

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

INSTITUTO TÉRCIO PACITTI DE APLICAÇÕES E PESQUISAS
COMPUTACIONAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

MOHAMMADREZA IMAN

THESEUS: A Routing System for Shared Sensor Networks

Rio de Janeiro

2015

MOHAMMADREZA IMAN

THESEUS: A Routing System for Shared Sensor Networks

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master
(Computer Science, Network and Distributed
systems) in Programa de Pós-Graduação em
Informática, Universidade Federal do Rio de
Janeiro.

Advisors: Flávia Coimbra Delicato

 Claudio Miceli de Farias

Rio de Janeiro

2015

FICHA CATALOGRÁFICA

I31t
Iman, Mohammadreza

THESEUS: a routing system for shared sensor
networks / Mohammadreza Iman. -- Rio de Janeiro,
2015.

123 f.

Orientadora: Flávia Coimbra Delicato.
Coorientador: Claudio Miceli de Farias.
Dissertação (mestrado) - Universidade Federal

do Rio de Janeiro, Instituto Tércio Pacitti de
Aplicações e Pesquisas Computacionais, Programa de
Pós-Graduação em informática, 2015.

1. Roteamento. 2. Redes de sensores

compartilhadas. 3. Redes de sensores sem fio. 4.
Eficiência energética. 5. Agregação de pacotes. I.
Delicato, Flávia Coimbra , orient. II. Farias,
Claudio Miceli de, coorient. III. Título.

MOHAMMADREZA IMAN

THESEUS: A routing system for Shared Sensor Networks

A dissertation submitted in partial fulfillment of the
requirements for the degree of Master (Computer
Science, Network and Distributed systems) in Programa
de Pós-Graduação em Informática, Universidade Federal
do Rio de Janeiro.

Prof. D.Sc. Flávia Coimbra Delicato – Adviser
COPPE/UFRJ, Brasil

UFRJ/PPGI

Prof. D.Sc. Claudio Miceli de Farias – co Adviser
UFRJ/PPGI

Prof. D.Sc. Paulo de Figueiredo Pires
COPPE/UFRJ, Brasil.

UFRJ/PPGI

Prof. Dr. Luiz Fernando Rust da Costa Carmo
UPS, Franca
UFRJ/PPGI

Prof. Dr. José Ferreira de Rezende
Université Pierre et Marie Curie

UFRJ/PESC

Rio de Janeiro

2015

DEDICATION

I take pleasure in dedicating this thesis to everyone in my family and friends. Each of them has

helped to shape my path to success in a distinctive way.

ACKNOWLEDGEMENTS

I am an Iranian, a descendant of Cyrus the Great. This emperor proclaimed 2,500 years ago that
“he would not reign over the people if they did not wish it". He promised not to force any person
to change his religion and faith and guaranteed freedom for all. Cyrus the Great followed “Good
words, good reflection and good deed”, the rules of Zoroastrianism (Persian ancient religion),
this is how to keep it simple, forget about the rest and concentrate on the main parts.
Accordingly, first, I thank the God for giving the wisdom, strength, support and knowledge in
exploring things.

It is a pleasure to thank the many people who made this thesis possible. Though only my name
appears on the cover of this dissertation, a great many people have contributed to its production.
I owe my gratitude to all those people, who have made this dissertation possible and because
of whom, my master degree experience has been one that I will cherish forever.

My deepest gratitude is to my advisor, Dr. Flavia C. Delicato. I had been amazingly fortunate
to have an advisor who gave me the freedom to explore on my own and at the same time the
guidance to recover when my steps faltered. She taught me how to question thoughts and
express ideas. Her patience and support helped me overcome many crisis situations and finish
this dissertation. I hope that one day I would become as professional as her. I am also thankful
to her for encouraging the use of correct grammar and consistent notation in my writings and
for carefully reading and commenting on countless revisions of this manuscript.

My co-advisor, Dr. Claudio Miceli, has been always there to listen and give advice. I am deeply
grateful to him for the long discussions that helped me sort out the technical details of my work.
I am also thankful to him for reading my reports, commenting on my ideas and helping me
understand and enrich my ideas.

Dr. Paulo F. Pires's insightful comments and constructive criticisms at different stages of my
research were thought to provoke, and they helped me focus my ideas. Also, I am grateful to
Dr. Paulo and Dr. Flavia for the opportunity of the one year experience of working on a research
project at EMC Corporation.

Igor L. dos Santos, as well thought me everything I know about TinyOS programming, was the
proofreaders of my document. In him, I have found a very good friend.

In my daily work, I have been blessed with a friendly and cheerful group of fellow students at
UBICOMP laboratory. Jesus Talavera, Bruno Costa, Thomaz Barros, Pedro Silveira, Ricardo
Caldeira, Wagner Lopez, and Taniro Rodrigues who helped me not just in my academic life
even for handling the living issues in a new country. Their support and care helped me
overcome setbacks and stay focused on my graduate study. I greatly value their friendship, and
I deeply appreciate their belief in me.

This research would not have been possible without the financial assistance of CAPES
(Brazilian Funding Agency), the Federal University of Rio de Janeiro (UFRJ), and the
Department of PPGI at Federal University of Rio de Janeiro (Research Scholarships). I express
my gratitude to those agencies.

Above all, I want to thank my family for the support they provided me through my entire life.
Thanks also go to my former manager and friend, Mr. Shahrokh Tabibzadeh, my dear cousin,
Dr. Leili Mohammad Khanli and my beloved sister Zahra Iman, who encouraged me to continue
my academic studies as well as my dear parents.

RESUMO

IMAN, Mohammadreza. THESEUS: a routing system for shared sensor networks. 2015. 131
f. Dissertação (Mestrado em Informática) – Programa de Pós-Graduação em Informática,
Instituto de Matemática, Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.

Monitoramento do ambiente a nossa volta nos mantém informados, nos ajuda a manter

um ambiente saudável e sustentável, e nos alerta sobre os problemas futuros que possam surgir.

Monitoramento nos diz o que está acontecendo; a pesquisa mostra por que algo está

acontecendo, e modelagem ajuda a nos dizer o que pode acontecer. Progresso tecnológico

permitiu o surgimento de vários tipos de sensores para medir fenômenos físicos. Recentes

avanços em dispositivos sensores e tecnologias de comunicação sem fio permitiram a

construção de sensores de baixo custo e pequeno porte. Redes de Sensores Sem Fio (RSSF) são

compostos por um grande número desses dispositivos minúsculos que são alimentados por

bateria e são equipados com uma ou mais unidades de sensoriamento, além de processador,

memória e uma antena de transmissão. RSSFs são usados para coletar dados sobre fenômenos

físicos. RSSFs tradicionais são tipicamente redes específicas de aplicação. A ideia de

compartilhar a detecção e comunicação de infraestrutura de redes de sensores através de

múltiplas aplicações surgiu recentemente. Este conceito é conhecido como Redes de Sensores

Compartilhadas (RSCs). RSCs são capazes de lidar com mais de uma aplicação

simultaneamente de forma eficiente. Da mesma forma que as RSSFs, o maior desafio em RSCs

resulta das restrições quanto ao consumo de energia dos nós sensores, que incentiva o

desenvolvimento de técnicas para poupar o máximo de energia dos nós sensores quanto

possível. Neste contexto, algoritmos de roteamento poderiam desempenhar um papel

fundamental para melhorar o tempo de vida da rede.

THESEUS é um sistema de roteamento eficiente em termos de consumo de energia para

redes de sensores compartilhadas (RSCs), com o principal objetivo de estender o tempo de vida

da rede. THESEUS tem duas características que o distinguem de outros trabalhos encontrados

na literatura de redes de sensores sem fio (RSSFs) e Rede de Sensores Compartilhadas (RSCs).

Em primeiro lugar, economiza energia de nós de uma RSC usando um algoritmo de agregação

de pacotes, o que reduz o número de transmissões. Em segundo lugar, THESEUS equilibra o

consumo de energia em toda a RSC, graças ao seu algoritmo de seleção de rota dinâmico ciente

do QoS e da energia. Tal balanceamento do uso da energia evita a particionamento de rede

devido ao esgotamento de energia de alguns nós utilizados extensivamente utilizados. Ambos

os recursos de THESEUS resultam em prolongar o tempo de vida da RSC. Experimentos foram

realizados a fim de avaliar a eficácia do THESEUS em melhorar o tempo de vida da RSC. Além

disso, THESEUS suporta vários nós sorvedouros, portanto, é capaz de ajustar dinamicamente

rotas sempre que um nó sorvedouro é adicionado ou removido. A avaliação realizada mostra

melhorias significativas no consumo de energia e em relação ao equilíbrio do consumo de

energia, em comparação com os trabalhos relacionados na literatura Rede de Sensores Sem Fio

(RSSF).

Palavras-chave: Roteamento. Redes de sensores compartilhadas. Redes de sensores sem fio.

Eficiência energética. Agregação de pacotes. Vários nós sorvedouros.

ABSTRACT

IMAN, Mohammadreza. THESEUS: a routing system for shared sensor networks. 2015. 131
f. Dissertação (Mestrado em Informática) – Programa de Pós-Graduação em Informática,
Instituto de Matemática, Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.

Monitoring our surrounding environment keeps us informed, helps us to maintain a

healthy and sustainable environment, and alerts us about future problems that may arise.

Monitoring tells us what is happening; research shows why something is happening, and

modeling helps to tell us what can happen. Technology progress provides several types of

sensors for measuring physical phenomena. Recent advances in sensor devices and wireless

communication technologies have enabled the building of low-cost and small-sized sensors.

Wireless Sensor Networks (WSN) are composed of a large number of these tiny battery-

operated devices equipped with one or more sensing units, processor, memory, and a wireless

radio. WSNs are used to gather data about physical phenomena. Traditional WSNs are typically

application specific networks. The idea of sharing the sensing and communication

infrastructure of WSNs through multiple applications has recently emerged. This concept is

known as Shared Sensor Networks (SSNs). SSNs are able to handle more than one application

simultaneously in an efficient way. Similar to WSNs, the greatest challenge in SSNs arises from

the energy-constrained nature of sensor nodes, which encourages the development of

techniques to save as much energy from sensor nodes as possible. In this context, routing

algorithms could play a key role to improve the network lifetime.

THESEUS is an energy-efficient routing system for Shared Sensor Networks (SSNs),

with the primary goal of extending the network lifetime. THESEUS has two features that

distinguish it from other works found in the Wireless Sensor Network (WSN) and Shared

Sensor Network (SSN) literature. First, it saves energy of SSN nodes by using a packet

aggregation algorithm, which reduces the number of transmissions. Second, THESEUS

balances energy usage in the whole SSN thanks to its dynamic, QoS and energy aware route

selection algorithms. Such energy usage balancing avoids network partitioning due to the

energy depletion of some more extensively used nodes. Both features of THESEUS result in

prolonging the SSN lifetime. Experiments were performed with the purpose of evaluating

THESEUS effectiveness for improving the SSNs lifetime. Furthermore, THESEUS supports

multiple sink nodes, thus it is able to adjust routes whenever a sink node is added or removed,

dynamically. The conducted evaluation shows significant improvements in the energy usage

and the energy balance metrics, compared to the related work in the Wireless Sensor Network

(WSN) literature.

Keywords: Routing. Shared sensor networks. Wireless sensor networks. Energy efficiency.

Packet aggregation. Multiple sink nodes.

