UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
INSTITUTO DE MATEMATICA
INSTITUTO TERCIO PACITTI DE APLICACOES E PESQUISAS
COMPUTACIONATIS
PROGRAMA DE POS-GRADUACAO EM INFORMATICA

BRUNO SOUSA CAMPOS DA COSTA

DYNA-MLAC: TRADING
BETWEEN COMPUTATIONAL
AND SAMPLE COMPLEXITIES IN
ACTOR-CRITIC REINFORCEMENT
LEARNING

Rio de Janeiro
2015

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
INSTITUTO DE MATEMATICA
INSTITUTO TERCIO PACITTI DE APLICACOES E PESQUISAS
COMPUTACIONAIS
PROGRAMA DE POS-GRADUACAO EM INFORMATICA

BRUNO SOUSA CAMPOS DA COSTA

DYNA-MLAC: TRADING
BETWEEN COMPUTATIONAL
AND SAMPLE COMPLEXITIES IN
ACTOR-CRITIC REINFORCEMENT
LEARNING

Dissertagao de Mestrado submetida ao
Corpo Docente do Departamento de Ci-
éncia da Computagao do Instituto de Ma-
temética, e Instituto Tércio Pacitti de
Aplicagoes e Pesquisas Computacionais da
Universidade Federal do Rio de Janeiro,
como parte dos requisitos necessarios para
obtencao do titulo de Mestre em Informé-

tica.

Orientador: Daniel Sadoc Menasché

Co-orientador: Wouter Caarls

Rio de Janeiro
2015

CIP - Catalogacao na Publicacéo

C837d

Costa, Bruno Sousa Canpos da

Dyna- MLAC. Tradi ng Bet ween Conput ati onal and
Sanpl e Com plexities in Actor-Critic
Rei nf orcenent Learning / Bruno Sousa Canpos da
Costa. -- Rio de Janeiro, 2015.

68 f.

Oientador: Dani el Sadoc Menasché.

Coori entador: Wouter Caarls..

Di ssertacdo (nestrado) - Universidade Federal
do Rio de Janeiro, Instituto Tércio Pacitti de
Apl i cacdes e Pesqui sas Conputaci onai s, Programa de
P6s- Graduacdo em i nformatica, 2015.

1. Inteligéncia artificial. 2. Aprendizado por
reforgco. 3. Ator-critico. |I. Menasché, Daniel
Sadoc, orient. |l. Caarls., Wuter, coorient.
I, Titulo.

Elaborado pelo Sistema de Geragdo Automatica da UFRJ com os

dados fornecidos pelo(a) autor(a).

BRUNO SOUSA CAMPOS DA COSTA

Dyna-MLAC: Trading Between Computational and Sample
Complexities in Actor-Critic Reinforcement Learning

Dissertagao de Mestrado submetida ao Corpo Do-
cente do Departamento de Ciéncia da Computa-
¢ao do Instituto de Matematica, e Instituto Tércio
Pacitti de Aplicagoes ¢ Pesquisas Computacionais
da Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessarios para obtencao do
titulo de Mestre em Informaética.

Aprovado em: Rio de Janeiro, de de

Prof. Daniel Sadoc Menasché, Ph.D. (Orientador)

Prof. Wouter Caarls, Ph.D. (Co-orientador)

Prof. Adriano Joaquim de Oliveira Cruz, Ph.D.

Prof. Josefino Cabral Melo Lima, Docteur

Prof. Felipe Maia Galvao Franca, Ph.D.

Prof. Bruno Castro da Silva, Ph.D.

A todos que me apoiaram nessa jornada.

AGRADECIMENTOS

Foi uma jornada incrivel. Sem duavida, mesmo com todas as dificuldades, foi uma
caminhada de muito conhecimento e aprimoramento pessoal.

Gostaria de agradecer, primeiramente, a Deus e a minha familia, pelo apoio
incondicional durante todo o trabalho. Em especial a minha namorada, Emily Rocha
Fonseca, por tantas vezes me animar, me cobrar e por tantas vezes me ouvir falar
sobre robds e aprendizado.

Agradeco aos meus orientadores. Ao prof. Daniel Sadoc por ter aceitado ser meu
orientador. Muito obrigado por todo o seu esforco e dedicacdo. Ao prof. Wouter
Caarls, pela ajuda inestimavel, sem a qual, esse trabalho nao teria acontecido.

Meus agradecimentos também aos meus amigos que partilharam dessas dificul-
dades comigo, me incentivando e me dando forcas para concluir esse trabalho. Muito
obrigado a todos.

RESUMO

COSTA, Bruno Sousa Campos da. Dyna-MLAC: Trading Between Computatio-
nal and Sample Complexities in Actor-Critic Reinforcement Learning. 2015. 68 f.
Dissertagao (Mestrado em Informética) - PPGI, Instituto de Matematica, Instituto
Tércio Pacitti de Aplicagoes e Pesquisas Computacionais, Universidade Federal do
Rio de Janeiro, Rio de Janeiro, 2015.

Complexidade de amostragem e complexidade computacional sao dois elementos
chaves que determinam a performance dos algoritmos de aprendizado por reforco.
Essencialmente, todo agente inteligente treinado utilizando algoritmos de aprendi-
zado por reforco deve amostrar o ambiente e realizar alguma computacao sobre as
amostras para determinar a melhor agdo. Apesar de ser um problema fundamental,
o trade-off entre ambos ainda nio ¢ bem compreendido. Nesse trabalho, exploramos
esse trade-off sob a perspectiva do esquema ator-critico. Primeiro, apresentamos um
novo algoritmo de aprendizado por refor¢o, o Dyna-MLAC, utilizando um modelo
de transi¢ao para realizar o aprendizado (MLAC) e o framework Dyna. Entao,
indicamos numericamente que o tempo de convergéncia do Dyna-MLAC é menor
que o das solugoes ja existente e que o Dyna-MLAC permite uma troca eficiente
entre amostras e tempo computacional. Finalmente, investigamos o efeito de um
conjunto de pardmetros na performance dos algoritmos estudados e como a alocagao
de memoria também afeta a performance.

Palavras-chave: Inteligéncia Artificial, Aprendizado por reforgo, Ator-critico.

ABSTRACT

COSTA, Bruno Sousa Campos da. Dyna-MLAC: Trading Between Computational
and Sample Complexities in Actor-Critic Reinforcement Learning. 2015. 68 f. Dis-
sertagdo (Mestrado em Informéatica) - PPGI, Instituto de Matemaética, Instituto
Tércio Pacitti de Aplicagoes e Pesquisas Computacionais, Universidade Federal do
Rio de Janeiro, Rio de Janeiro, 2015.

Sampling and computation budgets are two of the key elements that determine
the performance of a reinforcement learning algorithm. In essence, any reinforcement
learning agent must sample the environment and perform some computation over the
samples to decide its best action. Although very fundamental, the trade-off between
sampling and computation is still not well understood. In this work, we explore
this trade-off in an actor-critic perspective. First, we propose a new RL algorithm,
Dyna-MLAC, which uses model-based actor-critic updates (MLAC) within the Dyna
framework. Then, we numerically indicate that the convergence time of Dyna-MLAC
is smaller than pre-existing solutions, and that Dyna-MLAC allows to efficiently
trade number of samples and computation time. Finally, we also investigate the
effect of a set of parameters and how memory allocation affects performance. We
find that the performance is most sensitive to the amount of memory allocated to
the critic.

Keywords: Artificial Intelligence, Reinforcement Learning, Actor-Critic.

2.1
2.2

2.3

24

4.1
4.2

4.3

4.4
4.5
4.6
4.7
4.8

6.1
6.2
6.3

6.4

6.5
6.6

6.7

LIST OF FIGURES

The policy iteration. Figures obtained from [17] 21
The cliff walking problem comparing Sarsa and Q-Learning. Fi-
gure obtained from [17]. oo 0oL 26
Two main methods to implement Eligibility Traces: accumulating
and replacing. Figure obtained from [17] 27
The gridworld updates when using Sarsa(A). Figure obtained
from [17] 28
A query example on a 2-tilings (7 = 2) Tile Coding schema. . . . 36
The sine function approximated using LLR with 50 samples. The
blue and the red lines approximately overlap each other. 39

LLR and LWR physical interpretation. The left figure represents
LLR and it is constant weight while the right one is LWR using
a distance weight. Figure obtained from [1] 40
Final critic and performance using the randomly strategy on LLR 41
Final critic and performance using the prediction strategy on LLR 42
Final critic and performance using the uniform strategy on LLR . 43
Comparison between the three different LLR memory strategies . 44
Comparison between Locally Linear Regression and Tile Coding

on Standard Actor Critic oL, 45
The pendulum swing-up environment. 53
Actions A € [—1.5,1.5] and performance of —1700. 55
Dyna-MLAC performance surface. The green plane correspond

to —1800 performance. 57

Contour plots of the performance curve for Dyna-MLAC (surface
in Figure 6.3). It is possible to see the trade-off between episodes
(sampling) and updates per control step (computation) given a

required performance. 58
Actions A € [—3,3] and performance of —1000. 59
Dyna-MLAC performance surface. The green plane correspond

to —1000 performance. 60

Contour plots of the performance curve for Dyna-MLAC (surface
in Figure 6.6). It is possible to see the trade-off between episodes
(sampling) and updates per control step (computation) given a
required performance. 61

