q_{abij} como

$$Q_{abij} = \int_{\Omega_b} \frac{\partial \varphi_a}{\partial \xi_i} \frac{\partial \varphi_b}{\partial \xi_j} \, d\Omega_b = \int_{-1}^1 \int_{-1}^1 \frac{\partial \varphi_a}{\partial \xi_i} \frac{\partial \varphi_b}{\partial \xi_j} \, d\xi d\eta \tag{4.8.9}$$

temos que

$$\hat{N}_{ab}^{e} = 4|J| \sum_{i,j=1}^{2} \frac{1}{dx_{i}^{e} dx_{j}^{e}} Q_{abij}$$
(4.8.10)

onde $1 \leq a, b \leq 4$.

Usando a quadratura Gaussiana, definimos

$$f_{abij} = \frac{\partial \varphi_a}{\partial \xi_i} \frac{\partial \varphi_b}{\partial \xi_j}$$

Assim, a integral (4.8.9) pode ser calculada por

$$Q_{abij} = \sum_{l=1}^{4} f_{abij}(\xi_l, \eta_l)$$
(4.8.11)

onde $1 \leq i, j \leq 2$.

Podemos observar que a matriz \hat{M}_{ab}^e definida em (4.8.4) é a mesma definida em (4.8.1).

4.8.3 Vetor Força Local F_a^e

O vetor força local ${\cal F}^e_a$ é dado por (4.4.15) como

$$F_{a}^{e} = \sum_{b=1}^{4} \int_{\Omega_{e}} \varphi_{a}^{e}(x)\varphi_{b}^{e}(x)f_{b}^{e} \,d\Omega - \alpha \sum_{b=1}^{4} \int_{\Gamma_{p}^{e}} \varphi_{a}^{e}(x)\varphi_{b}^{e}(x)p_{b}^{e} \,d\Gamma - \sum_{b=1}^{4} N_{ab}^{e}q_{b}^{e}(x),$$

com $1 \leq a,b \leq 4$ e pode ser escrita por

$$F_a^e = f_a^e - \alpha \, p_a^e - q_a^e, \quad a = 1, 2, 3, 4, \tag{4.8.12}$$

onde

$$f_{a}^{e} = \sum_{b=1}^{4} \int_{\Omega_{e}} \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) f_{b}^{e}(t) \, dx \tag{4.8.13}$$

$$p_a^e = \sum_{b=1}^4 \int_{\Gamma_p^e} \varphi_a^e(x) \varphi_b^e(x) p_b^e \, d\Gamma \tag{4.8.14}$$

$$q_a^e = \sum_{b=1}^4 N_{ab}^e q_b^e(x) \tag{4.8.15}$$

Cálculo de f_a^e

De (4.6.20) e (4.6.21), as funções $\xi(x, y) \in \eta(x, y)$ são aplicações isoparamétricas entre Ω_e e o quadrado biunitário Ω_b .

Dessa forma, tem-se

$$f_{a}^{e} = \sum_{b=1}^{4} f_{b}^{e}(t) \int_{\Omega_{e}} \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) d\Omega = \sum_{b=1}^{4} f_{b}^{e}(t) \int_{\Omega_{b}} |J| \varphi_{a}^{e}(\xi) \varphi_{b}^{e}(\xi) d\xi$$
$$= |J| \sum_{b=1}^{4} f_{b}^{e}(t) Q_{ab}, \qquad (4.8.16)$$

onde

$$Q_{ab} = \int_{\Omega_b} \varphi_a^e(\xi) \varphi_b^e(\xi) \ d\Omega_b \tag{4.8.17}$$

Usando as definições de $\varphi_a(\xi, \eta)$ dada por (4.6.7), a matriz Q_{ab} pode ser calculada diretamente ou usando-se quadratura Gaussiana.

Cálculo dos valores de fronteira q^e_a e p^e_a

Os vetores $p_a^e \in q_a^e$ definidos anteriormente são as condições de fronteira do tipo Neumann e Dirichlet, respectivamente, os quais influenciam na força local F_a^e para os nós globais A que pertencem à fronteira Γ_p ou Γ_q , onde $\Gamma_p \cap \Gamma_q = \emptyset$.

Cálculo de q_a^e

Por definição

$$q_a^e = \sum_{b=1}^4 N_{ab}^e q_b^e(x), \quad 1 \le a \le 4.$$

Somente são calculados as coordenadas $(q_1^e, q_2^e, q_3^e, q_4^e)$ que satisfazem a condição do nó global $A \in \Gamma_q$ onde A = NoLG(a, e).

Por definição de interpolação, $q_b^e = q(x_b^e) = q(B)$, onde B é o nó global correspondente a (b, e). Assim, se $B \in \Gamma_q$, a solução do problema g(x) é conhecida neste nó e portanto,

$$g(B) = q(B) = q_b^e$$

Se $B \notin \Gamma_q$, então $q_b^e = 0$. Assim, o cálculo de q_a^e é feito através do seguinte procedimento:

Definimos na subrotina CondFront se os nós $B \in \Gamma_q$ são do tipo = 1, isto é, typ(B) = 1. Se existe pelo menos um nó B = NoLG(b, e) do tipo typ(B) = 1, então,

$$q_a^e = \sum_{b=1}^4 N_{ab}^e q_b^e(x), \quad 1 \le a \le 4$$

Caso contrário, $q_a^e = 0$.

Cálculo de p_a^e

Por definição

$$p_a^e = \sum_{b=1}^4 \int_{\Gamma_p} \varphi_a^e \varphi_b^e p_b^e \, d\Gamma,$$

onde $p_{b}^{e} = p(x_{b}^{e}) = p(B)$.

Definimos dois tipos de nó $B \in \Gamma_p$. Os nós com fluxo na direção x são os nós pertencentes as fronteiras $\Gamma_1 = \Gamma_{p1} \in \Gamma_3 = \Gamma_{p3}$ e os nós com fluxo na direção y são os nós da fronteira pertencentes a $\Gamma_2 = \Gamma_{p2} \in \Gamma_4 = \Gamma_{p4}$.

Figura 4.5: Normais externas

Geometricamente, mostramos a fronteira Γ_p na Fig. 4.5.

Assim, definimos as fronteiras horizontais e verticais por $\Gamma_{p1} \cup \Gamma_{p3}$ e $\Gamma_{p2} \cup \Gamma_{p4}$ para o qual o fluxo normal na direção y e direção x são conhecidos, respectivamente.

Definimos a matriz P_{ab} por

$$P_{ab} = \int_{\Gamma} \varphi_a^e \varphi_b^e \, d\Gamma, \qquad (4.8.18)$$

Então,

$$p_a^e = \sum_{b=1}^4 P_{ab} p_b^e, \quad 1 \le a \le 4.$$
 (4.8.19)

Para determinar o vetor p_a^e é suficiente determinar a matriz P_{ab} em cada uma das fronteiras Γ_{pi} .

Para calcular a matriz P_{ab} em Γ_{p1} e Γ_{p3} , observe que a função de interpolação linear só depende de x. Assim, em Γ_{p1} , as funções $\varphi_a(x, y) = \varphi_a(x, y_1^e)$ são dadas por

$$\varphi_1(x, y_1^e) = \frac{x - x_2^e}{x_1^e - x_2^e}, \quad \varphi_2(x, y_1^e) = \frac{x - x_1^e}{x_2^e - x_1^e}, \quad \varphi_3 = (x, y_1^e) = \varphi_4(x, y_1^e) = 0.$$

Em Γ_{p3} temos $\varphi_a(x, y) = \varphi_a(x, y_2^e)$ dadas por

$$\varphi_1(x, y_2^e) = \varphi_2(x, y_2^e) = 0, \quad \varphi_3(x, y_2^e) = \frac{x - x_1^e}{x_2^e - x_1^e}, \quad \varphi_4(x, y_2^e) = \frac{x - x_2^e}{x_1^e - x_2^e}$$

As funções de interpolação dadas acima são obtidas das funções de interpolação (4.5.3), definidas sobre retângulos.

Usando a definição de P_{ab} , conclui-se em Γ_{p1} , que os coeficientes não necessariamente nulos são P_{11} , P_{12} , P_{21} , P_{22} e em Γ_{p3} são P_{33} , P_{34} , P_{43} , P_{44} .