LIST OF FIGURES

FIGURE 1. SAMPLE OF NETWORK TOPOLOGY ... 40
FIGURE 2. THESEUS PACKET AGGREGATION ALGORITHM ... 43
FIGURE 3. THESEUS SINK ARCHITECTURE .. 48
FIGURE 4. THESEUS NODE ARCHITECTURE... 49
FIGURE 5. THESEUS SINK ALGORITHM ... 51
FIGURE 6. THESEUS NODE ALGORITHM ... 52
FIGURE 7. COMPONENTS AND INTERFACES OF THESEUS SINK MANAGER APPLICATION

(TINYOS) ... 56
FIGURE 8. COMPONENTS AND INTERFACES OF THESEUS NODE MANAGER APPLICATION

(TINYOS) ... 57
FIGURE 9. GRAPH OF DATA FLOWS DURING A CYCLE OF THESEUS SIMULATION (100

NODES) ... 64
FIGURE 10. RESULTS OF THE ENERGY AVERAGE METRIC ... 66
FIGURE 11. RESULTS OF THE ENERGY PSTD METRIC ... 67
FIGURE 12. RESULTS OF THE CPU ACTIVE METRIC ... 68
FIGURE 13. RESULTS OF THE NUMBER OF PACKETS USED IN ROUTE CONSTRUCTION

METRIC .. 69
FIGURE 14. RESULTS OF THE ROUTE CONSTRUCTION TIME METRIC.................................... 69
FIGURE 15. RESULTS OF THE NET. RATE METRIC .. 70
FIGURE 16. RESULTS OF THE AGGREGATION RATE METRIC ... 71
FIGURE 17. AGGREGATION DETAIL ... 71
FIGURE 18. RESULTS OF THE PACKET LOSS METRIC ... 72
FIGURE 19. RESULTS OF THE SAMPLE LOSS METRIC ... 72
FIGURE 20. RESULTS OF THE DELAY TIME METRIC ... 73
FIGURE 21. TOPOLOGY OF 100 NODES AND 4 APPLICATIONS ... 76
FIGURE 23. RESULTS OF THE ENERGY PSTD METRIC ... 77
FIGURE 22. RESULTS OF THE ENERGY AVERAGE METRIC ... 77
FIGURE 24. GRAPHS OF DATA FLOWS DURING A CYCLE OF THESEUS SIMULATION (100

NODES) FOR 3, 5, 10, AND 15 METERS DISTANCES ... 79
FIGURE 25. GRAPH OF DATA FLOWS DURING A CYCLE OF THESEUS SIMULATION (100

NODES) FOR ONE OF NODES RANDOM POSITIONS .. 80
FIGURE 26. GRAPH OF DATA FLOWS DURING A CYCLE OF THESEUS SIMULATION (100

NODES) FOR THE CENTRAL SINK NODE .. 81
FIGURE 27. GRAPHS OF DATA FLOWS OF SIX CYCLES OF MULTI SINK TEST, WHERE THE FIRST

SINK REMOVED IN CYCLE IDS: 3, 4, AND 5 ... 87
FIGURE 28. GRAPH OF DATA FLOWS DURING A CYCLE OF SIMULATING 99 NODES AND 4

SINKS .. 88
FIGURE 29. GRAPH OF DATA FLOWS DURING A CYCLE OF REAL TEST SCENARIO 89

LIST OF TABLES

TABLE 1. RELATED WORKS COMPARISON ... 37
TABLE 2. RESULTS OF NUMBER OF RUNNING APPLICATIONS VARIATION TESTS 76
TABLE 3. RESULTS OF NODES DISTANCE VARIATION TESTS .. 78
TABLE 4. RESULTS OF THE NODES RANDOM POSITION VARIATION TESTS 80
TABLE 5. RESULTS OF THE SINK NODE POSITION TESTS .. 82
TABLE 6. RESULTS OF THE CYCLE TIME VARIATION TESTS ... 82
TABLE 7. RESULTS OF THE MDTC VARIATION TESTS .. 83
TABLE 8. RESULTS OF THE SIMULATION TIME VARIATION TESTS ... 84
TABLE 9. RESULTS OF THE ADD AND REMOVE SINK NODE ... 86
TABLE 10. RESULTS OF THE ADD AND REMOVE SINK NODE ... 86
TABLE 11. RESULTS OF THE REAL AND SIMULATED TESTS ... 90

LIST OF ABBREVIATIONS

AMCR Adaptive Multi-Criteria Routing

APTEEN Adaptive Periodic TEEN

BS Base Station

CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CDMA Code Division Multiple Access

GAF Geographic Adaptive Fidelity

GEAR Geographic and Energy Aware Routing

GPS Global Positioning System

GQM Goal Question Metric

ID Identification/Identity/Identifier

IP Internet Protocol

LEACH Low Energy Adaptive Clustering Hierarchy

MAC Medium Access Control

MCFA Minimum Cost Forwarding Algorithm

MDT Maximum accepted Delay Time

OS Operating System

PEGASIS Power-Efficient GAthering in Sensor Information Systems

PPGI Programa de Pós-Graduação em Informática

PROC Proactive ROuting with Coordination

QoS Quality of Service

RSC Redes de Sensores Compartilhada

RSSF Redes de Sensores Sem Fio

SN Sink Node

SPIN Sensor Protocols for Information via Negotiation

SSN Shared Sensor Network

TDMA Time Division Multiple Access

TEEN Threshold-sensitive Energy Efficient sensor Network protocol

UFRJ Universidade Federal do Rio de Janeiro

USB Universal Serial Bus

WSN Wireless Sensor Network

TABLE OF CONTENTS

1. INTRODUCTION .. 15
1.1 MOTIVATION .. 16
1.2 CONTRIBUTIONS ... 18
1.3 ORGANIZATION ... 19

2. BASIC CONCEPTS ... 20
2.1 SHARED SENSOR NETWORKS .. 20
2.2 ROUTING ON SSNS .. 26

3. RELATED WORK ... 35
4. PROPOSAL .. 38

4.1 PROC OVERVIEW ... 38
4.2 SSN MODEL AND ASSUMPTIONS .. 40
4.3 THESEUS .. 41

4.3.1 THESEUS packet aggregation .. 43
4.3.2 THESEUS application function .. 45
4.3.3 THESEUS architecture .. 48
4.3.4 THESEUS operation .. 50

5. IMPLEMENTATION .. 55
6. EVALUATION ... 60

6.1 COMPARING THESEUS AND PROC .. 60
6.1.1 GQM .. 60
6.1.2 Evaluation methodology and scenarios .. 63
6.1.3 Tests and analysis of results... 65

6.2 ANALYSIS OF THE IMPACTS OF VARIATION OF IMPORTANT
PARAMETERS .. 74

6.2.1 GQM .. 74
6.2.2 Evaluation methodology and scenarios .. 75
6.2.3 Tests and analysis of results... 75

6.3 ANALYSIS OF THE IMPACTS OF USING MORE THAN ONE SINK NODE ON
THESEUS ... 85

6.3.1 GQM .. 85
6.3.2 Evaluation methodology and scenarios .. 85
6.3.3 Tests and analysis of results... 85

6.4 COMPARISON BETWEEN REAL AND SIMULATED NODES 89
7. CONCLUSIONS AND FUTURE WORK .. 91

7.1 FUTURE WORK ... 92
REFERENCES ... 94

APPENDIX A, THE PUBLISHED ARTICLE: .. 97
APPENDIX B, THE IMPLEMENTED CODES FOR TINYOS: 105

I) THESEUS SINK MANAGER APPLICATION ... 105
1) Makefile .. 105
2) message.h .. 105
3) THESEUS_SinkManagerAppC.nc .. 106
4) THESEUS_SinkManagerC.nc ... 106

II) THESEUS NODE MANAGER APPLICATION .. 108
1) Makefile .. 108
2) message.h .. 108
3) THESEUS_NodeManagerAppC.nc ... 110
4) THESEUS_NodeManagerAppC.nc ... 111

15

1. INTRODUCTION

Monitoring our surrounding environment keeps us informed, helps us to maintain a

healthy and sustainable environment, and alerts us about future problems that may arise. We

use monitoring in several activities, from simple tasks of everyday life till advanced industrial

applications to keep track of weather, traffic patterns, process productivity etc (LOVETT et al.,

2007). We make decisions based on this information (LOVETT et al., 2007). Through such

careful observation, we can make science-based management decisions. For example, Charles

David Keeling's long-term measurements of atmospheric carbon dioxide at Mauna Loa, HI

provided the first unmistakable evidence that carbon dioxide emissions from human activities

were warming the Earth. As a result of Keeling's and other scientists' careful and consistent

monitoring, global climate change is now widely accepted as scientific fact (LOVETT et al.,

2007).

Monitoring, research, and modeling are three legs of a stool that provides scientific

support for ecosystem restoration and management (LOVETT et al., 2007). Monitoring tells us

what is happening; analysing shows why something is happening, and modeling helps to tell us

what can happen (LOVETT et al., 2007). Long-term observations also expose trends and

patterns that can improve evaluation of experimental results or yield new research hypotheses.

In this context, technologies progress provides various types of sensors for measuring physical

phenomena, thus effectively performing monitoring tasks. Recent advances in

microelectromechanical systems and wireless communication technologies have enabled the

building of sensor devices that are low-cost, small-sized, energy and resource constrained

equipped with sensing interfaces and wireless links. A Wireless Sensor Network (WSN) is

composed of a large number of such sensors (DELICATO et al., 2012).

Wireless Sensor Networks (WSNs) is one of the subclasses of ad hoc networks. WSNs

are used to gather data about physical phenomena and send them to client applications through

one or more network exit points often called sink nodes or base stations. Sink nodes are

powerful devices, for instance, a personal computer, connected to a constant and reliable power

source, that are responsible for collecting sensed data from all sensors, further processing them,

and making them available to applications and information systems via external networks such

as the Internet. Sensor nodes act in a cooperative way to complete sensing tasks, providing data

with both spatial and temporal resolutions which would be very difficult (or even impossible)

16

to achieve by using other monitoring techniques such as wired sensors (DELICATO et al.,

2012).

Traditional WSNs are generally application specific networks, i.e. they are designed and

deployed to serve a single application (LEONTIADIS et al., 2012). Considering the amount of

nodes scattered in an area with each one usually having various sensing units, the idea of sharing

the sensing and communication infrastructure of WSNs through multiple applications has

recently emerged. This concept is known as Shared Sensor Networks (SSNs) (LEONTIADIS

et al., 2012). SSNs are able to handle more than one application simultaneously in an efficient

way by avoiding performing redundant tasks among applications, and by exploiting data

aggregation and other functionalities of the network to increase resource utilization while

meeting application requirements. Essentially, a SSN can be defined as a platform that allows

the execution of multiple virtual sensor networks on top of a single physical infrastructure

(LEONTIADIS et al., 2012). Similarly to WSNs, the greatest challenge in SSNs arises from

the energy-constrained nature of sensor nodes, which encourages the development of

techniques to save as much energy from sensor nodes as possible, so as to prolong the network

operational lifetime. On top of this, SSNs have new requirements and pose many new

challenges that require adapting techniques/algorithms/protocols already successfully used in

traditional WSNs. Among the several challenges raised by the SSN paradigm (LEONTIADIS

et al., 2012) (MADRIA et al., 2014), to the best of our knowledge, there is no work about

routing algorithms for these networks. Routing algorithms is one of the key challenges to be

tackled in order to foster the widespread use of the SSN paradigm and it is the focus of our

work.

1.1 MOTIVATION

Routing in WSNs is very challenging due to the inherent characteristics that distinguish

these networks from other wireless networks. First, due to the relatively large number of sensor

nodes, it is challenging to build a global addressing scheme. In addition, for WSN applications,

often getting the data is more important than knowing the topological IDs of which nodes sent

the data. Threfore, it is not relevant to address nodes by their topological ID (such as IP), instead

the WSN applications are interested in addressing nodes by their attributes (geographical

location, type of sensing units, etc). Furthermore, also due to their relatively large number,

sensor nodes need to be self-organizing, especially as the operation of sensor networks should

be unattended (or requiring a minimal human intervention). Second, in contrast to typical

17

communication networks, almost all applications of sensor networks require the sensed data to

be carried from multiple sources to either a single or few sink nodes. Third, sensor nodes are

tightly constrained in terms of energy, processing, and storage capacities. Thus, they require

careful resource management. Fourth, in most application scenarios, nodes in WSNs are

generally stationary after deployment except for maybe a few mobile nodes. Nodes in other

traditional wireless networks are free to move, which results in unpredictable and frequent

topological changes. However, in some applications such as target tracking and visual sensor

network applications (CHEN et al., 2007), some sensor nodes may be allowed to move and

change their location. Fifth, sensor networks are application-specific (i.e., design requirements

of a sensor network change with application). For example, the challenging problem of forest

fire detection is different from that of a periodic weather monitoring task. Sixth, position

awareness of sensor nodes is important since data collection is normally based on the location.

Finally, data collected by many sensors in WSNs is typically based on a common phenomena,

so there is a high probability that this data has some redundancy. Such redundancy needs to be

exploited by the routing protocols to improve energy and bandwidth utilization (AL-KARAKI

et al., 2004).

Due to such differences, many new algorithms have been proposed to address the

routing problem in WSNs. These routing mechanisms have taken into consideration the

inherent features of WSNs along with the application and architecture requirements. The task

of finding and maintaining routes in WSNs is nontrivial since energy restrictions, and sudden

changes in node status (e.g., failure) cause frequent and unpredictable topological changes (AL-

KARAKI et al., 2004).

Routing algorithms for WSNs typically have strong impacts on the network lifetime

since radio communication is often regarded as the major source of energy consumption in

these networks (AKKAYA et al., 2005) (DIETRICH et al., 2009). Routing protocols can

balance the energy usage of sensor nodes by selecting appropriate routes dynamically, and also

prolong network lifetime by reducing the number of message transmissions, since sending

messages has a higher energy cost than processing in sensor platforms (AKKAYA et al., 2005).

Therefore, any routing protocol for WSNs must work in an energy-efficient way.