6.8

6.9

6.10

Final critics V'(s) in the standard environment. Every point is a
sample in the LLR memory. Both Dyna-SAC and Dyna-MLAC
with 64 updates per control step
Log plot of different exploration rates for Dyna and Dyna-Mlac
against the end performance
LLR memory size effect on Dyna-MLAC algorithm using 25 up-
dates per control step.o

6.1

LIST OF TABLES

Parameters used in algorithms

CONTENTS

1 INTRODUCTION e 12
2 BACKGROUND THEORY o o oo 15
2.1 AGENTS AND ENVIRONMENTS 15
2.2 MARKOV DECISION PROCESS 16
2.3 REINFORCEMENT LEARNING 17
2.4 THE MDP IN THE VALUE FUNCTION 18
2.5 SOLVING THE PROBLEM 19
2.5.1 Model Based 20
2.5.2 Model Free methods 21
2.6 PROBLEMS USING REINFORCEMENT LEARNING 28
2.6.1 Exploration 28
2.6.2 Continuous space-state 30
2.6.3 Convergence 30
3 ACTORCRITIC e e e e e e 31
3.1 STANDARD ACTOR-CRITIC ALGORITHM 32
4 FUNCTION APPROXIMATORS 34
4.1 TILE CODING e 35
4.1.1 Buildingstep 35
4.1.2 Querying step 35
4.1.3 Learning step 36
4.2 LOCALLY LINEAR REGRESSION 36
4.2.1 Building step 37
4.2.2 Queryingstep 37
4.2.3 Learning step 38
4.3 MEMORY MANAGEMENT 40
4.3.1 Randomly 40
4.3.2 Prediction 41
4.3.3 uniformly distributed 42

4.4 COMPARISON BETWEEN TILE CODING AND LOCALLY LINEAR
REGRESSION oo 43

5 MODEL-BASED METHODS 46

5.1 MODEL LEARNING 46
5.1.1 What is the transition model 46
5.1.2 Whytolearnamodel 00 46
5.1.3 How tolearmamodel 47
52 MLAC . . . e 47
53 DYNA . . . 49
5.3.1 Dyna-MLAC 51
6 EXPERIMENTS e 52
6.1 THE PENDULUM SWING-UP 53
6.1.1 Computational Budget for Model-Based Updates is Benefi-

cial when Sampling is Costly 54
6.1.2 Model-Based Updates Are Not Always Necessary 57
6.2 CONVERGENCE 59
6.3 THE EFFECT OF THE EXPLORATION RATE 60
6.4 THE EFFECT OF THE LLR MEMORY SIZE 61
7 CONCLUSIONS AND FUTUREWORK 65

REFERENCES e 66

12

1 INTRODUCTION

Reinforcement Learning (RL) is a field of machine learning inspired by psy-
chology and biology, concerned with how agents learn which actions to take in an
environment in order to maximize some cumulative reward. At any point in time,
the agent knows the current state and, after taking some action, it learns the resul-
ting state and the obtained instantaneous reward. The tuple comprising the current
state, action, resulting state and instantaneous reward is referred to as a sample.
Given the current state and an action, the state transition function yields the resul-
ting next state and an instantaneous reward. The transition function is unknown

to the agent and typically stochastic.

Collecting and processing samples are two of the most fundamental activi-
ties performed by any reinforcement learning agent. In essence, the performance of
any reinforcement learning algorithm must account for sampling and computation
costs, also referred to as sampling and computational complexity [5]. Low sampling
complexity algorithms are favored in situations where samples are costly or even
dangerous to obtain, such as the control of manufacturing plants. Low computa-
tional complexity algorithms, on the other hand, may be preferred when samples
are abundant (big data), or in real-time systems, where decisions have to be made

within a short time interval.

Algorithms which require a low number of samples are characterized by the
re-use of samples, often in the form of a learned process model that approximates
the state transition function. These algorithms are broadly classified as model-based
solutions, e.g. PILCO [7], and have a very high computation cost. Conversely, al-

gorithms which are computationally cheap, such as classical Q-learning [19], require

13

a large number of samples to attain good performance. The required number of
samples often precludes the use of such model-free solutions in realistic scenarios,

and hampers their applicability.

In this work, the trade-off between computational complexity and sampling
complexity is explored in an actor-critic perspective. Actor-critic algorithms use
separate, explicit representations of the state-action mapping and expected cumu-
lative reward in order to deal with continuous states and actions such as found in
robotics applications [13]. The Dyna framework [16], a reinforcement learning fra-
mework that can scale smoothly between completely model-based and model-free

modes, is a natural choice for investigating the trade-off.

A learning update rule (or update rule, for short) determines how the solution
must be modified as new samples are gathered. As Dyna learns a process model, a
natural extension consists of its coupling with model-based learning update rules. As
such, two algorithms are considered: 1) Dyna-SAC (Standard Actor-Critic), using
standard temporal-difference update rules [15] and 2) Dyna-MLAC, using the model-
based update rules of the MLAC (Model-Learning Actor-Critic) algorithm [10].

Learning a process model from the samples can be done using any supervised
learning technique, like neural networks [9]. In this work, we use a memory based
algorithm, Locally Linear Regression (LLR) [1|. Given a fixed amount of memory,
we study the impact of the split of this memory between the actor, the critic and

the process model.

This trade-off is especially important considering time-sensitive problems, for
example, a robotic arm used in a surgery. Not taking a action can be potentially

worse than taking a slightly suboptimal decision.

14

In summary, the key question addressed in this dissertation, is the following:
to what extent is it possible to trade number of samples and computation time within
the Dyna actor-critic framework? In answering this question, we provide the fol-

lowing contributions:

1) algorithm design: we propose a version of Dyna-SAC using LLR and the
new Dyna-MLAC algorithm, both with continuous action and state spaces. Our key
insight consists of using LLR as function approximator and using MLAC updates

within the Dyna framework;

2) convergence analysis: we analyze the number of updates required in order
to stabilize the learning curve. We verify that although Dyna~-SAC and Dyna-MLAC
achieve the same end performance after a significant number of updates per control

step, Dyna-MLAC demands fewer iterations to converge;

3) algorithm parametrization: we analyze the impact of the learning step, the
exploration rate and the memory size used in LLR. We show how these parameters

impacts differ between the actor, the critic and the process model.

The remainder of this work is organized as follows: Chapter 2, gives the
background on Reinforcement Learning. In Chapter 3 the Standard Actor-Critic
(SAC) algorithm is presented, along with the actor-critic theory. Chapter 4 presents
the function approximator used in this paper, the Locally Linear Regression (LLR),
comparing it against Tile Coding. Chapter 5 gives more information regarding the
model based algorithms that will be used throughout this work. Chapter 6 details
all experiments along with their results and further discussions. Finally, conclusions

and future work are presented in Chapter 7.

15

2 BACKGROUND THEORY

In this section, we will discuss the inner working of Reinforcement Learning
(RL). First, in Section 2.1, a brief description of agents and environments is given.
From Section 2.2 onwards, solutions methods are considered. First, more theoretical
and less practical ways are described in Section 2.2. Then, some practical methods
are described in Section 2.5. At the end of this section, we show problems that arise
from these solutions, but we delayed the discussion of the methods used in this work

to Chapters 3 and 5.

2.1 Agents and Environments

Russel and Norvig [14| describe an agent as

An agent is just something that acts (agent comes from the Latin
agere, to do). Of course, all computer programs do something, but com-
puter agents are expected to do more: operate autonomously, perceive
their environment, persist over a prolonged time period, adapt to ration
agent change, and create and pursue goals. A rational agent is one that
acts so as to achieve the best outcome or, when there is uncertainty, the

best expected outcome.

Our goal is to develop a rational agent, capable of learn a given task by trial and

error.

16

2.2 Markov Decision Process

In this work, we are only going to consider problems with the Markov pro-
perty. This means that if the current state is known, then the transition to the
next state is independent of all previous transitions. The next one, however, can be
stochastic. So, by this, the current state alone has enough information for the agent
to decide the next best action. In this setup, the mathematical foundation used is

known as Markov Decision Process.

Formally, the problem of finding a policy =, i.e. a function that tells the
agent what to do in all possible situations, can be modeled using a Markov Decision
Process (MDP). A MDP is a tuple (S, A, T,~, D, R), where S denotes a set of states;
A is a set of actions; T' = P,, is a set of state transition probabilities (here, P, is the
state transition distribution upon taking action a in state s); 7 is a discount factor;
D is the initial-state distribution, from which the start state sy is drawn; and R is

the reward function R(s,a,s’), where s is the next state.