Os coeficientes são calculados por

$$P_{11} = \int_{x_1^e}^{x_2^e} \varphi_1(x)\varphi_1(x) \, dx = \frac{dx^e}{3} = P_{22}, P_{12} = \int_{x_1^e}^{x_2^e} \varphi_1(x)\varphi_2(x) \, dx = \frac{dx^e}{6} = P_{21}.$$

Então a matriz P_{ab} para a fronteira Γ_{p1} é dada por

Analogamente, para a fronteira Γ_{p3} tem-se

$$P_{33} = P_{44} = \frac{dx^e}{3}, \quad P_{34} = P_{43} = \frac{dx^e}{6}.$$

Assim, em Γ_{p3} a matriz

O cálculo da matriz P_{ab} para as fronteiras Γ_{p2} e Γ_{p4} são análogas ao caso anterior, exceto que as funções de interpolação são agora constantes em relação a x. Assim para a fronteira Γ_{p2}

$$\varphi_a(x,y) = \varphi_a(x_2^e, y)$$
e em Γ_{p4}

$$\varphi_a(x,y) = \varphi_a(x_1^e, y).$$

Fazendo os cálculos obtém-se a matriz P_{ab} em Γ_{p2} dada por

$$P_{ab} = \frac{dy^e}{6} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Em Γ_{p4} a matriz é dada por

$$P_{ab} = \frac{dy^e}{6} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

As matrizes P_{ab} definidas em $\Gamma_{p1} \in \Gamma_{p3}$ e as definidas em $\Gamma_{p2} \in \Gamma_{p4}$ podem ser respectivamente compactadas na forma:

$$P_{ab} = \frac{dx^{e}}{6} \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
(4.8.20)
$$P_{ab} = \frac{dy^{e}}{6} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$
(4.8.21)

Considere o nó global A associado ao nó local a do elemento e pela relação,

$$A = \text{NoLG}(a, e).$$

Se o fluxo normal está definido na direção x então o nó $A \in \Gamma_{p2} \cup \Gamma_{p4}$ e a matriz P_{ab} é definida por (4.8.21).

Se o fluxo normal está definido na direção y então o nó $A \in \Gamma_{p1} \cup \Gamma_{p3}$ e a matriz P_{ab} está definida por (4.8.20).

Consideremos um elemento e da malha para o qual os nós locais a = 2, 3 estão associados a nós globais A_2, A_3 , onde $A_2, A_3 \in \Gamma_{p2}$.

Por definição

$$p_a^e = \sum_{b=1}^4 P_{ab} p_b^e.$$

Para o elemento considerado

$$p_b^e = 0$$
 se $b = 1, 4,$

Então,

$$\begin{array}{rcl} p_1^e & \leftarrow & 0 \\ p_2^e & \leftarrow & p_2^e P_{22} + p_3^e P_{23} = \frac{dy^e}{6} (2p_2^e + p_3^e) \\ p_3^e & \leftarrow & p_2^e P_{32} + p_3^e P_{33} = \frac{dy^e}{6} (p_2^e + 2p_3^e) \\ p_4^e & \leftarrow & 0 \end{array}$$

Desde que $\Gamma_p \cap \Gamma_q = \phi$, então, neste caso a força local F_a^e recebe a contribuição de Γ_p nas seguintes coordenadas:

$$\begin{array}{rcl} F_2^e & \leftarrow & f_2^e + p_2^e \\ F_3^e & \leftarrow & f_3^e + p_3^e \end{array}$$

As coordenadas F_1^e e F_4^e não recebem contribuição da fronteira Γ_p do elemento e.

Analogamente, suponhamos que para os nós locais a = 1, 4 tenhamos os nós globais associados $A_1, A_4 \in \Gamma_{p4}$. Neste caso,

$$p_{1}^{e} \leftarrow p_{1}^{e}P_{11} + p_{4}^{e}P_{14} = \frac{dy^{e}}{6}(2p_{1}^{e} + p_{4}^{e})$$

$$p_{2}^{e} \leftarrow 0$$

$$p_{3}^{e} \leftarrow 0$$

$$p_{4}^{e} \leftarrow p_{1}^{e}P_{41} + p_{4}^{e}P_{44} = \frac{dy^{e}}{6}(p_{1}^{e} + 2p_{4}^{e})$$

e a contribuição do elemento e para a força local é dado por

$$F_1^e \leftarrow f_1^e + p_1^e$$

$$F_4^e \leftarrow f_4^e + p_4^e$$

Consideremos agora um exemplo no qual o fluxo é prescrito nos nós locais a = 3, 4, associados aos nós globais $A_3, A_4 \in \Gamma_{p3}$. Procedendo de forma análoga temos

$$p_{1}^{e} \leftarrow 0$$

$$p_{2}^{e} \leftarrow 0$$

$$p_{3}^{e} \leftarrow p_{3}^{e}P_{33} + p_{4}^{e}P_{34} = \frac{dx^{e}}{6}(2p_{3}^{e} + p_{4}^{e})$$

$$p_{4}^{e} \leftarrow p_{3}^{e}P_{43} + p_{4}^{e}P_{44} = \frac{dx^{e}}{6}(p_{3}^{e} + 2p_{4}^{e})$$

Assim para os dois nós globais prescritos $A_3 \in A_4$ temos as seguintes contribuições para a força local

$$\begin{array}{rcl} F_3^e & \leftarrow & f_3^e + p_3^e \\ F_4^e & \leftarrow & f_4^e + p_4^e \end{array}$$

De forma análoga considerando os nós locais a = 1, 2 associados aos nós globais $A_1, A_2 \in \Gamma_{p1}$ tem-se

$$p_{1}^{e} \leftarrow p_{1}^{e}P_{11} + p_{2}^{e}P_{12} = \frac{dx^{e}}{6}(2p_{1}^{e} + p_{2}^{e})$$

$$p_{2}^{e} \leftarrow p_{1}^{e}P_{21} + p_{2}^{e}P_{22} = \frac{dx^{e}}{6}(p_{1}^{e} + 2p_{2}^{e})$$

$$p_{3}^{e} \leftarrow 0$$

$$p_{4}^{e} \leftarrow 0$$

Assim,

$$\begin{array}{rcl} F_1^e & \leftarrow & f_1^e + p_1^e \\ F_2^e & \leftarrow & f_2^e + p_2^e \end{array}$$

Os valores $p_a^e = p(x_a^e, y_a^e) = p(A)$, onde p = p(x, y), são prescritos no problema. Quando calculamos o valor de p_a^e , no exemplo anterior, consideramos dois nós globais para o qual o fluxo é prescrito. Mas, a quantidade de nós prescritos em cada elemento pode ser diferente de 2 (dois), e portanto, teríamos contribuição em mais ou menos coordenadas na força local F_a^e .

Contribuição da Fronteira de Neumann: TractionBoundary

Vimos que a contribuição dos valores de fronteira de Neumann, são definidos pelas matrizes (4.8.20) e (4.8.21), quando o fluxo está definido na direção x e y. A partir da

identificação de todos os nós de fronteira feita pela subrotina CondFront, é necessário então identificar a direção do fluxo para inserir os valores referentes as matrizes correspondentes, ou seja, para calcular o valor de p_a^e em Γ_1 , Γ_2 , Γ_3 , Γ_4 . Esse procedimento é feito pela subrotina TractionBoundary, que obviamente somente se aplica aos valores de fronteira do tipo Neumann.

Cálculo da Matriz P_{ab} com parametrização

Para o cálculo da matriz P_{ab} , usamos o fato de que os elementos são retângulos. De um modo mais geral, se os elementos da malha são quadriláteros, então um dos procedimentos para o calcular os elementos da matriz é através da parametrização. Para isso, considere os segmentos de reta $(tx_b + (1 - t)x_a)$ e $(tx_b + tx_a)$ e as seguintes funções de interpolação:

$$\varphi_a\Big(tx_b + (1-t)x_a\Big) = 1-t$$

е

$$\varphi_b\Big(tx_b + (1-t)x_a\Big) = t.$$

Então, tem-se que

$$\varphi_a(x) = \begin{cases} 1, & \text{se} \quad x = x_a \\ 0, & \text{se} \quad x = x_b \end{cases}$$

Logo

$$\begin{split} P_{ab} &= \int_{\Gamma} \varphi_{a}^{e} \varphi_{b}^{e} \, d\Gamma = \int_{0}^{1} \varphi_{a} (tx_{b} + (1 - t)x_{a}) \, \varphi_{b} (tx_{b} + (1 - t)x_{a}) \, |\Gamma_{ab}| \, dt \\ &= \int_{0}^{1} (1 - t)t \, |\Gamma_{ab}| \, dt = \frac{|\Gamma_{ab}|}{6} \\ P_{aa} &= P_{bb} \quad = \int_{\Gamma} \varphi_{b}^{e} \varphi_{b}^{e} \, d\Gamma = \int_{0}^{1} \varphi_{b} (tx_{b} + (1 - t)x_{a}) \, \varphi_{b} (tx_{b} + (1 - t)x_{a}) \, |\Gamma_{ab}| \, dt \\ &= \int_{0}^{1} t^{2} \, |\Gamma_{ab}| \, dt = \frac{|\Gamma_{ab}|}{3} \end{split}$$

onde $d\Gamma = |\Gamma_{ab}| dt$ sendo $|\Gamma_{ab}|$ o comprimento do segmento de reta entre os nós a e b. Em particular, no caso do retângulo, $|\Gamma_{ab}| = dx^e$ ou $|\Gamma_{ab}| = dy^e$ se o segmento de reta é horizontal ou vertical, respectivamente.

4.9 Matrizes Globais M, N e Força Global F

Passaremos, agora, a montagem das matrizes globais a partir das matrizes locais, visto que de (4.4.16) temos

$$M = \sum_{e=1}^{\operatorname{Nel}} M_{ab}^e, \quad N = \sum_{e=1}^{\operatorname{Nel}} N_{ab}^e, \quad F = \sum_{e=1}^{\operatorname{Nel}} F_a^e$$

Temos que as matrizes M^e , N^e são matrizes quadradas de ordem 4 (para quadriláteros lineares) e o vetor força F^e tem ordem (4 × 1). As matrizes globais M e N são quadradas com ordem Neq e F um vetor com ordem (Neq × 1), onde Neq é o número de equações do sistema linear.