The routing challenges posed by the emergent scenario of SSN concerns the aspect that

(i) executing a larger number of applications generates an enormous number of network

transmissions and, consequently, increases energy consumption thus potentially reducing the

18

network lifetime; (ii) multi-application demands may impose additional burden on some set of

nodes and jeopardize the energy usage balance in the network, consequently reducing the whole

network lifetime while many powerful nodes remains alive, characterizing a network partition.

Therefore, routing protocols for WSNs are potentially inefficient for SSNs since most of such

protocols are designed based on a single application using the network. Consequently, the

development of routing algorithms for SSNs should be designed from scratch by considering

the importance of reducing the number of message transmissions and balancing energy usage

to prolong the network lifetime.

To minimize energy consumption, routing techniques proposed in the literature for

WSNs employ some well-known routing strategies as well as tactics specifically tailored to

WSNs, such as data aggregation and in-network processing, clustering, different node role

assignment, and data-centric methods (AL-KARAKI et al., 2004). Most of such routing

protocols operate at the application level, using information fusion (NAKAMURA et al., 2007)

and data aggregation (RAJAGOPALAN et al., 2006) techniques. Such solutions aim at

reducing the number of transmitted packets (network transmissions), and consequently

reducing energy consumption. Traditionally, most of these fusion techniques are performed at

the application level by analyzing the sensed measures/data. We believe that it is possible to

achieve further benefits and leverage the energy efficiency of SSN by providing a solution at

the network (routing) level that acts in cooperation with application level strategies.

1.2 CONTRIBUTIONS

In this context, we propose THESEUS as an application-aware routing system for SSNs

along with methods for reducing the number of message transmissions and balancing energy

usage that are necessary to prolong the network lifetime. Such routing method is said to be

application-aware because it uses techniques to select routes based on applications and QoS

requirements. THESEUS routing algorithm is inspired by Proactive Routing with Coordination

(PROC) protocol (MACEDO et al., 2006), incorporating all the strengths of the original

algorithms, extending and leveraging them for usage in the specific context of SSNs.

The fundamental idea behind PROC is to select a set of forwarding nodes (called

coordinators) based on application demands. Such selection process is repeated periodically to

balance the energy usage of coordinators, being important to mention that coordinators may

show more energy usage than the regular nodes, because they receive and send more messages

19

than those. The coordinators create the backbone for the routing process (MACEDO et al.,

2006).

Considering the specific features of SSNs, THESEUS detailed contributions are:

(i) THESEUS implements a technique for packet aggregation independent of the packet

contents with the goal of prolonging the network lifetime. The advantages of using such

technique are: to avoid a dependency on the data content from the aggregation process; and to

work completely on the network layer.

(ii) THESEUS updates the coordinator selection process to meet the demands of

multiple applications in order to better balance the energy usage. The aim of improving the

PROC app function is to modify it for SSNs conditions such as considering the number of

applications and network traffic during the coordinator selection to select more coordinators

among the set of nodes that generate more data samples.

(iii) THESEUS makes use of QoS parameters and applications’ requirements to adapt

the routing paths.

(iv) THESEUS supports multiple sink nodes dynamically, bringing the ability of using

more than one sink node in nework (which will be probably the typical case for SSN), and also

bringing the ability to add or remove sink nodes while the network is working.

1.3 ORGANIZATION

The rest of this document is structured as follows: Chapter 2 describes the basic

concepts; Chapter 3 discusses related work; Chapter 4 describes the proposal included the detail

of our contributions; Chapter 5 details the implementation; Chapter 6 presents the evaluations,

and finally, Chapter 7 contains conclusions and future work.

20

2. BASIC CONCEPTS

Our research is focused on routing techniques for SSN environment. Therefore, in this

chapter we introduce the fundamental concepts of SSNs and routing techniques for wireless

sensor networks, the two main areas of our research.

2.1 SHARED SENSOR NETWORKS

A Wireless Sensor Network (WSN) is a network composed of smart sensors, devices

that are endowed with processing, storage, sensing and wireless communication resources. The

communication capability allows the sensor nodes to be grouped, offering as benefits: (i)

redundancy of communication channels that advantages fault tolerance (which does not occur

with wired sensing systems); (ii) flexibility of installation and configuration and (iii) low

maintenance costs. WSNs’ nodes are devices with an energy source (usually non-rechargeable

batteries) and limited computational capabilities. WSNs encompass a sheer number of such

devices, often in the order of hundreds or thousands that act collaboratively with the purpose to

monitor physical and environmental variables such as temperature, humidity, vibration and

light intensity. Sensing devices typically used in the context of Smart Spaces are

accelerometers, temperature sensors, humidity sensors and magnetometers. The data acquired

by these sensing devices are sent to one or more sink nodes, which are computing devices that

do not have the power limitations of the sensors and have higher processing capabilities. Sink

nodes are part of a WSN architecture and also act as entry points for submitting application

requests and as sensing data collection points (DELICATO et al., 2012) (TILAK et al., 2002).

In the context of conventional wireless sensor network (WSN), in order to maintain the

network, a user needs to own a WSN, program the wireless sensors, deploy them and spend

time and resources. The user is also limited to one application per sensor network. In recent

years, the WSNs field has undergone several changes that influenced the design and operation

of these networks. Among these changes, there is the emergence of Shared Sensor Networks

(SSN) (LEONTIADIS et al., 2012). Which, instead of taking into account a fit-for-purpose

design with the primary aim of supporting a single application that belongs to a single authority

(usually the owner of the infrastructure), allows the communication and sensing infrastructure

to be shared by multiple applications that may belong to different users, thus optimizing the use

of resources. The fact that SSN share the same sensing and communication infrastructure

among several applications makes this kind of network one of the most promising solutions for

21

Smart Spaces applications. Without the infrastructure sharing, there would be unnecessary

replication of the sensing and communication infrastructure as the number of applications

increase (EFSTRATIOU et al., 2010).

A shared sensor network is a WSN, which serves as a flexible infrastructure capable of

supporting resource sharing between applications. Users can submit new applications to the

shared sensor network through the sink node. Applications can be deployed dynamically at

different times based on user demand. Furthermore, different applications can have different

priorities according to their importance. Node sensors can be heterogeneous in terms of

supported sensors and available energy. A shared sensor network works as a highly flexible

infrastructure that supports different levels of resource sharing between applications. For

example, multiple applications can share (1) one sensing unit in a sensor node e.g., a

magnetometer can be used to detect parked cars and to detect of moving vehicles, (2) a sensor

node with multiple sensing units and (3) one network with multiple applications on different

sensor nodes. The SSN represent a total decoupling of applications and physical infrastructure

of sensing and transmission (LEONTIADIS et al., 2012).

Sharing WSNs is also known as Sensor cloud and virtual sensor networks (MADRIA

et al., 2014) with small differences in concepts. Sensor cloud is a concept of using virtual

sensors that constructed on top of physical wireless sensors. The virtualization could change

dynamically and automatically based on users applications’ requests. Sensor clouds bring a

number of benefits. Three main groups of these advantages are: providing better sensor

management capability, sharing same sensed data between users, and removing the need for

users to go through low-level details and challenges inside the network. A customized view of

physical sensors that gathers filtered data for a user or a specified application is the concept of

virtual sensors. As a matter of fact, resource-constrained sensors cannot handle multiple tasks

as multiple VMs in the concept of cloud computing. Thus, sensor cloud uses “virtual sensors

as an image in the software of the corresponding physical sensors and the user currently holding

that virtual sensor” (MADRIA et al., 2014).

In the following, several properties of both SSNs and application-specific WSNs are

introduced and compared. By doing so, we can obtain a better understanding of the specific

differences between SSN and application-specific WSN design. The analyzed properties are (1)

Ownership; (2) Platform Dependency; (3) Code Modularization; (4) Resource Sharing; and (5)

Application Information Sharing.

22

Ownership: The ownership property concerns the relationship between the hardware

owner and the hardware user. These two parties are from the same authority or agreement is

established between the two stakeholders before the hardware deployment. This is because no

third party is allowed to get involved in the system operation after the system deployment.

As mentioned earlier, the application-specific WSN aims to run a single application on

top of the infrastructure during the whole system lifetime. In such designs, all the resources are

reserved for the one application. Moreover, the application objectives as well as the application

composition rarely change, and requests from other applications are unlikely to be served at

runtime. These design principles make the application-specific WSN behave like a closed

system. This approach limits the possibility of outsourcing the hardware ownership to an

external authority, as well as preventing third-party users from invoking services provided by

the system. On the contrary, SSN must be built so that multiple applications are able to run on

the same infrastructure, sharing the underlying hardware resources. More importantly,

applications can be dynamically submitted to the system at runtime, regardless of whether any

arrangement is established beforehand (LI et al., 2014). With such design principles, the

deployed system works like an open system offering a high degree of flexibility in hardware

management (HUGHES et al., 2009), system maintenance (EFSTRATIOU et al., 2010) and

application processing (RAICU et al., 2008).

Platform Dependency: The property of platform dependency concerns how dependent

the application is on the underlying infrastructure. The design and implementation of

application components are based on the prerequisite that they should use the same node

hardware, operation system (OS), and programming language.

In application-specific WSN, for reducing the complexity of the application

development, the supported hardware is usually selected from the same manufacturer; all the

nodes are preferably of the same model, run the same OS and communication protocols and

have identical sensing capabilities. This design principle implies that application-specific

WSNs are normally homogeneous. In this sense, when two system components communicate

with each other, no complex and expensive bridging solution is required. However, this kind of

system is usually bounded to specific requirements and restrictions posed by the platforms in

which it is deployed, such as data rate, radio specifications and radio frequency (EFSTRATIOU

et al., 2010). Moreover, building a WSN with homogenous nodes regarding their sensing

capabilities constrains the types of applications that can use such networks. If it is necessary to

23

run the same application on a different type of node hardware, all code must be rewritten from

scratch to accommodate the new programming language and the primitives provided by the

new platform operating system (RODRIGUES et al., 2013).

On the other hand, SSNs are often heterogeneous, which means the system is composed

of multiple types of sensor hardware that are manufactured by different vendors, or even use

different operating systems (OS), and programming languages. To cope with such

heterogeneity, SSNs must provide appropriate mechanisms (FLORES-CORTÉS et al., 2007)

that hide the hardware-specific details from end-users and make the SSN operate as a

homogeneous platform (JAYASUMANA et al., 2007) for each running application. In this

sense, (i) applications are not tied to the underlying sensor platform and (ii) the same

infrastructure encompasses nodes with different hardware/software. The interaction between

nodes from different platforms and even between multiple networks, designed with different

technologies and protocol stacks, is required in SSN design. Such interoperability issues are

often addressed by the insertion of an intermediary software layer that can be implemented

following different approaches.

Code Modularization: Code modularization property concerns the relationship

between the code at the application level and the code belonging to the underlying levels

(communication protocols and OS).

In general, the development of application-specific WSNs is carried out under the

assumption that the particular application is the owner of the physical network and this

application is the only one that uses the hardware infrastructure. Therefore, all the application

requirements are known a priori and WSN applications are developed as monolithic code

installed on the nodes before the network deployment in the target area. This strong coupling

leverages the customization of all the software layers in the network stack, and mostly aims at

providing a high efficiency in terms of energy consumption. However, the design strategies for

building the code for application-specific WSN are often ad-hoc and impose direct interaction

of the application with the underlying embedded operating system, or even with hardware

components of sensor nodes. Although such an approach is energy efficient, it generates rigid

systems that are difficult to maintain, update and change, besides not promoting any reuse of

software artifacts.

In the SSN, the presence of two user roles (LEONTIADIS et al., 2012) (FARIAS et al.,

2014) is generally considered, namely, the infrastructure owner and the application owner. The

24

infrastructure owner is assumed to have full control over the hardware infrastructure, while the

application owners are assumed to have basic knowledge of the geography of the monitoring

area and the functionalities provided by the network. One major requirement (DELICATO et

al., 2013) for SSN design is to enable newly arrived applications to be performed on the shared

hardware infrastructure without interrupting the operation of previously running applications.

To address such requirements, it is first necessary to provide solutions allowing, at development

time, the clear separation of the application code and the underlying layers of code. Thus, the

code to be installed on the sensor nodes can be built as a set of cohesive modules/components,

with well-defined functions, instead of a monolithic piece of code encompassing multiple

functions belonging to different abstraction levels. Second, it is necessary to break the tight

coupling between the binary code and the physical hardware, built at compile and deployment

times. However, both types of coupling (among the different layers of software to be deployed

on a node and between the code and the underlying hardware) were adopted in application-

specific WSN for the purpose of energy efficiency. Therefore, techniques used to break such

couplings would allow the required flexibility and separation of concerns at the expense of

lower energy efficiency. Such trade-off between flexibility/reusability/extensibility and energy

efficiency is a challenge to be tackled in SSN design. Finally, it is important to isolate different

applications in terms of the runtime environment inside the sensor node. Ultimately, code

modularization in SSN aims at providing independent execution environments for each

independently built application and making it operate in the same way as it would in an

application-specific WSN.