The policy 7 : S — A decides what action to take in every possible state. The
goal of the agent is to maximize the total expected reward in possible infinite-horizon

setup. So, the expected reward, after ¢ time steps is:

Rt:E{Tt+1+’7t+2+’)/2’l“t+3+...} :E{Z’ytﬁ_H} (21)

t=0

where v € (0,1] is a discount factor, dictating the future rewards importance in the
problem. As 7 — 1, rewards further in the future have the same importance as the
more immediate ones. On the other hand, considering v — 0, the farthest terms in

Equation (2.1) can be ignored and does not count to the total expected reward.

17

2.3 Reinforcement Learning

Before we continue to solve the problem, we have to present more formally
the value function. Let’s say we know the transition matrix 7" and the reward
function R of the MDP. If the agent has a stationary policy m, one can calculate the
expected reward for every state s by simply following the given policy and estimate

the outcome from Equation (2.1). Formally, we can define the value function V as:

V(s) = E{Ry|s, = s} (2.2)

The value function is one of the most important functions in this work. But,
another very useful one is the action-value function, known as (). Because the agent
has to learn the best action in every state, for a class of algorithms it is more useful

to define a function @) given by:

Q" (s,a) =]ﬁ{RASt =s,a; = a} (2.3)

which is also dependent on a given policy .

The last important notion before we move to solving the problem is the

optimal value function V™ :

V™ (s) = max V™ (s) (2.4)

The same holds for the action-value function Q:

18

Q™ (s,a) = max Q" (s,a) (2.5)

2.4 The MDP in the value function

In Section 2.2, the Markov property was introduced along with the MDP
concept. In Section 2.3, the value function and the action-value function were in-
troduced. In this section, the connection between them is presented in a way that
finding the optimal value for the value function means finding an optimal policy in

the underlying MDP.

Let’s recall our definition of the value function V:

V(s) = E{R,|s; = s} (2.6)

The Bellman equation [2] can be obtained from V' as:

oo
" t,. N
’t+1+’7§ Vrisolse = s

t=0

= E{ri1 + V()]s = 5,501 = '} (2.7)

19
where 1'(s,a,s’) and R(s,a,s’) are variables from the underlying MDP.

Further on, we can combine the optimal value function Equation (2.4) with

(2.7) to get the optimal value function in terms of ifself:

V*(s) = max V7™ (s)

=maxE{r, 1 +YV7(s')|si = s, 8041 = 5’} (2.9)

So, if the optimal value function is known, the optimal policy is the argument

that maximizes Equation (2.9):

7 = argmax V" (s)
s

=argmaxE {r.1 +yV7(s)|st = 8, 8101 = §'} (2.10)

The policy selects the action for each the according function is maximum,

therefore, this policy is called a greedy policy.

2.5 Solving the problem

Now we are ready to look into ways of solving the problem. First, we will
see the model based algorithms(Section 2.5.1). These are the ones that need all the
information from the MDP and are very computational expensive, but we will see

that the main ideas behind them are present in all of the others. Then we will take a

20

look at model free algorithms (Section 2.5.2). They solve some of the main problems
we found in model based, but lack the speed we found in before. Finally, we will see

the model learning (Section 5.1) algorithms, that learn a model as it goes.

2.5.1 Model Based

A model based learning controller knows all the variables that fully describe
the problem, i.e., the state is fully observable and the transition matrix 7" and the
reward function R are known. In this situation, and by looking at Equation (2.8),
it is easy to notice that the only unknown variable is V*, which leads to a system of
equations that can be solved. The assumptions of knowing everything unfortunately

makes its usability very limited.

2.5.1.1 Policy Iteration

The process known as policy iteration is composed of two steps: first the
policy is evaluated (policy evaluation) and then it is improved (policy improvement).
Starting with a random policy 7, the algorithm evaluates the corresponding value
V7™ using Equation (2.7). This is the policy evaluation step. Once we have V™, we
can obtain the next best policy 7 in a greedy fashion, according to Equation (2.10).
This is the policy improvement step. In Figures 2.1a and 2.1b we can see how this

process iteratively gets to the optimal solution.

21

evaluation
Vvt
T V
T—sgreedy(V')
improvement
* starting v
. V= e

n‘k—’_ V:}:

(a) Policy iteration scheme. (b) Policy iteration in a 2-d space.

Figure 2.1: The policy iteration. Figures obtained from [17]

2.5.2 Model Free methods

In the last section, we solved a MDP problem, i.c., obtained the optimal
policy. For practical applications, however, an requirement of full knowledge of the
environment in the policy iteration restricts its applicability. In general, one does not
have such knowledge, making the use of policy iteration very rare. Fortunately, there
are other ways to solve this problem without such knowledge. In this section, we
will look into two methods: Monte Carlo (Section 2.5.2.1) and Temporal Difference
(Section 2.5.2.2). Both are considered to be on-line methods, opposed to policy

iteration that is a off-line method.

2.5.2.1 Monte Carlo

Monte Carlo algorithms estimates the value-function based on trials, simula-
ted or obtained from a real environment. One requirement here is that the problem
must be episodic, i.e., it must have an end. This method works by averaging the

sample returns, the same way Monte Carlo simulations are used to obtain relevant

22

statistics in others fields [§].

The episodic requirement exists because Monte Carlo methods only learn ba-
sed on a complete return of the task, while in Temporal Difference (Section 2.5.2.2),

the learning is done using partial returns.

This method works similar to Policy Iteration (Section 2.5.1.1). The main
difference here is that the expected value, used to compute the value function Equa-
tion (2.7) is estimated after every simulation step. As in Policy Iteration, a two
step algorithm is used here: first, we evaluate the policy and them we update it.
The problem here is, as we only follow one possible path to perform the evalua-
tion, the policy improvement can’t be all greedy, otherwise, we wouldn’t explore the
space state. To solve this, we will use an e-greedy policy instead. This exploration

trade-off is further analyzed in Section 2.6.1.

The main Monte Carlo algorithm to update the value function is described

in Algorithm 1.

2.5.2.2 Temporal Difference

Two algorithms were presented in the past sections: a) policy iteration, which
requires full knowledge of the environment but works without the need of sampling
from the environment, and b) Monte Carlo simulations, which don’t require any
knowledge of the environment, but delays the learning until the end of the episode.
Temporal Difference method has the same requirements as Monte Carlo, but it
estimate the value-function in a step-by-step fashion, while Monte Carlo does in
an episode-by-episode way. This means that, after each step, we update the value

function following Equation (2.11):

23

Algorithm 1 e-greedy Monte Carlo algorithm

1: procedure MONTECARLO

2 Q(s,a) < arbitrary

3 Returns(s, a) < empty list

4 T 4 an arbitrary e-soft policy
5. Repeat forever:
6
7
8
9

Generate an episode using 7

for all pair s,a appearing in the episode: do
G < return following the first occurrence of s, a
Append G to Returns(s, a)

10: Q(s,a) < average(Returns(s,a))
11: for all s in the episode: do
12: a* + argmax Q(s, a)
a
13: for all a € A(s) do
l—e+ 5 ifa=a*
14: m(als) = . A .
[AG) ifara

Vi(st) <= (1 = ar)V(st) + ar(risn + 7V (s141))
V(sy) <= V(st) + audy (2.11)

where « is the learning step and

O = 11 + YV (541) — V(se) (2.12)

is the so-called Temporal Difference (TD) error.

The TD error interpretation is the difference between the predicted value of
a state s; and the real reward 7,1 plus the predicted value following the next state

V(si41). If the agent has full knowledge of the value function, then the TD error

24

is zero. There are two classical algorithms that uses TD error to update the value
function: SARSA (Section 2.5.2.3) and Q-Learning (Section 2.5.2.4).

2.5.2.3 SARSA

State-action-reward-state-action (SARSA) is an algorithm used to estimated
the action-value function. It works, basically, using the same update rule as in

Equation (2.11):

Q(st,a1) < Q¢ a1) + a [re1 + YQ(St41, rg1) — Q(5¢,)] (2.13)

This update is done after every iteration, as we can see in Algorithm 2.
The action used to update is the same that was chosen, therefore, this method is

considered to be on-policy, as it learns the same policy that it follows.

Algorithm 2 Sarsa algorithm

: procedure SARSA
Q(s,a) < arbitrary
: Repeat forever:
Initialize s;
Choose a; from s; using policy derived from @ (e.g., e-greedy)
for all step of the episode do
Take action ay, observe ry 1, s¢y1
Choose a;41 from s;11 using policy derived from @ (e.g., e-greedy)
Q(st,ar) < Q(st,ar) + a[regr + YQ(5e41, 1) — Q515 ar)]
St < St41; At = Q41

w2

© »®» 3>

—_
e

25

2.5.2.4 Q-Learning

Q-Learning is another TD method to learn the action-value function Q(s,a).
Differently from Sarsa, the approximated action-value is not necessarily the same

followed by a greedy policy. Q-Learning uses the following update rule:

Q(s¢,a) « Q(s¢,a0) + v [rt+1 + ngx Q(s111,a) — Q(sy, at)] (2.14)

This update is considered to be off-policy, as opposed to Sarsa that is an

on-policy method.