A forma como as matrizes locais e as forças locais contribuem para as matrizes M e N e o vetor F, pode ser dada nas seguintes etapas:

I) Identificação do nó local (e, a) com o nó global A, usando a subrotina:

$$A = \texttt{NoLG}(e, a).$$

II) Identificação do nó global A com o número da equação correspondente no sistema, eqn[A], através da subrotina EqNo.

Como consequência das condições de fronteira, o número de equações Neq do sistema linear é menor ou igual ao número de nós (Nno) A da malha.

Consideremos um exemplo para ilustrar a montagem da matriz global M e do vetor força global F. A montagem da matriz global N é feita de forma análoga a montagem de M. Considere o exemplo dado pela Figura 4.1, onde assumimos os conjuntos de vetores de fronteira:

$$\Gamma_q = \{1, 3, 5, 22, 24\},\$$

$$\Gamma_p = \{6, 10, 16, 20\}.$$

Seja A = NoLG(a, e), A = 1, 2, ..., 25, a = 1, 2, 3, 4, e = 1, 2, ..., 16, então

$$M = \sum_{e=1}^{16} M^e, \quad N = \sum_{e=1}^{16} N^e, \quad F = \sum_{e=1}^{16} F^e.$$

Na 1^a etapa, estabeleceremos uma identificação entre nós locais do elemento e com os nós globais, dados pela tabela:

$a \backslash e$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	2	3	4	6	7	8	9	11	12	13	14	16	17	18	19
2	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
3	7	8	9	10	12	13	14	15	17	18	19	20	22	23	24	25
4	6	7	8	9	11	12	13	14	16	17	18	19	21	22	23	24

Na 2^a etapa, estabeleceremos uma identificação entre os nós globais e o número de equações dados pela tabela:

A	1	2	3	4	5	6	7	8	9	10	11	12	13
eqn[A]	0	1	0	2	0	3	4	5	6	7	8	9	10
A	14	15	16	17	18	19	20	21	22	23	24	25	
eqn[A]	11	12	13	14	15	16	17	18	0	19	0	20	

Assim, o número de equações do sistema linear Neq = 20, com o número total de nós Nno = 25, e o número de nós prescritos é igual a 5. Neste caso, a matriz global M tem ordem 20×20 e os coeficientes são calculados através do seguinte procedimento, onde somente serão listados os coeficientes da banda superior da matriz simétrica que recebem contribuição do nó:

1) Para o nó A = 1, o valor já está prescrito e assim este nó não gera a equação.

2) Para o nó A = 2, temos a 1^a equação do sistema e portanto precisamos calcular a 1^a linha do sistema: $M_{11}, M_{12}, \dots, M_{1Neq}$. Mas o nó A = 2 pertence aos elementos e = 1 e e = 2, mas precisamente 2 = NoLG(1, 2) = NoLG(2, 1). Assim

3) O nó A = 3 é prescrito e portanto semelhante ao nó A = 1.

4) Para o nó A = 4, temos a 2^a linha do sistema. Assim

5) O nó A = 5 é semelhante ao nó A = 3.

6) Para o nó A = 6, temos a 3^a linha do sistema dado por

7) Para o nó A = 7, temos a 4^a linha do sistema dado por

$$M_{44} \leftarrow M_{22}^5 + M_{11}^6 + M_{33}^1 + M_{44}^2$$
$$M_{45} \leftarrow M_{12}^6 + M_{34}^2$$
$$M_{48} \leftarrow M_{24}^5$$
$$M_{49} \leftarrow M_{23}^5 + M_{14}^6$$
$$M_{4\,10} \leftarrow M_{13}^6$$

8) Para o nó A = 8, temos a 5^a linha do sistema dado por

$$M_{55} \leftarrow M_{33}^2 + M_{44}^3 + M_{22}^6 + M_{11}^7$$
$$M_{56} \leftarrow M_{34}^3 + M_{12}^7$$
$$M_{59} \leftarrow M_{24}^6$$
$$M_{510} \leftarrow M_{23}^6 + M_{14}^7$$
$$M_{511} \leftarrow M_{13}^7$$

Assim, sucessivamente, a matriz global M do exemplo pode ser representada na Figura 4.6, onde os coeficientes com símbolos * são não necessariamente nulos e apenas estão simbolizando os elementos da forma M_{ij} com $i \ge j$.

Analogamente, o vetor força F_i é dado por

$$F_{1} \leftarrow F_{2}^{1} + F_{1}^{2}$$

$$F_{2} \leftarrow F_{2}^{3} + F_{1}^{4}$$

$$F_{3} \leftarrow F_{4}^{1} + F_{1}^{5}$$

$$F_{4} \leftarrow F_{3}^{1} + F_{4}^{2} + F_{2}^{5} + F_{1}^{6}$$

$$F_{5} \leftarrow F_{3}^{2} + F_{4}^{3} + F_{2}^{6} + F_{1}^{7}$$

$$F_{6} \leftarrow F_{3}^{3} + F_{4}^{4} + F_{2}^{7} + F_{1}^{8}$$

$$F_{7} \leftarrow F_{3}^{4} + F_{2}^{8}$$

Assim, successivamente, calcula-se $F = [F_1, F_2, \cdots, F_{Neq}].$

Tomando as matrizes globais M, N e o vetor global F, é possível agora escrever o problema numa forma matricial dada por:

$$Mg' + Ng = F \tag{4.9.1}$$

sendo $g = [g_1, g_1, \cdots, g_{m+1}]^t$ o vetor incógnita.

As matrizes $M \in N$ obtidas pelo método de elementos finitos, tem uma estrutura especial, isto é, uma matriz do tipo banda no qual permite uma compactação minimizando o problema de armazenamento.

0 * 0 0 * 0 0 0 0 0 0 0 0 0 * * 0 0 * * * 0 0 0 * 0 * 0 0 0 * * * 0 * 0 * * 0 0 * * 0 0 * * 0 0 0 0 * * * 0 0 0 * 0 * * 0 0 0 0 * * 0 0 0 * * * 0 * * * * 0 0 * * 0 0 * 0 * *

Figura 4.6: Matriz global M

Conhecidas as matrizes $M \in N$ e o vetor F, determinar a solução do Problema (4.2.12) se resume a determinar a solução da equação diferencial ordinária (4.9.1).

Assim, o problema de valor inicial (4.2.12) consiste em encontrar g(t) tal que,

$$\begin{cases} Mg'(t) + Ng(t) = F \\ g(0) = g_0 \end{cases}$$
(4.9.2)

onde g(0) é a temperatura inicial da chapa.

Do Problema (4.2.12), temos ainda as condições de fronteira que devem ser respeitadas, o que veremos a diante.

4.10 Métodos Numéricos

Os procedimentos usados neste capítulo são exatamente os mesmos que foram utilizados no Capítulo 2, para o caso unidimensional. Assim, os seguintes sistemas iterativos podem ser novamente utilizados

- $(M + \Delta tN)g^n = \Delta tF^n + Mg^{n-1} = b^n$, $n = 1, 2, \dots R$ (Euler Regressivo)
- $Mg^{n+1} = (M \Delta tN)g^n + \Delta tF^n = b^{n+1}, \quad n = 0, 1, 2, \dots (R-1)$ (Euler Progressivo)
- $(M + \frac{\Delta t}{2}N)g^{n+1} = (M \frac{\Delta t}{2}N)g^n + \frac{\Delta t}{2}(F^{n+1} + F^n) = b^{n+1}, \quad n = 0, 1, \dots (R-1)$ (Crank-Nicolson)
- $Mv^{n+1} + Ng^{n+1} = F^{n+1}$ $g^{n+1} = g^n + \Delta t v^{n+\theta}$ $v^{n+\theta} = \theta v^{n+1} + (1-\theta)v^n$ (Trapezoidal Generalizado)

sendo a implementação feita da mesma forma que a apresentada na seção (2.8).

Para cada instante de tempo $t_n = n\Delta t$, com $0 \le t_n \le T$, obtém-se g_n , com $n \in \mathbb{N}$. Resolvendo o sistema linear

$$Mg' + Ng = F,$$

obtém-se o vetor solução $g = (g_1, \cdots, g_{Neq}).$

Como a solução aproximada é dada por

$$u^{h} = w^{h} + q^{h} = \begin{cases} w^{h}(x), & \text{se } x \in \Omega - \Gamma_{q}, \\ q^{h}(x), & \text{se } x \in \Gamma_{q}, \end{cases}$$

e a associação entre o nó global A e sua correspondente equação I no sistema é dada por

$$I = \operatorname{eqn}(A), \quad 1 \leq I \leq \operatorname{Neq}$$

tem-se

$$u^{h}(A) = \begin{cases} g_{I}, & \text{se } A \in N - N_{q}, \\ q_{A}, & \text{se } A \in N_{q}, \end{cases}$$

e a solução aproximada $u^h(x)$ é dada por

$$u^{h}(x) = \sum_{A=1}^{\operatorname{Nno}} u^{h}(A)\varphi_{A}(x).$$

4.11 Erro da Solução Numérica

Para o cálculo numérico do erro nas normas dos espaços $L^{\infty}(0,T;L^2(\Omega))$ e $H^1(\Omega)$ ou $H^1_0(\Omega_t)$ será utilizada a solução exata, conhecida a priori em alguns casos particulares.