Resource Sharing: The property of resource sharing (YU et al., 2006) refers to the fact

that the resources of a node can be used for different applications so that there is no need to

replicate infrastructure to attend multiple applications. The property we address here concerns

whether or not the available node resources are completely devoted to a single application

during the system lifetime.

In application-specific WSNs, the idea of a single application utilizing the entire system

causes fixed bonding between the nodes and the application, that is, all the available resources

are reserved for satisfying the needs of a single application. Therefore, the resource allocation

can be determined as early as possible in the network operational lifecycle. Unless the

underlying hardware is changed at runtime (e.g. due to node movement, node replacement) and

the real-time resource lookup is actually needed, the resource allocation can be statically done

at compile time or deployment time (BHATTACHARYA et al., 2010) (WU et al., 2012). With

25

these characteristics, the application-specific WSN shows a tight coupling regarding the

resource sharing property.

In SSN, resource allocation happens at runtime instead, and sometimes at the latest

possible time. This approach addresses a problem that makes the static resource allocation

inefficient in SSN. The problem lies in the fact that resource contention could happen when

multiple applications are running simultaneously within the same system. SSN allows multiple

applications on top of the same infrastructure, with all the available resources opened for

applications’ dynamic arrival and thus requiring runtime decisions about which application to

execute at each time. When applications arrive in the SSN, they will be dynamically allocated

to a set of selected sensor nodes for further processing according to different factors, such as

the latest node status, user demands and the priority of the applications (BHATTACHARYA

et al., 2010) (WU et al., 2012) (LI et al., 2013). The allocation of node resources (sensing,

computation and communication) must not only meet the needs of simultaneously running

multiple applications without causing interruption, but also comply with policies specified by

different stakeholders. This further indicates that all the nodes have the chance to be used by

any incoming application.

Application Information Sharing: This property concerns whether the network design

assumes that the intermediate data produced by sensors can be shared among different

applications running on the same system.

The major responsibility of an application-specific WSN is to transmit the collected data

back to a device with sufficient computing and storage resource for further processing, in any

of continuously, periodically or an event-based fashion. Data transmission has been widely

recognized as one of the major energy consumers in WSNs. The in-network processing (e.g.

data compression, data aggregation) is thus often used to reduce the size of the transmitting data

to prolong the system lifetime. This imposes that all nodes between source and destination have

to process the intermediate data with the same method or tool for the purpose of data encoding

and decoding. By doing so, the messages are handled as a serialization of the same in-network

processing technique in the system and are processed by the same method.

SSNs by default enable multiple applications to run simultaneously on the same system.

Sharing application information (LE et al., 2009) offers a great potential to save substantial

energy in SSN due to the fact that tasks from different applications could simultaneously require

the same data (and at the same rate) provided by a single sensor. Motivated by such necessity,

26

information-sharing techniques are applied to SSN to achieve better energy conservation.

Information sharing mechanisms used in SSN are generally designed as a cross-layer approach

(VIJAY et al., 2011), aiming to overcome the limitations of the layered protocol architecture

by including more available information in a single message. However, the intermediate data

of different applications might not adopt the same format and thus sharing information is

dependent on the application format, which brings out interoperability issues. In order to enable

information with different formats to be shared by applications, a commonly accepted format

has to be adopted and all other formats need to be converted to it.

Finally, despite all mentioned potentials, the adoption of shared sensor networks poses

new challenges, which must be surpassed to enjoy fully their envisioned benefits.

2.2 ROUTING ON SSNS

One of the critical issues for constructing SSNs at the network level is routing. Even in

WSNs, routing was very challenging due to several characteristics that distinguish them from

contemporary communication and wireless ad hoc networks. First of all, it is not possible to

build a global addressing scheme for the deployment of sheer number of sensor nodes.

Therefore, classical IP-based protocols is not efficient for sensor networks. Second, in contrary

to typical communication networks almost all applications of sensor networks require the flow

of sensed data from multiple regions (sources) to a particular sink. Third, generated data traffic

has significant redundancy in it since multiple sensors may generate same data within the

vicinity of a phenomenon. Such redundancy needs to be exploited by the routing protocols to

improve energy and bandwidth utilization. Fourth, sensor nodes are tightly constrained in terms

of transmission power, onboard energy, processing capacity and storage and thus require

careful resource management (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

Due to such differences, many algorithms have been proposed for the problem of routing

data in WSNs. These routing mechanisms have considered the characteristics of sensor nodes

along with the application and architecture requirements. Routing protocols in WSN can be

categorized depending on the network structure, the protocol operation and as proactive or

reactive (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

Network structure: Flat-based (data-centric routing), Hierarchical routing, and

Location-based routing protocols.

27

Flat network structure means that every node has the same role. Nodes cooperate to

exchange packets. Since the network consists of a large number of nodes, it is not efficient to

assign an address or a kind of identifier for each node. In that case, the routing works using

queries. The node sends queries to a certain region of nodes waiting for data from these specific

nodes. Therefore, the routing is data-centric utilizing the attribute-based naming queries to

realize the communication. Usually in this category of protocols data aggregation is used during

relaying. Data aggregation is a technique to aggregate the data collected through the network

by combining similar data. That way, the amount of data to be transmitted is reduced and, as a

result, the total cost is reduced. Several protocols fall into this category, the most important of

them are Flooding & Gossiping In flooding, Sensor Protocols for Information via Negotiation

(SPIN), Directed Diffusion, Rumor routing, Minimum Cost Forwarding Algorithm (MCFA),

Gradient-based routing, COUGAR, ACQUIRE, and Energy-Aware Routing (AKKAYA et al.,

2005) (AL-KARAKI et al., 2004).

Flooding & Gossiping: In flooding, the node broadcasts the data to all its neighbors

until destination is reached or until packet’s TTL value equals zero. In gossiping, the data is

sent to one randomly selected neighbor. The advantages of these ideas are that they are very

simple and there is no need for state maintenance. Nevertheless, there are many redundant

packets in the network, a lot of additional traffic, data overlapping and resources are not taken

into account at all. Especially in gossiping there is an additional delay because it selects a

random node to forward the data so, the delay appears in the propagation of data in the network

(AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

Sensor Protocols for Information via Negotiation (SPIN) (AKKAYA et al., 2005) is a

group of adaptive protocols. This protocol disseminates the data from one or more nodes to the

whole network. The nodes that are relatively close, maintain similar data. Therefore, the data is

sent to nodes that are further away, which do not have it. SPIN protocols transmit the data into

the network with three different types of messages. This way of communication is an

improvement comparing to simple flooding due to the fact that it takes advantage of negotiation

between the nodes and resource adaptation. When a node has new data to transmit, it sends the

ADV (Advertisement) message to advertise this data to the neighbors via the data’s metadata.

The receiver of the message compares with what is known about it from this data and requests

unknown data through the REQ message. The requested data is transmitted through the DATA

message. SPIN offers significant energy saving mechanism comparing it to simple flooding.

Additionally, due to the negotiation, significantly less redundant data is added to the network.

28

Last advantage of SPIN is that the topological changes do not have to bother all the nodes since

only the adjacent nodes will know and learn the new topology. The family of the SPIN protocols

consists of SPIN 1: a simple version of the protocol mentioned above, SPIN 2: extension to

SPIN 1 using threshold in the resources, SPIN-PP: for point-to-point communication, SPIN-

EC: similar to SPIN-PP but with energy heuristics added, and SPIN-BC: special for broadcast

network (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

Directed Diffusion is another data-centric protocol, which has no need for global

identifier. It uses attributes combined with the values. Data from different nodes is combined

inside the network. Thus, the redundant packets are fewer and the number of transmissions is

decreased. Due to this idea, there is a decrease in energy consumption. In directed diffusion, a

base station requests data by broadcasting interests. An interest is a task that the network needs

to fulfill. Sensor nodes create gradients specifying value and direction. As interests are

broadcasted and propagated through the network, gradients are updated serving the queries of

the node. Eventually the query will reach the destination node. The intermediate nodes forward

the data to reach the destination and create gradients to the source of the data. Along the way,

the data is aggregated. When the node has new data, it updates the interest and retransmits it.

The network reinforces one or a small number of specific paths (AKKAYA et al., 2005) (AL-

KARAKI et al., 2004).

Rumor routing seems like a different version of directed diffusion. In directed diffusion,

the query is propagated in the network through flooding when there is no other information

about the geographical position of the recipients. However, if the data being requested is small,

flooding is not necessary. The concept of rumor routing is to send the queries to the nodes,

which have recorded an event and not flood the queries to the whole network. For that reason,

rumor routing uses long-lived packets, which are called agents. The moment the node discovers

an event, it records the event to the events table and creates an agent. The agent goes through

the network to reach the distant nodes and informs them about the events. Therefore, there is

no flooding, a fact that is a significant improvement of directed diffusion. However, only one

route between the source and the destination is used, a fact that can result in failure of

communication if one node stops working. Rumor routing performs better when the events are

relatively few. In the case of many events, it becomes infeasible to maintain so many agents

and event tables (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

29

Minimum Cost Forwarding Algorithm (MCFA) assumes the direction of the routes is

known. Each sensor node maintains a least cost to the base station. Therefore, no routing table

is needed. When a node receives a message, it checks if it comes from the least cost path

between the source and the base station. If this is true, the node forwards the message to its

neighbors (AL-KARAKI et al., 2004).

Gradient-based routing stores the number of hops, which have been passed when the

interest is diffused through the network. Therefore, each node can count the height of the node.

The height is the minimum number of hops to reach the base station. The gradient on a link is

the difference of the height between the node and the height of its neighbor. The packet is

forwarded through the link with the greatest gradient (AKKAYA et al., 2005) (AL-KARAKI

et al., 2004).

COUGAR uses declarative querying and tasking. The computing is distributed and it is

done on the network. It uses in-network data aggregation for saving more energy (AKKAYA

et al., 2005) (AL-KARAKI et al., 2004).

ACQUIRE comes from Active Query forwarding in sensor networks. Similar to

COUGAR, considers the network as a distributed database. The query is sent by the sink node

and each node that receives the query answers by processing the existing information. After

that, it forwards the query to a neighboring sensor. If the existing information in the node needs

to be updated, the node looks for the information from the neighbors who are at most d hops

far away. When the query is resolved completely, it is sent back to the sink (AL-KARAKI et

al., 2004) (AKKAYA et al., 2005).

Energy-Aware Routing is a protocol, which aims at saving as much energy as possible.

It is a reactive protocol and destination initiated. The idea behind this protocol is to use different

paths at different times. As a result, each path’s energy will last longer. To achieve this, the

protocol maintains several paths instead of one optimal comparing it to directed diffusion. The

paths are selected taking into account probability of energy consumption. In fact, network

lifetime is the only metric in this protocol and what only matters. It starts with localized flooding

to discover all the routes between each pair of nodes, build the routing tables and find the cost

of each route. Then it drops the high cost paths. An important disadvantage of this protocol is

the setup phase, which can take more time than directed diffusion (AKKAYA et al., 2005) (AL-

KARAKI et al., 2004).

30

Hierarchical routing (based on network structure): In wireless sensor networks, as to

in other kind of networks, the idea of hierarchy is a very useful technique to use in routing.

Higher energy nodes can be higher in the hierarchy of the protocol having the role of processing

the information and transmitting it. Clusters and a gateway (cluster head) are created for each

cluster. In a single-tier network, the gateway can be overloaded if the number of nodes is

increased. If the gateway cannot handle all the nodes latency in communication will occur.

Cluster heads aggregate and merge data so that fewer messages are sent to the base station.

Since the nodes communicate within a cluster having a limited number of hops, the energy

consumption is less. Generally, the main goals of hierarchical routing is what was just

mentioned, fewer messages to the base station and less energy consumption. This concept was

used in routing protocols for WSN; the most important ones are LEACH (Low Energy Adaptive

Clustering Hierarchy), PEGASIS (Power-Efficient Gathering in Sensor Information Systems),

and Threshold-Sensitive Energy Efficient Protocols (TEEN and APTEEN) (AKKAYA et al.,

2005) (AL-KARAKI et al., 2004).