The main difference between both can be seen in the following example ob-
tained from [17|. The Cliff Walking problem is a common example of a grid world
problem. It has a starting state (S) and a goal state (G), as in Figure 2.2. Every
transition has a penalty of —1, except in the region marked as “The CIliff”, which
has a penalty of —100 and take the agent back to the start position. The agent can

move up, down, left and right.

The lower part of the figure shows the performance that each of the algorithms
achieved. Both Sarsa and Q-Learning agents use an e-greedy action selection, with
e = 0.1, but this randomness has different consequences in each algorithm. While
Q-Learning has learned the optimal path, because of the e-greedy action selection,
sometimes, the agent falls the cliff, and so it has a lower on-line performance than
Sarsa, that learned the longer, but safer path. Considering the policy without the

exploration, Q-Learning would have a better performance.

26

R=-1| 17T - —r - safe path
‘ — — optimal path
S The Cliff G
Sarsa
Reward _soq [-/ /W WALV
per Q-learning
epsiode
-75
-100

0 160 26{) 3{!)0 4(|)0 5%&0
Episodes

Figure 2.2: The cliff walking problem comparing Sarsa and Q-Learning. Figure
obtained from [17]

2.5.2.5 Eligibility Traces

Eligibility traces are used to indicate the path the agent has followed, i.e., all

the states that was visited so far, allowing for a refined way to credit past experiences.

Every state is assigned a variable representing the eligibility trace e;(s). Let
A € [0, 1) be the eligibility decay rate. At every time step, it is decayed of a factor A,
where A is the eligibility decay rate and + is the discount factor from the underlying
MDP (Section 2.2). The decay is important to make the past states less relevant
to the update. There are two main ways to update the traces: accumulating or
replacing the traces. In Figure 2.3, we can see the main difference between both.

On accumulating, the trace value is incremented by 1 after every visit, while in

27
replacing it’s capped at 1.

I | | | [| | times of state visits

accumulating trace

replacing trace
Figure 2.3: Two main methods to implement Eligibility Traces: accumulating and

replacing. Figure obtained from [17]

Replacing traces are used in this work and the eligibility trace update beco-

mes:

Aves if
als) = { () s F (2.15)
1 if s=sg
The update rule 2.11, considering traces, is:
V(st) = V(s1) + aidrer(s) (2.16)

This technique is so important that when Sarsa or Q-Learning are combined

with eligibility traces, they are knows as Sarsa()) and Q(\) respectively.

Let us consider a grid-world problem, similar to one from Section 2.5.2.4, but
all states have a reward of 0 except on the goal state that has a reward of 100. On

Figure 2.4, we can compare Sarsa with and without the use of eligibility traces.

28

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa(h) with 2=0.9
i e e I
i
- . - Bat
I ¥* * =] =" * 1

Figure 2.4: The gridworld updates when using Sarsa()). Figure obtained from [17]

2.6 Problems using Reinforcement Learning

So far, we only mentioned a few problems one might deal with while using
reinforcement learning to solve a problem. In the section, we’ll delve into a few of
these problems, why they happen and possible solutions. We also describe how we

solve each of them in this work.

2.6.1 Exploration

In many problems showed so far, the model is unknown, therefore, the agent
must explore. In fact, most of the convergence proofs rely on constant exploration of
all state-space. The exploration-exploitation trade-off has been around for decades,
and mathematicians have been working on it [11]. Usually, a method selecting
random actions is used to guarantee the required exploration, where e-greedy and

Softmax are the two mostly used.

29

2.6.1.1 e-greedy

One way to tackle the exploration-exploitation problem is e-greedy. An ex-
ploration rate € is given and used to select a random action (exploration) instead of
the current best action so far (greedy - exploitation). The exploration rate does not
have to be constant throughout the entire learning episode, but can be gradually
decreased for less exploratory actions as learns proceeds. The action selections is

given according to Algorithm 3.

Algorithm 3 e-greedy action selection
1: procedure e-GREEDY

2: Q(s,a) < the current action-value function
3: p < a randomly generated number between [0, 1]

best action a* from (s, a ifp>e
4: m(als) = Qls,a) P

action selected following a uniform distribution p <e

2.6.1.2 Softmax

One problem in e-greedy action selection is using a uniform distribution to
select a random action. Another approach is to select a random action « in state
s following some probability p(als). In Softmax method, p(als) is chosen following

the Boltzmann distribution:

plals) = ——cay (2.17)

where 7 is a temperature parameter. The higher 7 value, the greater probability to
choose an exploratory action. The 7 parameter can also be lowered as the learning

process evolves.

30

2.6.2 Continuous space-state

In this work only continuous state and action spaces are being considered. In
these scenarios, the exploration-exploitation trade-off is tackled differently. After an
action is selected greedily, a Gaussian noise is added to account for the exploration.
This is controlled using an exploration rate e, indicating how often this noise is
added to the action. Using an exploration rate of 1 means add the noise every time

to the selected greedy action.

2.6.3 Convergence

So far, only discrete tabular version of the algorithms have been showed.
In these circumstances, a convergence proof does exist, and the optimal policy is
obtained if we follow a few requirements, such as constant exploration and learning

parameter a — 0 as steps — oo.

31

3 ACTOR CRITIC

Over the years, several types of reinforcement learning algorithms have been
presented, but they all can be divided in three categories [12]: actor-only, critic-only
and actor-critic. Actor and critic are synonyms for the policy and the value function,

respectively.

Actor-only methods work with a parametrized family of policies. The updates
are done performing gradient descent updates over the actor parameters through
simulation. In this type of algorithms, the spectrum of continuous actions can be
generated. A possible drawback of these algorithms is that the gradient estimators

may have a larger variance.

Critic-only methods rely exclusively on the value function. All the methods
presented in this work so far are considered critic-only. The temporal difference
learning usually has a lower variance in the estimate of the total expected reward
R; as in Equation (2.1). The most usual way to determine a policy using these
methods is selecting greedy actions as in Equation (2.10). However, this is usually
very computation expensive, specially if continuous action are being used. Therefore,
these methods usually discretize the continuous action space, where the optimization
procedure becomes a matter of enumeration. Obviously, this approach undermines

the ability of using continuous actions and thus of finding the true optimum.

Actor-critic methods combines the best of the actor-only and the critic-only
algorithms. Having a separate structure working as the policy, allows the agent to
rapidly decides the action to take, even on continuous action space. The critic’s

estimate of the total expected reward allows the gradient updates of the actor to

32

have a low variance.

3.1 Standard Actor-Critic Algorithm

The Standard Actor-Critic (SAC) algorithm described in this section is the
foundation for this work. The critic update is based on the TD error update from

Section 2.5.2.2, and the actor update

The SAC algorithm is described in Algorithm 4. After initialization (lines 3-
6), the agent samples its current state and instantaneous reward (line 8) and chooses
an action to execute. Let a; be the action executed by the actor at time ¢. To learn
about the environment and to avoid local minima, a; accounts for the policy learned

so far and a white noise term A, (zero-mean Gaussian). Then,
a; = W(St) + At (31)

7(s;) and A, are referred to as the exploitation and exploration components of the

action, respectively (line 10).

The Standard Actor-Critic (SAC) updates are done using the temporal diffe-
rence error. The TD error is obtained according to (2.12) (line 11). Then, procedure
SAC-Update is called to update the value function and the policy (lines 16-20 of
Algorithm 4). The value function (critic) is updated towards minimizing the TD
error (line 18), while the policy (actor) is adjusted towards the explored action only
if the TD error was positive (and away from it otherwise, line 19). In Algorithm 4,

ag and a, are the learning step for the actor and for the critic, respectively.

33

Algorithm 4 SAC algorithm

1. procedure SAC
2: Repeat forever:
3: Vse S:e(s)«0

4: sp < Initial state

5: Apply random input ag

6: t+1

7: loop until episode ends:

8: Measure s; and r,

9: Let A; be a sample from a zero-mean Gaussian
10: ap < m(s) + Ay > Choose an action
11: o =1 +7V(st) — V(st-1) > Calculate td-error
12: Call SAC-Update(d;, Ai—1, v, O, i)
13: Execute a;
14: t+—t+1

15: procedure SAC-UPDATE(d;, Ai—1, O, Qc, St)

16: Update the eligibility trace e(s;)

17: for all s € S do

18: V(s) <= V(s) + acdres(s) > Update the critic
19: 7(s) <= w(s) + 0 A1 > Update the actor
20: Clamp 7(s) to A

34

4 FUNCTION APPROXIMATORS

Considering continuous state and action spaces, as in this work, the policy
and the value function must be approximated using some kind of function approxi-

mators [20].

The goal is to approximate an unknown function from a set of samples.
Typically, a sample m is given by m = [x,y] where x is the input and y is the
output. Considering the actor approximator, for example, the input is a state s;

and the output is the action a; to take in the given state s;.

Let f be the approximator. f can be found to minimize the error e given a

query point q:

e = |lyq— fxq)ll; (4.1)

2.)
where HH2 is the Euclidean norm.