Para o cálculo do erro em $H^1(\Omega_t)$ ou $H^1_0(\Omega_t)$, é necessário o cálculo do gradiente de uma função v(x), dada por

$$v(x) = \sum_{A=1}^{\text{Nno}} d_A \varphi_A(x), \qquad (4.11.1)$$

Assim o gradiente ∇v é dado por

$$\nabla v(x) = \sum_{A=1}^{\text{Nno}} d_A \nabla \varphi_A(x). \tag{4.11.2}$$

Denotemos por $u \in u^h$ a solução exata e aproximada, respectivamente, e por $\nabla u \in \nabla u^h$ os respectivos gradientes. Definimos o erro E na norma $L^{\infty}(0,T;L^2(\Omega))$ e na seminorma $H^1(\Omega)$ por

$$||E||_{L^{\infty}(0,T;L^{2}(\Omega))} = \max_{t_{n}\in[0,1]} \left(\int_{\Omega} |u-u^{h}|^{2} d\Omega\right)^{1/2},$$
(4.11.3)

$$||E||_{L^{\infty}(0,T;H^{1}(\Omega))} = \max_{t_{n}\in[0,1]} \left(\int_{\Omega} |\nabla u - \nabla u^{h}|^{2} d\Omega\right)^{1/2},$$
(4.11.4)

para todo $n = 1, \cdots, N$.

O cálculo das normas podem então ser efetuados por um método de integração numérica, como por exemplo, a quadratura Gaussiana.

4.11.1 Norma $L^{\infty}(0,T;L^{2}(\Omega))$ e seminorma $H^{1}(\Omega)$

Seja a interpolação da função v(x) representada em termos de elementos e coordenadas locais por

$$v(x) = \sum_{e=1}^{Nel} \sum_{a=1}^{4} d_a^e \,\varphi_a^e(x) \tag{4.11.5}$$

Para o cálculo da norma do $L^{\infty}(0,T;L^{2}(\Omega))$ considere

$$\|v\|_{0}^{2} = \int_{\Omega} v(x)^{2} dx = \int_{\Omega} \sum_{e=1}^{\text{Nel}} \sum_{a,b=1}^{4} (d_{a}^{e} d_{b}^{e}) \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) d\Omega$$
$$= \sum_{e=1}^{\text{Nel}} \sum_{a,b=1}^{4} \left(d_{a}^{e} d_{b}^{e} \int_{\Omega_{e}} \varphi_{a}^{e}(x) \varphi_{b}^{e}(x) dx \right).$$
(4.11.6)

Mas

$$\int_{\Omega_e} \varphi_a^e(x) \varphi_b^e(x) \, dx = \int_{\Omega_b} \varphi_a^e(\xi) \varphi_b^e(\xi) J \, d\Omega_b,$$

onde J é o Jacobiano da transformação isoparamétrica entre $\Omega_e \in \Omega_b$, definido anteriormente. Então, obtemos

$$\|v\|_{0}^{2} = \sum_{a,b=1}^{4} Q_{ab} \sum_{e=1}^{\text{Nel}} J d_{a}^{e} d_{b}^{e}, \qquad (4.11.7)$$

onde os coeficientes Q_{ab} da matriz local foram anteriormente calculados usando quadratura Gaussiana para obtenção em (4.8.18) da força local f_a^e .

Por outro lado, a seminorma é dada por

$$\|v\|_{1}^{2} = \int_{\Omega} |\nabla v(x)|^{2} dx = \sum_{e=1}^{\text{Nel}} \sum_{a,b=1}^{4} d_{a}^{e} d_{b}^{e} \Big(\sum_{i=1}^{2} \int_{\Omega_{e}} \nabla_{i} \varphi_{a}^{e}(x) \nabla_{i} \varphi_{b}^{e}(x) d\Omega \Big).$$
(4.11.8)

Usando a transformação isoparamétrica entre Ω_e e Ω_b temos

$$\int_{\Omega_e} \nabla_i \varphi_a^e \nabla_i \varphi_b^e \, dx = \sum_{i=1}^2 \frac{4J}{(dx_i^e)^2} \int_{\Omega_b} \frac{\partial \varphi_a}{\partial \xi_i} \frac{\partial \varphi_b}{\partial \xi_i} \, d\xi d\eta = \sum_{i=1}^2 \frac{4J}{(dx_i^e)^2} Q_{abii},$$

onde Q_{abii} é a matriz definida em (4.8.11) para i = j.

Então, obtemos

$$\|v\|_{1}^{2} = \sum_{i=1}^{2} \sum_{a,b=1}^{4} \sum_{e=1}^{\text{Nel}} d_{a}^{e} d_{b}^{e} \frac{4J}{(dx_{i}^{e})^{2}} Q_{abii}.$$
(4.11.9)

4.12 Simulações Numéricas

Exemplos numéricos serão mostrados nesta seção para ilustrar algumas características do problema associado a Equação do Calor no caso bidimensional com fronteira fixa.

Vimos que o Problema (4.1.1) é equivalente ao Problema (4.2.6), e redefinindo-o no subespaço V_m , podemos aproximá-lo pelo Problema (4.2.12). Vimos também que o Problema (4.2.12) se resume a determinar a solução do Problema (4.9.2). Para tal, utilizaremos o Método de Diferenças Finitas para alguns valores de θ .

Para calcularmos a força externa f(x,t), basta substituir a solução exata u(x,t), que definimos a priori, e suas derivadas na equação $(4.1.1)_1$. Dada a solução exata, o erro entre a solução numérica e a exata será calculado nas normas $L^{\infty}(0,T;L^2(\Omega_t)) \in H^1(\Omega_t)$, dados por $(4.11.3) \in (4.11.4)$.

Para o exemplo numérico, assumiremos que

(1) $\alpha = \beta = 1$

- (2) $\Omega = [0,1] \times [0,1]$
- (3) A força $f=f(\pmb{x},t)$ é dada por

$$f(\boldsymbol{x},t) = 0 \tag{4.12.1}$$

Sob estas condições, verifica-se que a função $u = u(\boldsymbol{x}, t)$ dada por

$$u(\boldsymbol{x},t) = \frac{1}{\pi^2} \operatorname{sen}(\pi x) \operatorname{sen}(\pi y) e^{-(2\pi^2 + 1)t}$$
(4.12.2)

é uma solução exata da equação diferencial do calor e que

$$u(\boldsymbol{x},0) = \frac{1}{\pi^2} \operatorname{sen}(\pi x) \operatorname{sen}(\pi y)$$
 (4.12.3)

é a condição inicial do problema.

Considere as fronteiras denotadas por

$$\begin{split} \Gamma_1 &= \{(x,0) \in \partial\Omega; \ 0 \le x \le 1\} \\ \Gamma_2 &= \{(1,y) \in \partial\Omega; \ 0 \le y \le 1\} \\ \Gamma_3 &= \{(x,1) \in \partial\Omega; \ 0 \le x \le 1\} \\ \Gamma_4 &= \{(0,y) \in \partial\Omega; \ 0 \le y \le 1\} \end{split}$$

Exemplo

Analizaremos a condição de fronteira de Dirichlet. Neste caso $\Gamma_p = \emptyset$ e

$$\Gamma_q = \partial \Omega = \bigcup_{i=1}^4 \Gamma_{q_i}, \quad \Gamma_{q_i} = \Gamma_i;$$

com

$$q(x) = \begin{cases} 0, & \text{em } \Gamma_{q_1}, \\ 0, & \text{em } \Gamma_{q_2}, \\ 0, & \text{em } \Gamma_{q_3}, \\ 0, & \text{em } \Gamma_{q_4}. \end{cases}$$

Assumiremos a discretização em ambos os eixos com passo h = 4. Logo, o número de elementos e na direção-x e direção-y é igual a 4, isto é, Nelx = Nely = 4. Então, a malha possui 5 nós no eixo-x e 5 nós no eixo-y e, portanto, o número total de nós Nno = 25 e o número total de elementos Nel = 16, os quais são enumerados em ordem crescente da esquerda para a direita. Veja a figura 4.1. Temos 16 nós para o qual o valor da solução é conhecido. Assim, precisamos determinar a solução numérica em 9 nós, entre eles:

$$\{7, 8, 9, 12, 13, 14, 17, 18, 19\}$$

Os valores e o tipo de fronteira são introduzidos como dados na subrotina CondFront, onde relembramos que os nós A da fronteira do tipo typ[A] = 1 são os nós cujos valores são prescritos e a subrotina NoPos(A) tem a função de identificar o nó A com a posição da malha para que seja possível o cálculo da função q(x) = q(x, y) definida na fronteira Γ_q . A subrotina PosNo tem a função inversa. Identificando todos os nós da malha cujo valor de fronteira é prescrito, o próximo passo é estabelecer o número de incógnitas (equações) do sistema linear, pois não necessariamente o nó A corresponde a A-ésima equação, o que é feito pela subrotina EqNo. Dessa forma, para o nosso Exemplo, como vimos, as incógnitas são os nós: $A = \{7, 8, 9, 12, 13, 14, 17, 18, 19\}$, que corresponderão as equações: $eqn[A] = 1, 2, \dots, 9$ do sistema linear, desde que, para os outros nós a solução é conhecida. Assim, Neq = 9 e as matrizes $[M]_{9\times9}$ e $[N]_{9\times9}$.