LEACH (Low Energy Adaptive Clustering Hierarchy) is a cluster-based hierarchical

protocol. Each node uses a stochastic algorithm at each round to determine if it will become a

cluster head for this round. Nodes that have been cluster head cannot be cluster heads for P

rounds where P is the desired percentage of cluster heads. The probability for each node to

become a cluster head in each round is 1/P. Thus, there is a rotation of cluster heads in order to

evenly share the energy consumption between the nodes. Each node that is not a cluster head

looks for the closest cluster head to become a member of this cluster. The cluster head creates

a schedule of how to communicate with each node in its cluster to transmit the data. The cluster

head compresses the data arriving from the nodes aggregates it and then sends it to the base

station. The aggregation is realized in order to send less information to the base station. Each

node communicates with the cluster head through TDMA (Time Division Multiple Access), the

way the cluster head has decided. The communication happens with the least energy possible

and when no communication is needed, the radio is turned off. CDMA (Code Division Multiple

Access) is used with different CDMA codes in order to avoid interference among the cluster

heads (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

PEGASIS (Power Efficient Gathering in Sensor Information Systems) is a chain-based

protocol. The protocol is considered as an improvement to LEACH. In PEGASIS, each node

communicates only with the closest neighbor. To communicate with the base station, each node

has to wait for its turn. In one round, all the nodes have to communicate with the base station

31

and after that, a new round begins. Thus, the energy consumption is fairly distributed among

the nodes since all the nodes communicate with the base station one by one. As explained above,

there is no cluster structure in this protocol; instead, there is the chain structure where each node

has to wait its turn to collaborate in sharing the energy consumption. PEGASIS intends first to

increase network lifetime by forcing the nodes to collaborate in energy consumption and second

to decrease bandwidth consumption by forcing each node to communicate with the closest

neighbor. To detect which neighbor is closest, the node uses signal strength indication to

discover the distance to every node. Then, it adjusts the signal strength so that it can

communicate with only one node, the closest one. Thus, a chain will be constructed consisting

nodes that are closest to each other creating a route to the base station (AKKAYA et al., 2005)

(AL-KARAKI et al., 2004).

Threshold-Sensitive Energy Efficient Protocols are two protocols best suited for time-

critical networks: TEEN (Threshold-Sensitive Energy Efficient Sensor Network Protocol) and

APTEEN (Adaptive Periodic TEEN) (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

In TEEN, the sensor nodes are always in contact with the medium but they transmit data

only when it is needed. The cluster head defines a hard threshold, which represents the threshold

value of the sensed attribute, and a soft threshold, which represents a change in the value of the

sensed attribute. If that change happens, the sensor node will turn on the radio and send the new

data. By using the hard threshold, the protocol avoids unnecessary transmissions when the

attribute is out of the range of interest. The soft threshold helps to reduce the number of

transmissions by avoiding sending data when there is a little or no change in the sensed attribute.

If a smaller soft threshold is used, there will be more data that are precise while more energy

will be needed. By the time a new cluster head takes place new thresholds are broadcasted. The

disadvantage of this protocol is that if the values are not received, the sensor nodes will not

exchange data and the user will receive no data (AKKAYA et al., 2005) (AL-KARAKI et al.,

2004).

APTEEN is similar to TEEN adapted to user’s needs. The user can choose how often

each value will be used. The important characteristics of APTEEN are that it leaves the user to

decide what to do and that it combines reactive and proactive routing (AKKAYA et al., 2005)

(AL-KARAKI et al., 2004).

Location-based routing protocols: Location-based routing happens when the protocol

takes into account the location of the node. The location of the node can be specified by using

32

signal strength indicators. A node can approximately calculate the relative distance between its

neighbors by examining how high or low the signal strength from a neighbor is. If the signal

strength is high, the neighbor is close. By examining all the signal strengths, a node can

calculate relative coordinates. Another way to specify nodes’ location is from a satellite by

using a GPS (Global Positioning System) if the nodes have a GPS receiver installed. Two

samples of such protocol are Geographic Adaptive Fidelity (GAF) and Geographic and Energy

Aware Routing (GEAR) (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

Geographic Adaptive Fidelity (GAF) is a location-based routing protocol with energy-

aware characteristics. The area of the network is split into zones. Inside the zone the nodes work

together to save energy. They choose one node to stay in wake up mode to monitor the network

behavior and report what is happening back to the base station what happens while the rest of

the nodes are in sleep mode. GAF saves total energy by turning off nodes that are not used.

Each node specifies its position in the zone using GPS indication. Three modes are used in the

protocol: Discovery, for discovering the neighbors in the area; Active, showing if the node is

currently participating in the routing; and Sleep, the radio is turned off. The protocol handles

mobility of the nodes by forcing the node to report what time it will leave the area. When the

node is about to leave, the other nodes wake up and decide a new one to stay in wake up mode

(AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

Geographic and Energy Aware Routing (GEAR) is a protocol that uses heuristics to

define the position of the nodes and their energy state for routing. The concept is to decrease

the data being sent in the network by transmitting the data in specific regions and not to the

entire network. Each node maintains an estimated cost and a learning cost of reaching a

destination. The estimated cost is calculated from the energy left and the distance to the

destination. The learned cost is the estimated cost but with taking into account holes that may

appear meaning not having any close neighbor in a specific area. If a hole appears, the route

has to be changed (AL-KARAKI et al., 2004) (AKKAYA et al., 2005).

Routing Protocols based on Protocol Operation: Another classification of routing

protocols in Wireless Sensor Networks is by protocol operation. The categories are presented

below:

Multipath routing protocols: In this case, the routing protocol uses multiple paths

between two nodes for routing. This idea can help in terms of redundancy and energy

consumption. If there are two paths available, when the primary link breaks, the routing

33

protocol will route the packets through the secondary link and the communication will continue

flawlessly. Concerning energy consumption if there are several paths available the energy of

the nodes of each path will not be consumed so quickly since the paths will change. However,

the switching of paths can consume energy as well (AL-KARAKI et al., 2004).

Query-based routing: In the query based routing, the node sends a query to the network

asking for data. The node, which has the sensing data asked, will transmit it back to the node,

which initiated the query. Directed Diffusion is an example of this type of routing with queries.

Data aggregation is a good solution for saving energy (AL-KARAKI et al., 2004).

Negotiation-based routing: In this routing negotiation is used among the nodes in order

to minimize transmitting data that has already been transmitted. Data descriptors are used for

this negotiation and the result is increase of network lifetime. SPIN is an example of that kind

of routing (AL-KARAKI et al., 2004).

Quality of Service routing: The network in this case has to balance between energy

consumption and QoS parameters like delay, bandwidth (AL-KARAKI et al., 2004).

Coherent and Non-coherent Processing: This is a data processing technique, which is

closely connected with the routing in a protocol. In non-coherent processing, the main

processing is done by the nodes locally and then from other nodes for more processing. In

coherent routing, the nodes apply a minimal processing and send it to the aggregators for the

main processing (AL-KARAKI et al., 2004).

Proactive and Reactive Routing: If someone thinks of how the source finds the route

to destination, the protocols can be categorized in reactive, proactive and hybrid mode.

Reactive routing: In this type of routing routes are computed on demand. A node sends

a request that wants to communicate and by receiving a route reply message the communication

can begin. The disadvantage of this concept is high latency may appear during the procedure of

finding routes. In addition, the network can be overloaded if the flooding is heavy. On the other

hand, this type of routing is bandwidth efficient (AKKAYA et al., 2005) (AL-KARAKI et al.,

2004).

Proactive routing protocols create and keep routing information for all the nodes

whether this information is needed or not. The information is collected by using control

messages periodically. Proactive routing protocols are not bandwidth efficient since there are a

34

lot of messages being exchanged without all of them being useful. The main advantage of

proactive routing is that it is easy to get routing information and easy to establish a session. The

drawbacks are first the heavy load of unnecessary data saved for routing and the difficulty in

restructuring the communication when there is a link failure (AKKAYA et al., 2005) (AL-

KARAKI et al., 2004).

Hybrid routing (Reactive and Proactive) is a type of routing, which combines

advantages of both reactive and proactive routing. The routing is initially established with some

prospected routes and then serves the demand from additionally activated nodes through

reactive flooding (AKKAYA et al., 2005) (AL-KARAKI et al., 2004).

When sensor nodes are static, it is preferable to have table-driven routing protocols

rather than reactive protocols. A significant amount of energy is used in route discovery and

setup of reactive protocols. Another class of routing protocols is called cooperative. In

cooperative routing, nodes send data to a central node where data can be aggregated and may

be subject to further processing, hence reducing route cost in terms of energy use. Many other

protocols rely on timing and position information (AL-KARAKI et al., 2004).

Routing in WSN uses several different techniques to be energy efficient and scalable.

That is why there are so many different protocols. Each protocol may use techniques from

different categories trying to be more efficient. It depends on the network and which are the

user’s goals to specify which protocol is the best for this occasion. The conventional routing

protocols developed for application-specific WSNs usually attempt to achieve routing

efficiency by exploiting the application layer query semantics and proposing an all-in-one

solution that weaves the routing concern with other application layer concerns, such as data-

centric and service-centric routing. They also tend to optimize routing performance for a

specific communication pattern inspired by a specific class of WSN applications. In a SSN,

where multiple applications run within the same network infrastructure, each application

presents its own set of requirements that must be dealt with and exploited by routing protocols

in order to guarantee energy efficiency while forwarding data.

35

3. RELATED WORK

Several different routing protocols were proposed for WSNs in the last decade, all of

them designed based on single application demands (according to the original definition of

WSNs). The context of SSNs typically comprises several different applications, each one with

potentially different requirements (such as different sampling rates, sensing coverage, data

accuracy, delay and sensing demands). A limited number of papers were found in the literature

proposing routing protocols specifically tailored for SSNs (ELTARRAS et al., 2010)

(HEFEIDA et al., 2011) (SHAH et al., 2012) (INOUE et al., 2014), since sharing a WSN among

multiple applications is a recent paradigm.

The adaptive multi-criteria routing (AMCR) (ELTARRAS et al., 2010) was proposed

as a routing framework for SSNs, and one of its primary goals was to be a generic routing

framework for multi-application demands. Its authors, Eltarras and Eltoweissy (ELTARRAS et

al., 2010) state that changes in the network underlying resources, connectivity, mission, or QoS

requirements demand the design of adaptable SSN architectures and protocols to increase the

network lifetime. AMCR adopts a descriptive criterion based on an addressing scheme for

improving application scalability and reducing broadcasts overhead by using index tables and

updating them on demand. AMCR allows destination addresses to be specified as a qualitative

reference to node capabilities, administrative settings, and/or application published criteria.

THESEUS differs from AMCR in several aspects. First, AMCR is a conceptual routing

framework, and so it does not present details of the specific algorithms used for achieving its

main proposed features while THESEUS is a concrete system with a particular architecture and

algorithms. Second, while AMCR uses its addressing scheme based on descriptive criteria for

improving scalability, THESEUS relies on the characteristics of PROC for ensuring scalability

as a distributed system. Third, THESEUS includes a packet aggregation algorithm, which helps

improving network lifetime. Such aggregation strategy is not found in AMCR. Fourth,

THESEUS has its own algorithm for selecting dynamic and QoS-aware routes, while AMCR

is said to be able of exploiting the message semantics and adapting itself to the observed

application characteristics in order to support the efficient operation of the SSN. In addition,

because of exploiting application semantics, the conception of AMCR is more tied to the

application than THESEUS. In the development of THESEUS, we specified a well-defined

interface between the application and network layers.

36

The context-aware protocol proposed in (HEFEIDA et al., 2011) was developed for

supporting collaborative sensor network applications. In (HEFEIDA et al., 2011), the

application, network, and physical layers were combined and modeled as a single protocol stack

(cross-layer development), to use the information of each layer in another one (what is said to

result in context awareness). The primary goal was to promote load balancing in the network

and the ability to use data aggregation. This type of integration brings a high level of energy

efficiency but at the expense of losing the generality and makes the protocol more complex for

implementation. The authors mentioned the benefits of their proposal as: (i) getting the running

application(s) involved in lower layer decisions, and so giving them the ability to control/tailor

the network behavior; (ii) integrating context parameters of interest in WSNs (e.g. battery life,

delay, mobility) into a single framework allowing nodes to make better decisions; (iii)

communicating context parameters among all layers (interlayer context sharing); (iv)

communicating context parameters and node state among nodes (inter-nodal context sharing);

(v) distributing the load over the entire network to achieve load balancing and prolong network

lifetime. THESEUS shares these benefits with this related work, but THESEUS differs from

this work in its clear separation of layers, with well-defined interfaces for integration.

THESEUS has been defined at the network layer with an explicit interface to the application

layer only in the sink node, what makes THESEUS agnostic to the specific application running

on the network, so that it can be used in several application scenarios and for different types of

applications.

The aforementioned works were found more strictly related to THESEUS, considering

that both exploit applications semantics for routing purposes. The following works do not

explicitly use such semantics of applications (application level information) for routing

purposes.