In this work we are going to use the Locally Linear Regression (LLR) method.
We compared LLR (Section 4.2) against another commonly used alternative appro-
ach for approximating functions, Tile Coding, discussed in Section 4.1. In Section

4.4 it 1s showed that LLR learns faster.

35

4.1 Tile Coding

This is a classical approximator in RL, which allows for fast computations.
It works using a fixed number of tilings dividing the space into a number of tiles.
Each tile has a value 0 associated with it. These tiles are usually distributed in a
grid-like, uniform way, but this is not a requirement. Actually, any tile shape and

distribution is possible. A illustrative image on the process is show on Figure 4.1.

4.1.1 Building step

To build the Tile Coding approximator, it’s necessary to allocate memory for

all tilings and initialize all the associated 6 values to some random value.

4.1.2 Querying step

Each query point q either belongs to a tile or not, so tiles are in fact, binary
features. By having many tilings superposed at slightly different positions, we can

query for a point by averaging the values on the selected tiles as in Equation (4.2).

. 1 o
Ya=- >0, (4.2)
i=1

where 7 is the total number of tilings and 6; is the value associated with each tile.

The output y is the sum of the associated value of all the “activated” tiles,

i.e., the tiles where the query point ¢ superposes (the shaded squares on Figure 4.1).

36

Figure 4.1: A query example on a 2-tilings (7 = 2) Tile Coding schema.

4.1.3 Learning step

The learning step in Tile Coding consists of updating the 6 values towards
the y value. Say a query point q activates some set of tiles ©. If the output y has
an associated error e (Equation (4.1)) the approximator should be adjusted towards
minimizing this error, i.e., the 6 values of the set © should be adjusted, following

Equation (4.3).

0, = 0; + atc% Vo e o (4.3)

where ay. € (0,1] is the learning step for Tile Coding,.

4.2 Locally Linear Regression

Locally linear regression is a nonparametric, memory-based function appro-

ximator [1]. Although the function being approximated can be quite complex, if a

37

small region is considered, it can usually be well approximated by a linear model.
LLR stores samples, hence a memory-based approximator, to linearize the region

around a query point.

4.2.1 Building step

The building step in LLR is simple, as the sample only has to be added to the
memory, although some kind of memory management (see Section 4.3) is necessary
since the LLR memory is finite and the transitions can easily exceed the available
memory. Considering a memory of size N, let m; be a stored sample, m; = [x;,y:],
where ¢ = 1,...,N. One sample m; is a row vector containing the input data

x; € R" and output data y; € R’. The samples are stored in a matrix called the

memory M € RY x R, Each row of the memory stores a sample.

4.2.2 Querying step

Given an input query q € R™ and the memory M, our goal is to determine
the output y € RY. To this aim, a linear model around the query is considered.
First, the k-nearest neighbors of q, denoted Ky, are searched in the LLR memory.

For performance purposes, the search can be done with the help of a k-d tree [6].

Let X4 € R* x R"™ and Y, € R* x R’ be the input and output data
matrices associated to the k-nearest neighbors of q. Each row of X contains input
data corresponding to one of the k-nearest neighbors of q padded with a constant
term equal to one, added to allow for a bias on the output. The bias makes the model
affine instead of truly linear. The i-th row of Y4 contains output data corresponding

to the i-th row of X4.

38

Then, a linear model in the parameters 3 € R"*! x R’ for a given input q is:

XqB =Yq (4.4)

The solution of (4.4) is obtained using the least square method and yields 3.
The estimated output y is given by:

y=la,18 (4.5)

4.2.3 Learning step

The learning step using LLR is divided in two steps: inserting a sample and
updating the existing ones. Consider, for example, the actor updates in line 19 in
Algorithm 4. Each sample m; stores a state s € S as the input x; and an action

a € A as the output y;.

The evaluation of the right hand side of line 19 involves a query of 7(s). Using
the nearest neighbors Ky and (4.5), the query is resolved. Let y be the obtained
result. Then, a new sample [s, y+a,0,A;_1] is inserted into memory M. Afterwards,
the output of all samples in I is adjusted by adding a,d;A; 1 to each of them as

well.

Similar steps are executed in the critic update (line 18 in Algorithm 4), using
a separate memory wherein each sample m; stores a state s € S as the input x;,
and the expected return as the output. The effect of memory allocation is studied

in Section 6.4.

Figure 4.2 is an example of the function sine being approximated by a LLR.
The blue dots are the retained memory on LLR after the training, the red line is

the sine function and the blue one is the predicted one based on the memory.

39

—sin(x)
—Approximated sin(x)

© LLR samples
05

sin(x)

-0.5

Figure 4.2: The sine function approximated using LLR with 50 samples. The blue
and the red lines approximately overlap each other.

Analyzing Figure 4.2 we can conclude: a) memory is a limited resource in
a computer, and because of that, one must use some kind of memory management
(Section 4.3) to decide which observations to keep on which to throw away; b) more

points are grouped in the round area, where the linearization is harder.

LLR is actually a specific case of Locally Weighted Regression (LWR), des-
cribed in [1]. The difference here is that one can give more importance (weight)

to the closest neighbors than the farthest ones. The physical interpretation here is
given in Figure 4.3. The one on the left is LLR and the one on the right is LWR.

40

=
g
1

Query Point Query Point

Figure 4.3: LLR and LWR physical interpretation. The left figure represents LLR
and it is constant weight while the right one is LWR using a distance weight. Figure
obtained from [1]

In this work, we use LLR to approximate the actor and the critic and LWR

to approximate the process model, when it is needed.

4.3 Memory Management

Managing the memory usage in LLR [18] is a key process, with impact in
computational performance and accuracy of the approximator. We compared three
ways to manage the memory: randomly, prediction and uniformly distributed and

show that, on this particular problem, the uniformly distributed works better.

4.3.1 Randomly

Every time we have to remove a point from the memory to add another new

one, we just remove a random point to make room to the new one. This is the

41

least computational effort way to solve the problem. We can see on Figure 4.4a,
once the system has converged and uses more and more often the best path, most
of the memory observations get concentrated around this path. On Figure 4.4b we
are comparing different memory sizes for this strategy, where a performance around

—1000 is achieved only using 6000 samples.

-1000

-2000-

>

” . : | — Random with 2000 |
3 : 5 E 3000 Random with 4000
z Tae o 2 | — Random with 6000
2 o 4. i
i . * -4000,
8 .
fod -5000
; . ; . 6000~ iy s s r i g iy i
HL : s 35 2% 0 50 100 150 200 250 300 350 400
angle{rad] Episodes
(a) Final critic (b) Performance on Standard Actor-Critic

Figure 4.4: Final critic and performance using the randomly strategy on LLR

4.3.2 Prediction

This method works by having a relevance value ¢; associated with every entry
in the LLR memory M to describe how useful a given point is globally. So, every

time we have to remove an entry, the one with lowest relevance is deleted.

Every time a sample m; is used to predict some query q, the associated ¢;

value is updated with the difference from the model:

& =neit+ (- |ly: — Fx0)]; (4.6)

42

where 7 € (0, 1].
On Figure 4.5a, we can see that the points get concentrated around the edges
as we expected. On Figure 4.5b we can see that this strategy uses less samples than

the random one, but a steady performance of —1000 is only achieved using 4000

samples.

-1000

! ‘TF‘J '\lll| 'I'["

-2000-

&
3 B b ~— Predicton wth 2000
£ 2 — Prediction with 4000
= 5 L
] o
z -4000
5.
§
3 -5000
i _ _ _ _ —e
5 & s = % 0 50 100 150 200 250 300 350 400
angle{rad] Episodes
(a) Final critic (b) Performance on Standard Actor-Critic

Figure 4.5: Final critic and performance using the prediction strategy on LLR

4.3.3 uniformly distributed

Here, the goal is to cover the most out of the space. As in the prediction
method, every sample has an e value associated as the relevance. The difference
here is € accounts for the mean Euclidean distance to the k-nearest neighbors K; of

the sample.

As before, every time we have to delete a sample, the one with lowest rele-
vance is chosen. In this method, this means to delete the one that has its neighbors

closer.

43

On Figure 4.6a, we can see that the space is much better covered using this
strategy, while on Figure 4.6b we can see this strategy requires much fewer samples

than the previous ones.

| — Unitarm with 500
Uniform with 1000
| = Uniform with 2000

Performance
g
a8

angular velocity[radis]

0 50 100 150 200 250 800 50 400
Epizodes

(a) Final critic (b) Performance on Standard Actor-Critic

Figure 4.6: Final critic and performance using the uniform strategy on LLR

Finally, on Figure 4.7 is possible to see the tests that were made to decide
the best strategy to this work. Uniform is as fast as the others, has a bit higher end
performance and requires less memory. Besides, given the randomness nature of our
study, fill the hyperspace is advised as the actor need to know what to do in every

situation.