Para cada elemento e = 1, 2, 3, ..., 16, calculamos as matrizes locais $M_{ab}^e \in N_{ab}^e$, dadas por (4.8.2) e (4.8.3). Como estamos usando uma malha uniforme, o Jacobiano J é constante e, além disso, $dx_k = dx_l = 1/4$.

A força local F_a^e é definida em (4.8.12) por

$$F_a^e = f_a^e - \alpha p_a^e - q_a^e$$

onde f_a^e , p_a^e e q_a^e são definidos, respectivamente, por (4.8.13), (4.8.14) e (4.8.15).

No Exemplo, $\Gamma_p = \phi$, logo, $p_a^e = 0$. Assim,

$$F_a^e = f_a^e - q_a^e$$

Os elementos $e = \{6, 7, 10, 11\}$ não possuem nós na fronteira. Logo, para esses elementos

$$F_a^e = f_a^e$$

Para todos os outros elementos restantes o vetor q_a^e contribui pra a força local F_a^e , a = 1, 2, 3, 4.

A matriz Global $M \in N$ e o vetor Força F são dados por

$$M = \sum_{e=1}^{\operatorname{Nel}} M^e, \quad N = \sum_{e=1}^{\operatorname{Nel}} N^e, \quad F = \sum_{e=1}^{\operatorname{Nel}} F^e.$$

e resolvendo o sistema linear Mg'(t) + Ng(t) = F, obtém-se a solução numérica aproximada.

As Figuras (4.7) e (4.8) representam a solução $u^h(\boldsymbol{x}, t)$ para $x \in [0, 1], y \in [0, 1]$, com $\theta = \frac{1}{2}, \Delta t = 0.001, h = 0.1, t = 0$ e t = 0.5, respectivamente.

Figura 4.7: Gráfico de $u^h(\pmb{x},t),\,t=0$

Figura 4.8: Gráfico de $u^h(\pmb{x},t),\,t=0.5$

Convergência Numérica

Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento $h = \frac{(x_{m+1} - x_1)}{Nel}$, onde $0 = x_1 < x_2 < \cdots < x_{m+1} = 1$, $\boldsymbol{x} \in [0, 1]$ e Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha.

O Método de Crank-Nicolson mostrou melhor desempenho dentre os métodos estudados. Para valores de $\theta \in [\frac{1}{2}, 1]$, obtivemos resultados incondicionalmente estáveis, com a convergência da solução $u^h(x, t)$, variando os valores de Δt e h. Porém, para valores de $\theta \in [0, \frac{1}{2})$, os resultados são condicionalmente estáveis, em que houve divergência da solução quando utilizamos, por exemplo, $\Delta t = 0.001$ e h > 0.0676, para $\theta = 0$, como mostra a Tabela (4.1).

	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
$\theta = 1$	0.001	0.1	0.000442	0.000425
(Euler	0.001	0.05	0.000323	0.000317
Regressivo)	0.001	0.02	0.000206	0.000203
	0.001	0.01	0.000113	0.000109
$\theta = 0.5$	0.001	0.1	0.000351	0.000299
(Crank	0.001	0.05	0.000110	0.000099
Nicolson)	0.001	0.02	0.000019	0.000011
	0.001	0.01	0.000007	0.000004
$\theta = 0$	0.001	0.1	0.000782	0.000675
(Euler	0.001	0.05	diverge	diverge
Progressivo)	0.001	0.02	diverge	diverge
	0.001	0.01	diverge	diverge

Tabela 4.1: Análise dos resultados

Capítulo 5

Equação da Onda - Caso Bidimensional

Neste capítulo faremos um estudo semelhante ao apresentado no Capítulo 3, tratando agora o caso bidimensional da equação da onda com fronteira fixa.

5.1 Formulação do problema

Seja $\Omega \subset \mathbb{R}^2$ um conjunto aberto com fronteira suave Γ . Os elementos de Ω são denotados por $\boldsymbol{x} = (x_1, x_2)$ e $n = (n_1, n_2) = (n_{x1}, n_{x2})$. Assumimos que a fronteira Γ admite a decomposição $\Gamma = \overline{\Gamma_q \cup \Gamma_p}, \Gamma_q \cap \Gamma_p = \emptyset$. Denotamos por $q_i = q_i(x)$ o fluxo da onda. Assumimos que o fluxo é dado pela lei de Fourier:

$$q_i = -\frac{\partial u}{\partial x_j}.$$

O problema que estudaremos será o de determinar no espaço das soluções $H_0^1(\Omega)$ uma função $u = u(\boldsymbol{x}, t)$ tal que

$$\begin{cases} u_{tt}(\boldsymbol{x},t) - \alpha \Delta u(\boldsymbol{x},t) + \beta u(\boldsymbol{x},t) = f(\boldsymbol{x},t), \ (\boldsymbol{x},t) \in \Omega \times [0,T] \\ u = q(\boldsymbol{x}), & \text{em } \Gamma_q \\ -q_i n_i = -\frac{\partial u}{\partial x_j} n_i = p(\boldsymbol{x}), & \text{em } \Gamma_p \\ u(\boldsymbol{x},0) = u_0(\boldsymbol{x}), & \forall \ \boldsymbol{x} \in \Omega \\ u_t(\boldsymbol{x},0) = u_1(\boldsymbol{x}), & \forall \ \boldsymbol{x} \in \Omega \end{cases}$$
(5.1.1)

onde α e β são constantes reais positivas, a função $q(\boldsymbol{x})$ é conhecida em Γ_q e a função $p(\boldsymbol{x})$ é conhecida em Γ_p . A função $f = f(\boldsymbol{x}, t)$ representa uma fonte de onda, $u = q(\boldsymbol{x})$ e $\frac{\partial u}{\partial x_j}n_i = p(\boldsymbol{x})$ representam as condições na fronteira, $u_0(\boldsymbol{x}) \in u_t(\boldsymbol{x})$ são a posição e a velocida inicial da onda, respectivamente. Além disso, considere $p(\boldsymbol{x}) \in q(\boldsymbol{x})$ suficientemente regulares de tal forma que pelo menos a solução $u \in H_0^1(\Omega)$.

Se $\Gamma = \Gamma_q$, então a condição de fronteira é conhecida como condição de Dirichlet. Se $\Gamma = \Gamma_p$, então a condição de fronteira é conhecida como condição de Neumann. Se $\Gamma = \overline{\Gamma_p \cup \Gamma_q}$, então a condição de fronteira é conhecida como do tipo misto.

O Problema (5.1.1) terá a solução determinada usando o Método dos Elementos Finitos no espaço e o Método de Diferenças Finitas no tempo.

Em [1] e [8], provou-se a existência e unicidade de solução do Problema (5.1.1).

5.2 Método dos Elementos Finitos

5.2.1 Formulação Variacional

Seja $D(\Omega) = \{v \in C_0^{\infty}(\Omega); v = 0 \text{ em } \Gamma_q\}$ o espaço das funções testes com suporte compacto em Ω . Multiplicando a primeira equação do Problema (5.1.1), por v, integrando em Ω e usando o teorema da divergência,

$$\int_{\Omega} \Delta u \, v \, d\Omega = -\int_{\Omega} \nabla u \nabla v \, d\Omega \, + \int_{\Gamma} q_i n_i \, v \, d\Gamma$$

obtém-se

$$\int_{\Omega} u_{tt} v \, d\Omega \,+\, \alpha \int_{\Omega} \nabla u \nabla v \, d\Omega \,+\, \beta \int_{\Omega} u v \, d\Omega = \int_{\Omega} f v \, d\Omega \,-\, \alpha \int_{\Gamma_p} p v \, d\Gamma, \quad \forall v \in D(\Omega)$$
(5.2.1)

onde usamos que $-q_i n_i = -\frac{\partial u}{\partial x_j} n_i = p(x)$ em Γ_p e que v = 0 em Γ_q .