The work in (SHAH et al., 2012) is based on prioritizing the applications and on pricing

different paths so that each application will select the most appropriate route for its data. For

instance, an application with low priority will try to find the cheapest possible route, but without

considering the delay of this route; another application with high priority will attempt to find

the fastest routes, but without considering route prices. In our solution, we divided applications

into two categories for establishing priorities: applications based on event-driven data (high

priority) and applications based on continuous dissemination data (normal priority). A QoS

parameter in the sink node defines the maximum accepted delay time for each category of

application data.

37

The authors in (INOUE et al., 2014) study a particular case for SSNs. They explored

the sharing of nodes from different WSNs for a single application when two or more

overlapping WSNs have been deployed in the same geographical area. The solution proposed

by the authors is based on selecting and sharing some nodes within the WSNs to build energy

efficient routes. However, the radio component of those nodes is required to support multi-

channel TX/RX for the proposed approach to work correctly. Such radio component is more

expensive, in terms of energy consumption and monetary cost, than most radio components

commonly used in WSN platforms. In comparison with THESEUS, our solution differs by

aiming at sharing the same WSN for multiple applications and not multiple WSNs for a single

application. Therefore, the work in (INOUE et al., 2014) does not support multiple applications,

as THESEUS does. Thus, the concept of SSN used in (INOUE et al., 2014) is different from

the concept of SSNs introduced in our work and all other related work. We claim that supporting

multiple applications (our concept of SSNs) is mandatory, because it is possible to avoid

performing redundant tasks among applications to increase resource utilization while meeting

application requirements.

Finally, it is worth to remind that none of these related research supports multiple sink

nodes in the network, however, using more sink nodes in SSNs could play a key role for

balancing and reducing the energy usage of the nodes.

Table 1 shows a brief review of these related works.
Table 1. Related works comparison

 THESEUS (ELTARRAS
et al., 2010)

(HEFEIDA et
al., 2011)

(SHAH et al.,
2012)

(INOUE et al.,
2014)

Energy Aware Yes No detail No detail No detail Yes

QoS Aware Yes Yes No detail Yes, but not
directly

No detail

Main Goal Energy saving
and balancing Energy saving

Load
balancing in
the network

Segregates
traffic flows

Prolonging
network lifetime

Architecture Yes No Yes No No

Aggregation Packet
aggregation No Able to use No No

Implementation TinyOs No NS-2.29 NS-2 No detail

Evaluation
Real scenario
and simulated
by AVRORA

Analytical Simulated by
NS-2

Simulated by
NS-2

QualNet 4.5.1
simulator

Multiple sinks Yes,
dynamically Not mention Not mention Not mention Yes

38

4. PROPOSAL

The goal of this work is proposing a multi-application-aware and proactive routing

system for shared sensor networks (SSNs), called THESEUS. The proposed system is defined

as a routing method that has an interface with applications in order to adapt the chosen paths

according to their demands. THESEUS is specifically tailored for the scenario of SSN, where

multiple application demands need to be met without jeopardizing the scarce resources of the

networks nodes.

As part of the methodology adopted in this work to design THESEUS, the first step was

to search, in the literature, for application-aware routing protocols in the context of WSNs to

find the existing solutions for the challenges related to routing in WSNs and SSNs. Through

this investigation, Proactive Routing with Coordination (PROC) was found as a well-defined

routing protocol for WSNs (MACEDO et al., 2006), which is classified as a proactive,

cooperative, dynamic and application-aware protocol. PROC is one of the first WSN routing

protocols that interact with the application for determining which nodes are more suitable to

route data (MACEDO et al., 2006). In the following, PROC is briefly described, since it was

the starting point for our proposal. Next, the network model and assumptions considered in this

work are defined. Finally, our proposal, THESEUS routing system is presented, which is

specially tailored to SSN.

4.1 PROC OVERVIEW

The fundamental idea behind PROC is to select (periodically) a set of forwarding nodes

(called coordinators) based on application demands. The coordinators create the routing

backbone and all other nodes (called regular nodes) will directly connect to one of them

forming a treelike structure. Therefore, in PROC each node can be either a coordinator or a

regular node.

The routing establishment is based on the node role and the information about its

neighbors. Coordinator nodes must select their respective parent nodes among their neighbors

(which may also be coordinators or only regular nodes). The parent of a regular node is selected

based on the following priorities, in descending order: (1) nodes located at the shortest hop

distance to the sink, (2) nodes holding a coordinator role, and (3) nodes with the greater

available energy within their neighbors. The parent of a coordinator node is selected based on

the following priorities, in descending order: (1) nodes holding a coordinator role, (2) nodes at

39

a shortest hop distance to the sink, and (3) nodes with the greater available energy within their

neighbors. Such prioritizing is used to minimize the number of coordinators while finding the

shortest paths from each sensor node towards the sink node. Using such prioritizing scheme,

along with choosing to start routes’ creation from the nodes inside the network (and not from

the sink node) are features that avoid cycling in PROC. Cycling occurs whenever a route created

by a routing protocol gets into a loop inside the network, and its creation process never ends.

Therefore, due to its features, PROC does not require any additional mechanism for cycle

detection.

According to the authors, PROC is an application-aware routing protocol. This

awareness is achieved by considering the application requirements for calculating a value that

is used as the probability of a node becoming a coordinator. This calculation is performed by a

function called app function. The app function is deployed on all nodes and is invoked every

time the routes need to be created, in order to calculate the mentioned probability value based

on each node parameters (such as number of neighbors and remaining energy). The app function

in PROC is defined by three rules. These rules are considered as application requirements with

the main goal of saving energy. First, recent coordinators will have a lower probability of being

again a coordinator for a given predefined period (an adaptation of LEACH (HEINZELMAN

et al., 2000) technique). Second, having more neighbors reduces the chance of being a

coordinator, in order to avoid selecting more coordinators in denser areas. Third, nodes near to

the sink node have a higher likelihood of being a coordinator in order to divide the high network

traffic near to the sink among more nodes (since this is a region with heavy traffic).

Considering energy consumption, Macedo et al. (MACEDO et al., 2006) state that it is

possible to save more energy (and then increase the network lifetime) by shutting down the

regular nodes (nodes that do not play the role of coordinator) whenever the application does not

require information from such nodes. However, it is important to mention that such shutting

down feature was not detailed, implemented, or evaluated in PROC. PROC always tries to

minimize the number of coordinators based on the selection process. PROC proved

guaranteeing the network connectivity of the monitored region based on its route establishment

process. Therefore, topology control algorithms only need to care about sensing coverage.

Periodical backbone reconstruction is a fault tolerance mechanism that makes PROC a robust

protocol.

40

4.2 SSN MODEL AND ASSUMPTIONS

In this work, the following assumptions are made. The SSN is composed of a set of

sensor nodes and one or more sink node(s), all of which are organized in a flat network topology

(Figure 1). We also considered that all nodes (either sensor or sink nodes) in the SSN are static.

THESEUS does not depend on the information of nodes’ positions for its operation. However,

once the network is deployed, nodes must remain at the same positions during the whole

execution of THESEUS (node mobility is not considered). Moreover, sensor nodes are

homogeneous in terms of processing units and memory capacities. However, each node can

have different types of sensing units (meaning that the nodes are able to sense different types

of environment variables). In addition, THESEUS supports sensor nodes with different energy

sources, i.e. nodes can differ in terms of their energy power.

Figure 1. Sample of network topology

41

The sink node has more powerful hardware components than sensor nodes, and it is

connected to a constant and unlimited energy source. In our SSN model, nodes could be

deployed in any random position in all three dimensions. However, each node must be in the

wireless range of at least another one that can reach a sink node potentially through multiple

hops, thus ensuring the connectivity of all nodes. Therefore, we assume the network density is

high enough to assure radio connectivity during the whole network lifetime, since we believe

this will be typically the case in SSNs.

4.3 THESEUS

THESEUS is a routing system for SSNs that dynamically updates the routes based on

applications’ demands and nodes’ conditions (node contextual information). By nodes

conditions we denote the node hop distance towards the sink node, its number of neighbors and

available energy.

Similar to PROC, THESEUS routing algorithm operates based on selecting a set of

forwarding nodes as coordinators. Coordinators create the backbone for routing; all other nodes

will directly connect to one of the coordinators forming a treelike structure. The sink node is

responsible to periodically trigger the coordinator selection and route creation processes, but

such processes are performed by the sensor nodes, in a distributed way (taking advantage of in-

network processing). The reconstruction of the routes (backbone) happens in time intervals

called cycles.

THESEUS is defined completely in the network layer and has one interface to interact

with the application layer in the sink node, thus avoiding many cross-layer communications. In

addition, THESEUS is implemented as a routing protocol for different applications in an SSN

environment, without requiring any customization in its architecture and algorithms (it is just

necessary to adjust the parameters based on the specific requirements of each applications). In

this sense, THESEUS routing system is considered agnostic to the specific application running

in the network.

THESEUS supports both types of data delivery models commonly existing in WSNs

(TILAK et al., 2002): (i) EVENT-DRIVEN and (ii) CONTINUOUS. In the EVENT-DRIVEN

data delivery model, data is transmitted whenever an event of interest (for the application)

occurs. In CONTINUOUS data delivery model, data is sent periodically according to a time

interval, which is predefined by the application (TILAK et al., 2002). In comparison, PROC

42

supports a single sink node in the network and only continuous data delivery model (TILAK et

al., 2002). The data routing method in PROC is store-and-forward, which only forwards each

data packet to the respective parent node. THESEUS manages to support both types of data

delivery models by using the respective priorities of each type of data delivery models based

on the application QoS in terms of maximum tolerated delay.

Another feature of THESEUS is supporting multiple sink nodes on the network, also

supporting adding and removing sink nodes dynamically. Multiple sink nodes could improve

the network functionality since it can reduce the number of hops from sensor nodes towards the

sink node, which helps to reduce the nodes energy usage and probability of packet collisions

on the network. Moreover, the ability to adjust the network for adding or removing sink nodes

dynamically brings the option of adding more sink nodes in case of necessity such as more

applications arrival. This ability makes THESEUS more adjustable and scalable for dynamic

usage of SSNs.

THESEUS improves PROC in four ways: (i) it implements packet aggregation

independent of the packet contents with the goal of saving energy, thus prolonging the network

lifetime; (ii) the coordinator selection process is modified to cover multi-application demands

(so it is a process tailored for SSNs) in order to better balancing energy usage; (iii) it uses QoS

parameters (such as maximum accepted delay for each type of data delivery model) and

application requirements to adapt the routes accordingly, thus saving further energy while

meeting application needs; and (iv) it allows the presence of more than one sink node in the

network with the option of adding or removing sink nodes dynamically, thus increasing the

scalability of the solution.

In this section, we first describe the details of our packet aggregation algorithm

(concerning item (i)), and THESEUS coordinator selection process (the app function, which

concerns item (ii)). The item (iii), regarding the use of QoS parameters, is addressed in both

packet aggregation algorithm and THESEUS app function. Next, THESEUS architecture is

presented. Finally, the behavior of each sub-system and component that comprises THESEUS

architecture is described, including the details of how THESEUS supports multiple sink nodes

(regarding item (iv) above).

43

4.3.1 THESEUS packet aggregation

THESEUS packet aggregation algorithm works at the network level and it is

independent of the packet data content (see Figure 2). The main goal of our proposed

aggregation algorithm is to maximize the packet data field usage as follows. Network packet

formats have different fields and sizes based on the specific WSN platform. Generally, network

packet formats have three main parts with a limited size for each one: packet header, data, and

trailer. The packet header and trailer (MAC layer information) are used for packet transmission

by physical network layer. If a data size is bigger than the platform given data field size, then

the physical layer is able to divide it into several packets for transmitting. On the other hand, if

a data size is smaller than the data field size then the packet is transmitted with a smaller size

than the maximum supported packet size. Therefore, sending more number of small packets

uses more bits of data for transmitting them because of the packet header and trailer overhead.

On the other hand, merging small data into one packet and transmitting them reduce the

transmission number of bits and number of the packets, resulting energy saving.