4.4 Comparison between Tile Coding and Locally Linear Re-
gression

Given the different function approximators available, we decided to compare
LLR against Tile Coding in order to decide which one to use. On Figure 4.8 it’s
possible to see that not only the LLR achieves a higher end performance but it also
learns faster. When the number of samples is low, LLR generalizes better by not

trying to estimate a large number of parameters from few samples, as Tile Coding

-1000

-2000+

-3000

Performance

-4000

-5000¢

— Uniform 2000
Prediction with 6000

— Random with 6000

-6000
0

Figure 4.7:

would.

50 100 150 200 250 300 350 400
Episodes

Comparison between the three different LLR memory strategies

44

45

-500r

-1000~

-1500

-2000

-2500 Locally Linear Regression

—Tile Coding

Performance

-3000
-3500
-40007
-4500
_5000, | | | | | |
0 100 200 300 400 500 600
Episodes

Figure 4.8: Comparison between Locally Linear Regression and Tile Coding on
Standard Actor Critic

46

5 MODEL-BASED METHODS

5.1 Model Learning

In this section, we will describe what exactly is a transition model, why and

how we can learn it.

5.1.1 What is the transition model

The transition model is a mathematical description of the environment, e.g.,
given an observation, the transition model is able to predict the next state and the
reward associated. More precisely, the transition model has to approximate the

underlying transition matrix 7" and the reward function R, described in Section 2.2.

5.1.2 Why to learn a model

Real experiences can be considered expensive. For example, if a robot is
learning how to walk, every time it falls, it can break, which makes every real
experience financially expensive, and if it takes a few minutes to fix it, it is a time

consuming process.

In Standard Actor-Critic (Section 3.1), we use each experience to perform
only one update. Even using eligibility traces, which updates many states, every
transition is used only once. The main motivation to learn a transition model is to

reuse past experiences in a way that new, unseen experiences, could be predicted.

47
5.1.3 How to learn a model

The transition model is a approximation of the transition matrix 7', but as
we are not considering the stochastic possibility, we are actually approximating the
process model 2’ = f (x,a) which means f output the next state 2’ given the current
state x and the chosen action a. In this work we are using the Locally Weighted
Regression as function approximator (Section 4). The learning process is supervised,
so we need real transitions to learn the model. Basically, we add another step in
the standard actor critic algorithm (Section 3.1). After cach update, we add the

observed transition into the model.

In this work we are going to compare two different ways to use it: the Model

Learning Actor-Critic (Section 5.2) and the Dyna framework (Section 5.3).

5.2 MLAC

The Model Learning Actor-Critic (MLAC) [10] extends Standard Actor-Critic
(SAC) by considering a process model. A process model is a function f which
approximates the state transition model, relating every state-action pair (s,a) to
its corresponding predicted state s, s’ = f (s,a). After every new measurement of
s¢ (line 8 of Algorithm 4), the process model must be updated accordingly. In this
work, we consider process models approximated by LLR, analogous to the actor and

critic.

As the LLR approximation of the value function gives us its gradient with
respect to the state 9V/0s, and the process model f gives us the gradient of the
next state with respect to the action 0s’/da, we can use the chain rule to determine

the gradient of the value of the next state with respect to the action, allowing us to

48

update the actor towards maximizing the value of the next state V().

After action a; is executed the gradient of the value function with respect to

A~

a is given by 0V /0al,—,, = OV/0s|s—50s/0a|,—a, where § = f(s,a). As such, for
every state s, the MLAC gradient-descent actor update is given as follows
oV

m(s) < m(s) + Aoy

0s

- (5.1)

s=5' a=a

MLAC Algorithm, described in Algorithm 5, is obtained from SAC (Algorithm 4) by
updating the process model (line 9) and substituting the actor update (line 20-21)
by (5.1).

Algorithm 5 MLAC algorithm

1: procedure MLAC
2: Repeat forever:
3: Vse S:e(s)«0

4: so < Initial state

5: Apply random input ag

6: t+—1

7 loop until episode ends:

8: Measure s; and r,

9: Update the process model using [s;_1, a;—1, St

10: Let A; be a sample from a zero-mean Gaussian

11: ap < m(se) + Ay > Choose an action
12: o0 =1 + vV (st) — V(si1) > Calculate td-error
13: Call MLAC-Update(d;, Ay 1, qgy Qe, St)

14: Apply a;

15: t+—t+1

16: procedure MLAC-UPDATE(d;, A1, a, Qc, St)
17: Update the eligibility trace e;(s;)
18: for all s € S do

19: V(s) <= V(s) + acoe(s) > Update the critic
20: 7(s) < m(s) + aa%f‘:‘ 9s > Update the actor

21: Clamp m(s) to A

49

5.3 Dyna

The Dyna framework [16] was proposed as way to accelerate the learning
process by using a model to simulate real-world interactions. Using a process model,
Dyna updates both the actor and the critic in the same way as SAC, but using
the learned model to simulate new samples which mimic real-world interactions. A
number of updates using the learned model are done per control step, i.c., every time
the agent learns using the real world, it also simulates a fixed number of interactions
using the learned model. Dyna-SAC is shown in Algorithm 6, and uses the same

SAC-Update procedure from Algorithm 4.

Note on line 13 of Algorithm 6, the current reward is not used to update the
process model. This is because the reward is not being approximated in this work.
Instead, we are using the true reward function R to while processing the updates for
Dyna (line 20). In real applications, the reward function is usually built by hand,

by an expert, so it is available to use in Dyna updates.

The simulated environment should be restarted in some situations (line 25),
such as: 1) in an episodic task, i.e., a task that admits a terminal state, the simu-
lated environment should be restarted every time a terminal state is reached or 2)
the estimated variance of the predicted state becomes too high, indicating an inac-
curate process model [1]. Note that the underlyng region close to the initial state
is typically the region that is sampled most often. Hence, the process model has
higher confidence close to the initial state, which motivates the more intense usage

of that region in the learning process.

The values for the learning steps «,, and a,. can be different from their
non-Dyna version (o, and «., respectively). Using a lower value makes the Dyna

updates less important and can account for model error, for example. In this work,

50

Algorithm 6 Dyna-SAC algorithm

1: procedure DYNA-SAC
2: Repeat forever:

3:

b

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

© »®» 3>

Vse S:e(s)«0
5o < Initial state
Apply random input ag
t+1
S0 < Initial state
ay + random action
t+1
loop until episode ends:
Choose A, at random
Measure s; and r;
Update the process model using [s;_1, a;—1, St
ar = m(sy) + Ay > Choose an action
o =1+ YV (st) — V(s4-1) > Calculate td-error
Call SAC-Update(d;, A1, g, Qc, St)
for fixed number of updates per control step do
Choose A; at random

5t f(5 0,) > Next simulated state
T < R(35_1, @1, 57) > Transition reward
a; + m(55) + A > Next simulated action

op < T+ YV (5) — V(51-1)
Call SAC—Update((?g, Af—lv Alggy Agey 3{)
t+t+1
if should restart simulated environment? then
S0 < Initial state > Restart model
ag + random action
t+1
Apply a;
t+—t+1

51

the values being used are the same for the Dyna and the non-Dyna, as shown in
Table 6.1.

5.3.1 Dyna-MLAC

By combining the Dyna framework with MLAC updates, the Dyna-MLAC
algorithm is proposed. Dyna-MLAC is obtained from Algorithm 6, using the MLAC
update described in Section 5.2. Note that the MLAC update procedure relies on

the process model already provided by the Dyna framework.

52

6 EXPERIMENTS

In this chapter, the performance of the four considered algorithms (Standard
Actor-Critic, Model Learning Actor-Critic, Dyna-SAC and Dyna-MLAC) will be
evaluated using the pendulum swing-up environment. Our goals are to 1) evalu-
ate all four algorithms convergence to the same, optimal solution; 2) illustrate the
trade-off between sampling and computation complexity, showing that Dyna-MLAC
enables the trading between sampling and computation costs and 3) show that using
the Dyna-MLAC updates we can extract more information from the process model

achieving faster convergence.

To compare the algorithms, we plot the rise time against the computation
time. The rise time is the number of episodes the system takes to converge. A trial
is considered to have converged when the agent performed three episodes in a row

with an accumulated reward sum greater than a fixed performance threshold.

The computation time is given by the number of updates per control step.
Note that SAC and MLAC have a fixed number of updates per control step equal to

one. Therefore, our plots show straight lines when analyzing these two algorithms.

To guarantee a fair comparison between Dyna-MLAC and Dyna-SAC, we
use the same set of parameters for the two (including same reward function 7 and

learning steps), and consider the pendulum swing-up problem as described next.

53

6.1 The Pendulum Swing-Up

Considering the pendulum swing-up task, which is one of the benchmark
problems described in [4]. The environment consists of a DC motor attached to
a round plate. A weight of mass m is fixed at the border of the plate, creating a

pendulum, as shown in Figure 6.1.

The task is to swing up and balance the weight, but the motor does not have
enough torque to do this immediately from the starting position; it will first have
to rotate in the opposite direction to gain momentum. At every point in time ¢, the

controller can change the torque u; applied to the pendulum.

m

Figure 6.1: The pendulum swing-up environment.

Let s be the system state. Let 0 be the angle of the pendulum. Then, the
system state is given by the angle and the angular velocity s = [9,9], where the

initial state is so = [, 0].