Denotando a forma bilinear a(u, v) por

$$a(u,v) = \alpha \int_{\Omega} \nabla u \nabla v \, d\Omega + \beta \int_{\Omega} uv \, d\Omega, \qquad (5.2.2)$$

е

$$(u_{tt}, v) = \int_{\Omega} u_{tt} v \, d\Omega \tag{5.2.3}$$

$$(f,v) = \int_{\Omega} f v \, d\Omega \tag{5.2.4}$$

$$(p,v) = \int_{\Gamma_p} p \, v \, d\Gamma \tag{5.2.5}$$

então (5.1.1) é equivalente a determinar $u = u(\boldsymbol{x}, t)$ satisfazendo

$$\begin{pmatrix} (u_{tt}, v) + a(u, v) = (f, v) - \alpha(p, v), \forall v \in D(\Omega) \\ (u(0), v) = (u_0, v), \\ (u(1), v) = (u_1, v), \end{cases}$$

$$(5.2.6)$$

5.2.2 Método de Galerkin

Seja

$$H = \{ u \in H^1(\Omega); \ u = q \text{ em } \Gamma_q \}$$
(5.2.7)

Sejam $H_m \subset H$, $V_m \subset D(\Omega)$ subespaços de dimensão finita dos espaços de Hilbert H e $D(\Omega)$. Considere os elementos $u^h \in H_m$ satisfazendo a condição

$$u^h = w^h + q^h, (5.2.8)$$

onde $w^h \in V_m$ e q^h é uma função que satisfaz a condição de fronteira de u, ou seja,

$$q^{h}(x) = \begin{cases} q(x), & \forall x \in \Gamma_{q} \\ 0, & \forall x \notin \Gamma_{q} \end{cases}$$
(5.2.9)

Nestas condições, temos

$$u^h(x) = w^h(x) + q^h(x) = q(x), \quad \forall x \in \Gamma_q.$$

As funções $v^h \in V_m$ são, em geral, funções lineares por partes. Assim, para domínios em geral, a fronteira $\partial \Omega$ de Ω pode não coincidir com a fronteira aproximada Γ_h .

Restringindo a equação $(5.2.6)_1$ aos subespaços V_m e H_m , temos

$$(u_{tt}^{h}, v^{h}) + a(u^{h}, v^{h}) = (f, v^{h}) - \alpha(p, v^{h})_{\Gamma}, \quad \forall v^{h} \in V_{m}$$
(5.2.10)

Por (5.2.8), temos

$$((w^{h} + q^{h})_{tt}, v^{h}) + a(w^{h} + q^{h}, v^{h}) = (f, v^{h}) - \alpha(p, v^{h})_{\Gamma}, \qquad \forall v^{h} \in V_{m}$$
$$(w^{h}_{tt}, v^{h}) + (q^{h}_{tt}, v^{h}) + a(w^{h}, v^{h}) + a(q^{h}, v^{h}) = (f, v^{h}) - \alpha(p, v^{h})_{\Gamma}, \quad \forall v^{h} \in V_{m}$$

Levando em consideração que a função q depende apenas de x, temos que

$$(q_{tt}^h, v^h) = 0$$

Então,

$$(w_{tt}^{h}, v^{h}) + a(w^{h}, v^{h}) = (f, v^{h}) - \alpha(p, v^{h})_{\Gamma} - a(q^{h}, v^{h}), \quad \forall v^{h} \in V_{m}$$
(5.2.11)

Podemos, agora, formular o problema aproximado.

Problema Aproximado

Considere o problema (5.2.6), redefinido no subespaço V_m . Queremos determinar uma solução $u^h = w^h + q^h \in H_m$, solução do seguinte sistema

$$\begin{cases} (w_{tt}^{h}, v^{h}) + a(w^{h}, v^{h}) = (f, v^{h}) - \alpha(p^{h}, v^{h})_{\Gamma} - a(q^{h}, v^{h}), & \forall v^{h} \in V_{m} \\ (u^{h}(0), v^{h}) = (u_{0h}, v^{h}) \longrightarrow u_{0} \text{ forte em } H_{0}^{1}(0, 1), \\ (u^{h}(1), v^{h}) = (u_{1h}, v^{h}) \longrightarrow u_{1} \text{ forte em } L^{2}(0, 1). \end{cases}$$
(5.2.12)

Seja $\{\varphi_1, \varphi_2, \varphi_3, \cdots, \varphi_m\}$ uma base do subespaço V_m . Dessa forma, todo elemento $w_h \in V_m$ pode ser representado por

$$w^{h}(x,t) = \sum_{j=1}^{m} g_{jm}(t)\varphi_{j}(x), \quad \varphi_{j} \in V_{m}$$
(5.2.13)

е

$$w_{tt}^{h}(x,t) = \sum_{j=1}^{m} g_{jm}''(t)\varphi_{j}(x), \quad \varphi_{j} \in V_{m}$$
 (5.2.14)

Substituindo (5.2.13) e (5.2.14) em (5.2.12)₁, tem-se

$$\left(\sum_{j=1}^{m} g_{jm}''(t)\varphi_j, v^h\right) + a\left(\sum_{j=1}^{m} g_{jm}(t)\varphi_j, v^h\right) = (f, v^h) - \alpha(p, v^h)_{\Gamma} - a(q^h, v^h), \ \forall v^h \in V_m$$

$$(5.2.15)$$

A igualdade permanece válida tomando, em particular, $v^h = \varphi_i,$ ou seja,

$$\left(\sum_{j=1}^{m} g_{jm}''(t)\varphi_j,\varphi_i\right) + a\left(\sum_{j=1}^{m} g_{jm}(t)\varphi_j,\varphi_i\right) = (f,\varphi_i) - \alpha(p,\varphi_i)_{\Gamma} - a(q^h,\varphi_i) \quad (5.2.16)$$

Da linearidade da forma a(.,.), segue que

$$\sum_{j=1}^{m} g_{jm}''(t) (\varphi_i, \varphi_j) + \sum_{j=1}^{m} g_{jm}(t) a (\varphi_i, \varphi_j) = (\varphi_i, f) - \alpha(\varphi_i, p)_{\Gamma} - a(\varphi_i, q^h)$$
(5.2.17)

Denotando

$$M_{ij} = \left(\varphi_i, \varphi_j\right), \quad 1 \le i, j \le m$$
 (5.2.18)

$$N_{ij} = a\Big(\varphi_i, \varphi_j\Big), \quad 1 \le i, j \le m \tag{5.2.19}$$

$$F_i = (\varphi_i, f) - \alpha(\varphi_i, p)_{\Gamma} - a(\varphi_i, q^h), \quad 1 \le j \le m$$
(5.2.20)

a formulação (5.2.12) pode ser escrita na forma matricial

$$\begin{cases}
Mg''_{m}(t) + Ng_{m}(t) = F(t), & \forall t \in [0, T] \\
g_{m}(0) = \left((u_{0}, \varphi_{1}), (u_{0}, \varphi_{2}), \cdots, (u_{0}, \varphi_{m}) \right) = g_{0m} \\
g_{m}(1) = \left((u_{1}, \varphi_{1}), (u_{1}, \varphi_{2}), \cdots, (u_{1}, \varphi_{m}) \right) = g_{1m}
\end{cases}$$
(5.2.21)

onde $g_m(0)$ e $g_m(1)$ são as condições iniciais, $g_m(t) = (g_{1m}(t), g_{2m}(t), \cdots, g_{mm}(t))^T$ é o vetor incógnita. Assim, temos um sistema de *m* equações diferenciais ordinárias.

De (5.2.2) a (5.2.5), as matrizes M, N e o vetor força F podem ser dados por:

$$M_{ij} = \int_{\Omega} \varphi_i \varphi_j \, d\Omega \tag{5.2.22}$$

$$N_{ij} = \int_{\Omega} \left(\alpha \frac{d\varphi_i}{dx} \frac{d\varphi_j}{d\Omega} + \beta \varphi_i \varphi_j \right) \, d\Omega \tag{5.2.23}$$

$$F_i = \int_{\Omega} f \,\varphi_i \, d\Omega - \alpha(\varphi_i, p)_{\Gamma} - a(\varphi_i, q^h) \tag{5.2.24}$$

Passaremos, agora, para a construção do sistema linear, já que a discretização do domínio, assim como a construção da malha e as subrotinas utilizadas no programa foram feitas de forma análoga as apresentadas nas seção (4.3).

5.3 Construção do sistema linear

Seja N o conjunto de nós da malha e N_q o conjunto dos nós do tipo 1, isto é, os nós para os quais a solução é conhecida. Então, o conjunto $N - N_q$ representa os nós para os quais a solução deverá ser determinada.

Seja $A \in N$ um nó global. Definimos sobre A uma função interpolante linear φ_A satisfazendo a condição:

$$\varphi_A(B) = \begin{cases} 1, \text{ se } A = B, \\ 0, \text{ se } A \neq B, \quad \forall B \in \mathbb{N} \end{cases}$$
(5.3.1)

Para $A \in N - N_q$ o conjunto das funções lineares φ_A geram um espaço vetorial linear por partes V^h que é um subespaço do espaço V. Assim, toda função $w^h \in V^h$ pode ser escrita por

$$w^{h}(x) = \sum_{B \in N - N_q} g_B \varphi_B(x).$$
(5.3.2)

De forma análoga, para a obtenção do sistema linear tem-se que:

$$\sum_{B \in N - N_q} (\varphi_A, \varphi_B) g_B'' + \sum_{B \in N - N_q} a(\varphi_A, \varphi_B) g_B = (\varphi_A, f) - \alpha(\varphi_A, p)_{\Gamma} - a(\varphi_A, q^h), \ \forall A \in N - N_q$$
(5.3.3)