All data packets in a WSN/SSN should be eventualy delivered to the sink node(s). Each

network packet has some MAC layer information (such as packet CRC, source mac address,

and destination mac address). Therefore, in case of aggregation, the source address (application

procedure Data-Manager ()
1: if MData.aggflag = false then // not possible to aggregate data
2: send(MData, parent.address);
3: else if MData.emptyspace <= 4 bytes then
4: MData.aggflag = false;
5: send(MData,parent.address);
6: else
7: THESEUS-packet-aggregation ();
8: end if
end procedure

procedure THESEUS-packet-aggregation ()
9: if MData.typeflag = 0 then // for continuous data type
10: if storedp.continuous = ∅ then
11: storedp.continuous = MData; start timer.C;
12: end if
13: while (timer < MDTC) & (stored.continuous.emptyspace > 4) do // from Sync.QoSparam MDTC:
 Maximum accepted Delay Time for Continuous data type
14: try add (MData.sourceaddress, MData.appdata) to (storedp.continuous.appdata)
15: catch error {send(MData, parent.address);};
16: end while
17: stop timer.C; timer.C = 0; stored.continuous.aggflag = false;
18: Data-Manager (stored.continuous);
19: end if
20:// same from line 9 to 19 for event driven data with related maximum accepted delay (MDTE)
end procedure

Figure 2. THESEUS Packet aggregation algorithm

44

level address, node ID), and the application data (sensed data) fields should be stored, and other

fields could be excluded (MAC layer information). When the aggregated packet is sent, the

radio component adds new MAC layer information for the aggregated packet. The use of two

bytes for the source address (application level address) could support 65535 nodes in a network.

Since large-scale WSNs are considered using thousands of sensor nodes (LI et al., 2011) we

considered two bytes for the source address in this work. However, this size is adjustable for

other use cases. Moreover, most of the sensors measure environmental data in maximum two

bytes size (MICAZ & MICA2, Accessed May 2015). Therefore, the minimum unused size of a

packet data field should be 4 bytes (2 bytes of source address + 2 bytes of sensed data) to be

able to aggregate another packet inside itself. In addition, we considered the first two bytes of

a packet data field for representing a flag field. The flag bits are used for controlling the

aggregation process when aggregated packets are received by the next hop in the path towards

the sink. Consequently, the packet data field of THESEUS includes the flag (2 bytes), the first

monitored data address (2 bytes), the first monitored data (2 bytes), the second monitored data

address (2 bytes), the third monitored data (2 bytes), and so on, until the data field size is reached

(depending on the maximum data field size supported by the WSN platform).

It is possible to prioritize the two types of data delivery models (continuous and event-

driven) according to the expected delivery delay time in the sink node as follows: event-driven

data has higher priority (lower delay time tolerated) than continuous data type. Therefore,

THESEUS packet aggregation operates based on a QoS parameter, called the “maximum

accepted delay time (MDT)”, which represents the highest amount of time tolerable by

applications for having their data delivered. The MDT has different values for each type of data

delivery models: the MDT for continuous data type (called MDTC), which should be the

minimum accepted delay time through all applications; and the MDT for the event driven data

type (called MDTE).

The coordinator checks the data field of the received data packet; if there is not enough

empty space, then the aggregation flag bit changes to false (to inform the next coordinator to

just forward this packet without further analysis) and this packet is forwarded through all

coordinators to the sink node without any delay (Data-Manager Procedure, Figure 2).

Otherwise, the packet is stored in the node memory. The aggregation algorithm tries to add

other received packets inside the stored packet during the maximum delay time defined by

applications. After the specified time has elapsed, or if the maximum packet size is reached,

then the aggregation flag bit changes to false and the packet is forwarded to the sink node

45

without any further delay. This process is the same for both data delivery models types,

continuous dissemination, and event-driven, with the respective QoS parameters and variables

(THESEUS-packet-aggregation procedure, Figure 2).

4.3.2 THESEUS application function

Similarly to PROC, in THESEUS it is possible to define different objective functions

(called app functions) responsible for calculating the probability (in percentage) of a node

becoming a coordinator. This probability is computed based on the node conditions (such as

the number of neighbors and remaining energy), applications’ demands and QoS requirements

(such as maximum accepted delay for delivering data samples). In traditional WSNs, a single

application would require a simple app function. In SSNs, multi-application demands bring the

necessity of combining all applications requirements, thus increasing the complexity of the app

function. Many techniques, such as linear programming or AI could be used to define the app

function for properly combining applications requirements. However, the use of complex

techniques is out of scope of this work.

In this work, the app function is defined according to the following steps: (i) specifying

a set of rules based on the applications’ requirements, (ii) defining equations for each rule, and

finally (iii) creating the app function using the defined equiations. We considered the balancing

energy usage within all nodes as the main goal for our app function. We defined rules in our

work following a heuristic-based approach. In such approach, we considered the WSN behavior

regarding the nodes energy usage. Thus, the set of rules of THESEUS (R1, R2, R3 and R4 in

Equations (1), (2), (3) and (4)) are generated aiming to balance the energy usage in the network

to prolong the system lifetime. The four default rules (R1, R2, R3, and R4) for THESEUS are

as following.

First, 𝑅𝑅1 in Equation (1) calculates the probability (in percentage) of a node being

coordinator, considering if this node has been recently coordinator and/or if it has been

coordinator for many cycles. The coordinator nodes use more energy than other nodes since

they are responsible to receive data messages from other nodes and forward them to the next

coordinators, besides executing their monitoring tasks (generating samples). Therefore,

regarding network transmissions, a node with coordinator role uses more energy than other

nodes. In this case, we expect that these nodes should have a lower probability of being a

coordinator for another cycle. This method is an adaptation of LEACH cluster heads selection

technique (HEINZELMAN et al., 2000).

46

𝑅𝑅1 = 100 − �(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) ∗ 50) + �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∗ 50�� (1)

where, coord (dynamic parameter) is an array of cycle ids during which the node was

coordinator; curCycle (dynamic parameter) is the current cycle id and coord.size is the number

of cycles during which the node was the coordinator (size of coord array). So, in Equation (1)

if the node was not coordinator in the last cycle nor during all the previous cycles, then the

probability of the node being coordinator, (𝑅𝑅1) is 100%. On the other hand, we can observe in

Equation (1) that if the node was coordinator in the last cycle, then the probability of the node

being coordinator, (𝑅𝑅1) is subtracted by 50%. Additionally, if a node has been coordinator for

many cycles, the probability of being coordinator (𝑅𝑅1) is subtracted by 50% of the ratio between

the number of cycles that the node was coordinator and the total number of cycles. For example,

if a node was coordinator in the last cycle and during all the existing 6 cycles (since the network

deployment) it was a coordinator in 3 of these 6 cycles; so it has 25% (100-(50+25)) of chance

of being coordinator according to the first rule.

Second, 𝑅𝑅2 in Equation (2) calculates the probability (in percentage) of a node being

coordinator when it is in a dense area. In this case, we expect that nodes having more neighbors

(higher density area) should have lower probability of being coordinator in order to avoid

selecting more coordinators in denser areas. This rule, along with THESEUS packet

aggregation algorithm, creates a synergy that did not exist in PROC. Reducing the number of

coordinators in a denser area (by rule R2) fosters the aggregation because fewer coordinators

will have a higher chance to aggregate packets of more neighbors. In other words, a limited

number of coordinators (within a higher number of regular nodes) receives more samples at the

same time, resulting improvement of the number of aggregated samples per packet. This

synergy results in a more efficient use of each coordinator in the aggregation process.

𝑅𝑅2 = 100 − �
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏 + 1
∗ 100� (2)

where max.neighbor (static parameter) is the maximum number of neighbors that a node

can have. Parameter max.neighbor is calculated based on the amount of memory required for

storing information from a neighbor. Therefore, it must be configured according to the adopted

platform. The parameter neighbors.size (dynamic value) is the number of neighbors a node has.

For example, if the implementation imposes max.neighbor = 20 and a node has 15 neighbors

(neighbors.size), therefore R2 = (100-((15/20)*100)) = 25%.

47

Third, 𝑅𝑅3 in Equation (3) calculates the probability (in percentage) of a node being

coordinator when it is near to the sink. In this case, we expect that nodes near to sink node have

higher probability of being a coordinator in order to balance the high network traffic near to the

sink among more nodes.

𝑅𝑅3 =
100

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 1
 (3)

where hops (dynamic parameter) is the number of hops from the sink node (each node

discovers this value based on the information of its parent, described in section 4.3.4). Nodes

directly connected to the sink node have zero hop distance. For example, if a node was

connected directly to the sink, then it will have 100% chance of being a coordinator according

to 𝑅𝑅3 while a node with four hops distance to sink will have 20% of chance.

Forth, 𝑅𝑅4 in Equation (4) calculates the probability (in percentage) of a node being

coordinator when it is located in areas with higher rate of data generation (the source area for a

monitored phenomenon). In almost all SSNs, continuous data dissemination from sensor nodes

to sink contributes to the biggest part of data flow (KULKARNI, 2004) (DEMIRKOL et al.,

2006). Therefore, rule (𝑅𝑅4) states that the node that generates more data, i.e. the node that has

more application requests, should have a higher possibility to become a coordinator. This rule

is the same rationale used for 𝑅𝑅3, contributes to sharing the network traffic among nodes,

balancing the energy usage in the network. For this rule, it is necessary to calculate the sampling

rate for each area and send these values to the nodes. The concept of area in the context of this

work is used to denote the list of nodes required by an application (meaning the nodes deployed

in the application target area).

𝑅𝑅4 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗ 100 (4)

where SPpMTI (dynamic parameter) is an array of the sample rates per maximum time

interval for each area (list of nodes used by an application) of the network; mSPpMTI (dynamic

parameter) is the highest sample rate per maximum time interval; and i is the node area id. For

example, consider that one area should generate 14 samples per 20 minutes (meaning 21

samples per 30 minutes), another area 10 samples per 30 minutes and the last area 10 samples

per 10 minutes (meaning 30 samples per 30 minutes). In this case, mSPpMTI is 30 samples per

30 minutes. Therefore, the probabilities of a node becoming coordinator by 𝑅𝑅4, for the three

mentioned areas are respectively: 70% (21/30*100), 33% (10/30*100) and 100% (30/30*100).

48

Based on these rules, the app function and QoS parameters are defined by the following

formulas:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: 𝑎𝑎𝑎𝑎𝑎𝑎.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 (5)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,ℎ𝑜𝑜𝑜𝑜𝑜𝑜, 𝑖𝑖) = �
 𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3 + 𝑅𝑅4

4
� (6)

where Coord, curCycle, neighbors, hops and i are input local parameters of the node,

and are the same parameters used in equations (1) to (4). 𝑅𝑅1 …𝑅𝑅4 are the rules equations. R1,

R2, R3 and R4 rules calculate the probability of a node being coordinator.

As an example, if we assume R1= 25%, R2 = 25%, R3 = 20%, R4 = 70% for a node,

the app function will return ((25+25+20+70)/4) = 35% as the probability of a given node being

coordinator.

4.3.3 THESEUS architecture

THESEUS logical architecture encompasses software components to be deployed in

two different types of nodes: Sink and Sensor nodes. THESEUS Sink architecture (Figure 3)

encompasses the SSN Manager component and Sink Manager (SM) system that contains App

Function & QoS parameters database. The SSN Manager is responsible for gathering the

requirements from all applications and creating a set of rules to build the app function and QoS

Figure 3. THESEUS Sink Architecture

Sink Manager System

<<Database>>
App Function & QOS parameters

SSN Manager

Application Layer

Network Layer

MAC Layer

Radio

I-SSN-SM

I-Send

I-Send-MSync

49

parameters (described in section 4.3.2). In addition, it is responsible for updating the app

function parameters and QoS parameters, sending them to the network . The SM starts the

construction of routes by broadcasting synchronization messages (Sync message) to the

network. These messages carry the app function and QoS parameters (previously described in

section 4.3.2). SM broadcasts Sync messages to the network periodically, and each new Sync

message starts rebuilding the routing paths in the whole network (same approach used by

PROC). In addition, whenever the arrival of a new application changes the app function and/or

QoS parameters during a cycle, it is possible to update the network by disseminating a new

Sync message.

THESEUS Node architecture, as shown in Figure 4, includes Node Manager (NM)

system that contains Sync sub-system, Data sub-system, Coordinator indication manager

component, and App Function & QoS parameters database. NM is responsible for initializing

the sensor node and forwarding received messages by the sensor node to the related sub-system.

There are three different types of messages: (i) Sync message, (ii) Data message and (iii) Coord

message, which are delivered to Synchronization sub-system, Data sub-system and Coordinator

indication manager respectively.

Figure 4. THESEUS Node Architecture

Node Manager System

Sync Sub-system Data Sub-system

Synchronization ManagerElection Manager

Backbone Fulfill Manager Parent Selector Manager

Coordinator Indication Manager

Data Manager

Aggregation Manager

<<Database>>
App Function & QOS parameters

I-PSM

I-EleM

I-BFM I-Rec-AggDI-Rec-Data

I-Rec-MSync

I-Rec-MCoord

I-Rec-MData

Radio

Application Layer

Network Layer

MAC Layer

I-Rec I-Send

I-Send-MSyncI-Send-MCoord I-Send-MData

50

Sync sub-system using Synchronization manager component, election manager, parent

selector manager and backbone fulfill manager is responsible for the process of coordinator

selection and the route construction process. When the coordinator selection process finishes,

the election manager component broadcasts a Sync message to inform other nodes about its

new role.