The following equation characterizes the dynamics of the system given a fixed

torque a, the current angle and the current velocity:

<

j— (mgl sin(6) — (b + %2) 01 %a) L (6.1)

54

The constants are defined as J = 1.91 - 10~*kgm? m = 0.055kg, g =
9.81m/s?, 1 =0.042m, b=3-10"5Nms/rad, K = 0.0536 Nm/A and R = 9.54).

An episode takes 3 seconds, with a sampling time of 0.03 seconds, which leads
to 100 control steps per episode. At every control step, the instantaneous reward is

given by r = —502 — 0.10% — a.

6.1.1 Computational Budget for Model-Based Updates is Beneficial when
Sampling is Costly

To balance the pendulum at the top, a number of changes in direction might
be required. In this section, we consider the pendulum swing-up problem with
maximum allowed torque a € [—1.5,1.5]. In this setup, the weight must change

direction twice before being able to balance at the top.

Table 6.1 shows all the parameters used in the experiments. The SAC/Dyna-
SAC and MLAC/Dyna-MLAC parameters are the same for a fair comparison. The
other two parameters globally set across all four algorithms are: the eligibility decay

rate A = 0.65 and the reward discount rate v = 0.97.

Figure 6.2 shows the rise time as a function of the computation time for
all four algorithms. Under MLAC, Dyna-MLAC and Dyna-SAC, a process model
is used when updating the approximator(s). The additional information extracted

from the samples, stored in the process model, yields faster convergence times against
SAC.

Under Dyna-SAC, a process model is used to simulate real-world interactions,

which generate “virtual samples”. These “virtual samples” are used to calculate the

55

2501
—SAC
— MLAC
200 Dyna—SAC
— Dyna-MLAC
o 150F
=
|_
2
T 100
50r
0 1 2 3 4 5 6 7 8¢
2 2 2

Updates per control step

Figure 6.2: Actions A € [—1.5,1.5] and performance of —1700.

TD error, which in turn is used in the update rules. In that sense, Dyna-SAC impli-
citly uses the process model. The greater the number of “virtual samples” collected
between two control steps, the smaller the rise time (green curve in Figure 6.2). Un-
der MLAC, in contrast, a process model is used explicitly by the actor update rule
(recall the dependence of (5.1) on the process model s’ through ds’/da). Figure 6.2
allows us to compare the advantages and disadvantages of MLAC and Dyna-SAC in
the way they make use of the process model. The rise time of MLAC is smaller than
that of Dyna-SAC if the number of updates allowed per control step in Dyna-SAC is
small, but greater otherwise (in Figure 6.2, the green and blue curves cross roughly

at 4 updates per control step).

56

Under Dyna-MLAC, the process model has a twofold role in the update rule,
as it is used 1) to generate “virtual samples” that will impact the value function and
2) to determine 0s’/da. By extracting more information from the obtained samples,
Dyna-MLAC shows the best performance among the studied algorithms. When the
number of updates per control step is one, the rise time of Dyna-MLAC and of
MLAC are equal. As the number of updates per control step increases, the rise time

decreases, remaining always less than or equal to the rise time of Dyna-SAC.

Note that Dyna-SAC and Dyna-MLAC enable the trading between compu-
tational and sampling budgets. The greater the computational cost (updates per
control step), the smaller the number of samples required to achieve convergence.
However, when the number of updates per control step is greater than 25, the sys-
tem is saturated, i.c., between every pair of control steps the policy converges to
maximize performance on the current process model. After reaching the saturation
regime, when no more information can be extracted either from the obtained real-
world samples or from the learned transition model, the performance of Dyna-SAC
and Dyna-MLAC is equal and additional computational budget will not reduce the
rise time. The fidelity of the learned model thus poses a fundamental limit on the

complexity trade-off.

This trade-off can be better visualized in Figures 6.3 and 6.4. Figure 6.3 shows
the surface obtained from plotting all the individual curves for every experiment,
where the green plane correspond to the desired performance of —1800. The contour
in Figure 6.4 shows exactly the trade-off discussed. Given a target performance
(represented by one of the contours lines), one can decide to take more episodes

(sampling) or update per control step (computation) and get the same result.

1500

-2000

-2500 -

-3000

Rise Time

-3500 -

4000

-4500 -

Episodes

57

Updates per control step

Figure 6.3: Dyna-MLAC performance surface. The green plane correspond to —1800

performance .

|| SAC | MLAC | Dyna-SAC | Dyna-MLAC

Actor Learning step 0.03 | 0.03 0.03 0.03
Actor Memory size 2000 | 2000 2000 2000
Actor # of Neighbors 10 10 10 10
Critic Learning step 0.2 0.3 0.2 0.3
Critic Memory size 2000 | 2000 2000 2000
Critic # of Neighbors 20 20 20 20
Process Model Memory size - 100 100 100
Process Model # of Neighbors - 10 10 10

Table 6.1: Parameters used in algorithms

6.1.2 Model-Based Updates Are Not Always Necessary

Next, we consider a scenario where the motor voltage is controlled with a €

[—3, 3]. This allows the pendulum to be balanced with just one change of direction.

58

w

1000 B 8 B
| 2200 208
|
-2000 | = g’ ”‘ Id .
@ %02 % | | 00
2 2
£ 3000 | i 2% i | i
: 5 -'
T 3000 ; 5 0 i ! 3000
-4000 - o | Y |
- oy 011 s
£4 | | 0
5000 2402 2 (Y A A sins
300250 G 234 1 i I |
™ | 1 J j
200 = s . -
15000 : 3 - 2 LA | |I J -
1
50 4 & 1 P I — Lo 4 HR gy
Episcdes 2 300 250 200 150 100 50
Updates per control step Episodes
(a) Side-view (b) Upper-view

Figure 6.4: Contour plots of the performance curve for Dyna-MLAC (surface in
Figure 6.3). It is possible to see the trade-off between episodes (sampling) and
updates per control step (computation) given a required performance.

All the other parameters are shown in Table 6.1.

Figure 6.5 shows the rise time as a function of the computation time for all
four algorithms. As in the previous setup, both Dyna algorithms are faster than
their non-Dyna counterparts. However, in this experiment Dyna-MLAC converges

roughly as fast as Dyna-SAC.

To explain why Dyna-MLAC and Dyna-SAC have similar performance in
this experiment, consider the left region of Figure 6.2. When the number of updates
per control step is equal to one, the gap between MLAC and SAC determines the
advantage of Dyna-MLAC over Dyna-SAC | as in this case the performance of SAC
(resp., MLAC) and Dyna-SAC (resp., Dyna-MLAC) are equal. In Figure 6.5, the gap
between SAC and MLAC is negligible. This is in agreement with [10], and explains
why the performance of Dyna-MLAC and Dyna-SAC is similar in this experiment.

The same trade-off can also be visualized in this scenario in Figures 6.6 and

59

2501
—SAC
— MLAC

200 - Dyna—SAC
— Dyna-MLAC

Rise Time

50

0 t—2 38 4 5 6 7 8§ 9
2 2
Updates per control step

Figure 6.5: Actions A € [—3, 3] and performance of —1000.

6.7. Figure 6.6 shows the surface obtained from plotting all the individual curves
for every experiment, but the green plane correspond to the desired performance of
—1000 instead.

6.2 Convergence

The value function of the critic is shown in Figure 6.8. For each algorithm,
the figure shows the final values stored in the LLR memory. FEach dot corresponds
to a pair (6, 9) Red dots are associated to greater rewards, and blue dots to smaller

rewards. Note that all four algorithms converged to roughly the same solution.

60

Rise Time

Episodes

Updates per control step

Figure 6.6: Dyna-MLAC performance surface. The green plane correspond to —1000
performance.

6.3 The Effect of the Exploration Rate

The exploration-exploitation trade-off is a known problem in every Reinfor-
cement Learning algorithm. In this work, the exploration rate is a way to guarantee
the exploration step, but what is its effect on the Dyna-SAC and on Dyna-MLAC

algorithms?

Figure 6.9 shows the end performance of Dyna-SAC and Dyna-MLAC with
64 updates per control step as a function of the exploration rate. As in the Dyna
framework we have two different exploration rates, one on the real environment

and the other on the simulated environment, the “model” on the plot states for the

61

g
g

o

9
-1000 |
2008 g g 2008
@ @
E 2000 | 3 4|
'-a- = 2508 = | d
8 -aoon | = g |
[id s B
-4000 at02 S at0s
i 5
]
5000 i 2 4 [s
300 2 = 2
250 - 3l '
200 - - 0% Ao
180 N - T ; ol '
100 - i - 8 10 |
50 4 6 1 L L dopf A f L A |
Episodes 2 300 250 200 150 100 50
Updates per control step Episodes
(a) Side-view (b) Upper-view

Figure 6.7: Contour plots of the performance curve for Dyna-MLAC (surface in
Figure 6.6). It is possible to see the trade-off between episodes (sampling) and
updates per control step (computation) given a required performance.

simulated environment.