Variando os nós globais $A \text{ em } N - N_q$ tem-se um sistema linear com Neq equações. Para definir a matriz dos coeficientes é necessário estabelecer uma identificação entre o nó A e a sua equação através da subrotina EqNo. Seja

$$I = \operatorname{eqn}[A] \quad \mathrm{e} \quad J = \operatorname{eqn}[B],$$

onde $1 \neq I, J, \neq$ Neq. Então, o sistema linear é definido por

$$\sum_{J=1}^{Neq} M_{IJ} g_J'' + \sum_{J=1}^{Neq} N_{IJ} g_J = F_I,$$
(5.3.4)

onde

$$M_{IJ} = (\varphi_A, \varphi_B), \tag{5.3.5}$$

$$N_{IJ} = a(\varphi_A, \varphi_B), \tag{5.3.6}$$

$$F_I = (\varphi_A, f) - \alpha(\varphi_A, p)_{\Gamma} - a(\varphi_A, q^h).$$
(5.3.7)

5.4 Interpolação dos Dados Iniciais

Para a equação da onda, a força f é definida em todo $\boldsymbol{x} = (x_1, x_2) \in \Omega$ e as funções q e p são definidas em todo $\boldsymbol{x} \in \Gamma_q$ e $\boldsymbol{x} \in \Gamma_p$, respectivamente.

$$f^{h}(x) = \sum_{A \in N} \varphi_{A}(x) f_{A}, \qquad (5.4.1)$$

$$q^{h}(x) = \sum_{A \in N_{q}} \varphi_{A}(x)q_{A}, \qquad (5.4.2)$$

$$p^{h}(x) = \sum_{A \in N_q} \varphi_A(x) p_A, \qquad (5.4.3)$$

onde $f_A = f(x_A)$, $q_A = q(x_A)$ e $p_A = p(x_A)$. Usando a definição de $\varphi_A(x)$, temos então,

$$f_A = f^h(x_A), \quad q_A = q^h(x_A) \quad e \quad p_A = p^h(x_A)$$

Substituindo em (5.3.7), obtém-se

$$F_I = \sum_{B \in N} (\varphi_A, \varphi_B) f_B - \alpha \sum_{B \in N_q} (\varphi_A, \varphi_B) p_B - \sum_{B \in N_q} a(\varphi_A, \varphi_B) q_B.$$
(5.4.2)

Usando a definição dada em (5.2.24), temos

$$F_I = \sum_{B \in N} \int_{\Omega} \varphi_A \varphi_B f_B \, d\Omega - \alpha \sum_{B \in N_q} \int_{\Gamma_p} \varphi_A \varphi_B p_B \, d\Gamma_p - \sum_{B \in N_q} N_{AB} q_B. \tag{5.4.3}$$

De forma análoga, usando (5.2.22) e (5.2.23), podemos escrever (5.3.5) e (5.3.6), respectivamente, como

$$M_{IJ} = (\varphi_A, \varphi_B) = \int_{\Omega} \varphi_A \varphi_B \, d\Omega, \qquad (5.4.4)$$

$$N_{IJ} = a(\varphi_A, \varphi_B) = \int_{\Omega} \left(\alpha(\nabla \varphi_A)(\nabla \varphi_B) + \beta \varphi_A \varphi_B \right) d\Omega, \qquad (5.4.5)$$

onde I = eqn[A] e J = eqn[B].

Porém, a formulação (5.4.3), (5.4.4) e (5.4.5) para obtenção das matrizes M, Ne do vetor força F em todo o domínio Ω não é a mais conveniente. Um apropriado procedimento é definir as funções de interpolação φ_A para cada elemento finito e, onde φ_A é um polinômio interpolador em Ω_e e vale zero em $\Omega - \Omega_e$, onde Ω_e é o domínio do elemento e. Dessa forma, a função φ_A é denominada função de interpolação local e é denotada por φ_A^e . Usando a discretização do domínio Ω dado na seção(4.3), introduzimos as matrizes locais M_e , N_e e a força local F_e definidas para cada elemento finito e por

$$M_{IJ}^{e} = (\varphi_{A}^{e}, \varphi_{B}^{e}) = \int_{\Omega} \varphi_{A}^{e} \varphi_{B}^{e} \, d\Omega, \qquad (5.4.6)$$

$$N_{IJ}^{e} = a(\varphi_{A}^{e}, \varphi_{B}^{e}) = \int_{\Omega} \left(\alpha(\nabla \varphi_{A}^{e})(\nabla \varphi_{B}^{e}) + \beta \varphi_{A}^{e} \varphi_{B}^{e} \right) d\Omega, \qquad (5.4.7)$$

$$F_I^e = \sum_{B \in N} \int_{\Omega} \varphi_A^e \varphi_B^e f_B \, d\Omega - \alpha \sum_{B \in N_q} \int_{\Gamma_p^e} \varphi_A^e \varphi_B^e p_B \, d\Gamma - \sum_{B \in N_q} N_{AB}^e q_B, \tag{5.4.8}$$

onde I = eqn[A], J = eqn[B] e $1 \le I, J \le Neq$.

Logo, as matrizes globais M, Ne o vetor força F são obtidos por

$$M = \sum_{e=1}^{\text{Nel}} M^e, \quad N = \sum_{e=1}^{\text{Nel}} N^e, \quad F = \sum_{e=1}^{\text{Nel}} F^e.$$
(5.4.9)

As matrizes M_{IJ}^e , N_{IJ}^e e o vetor força F_I^e definidos em (5.4.6), (5.4.7) e (5.4.8) têm ordem (Neq×Neq), (Neq×Neq) e (Neq×1), respectivamente. Mas a função de interpolação φ_A^e tem suporte compacto em Ω_e , e assim as matrizes e o vetor força são nulos para todos os nós $B \notin \Omega_e$.

A desvantagem deste procedimento está no armazenamento das matrizes M^e , N^e e o vetor força F^e e também no número desnecessário de operações entre zeros. Daí, a introducão dos nós locais, que é feita de forma análoga a seção (4.4).

Observação: A apresentação da Função de Interpolação, Transformação Isoparamétrica, Quadratura Gaussiana e o Cálculo das Matrizes locais M_{ab}^e e N_{ab}^e e do Vetor Força local F_a^e , assim como a montagem das Matrizes Globais M, N e do Vetor Força F são feitas de forma análoga a apresentada nas seções (4.5), (4.6), (4.7), (4.8) e (4.9), respectivamente.

Tomando as matrizes globais M, N e o vetor global F, é possível escrever o problema numa forma matricial dada por:

$$Mg'' + Ng = F \tag{5.5.8}$$

sendo $g = [g_1, g_1, \cdots, g_{m+1}]^t$ o vetor incógnita.

As matrizes $M \in N$ obtidas pelo método de elementos finitos, tem uma estrutura especial, isto é, uma matriz do tipo banda no qual permite uma compactação minimizando o problema de armazenamento.

Conhecidas as matrizes $M \in N$ e o vetor F, determinar a solução do problema dado em (5.2.12) se resume a determinar a solução da equação diferencial ordinária (5.5.8).

Assim, o problema de valor inicial (5.2.12) consiste em encontrar g(t) tal que,

$$\begin{cases}
Mg''(t) + Ng(t) = F \\
g(0) = g_0 \\
g(1) = g_1
\end{cases}$$
(5.5.9)

onde $g(0) \in g(1)$ são as condições iniciais.

Do Problema (5.2.12), temos ainda as condições de fronteira que devem ser respeitadas, que veremos a diante.

5.5 Métodos Numéricos

Os procedimentos usados neste capítulo são exatamente os mesmos que foram utilizados no Capítulo 3, para o caso unidimensional. Assim, os seguintes sistemas iterativos serão novamente utilizados

• $Mg^{n+1} = (2M - (\Delta t)^2 N)g^n + (\Delta t)^2 F^n - Mg^{n-1}, \quad n = 0, 1, \dots (R-1)$ (Diferenças Finita)

•
$$\left(M + \theta(\Delta t)^2 N\right) g^{n+1} = \left(2M - (1 - 2\theta)(\Delta t)^2 N\right) g^n - \left(M + \theta(\Delta t)^2 N\right) g^{n-1} + (\Delta t)^2 \left(\theta \left(F^{n+1} + F^{n-1}\right) + (1 - 2\theta) F^n\right), \quad n = 0, 1, \cdots (R-1)$$

(Família de Métodos Implícitos - Aproximação θ - Newmark)

sendo a implementação feita da mesma forma que a apresentada na seção (3.3).

Para cada instante de tempo $t_n = n\Delta t$, com $0 \le t_n \le T$, obtém-se g_n , com $n \in \mathbb{N}$. Resolvendo o sistema linear

$$Mg'' + Ng = F,$$

obtém-se o vetor solução $g = (g_1, \cdots, g_{Neq}).$

Como a solução aproximada é dada por

$$u^{h} = w^{h} + q^{h} = \begin{cases} w^{h}(x), & \text{se } x \in \Omega - \Gamma_{q}, \\ q^{h}(x), & \text{se } x \in \Gamma_{q}, \end{cases}$$

e a associação entre o nó global A e sua correspondente equação I no sistema é dada por

$$I = \operatorname{eqn}(A), \quad 1 \le I \le \operatorname{Neq}$$

tem-se

$$u^{h}(A) = \begin{cases} g_{I}, & \text{se } A \in N - N_{q}, \\ q_{A}, & \text{se } A \in N_{q}, \end{cases}$$

e a solução aproximada $u^h(x)$ é dada por

$$u^{h}(x) = \sum_{A=1}^{\operatorname{Nno}} u^{h}(A)\varphi_{A}(x)$$

5.6 Simulações Numéricas

Para ilustrar algumas características do problema associado a Equação da Onda com fronteira fixa, mostraremos alguns exemplos numéricos.