As we are doing 64 updates per control step, the effect of the exploration
rate on the simulated environment is small compared to the effect on the real en-
vironment. Notice the importance of exploration on Dyna-SAC (blue line), as its
performance drops if the exploration rate on the real environment is high. The
same effect is not observable on Dyna-MLAC (red line), since the actor updates
are towards the best action using the process model, the exploration is less relevant

here.

6.4 The Effect of the LLR Memory Size

One of the most expensive steps in the algorithms considered in this work
is the search for the k-nearest neighbors [3]. The computational complexity of this

search is directly related to the size of the k-d tree memory. Given a finite amount

]

@

Rt g

angular velocity[rad/s]
b
; &,s' _

.
")
[,

)

|
al .y " y
1] 5 10 15 20
anglefrad]
(a) SAC
|
6{1.':; ' " :a-' ¥ “:"
g e R % T
PLERS s EF Y y
w *.i_" .:;;.; an ‘-"“.;'A.u.k.‘;’ .
B XY .;;-:-.:_f;:.e;l- %ﬁn
L Chianay
. 2y P 2 .
2 - aw‘ R Tt e 1)
2 z‘fo 3 t‘;'_"‘-‘\g'é";é \“W.R‘:'.}
gE i N . A 855 n e
g g RAE
_si.a ?.a:',".: ‘?".:'J
al .y o248
1] 5 10 15 20
anglefrad]

(c) Dyna-SAC

angular velocity[rad/s]

0 5 10
anglefrad]
(b) MLAC
Eedy
s v
i “"';P!-:i‘““' . ¢
ke it X) ‘3: - e J
g TR TE TR LA a%
§ .00 Yy e, W
LR O R
» ¥,
RO LR e
z 3k o e Tty o
R R+ T SR
PIC, DR o413
|8 8, - . e,
SEAE “@riiat
k‘ ':' ’ vi
F" o . W'
* 5 10 15 2
anglefrad]

(d) Dyna-MLAC

62

Figure 6.8: Final critics V() in the standard environment. Every point is a sample
in the LLR memory. Both Dyna-SAC and Dyna-MLAC with 64 updates per control

step

of memory available to an agent, how should it be allocated to the critic, the actor

and the process model?

Figure 6.10 shows the end performance of Dyna-MLAC as a function of the

amount of memory allocated to the actor, critic and process model. The minimum

memory unit is a sample. We consider 64 updates per control step and run the

experiment described in Section 6.1.1 for 20 episodes. If the memory capacity is

63

500
-------------------- 2
P NU—— Nyt SRR o
I | 7| R — ‘.T.'.-.-.,.Q Mo D
@ K |
o K -©-Dyna-SAC
S 2000} B yna-
£ . Dyna-SAC Model
= s -€r-Dyna-MLAC
S \ yna
Q_ i L \ -
2 2500 ™, | “©-Dyna-MLAC Model
L \\
-3000F ™
\\
e‘ “““““
3500 L ."t'.-.-....,__._._...
S
-4000 ‘ ‘ ;
1 2 4 .

Exploration rate

Figure 6.9: Log plot of different exploration rates for Dyna and Dyna-Mlac against
the end performance

smaller than 1000 samples, the end performance increases as additional memory
capacity is provided. However, further increasing the memory capacity beyond 1000
samples does not impact end performance. Note that the process model memory
capacity significantly impacts system performance if it is smaller than 60 samples.
We also observe that the performance of the critic sharply increases when its memory
capacity surpasses 125 samples. The performance of the actor, in contrast, smoothly

increases as a function of its memory capacity.

-1000

-2000

End performance
o
(=]
o
o

Critic

2000

4000 [N
E] O I e e
_6000 i i i i i i

15 30 60 125 250 500 1000

Memory size

64

Figure 6.10: LLR memory size effect on Dyna-MLAC algorithm using 2% updates

per control step.

65

7 CONCLUSIONS AND FUTURE WORK

Sampling and computational complexity are in the essence of any reinforce-
ment learning algorithm. Although very fundamental, the trade-offs involved are
not well understood. In this work, we provided new insights and algorithms that
enable the trading between sampling and computational complexity under the actor-
critic paradigm. Taking Dyna-SAC and MLAC as reference algorithms which bode
well with sampling-constrained and computationally-constrained environments, res-
pectively, we showed that the proposed Dyna-MLAC combines the best of the two
solutions. In particular, given a certain sampling budget and feasible target rise
time, the computational complexity of Dyna-MLAC can be tuned to reach the desi-
red goals. Given the promising results presented in this work, future work consists of
further investigating under which conditions Dyna-MLAC outperforms its inspiring

algorithms.

This shows that Dyna with a limited amount of updates per control step does
not fully explore the information available in the process model, while MLAC can
extract more information from it. A formal analysis showing this is left as a future

work.

Another interesting future work, is knowing whether Dyna-MLAC is also
faster in more complex environments, and the effect of a defective or very non-linear

model, in both Dyna and MLAC updates.

Acknowledgments: this work was partially sponsored by CAPES (BJT/CSF)
and CNPq.

66

REFERENCES

[1] ATKESON, C. G.; MOORE, A.; SCHAAL, S. Locally weighted learning. Arti-
ficial Intelligence Review, Dordrecht, p.11-73, 1997.

[2] BELLMAN, R. Dynamic Programming. 1.ed. Princeton: Princeton Univer-
sity Press, 1957.

[3] BROWN, R. A. Building a Balanced k-d Tree in O(knlogn) Time. Journal of
Computer Graphics Techniques, v.4, n.1, p.50-68, 2015.

[4] BUSONIU, L. et al. Reinforcement Learning and Dynamic Programming
Using Function Approximators. Boca Raton: CRC Press, 2010.

[5] CHANDRASEKARAN, V.; JORDAN, M. I. Computational and statistical tra-
deoffs via convex relaxation. Proceedings of the National Academy of Sci-
ences, v.110, n.13, p.E1181-E1190, 2013.

|6) CLEVELAND, W.; GROSSE, E. Computational methods for local regression.
Statistics and Computing, London, v.1, n.1, p.47-62, 1991.

[7] DEISENROTH, M. P.; RASMUSSEN, C. E. PILCO: a model-based and data-
efficient approach to policy search. In: INTERNATIONAL CONFERENCE ON
MACHINE LEARNING. Proceedings. .. 2011. p.465-472.

[8] FISHMAN, G. S. Monte Carlo: concepts, algorithms, and applications. New

York: Springer, 1996. (Springer series in operations research).

[9] GALINDO-SERRANO, A.; GIUPPONI, L. Distributed Q-Learning for Aggre-
gated Interference Control in Cognitive Radio Networks. IEEE Transactions
on Vehicular Technology, New York, v.59, n.4, p.1823-1834, 2010.

67

[10] GRONDMAN, I. et al. Efficient Model Learning Methods for Actor-Critic Con-
trol. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, New York, v.42, n.3, p.591-602, 2012.

[11] KATEHAKIS, M.; VEINOTT, J. A. The multi-armed bandit problem: de-
composition and computation. Mathematics of Operations Research, Provi-

dence, v.12, n.2, p.262-268, February 1987.

[12] KONDA, V. R.; TSITSIKLIS, J. N. Actor-Critic Algorithms. In: SOLLA, S. A.;
LEEN, T. K.; MULLER, K. R. (Ed.). Advances in Neural Information Pro-
cessing Systems 12. Cambridge: MIT Press, 1999. p.1008-1014.

[13] PETERS, J.; VIJAYAKUMAR, S.; SCHAAL, S. Natural actor-critic. In:
GAMA, J. (Ed.). Machine Learning: ECML 2005. Berlin: Springer, 2005.
p.280-291. (Lecture Notes in Artificial Intelligence, 3720).

[14] RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach.
3rd ed. Upper Saddle River: Prentice Hall, 2010.

[15] SUTTON, R. S. Learning to predict by the methods of temporal differences.
Machine Learning, Boston, v.3, n.1, p.9-44, 1988.

[16] SUTTON, R. S. Integrated Architectures for Learning, Planning, and Reacting
Based on Approximating Dynamic Programming. In: PORTER, B. W.; MOO-
NEY, R. J. (Ed.). Proceedings of the Seventh International Conference
on Machine Learning. Burlington: Morgan Kaufmann, 1990. p.216-224.

[17] SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: an introduction.
Cambridge: MIT Press, 1998.

[18] VAANDRAGER, M. et al. Imitation learning with non-parametric regres-
sion. In: IEEE INTERNATIONAL CONFERENCE ON AUTOMATION QUA-
LITY AND TESTING ROBOTICS, 2012, Cluj-Napoca. Proceedings... New
York:IEEE, 2012. p.91-96.

68

[19] WATKINS, C. J. C. H.; DAYAN, P. Technical Note: qg-learning. Machine
Learning, Boston, v.8, n.3-4, p.279-292, May 1992.

[20] XU, X.; ZUO, L.; HUANG, Z. Reinforcement learning algorithms with function
approximation: recent advances and applications. Information Sciences, New

York, v.261, n.0, p.1 — 31, 2014.