Vimos que o Problema (5.1.1) é equivalente ao Problema (5.2.6), e redefinindo-o no subespaço V_m , podemos aproximá-lo pelo Problema (5.2.12). Temos também que o Problema (5.2.12) se resume a determinar a solução do Problema (5.6.1). Para tal, utilizaremos o Método de Diferenças Finitas com alguns valores de θ . Para calcularmos a força externa f(x,t), basta substituir a solução exata u(x,t), que definimos a priori, e suas derivadas na equação $(5.1.1)_1$. Dada a solução exata, o erro entre a solução numérica e a exata será calculado nas normas $L^{\infty}(0,T;L^2(\Omega)) \in H^1(\Omega)$, dados por (4.11.3) e (4.11.4).

Considere

- (1) $\alpha = \beta = 1$
- (2) $\Omega = [0,1] \times [0,1]$
- (3) A força $f = f(\boldsymbol{x}, t)$ é dada por

$$f(\boldsymbol{x},t) = 0$$

Sob estas condições, verifica-se que a função $u = u(\boldsymbol{x}, t)$ dada por

$$u(\boldsymbol{x},t) = \operatorname{sen}(\pi x)\operatorname{sen}(\pi y)\cos\left(\sqrt{2\alpha + \frac{\beta}{\pi^2}}\pi t\right)$$

é uma solução exata da equação diferencial da onda,

$$u(\boldsymbol{x},0) = \operatorname{sen}(\pi x)\operatorname{sen}(\pi y)$$

e

$$u_t(\boldsymbol{x},0) = 0$$

são as condições iniciais.

Considere as fronteiras denotadas por

$$\Gamma_1 = \{(x,0) \in \partial\Omega; \ 0 \le x \le 1\}$$

$$\Gamma_2 = \{(1,y) \in \partial\Omega; \ 0 \le y \le 1\}$$

$$\Gamma_3 = \{(x,1) \in \partial\Omega; \ 0 \le x \le 1\}$$

$$\Gamma_4 = \{(0,y) \in \partial\Omega; \ 0 \le y \le 1\}$$

Para a unicidade de solução do problema em Ω vamos considerar alguns tipos de fronteira correspondendo à solução exata $u(\boldsymbol{x}, t)$.

Exemplo. Fronteira de Dirichlet

Neste caso $\Gamma_p = \emptyset$ e

$$\Gamma_q = \partial \Omega = \bigcup_{i=1}^4 \Gamma_{q_i}, \quad \Gamma_{q_i} = \Gamma_i,$$

com

$$q(x) = \begin{cases} 0, & \text{em } \Gamma_{q_1}, \\ 0, & \text{em } \Gamma_{q_2}, \\ 0, & \text{em } \Gamma_{q_3}, \\ 0, & \text{em } \Gamma_{q_4}. \end{cases}$$

Assumiremos a discretização em ambos os eixos com passo h = 4. Assim, Nelx = Nely = 4. Assim, a malha possui 5 nós no eixo-x e no eixo-y, sendo, portanto, o número de nós Nno = 25 e o número total de elementos Nel = 16, que são numerados em ordem crescente da esquerda para a direita. Em 16 nós temos que a solução é conhecida. Precisamos apenas encontrar a solução numérica para 9 nós:

 $\{7, 8, 9, 12, 13, 14, 17, 18, 19\}$

A metodologia empregada para determinarnos a solução numérica para a Equação da Onda é a mesma utilizada na seção (4.12) para a Equação do Calor.

Figura 5.1: Gráfico de $u^h(\boldsymbol{x}, t), t = 0$

Nas Figuras (5.1) e (5.2) temos a representação da solução $u^h(\boldsymbol{x}, t)$ para $x \in [0, 1]$, $y \in [0, 1], h = 0.1, \theta = 0$. Fixamos t = 0 e t = 0.5, respectivamente .

Figura 5.2: Gráfico de $u^h(\boldsymbol{x}, t), t = 1$

Convergência Numérica

Fixamos o passo de tempo $\Delta t = 0.001$ e variamos o espaçamento $h = \frac{(x_{m+1} - x_1)}{Nel}$, onde $\boldsymbol{x} \in [0,1], 0 = x_1 < x_2 < \cdots < x_{m+1} = 1, 0 = y_1 < y_2 < \cdots < y_{m+1} = 1$ e Nel = 10, 20, 50 e 100, onde Nel é o número de elementos da malha. Analisaremos a convergência para $\theta = 0$.

f(x,t)	Δt	h	$E_{L^{\infty}(0,T;H^{1}(\Omega))}$	$E_{L^{\infty}(0,T;L^{2}(\Omega))}$
	0.001	0.1	0.008955	0.007970
0	0.001	0.05	0.001623	0.001499
	0.001	0.02	0.000635	0.000602
	0.001	0.01	0.000594	0.000504

Tabela 5.1: Análise dos resultados para f(x,t) = 0

Vemos que o erro é inversamente proporcional ao tamanho da malha, ou seja, quanto maior a discretização, menor o erro.

Capítulo 6

Conclusão

Neste trabalho analisamos numericamente um modelo matemático para as equações do tipo parabólico e hiperbólico.

As simulações numéricas baseadas no Método de Elementos Finitos juntamente com o Método de Diferenças Finitas, em especial o Método Generalizado Trapezoidal, para a Equação do Calor e o Método de Newmark, para a Equação da Onda, mostram a eficácia do método quando construído um modelo cuja solução exata é conhecida. Ao problema, supomos primeiramente a função sendo não-nula com o objetivo de constatarmos que a solução aproximada estava sendo obtida corretamente, posteriormente, tomamos a função sendo nula como propõe o problema original, cujo intuito era encontrarmos uma solução aproximada para o problema dado.

Os resultados numéricos obtidos para a Equação do Calor e para a Equação da Onda, no caso unidimensional e bidimensional, mostraram-se eficientes, principalmente quando utilizamos $\theta = \frac{1}{2}$ para o calor, e $\theta = 0$ para a onda. A medida que refinamos as malhas, o erro foi proporcionalmente reduzido.

Podemos concluir também que o Método de Euler Progressivo, quando temos ($\theta = 0$) é condicionalmente estável e os Métodos de Euler Regressivo, quando ($\theta = 1$) e Crank-Nicolson, quando ($\theta = \frac{1}{2}$) são incondicionalmente estáveis no caso do Calor.

Um possível des dobramento do trabalho desenvolvido poderia considerar α e β não constantes, ou a inda os extremos não fixos.

Referências Bibliográficas

- BRÉZIS, Haïm. Analise Fonctionnelle. Théorie et applications. DUNOD, Paris (1999).
- [2] BURDEN, R. L.; FAIRES, D. J.; Numerical Analysis. PWS Publishing Company (1993)
- [3] CIARLET, P.; The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications. North-Holland (1978)
- [4] DOUGLAS, J. D.; DUPONT, T.; Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7, 575-626 (1970)
- [5] FICHERA, G.; Existence Theorems in Elasticity, in Handbuch der Physik, Band Via/2, Edited by C. Truesdell, Springer-Verlag (1972)
- [6] FIGUEIREDO, D. G., Análise de Fourier e Equações Diferenciais Parciais. Instituto Nacional de Matemática Pura e Aplicada, Projeto Euclides (1981)
- [7] HUGHES, T. J. R.; The Finite Element Method Linear Static and Dynamic Finite Element Analynis. Prentice Hall (2000)
- [8] MEDEIROS, L. A.; Equações Diferenciais Parciais. IM/UFRJ (1981)
- [9] MEDEIROS, L. A.; MIRANDA, M. M.; Espaços de Sobolev (Iniciação aos Problemas Elíticos não Homogêneo). IM/UFRJ (2000)
- [10] LIU, I-SHIH; RINCON, M. A.; Introdução ao Método dos Elementos Finitos -Análise e Aplicações, Editora IM/UFRJ (2003)
- [11] RODRIGUES, R. D.; Análise Numérica do Modelo de Kirchhoff-Carrier com Fronteira Móvel; UFRJ/IM-NCE, Rio de Janeiro (2001)

- [12] ODEN, J. T.; REDDY J.N.; Variational Methods in Theoretical Mechanics. Spring-Verlag (1981)
- [13] ODEN, J. T.; REDDY J.N.; The mathematical Theory of Finite Elements. New York, Wiley-Interscience (1976)
- [14] SMITH, G. D.; Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1978)
- [15] STRANG, G.; FIX, G. J.; An Analysis of the Finite Element Method. Prentice Hall (1981)
- [16] ZIENKIEWICZ, O. C.; The Finite Element Method. McGraw-Hill (1977)
- [17] WHEELER, M. F.; A Priori L² Error, Estimates for Galerkin Approximations to Parabolic Partial Differential Equations. SIAM J. Numer. Anal. 10, n°4 723-759 (1973)
- [18] ZAUDERER, Erich, Partial Differential Equations of Applied Mathematics 2nd ed. Pure and Applied Mathematics, John Wiley & Sons (1988)