Data sub-system contains data manager and Aggregation manager components, which

perform the data packet aggregation algorithm, based on the data delivery models (event-driven

or continuous dissemination) and related QoS parameters. The Data manager component sends

the data to the next hop (parent node) when the aggregation process is done.

The Coordinator indication manager is responsible for forcing the node to be a

coordinator when a Coord message is received. Then it broadcasts a Sync message to inform

other nodes about the node new role.

The details of THESESU operation are described in the next section (4.3.4).

4.3.4 THESEUS operation

Figure 5 shows the algorithm running on the sink node representing the operation of

Sink Manager (SM) system. Figure 6 shows the algorithm that represents the logic executed by

the Node Manager (NM) system.

The operation sequence starts with the route establishment process after the deployment

of the physical nodes in the target area and run the SM and NM systems on the sink node(s)

and sensor nodes, respectively. This process starts by SSN-Manager procedure and calls (I-

SSN-SM interface) the Sink-Manager procedure (Figure 5) to broadcast the Sync message to

the network (I-Send-MSync interface), starting routes construction. The Sink-Manager

procedure uses an incremental variable, named nextCycle, representing sink cycle id. This cycle

id starts from one and increments each time the sink node broadcasts a new Sync message

(Figure 5, line: 3 and 12). In the implementation time, the variable of cycle id need to be handled

well for the time that it reaches to the maximum variable size (the variable starts to count from

zero again). The Sync message updates node’s neighbor list with current cycle ID, the related

sink cycle time (valid time), number of hops to the sink node, the node status (whether it is a

coordinator or not), residual energy, app function and QoS parameters. Each sink node on the

network can have a different value for its cycle time. The sensor nodes use the cycle time (valid

time) to verify the selected sink node broadcasts the Sync message in next cycles, or the sensor

51

nodes need to select another active sink node. Each sensor node stores the cycle id and valid

time of received Sync message from each sink node into a table (sink nodes table).

Inside the network (sensor nodes), the Node-Manager procedure initializes the sensor

node and waits to receive a message (Figure 6). When a Sync message is received, the Node

Manager (NM) forwards it to the synchronization manager (I-Rec-MSync interface), which is

a part of the synchronization sub-system (Figure 4). Sync-Manager Procedure in Figure 6 shows

the running algorithm of synchronization manager (Figure 4) and how a node selects its sink

node, and the Coord messages and new Sync messages are generated. The synchronization

manager receives the Sync messages, and checks the cycle id of the message to prevent the

node from repeating the further steps (controlling the Sync messages flooding).

If the cycle id of the sender sink node is the same as the related record on the sink nodes

table of the node, the synchronization manager just completes the node neighbor list.

Otherwise, if the cycle id is older than node’s related record on the sink nodes table, it means

the node has already done the route construction process (decided to be a coordinator and

selected the node parent) and there is no more activity to be done. If the cycle id is newer than

the node related record on the sink nodes table, it means a new cycle of route reconstruction

has been started by the sender sink node. First, the node will update its sink nodes table by cycle

id, valid time (cycle time), and app and QoS parameters. Then, the node checks the sink id to

verify if it is the same sink id that nodes used in the last cycle, if so, then the node calls the

Election Manager (I-EleM interface). If the sink id is not the same sink id the node already

used, the node compares the number of hops distance towards the new sink with the old sink.

procedure SSN-Manager ()
1 : Set (CycleTime,appparam, QoSparam);
2 : Sink-Manager (CycleTime,appparam, QoSparam);
end procedure
procedure Sink-Manager ()
3 : nextCycle ← 1;
4 : loop
5 : MSync.cycle = nextCycle;
6 : MSync.hops = 0;
7 : MSync.coord = true;
8 : MSync.energy =∞;
9 : MSync.appfunc = appparam;
10: MSync.appparam = QoSparam;
11: send(MSync, broadcast);
12: nextCycle ← nextCycle + 1;
13: wait CycleTime seconds or update of app function parameters or QoS parameters;
14: end loop
end procedure

Figure 5. THESEUS sink algorithm

52

The node will select the new sink and call (via I-EleM interface) the Election Manager for the

new sink if the new sink has fewer hops distance. Moreover, the nodes select a new sink in case

of expiration of old sink valid time (cycle time) and not receive the new cycle message during

procedure Node-Manager ()
1 : parent ← null;
2 : SinkCycle← ∅;
3 : Neighbors ← ∅;
4 : coordinator ← false;
5 : Require: receive (MSync message);
6 : Sync-Manager (MSync);
7 : Require: receive(MCoord message);
8 : Coordinator-Indication-Manager (MCoord);
9 : Require: receive(MData message);
10: Data-Manager (MData);
end procedure
procedure Sync-Manager ()
11: if SinkCycle < MSync.cycle then //New cycle
12: Neighbors.sink ← ∅;
13: Neighbors ← Neighbors ∪ MSync.{hops, cycle, coord, energy};
14: Update SinckCycle (cycle, validtime);
15: Update (appparam, QoSparam);
16: if selectedsink = MSync.sink then //New cycle from the sink already used
17: Election-Manager ();
18: else if MSync.hops < currenthops then //selcect another sink because of less distance
19: selectedsink = MSync.sink;
20: Election-Manager ();
21: else if selectedsink.validtime is expired then //select another sink because the old sink is not valid any more
22: Neighbors.sink ← ∅;
23: selectedsink = MSync.sink;
24: Election-Manager ();
25: end if
26: else if SinkCycle = MSync.cycle then //Same cycle
27: Neighbors ← Neighbors ∪ MSync.{hops, cycle, coord, energy};
28: end if
end procedure
procedure Election-Manager ()
29: prob ← AppFunc(app parameters);
30: coordinator ← (random () < prob);
31: send(MSync(parent.hops+1,cycle,sinkid,coord,getEnergy(),app&QoS.param),BROADCAST);
32: wait Backoff Time ();
33: parent ← Parent-Selector-Manager ();
34: Backbone-Fulfill-Manager ();
end procedure
procedure Parent-Selector-Manager ()
35: if coordinator = true then
36: return min(Neighbors, {hops, coord, 1/energy});
37: else
38: return min(Neighbors, {coord, hops, 1/energy});
39: end if
end procedure
procedure Backbone-Fulfill-Manager ()
40: if parent.coordinator = false then
41: send(MCoord(parent.hops+1,cycle,sinkid,coord,getEnergy(),app&QoS.param), parent);
42: Neighbors.parent .coord ← true;
43: end if
end procedure
procedure Coordinator-Indication-Manager ();
44: Neighbors ← Neighbors ∪MSync.{hops, cycle, coord, energy};
45: coordinator ← true;
46: send(MSync(parent.hops+1,cycle,sinkid,coord,getEnergy(),app&QoS.param),BROADCAST);
end procedure

Figure 6. THESEUS node algorithm

53

the appropriate time (valid time). This process makes THESEUS support adding and removing

sink nodes dynamically.

The Election Manager calls the app function with relevant local and QoS parameters in

order to calculate the probability of the node being a coordinator. Election-Manager procedure

in Figure 6 shows the related algorithm. A simple random function (that returns a random

floating number between 0 and 1), along with the value of the app function (a value defined by

the app function which states a probability between 0 and 1) decide if the node should be a

coordinator or not. For example, for a 61% chance calculated by app function, the node will be

a coordinator if the random number is less than 0.61. Next, a Sync message is broadcasted (I-

Send-MSync interface) to inform the network about the updated node status. This

rebroadcasting of Sync messages by each sensor node guarantees that all nodes were reached

by the first Sync message broadcasted by the sink node, therefore ensuring the network

connectivity (same approach as PROC).

After sending a Sync message, sensor nodes wait for a random time to receive

information about the states of other nodes. This random time, named Backofftime, avoids the

whole network from selecting more coordinators than necessary. The SSN manager should

define the duration of this time based on QoS requirements and the network conditions (such

as network size) before starting the network. After the backofftime has elapsed (I-PSM

interface), the parent selector manager selects the parent within the updated neighbor list (the

Parent-Selector-Manager procedure in Figure 6 show the related algorithm). At this point,

Backbone Fulfill Manager checks (I-BFM interface) the status of the selected parent. As

mentioned, all nodes should connect to a coordinator. Therefore, if the selected parent is not a

coordinator, a Coord message will be sent to the selected parent (I-Send-MCoord interface),

and the node updates the parent status to the coordinator in its neighbor list. As shown in Figure

6, Backbone-Fulfill-Manager procedure runs in the Backbone Fulfill Manager component and

they represent the sending of Coord messages.

The parent selector manager (Parent-Selector-Manager procedure in Figure 6) selects,

within the neighbor list, the best node to be the parent of a node based on the following criteria,

in descending order: (i) holding a coordinator role, (ii) shortest hop distance to the sink, and

(iii) greater available energy. Like PROC, this selection process and sink selection process

avoid looping by considering the shortest hop distance towards the sink. Therefore, THESEUS

does not need to use any loop discovery algorithms. In addition, based on checking the valid

54

time for the sink nodes in the route selection process of nodes, THESEUS supports adding and

removing of more sink nodes dynamically.

The Coordinator-Indication-Manager procedure of Figure 6 runs in the Coordinator

Indication Manager and configure the node to be a coordinator (I-Rec-MCoord interface) and

broadcast a Sync message (I-Send-MSync interface) to inform other nodes about the new status

of the node.

The data dissemination process starts when the sensor nodes begin collecting data from

the environment and sending the sensed data to their selected coordinators using Data messages.

Within each sensor node, the NM will forward the received Data messages to the data manager

component (I-Rec-MData interface), in the Data Sub-system. In the Data Sub-system of the

coordinator node, specifically within the Aggregation Manager component, our proposed

packet aggregation algorithm (whose operation was described in section 4.3.4) takes place.

After the aggregated packet is ready, it is forwarded (I-Send-MData interface) through the tree-

like structure until reaching the sink node.

Sync messages are broadcasted periodically and/or eventually for each cycle, starting

routes reconstruction. Such periodic reconstruction of routes makes THESEUS fault tolerant in

case of node failures and helps balancing the energy usage within all nodes. Furthermore, if any

new application demand comes up in the network, which changes the app function parameters

or QoS parameters, then the nodes will be updated immediately. It is also important to mention

that the network connectivity is guaranteed in every cycle, as well as in the first cycle, by

rebroadcasting Sync messages by each node.

55

5. IMPLEMENTATION

THESEUS and PROC routing protocols were implemented on TinyOS 2.1.0 (TINYOS,

Accessed May 2015), using the nesC programming language (an extension of the C language),

which adopts an event-driven programming model (TINYOS, Accessed May 2015). TinyOS is

a component-based operating system, designed specifically for WSN application development.

TinyOS provides a number of interfaces to abstract the underlying communication services and

a number of components that implement these interfaces (TINYOS, Accessed May 2015). We

used MICAz platform (MICAZ & MICA2, Accessed May 2015) (4kB RAM, 128 kB flash

memory for program storage) for our implementation.

The implemented codes followed THESEUS architecture and algorithms previously

described (sections 4.3.3 and 4.3.4). First, we implemented THESEUS, and then we

implemented a simple version of PROC for comparison purposes by excluding the packet

aggregation function, the fourth formula of the app function, and supporting multiple sink

nodes.

As mentioned, TinyOS programming is based on components, events, and tasks. Some

of the procedures of THESEUS are based on more than one event and/or task. Therefore, we

were forced to divide such procedures to separate tasks and/or events. In the following, first,

we describe the components of TinyOS that we used in our implementation. Then, we described

the detail of how we implement our algorithms on TinyOS.

TinyOS provides the MainC component, which is responsible to boot the node, and call

the ActiveMessageC component and SplitControl interface afterwards in order to initialize the

node and start the application. Since it is very common to have multiple services using the same

radio to communicate, TinyOS provides the Active Message (AM) layer (ActiveMessageC

component) to multiplex access to the radio. A number of components implement the basic

communications and active message interfaces in TinyOS (TINYOS, Accessed May 2015). In

our implementation, we used the Packet, AMSenderC, and AMReceiverC TinyOS components,

which are responsible to create messages, send messages, and receive messages respectively.

Sending a message by AMSenderC creates an event of sendDone in TinyOS, which is used for

continuing the process of an algorithm that should run after a message was sent (TINYOS,

Accessed May 2015). In this version of our work, the Packet Acknowledgements (Ack)

interface of TinyOS 2.1.0 was used to manage simple message confirmation, and assist the

retransmission in case of losses of unicast messages (Coord and Data messages). (TINYOS,

56

Accessed May 2015). RandomC and VoltageC are two other TinyOS components, which are

used to create random numbers and read the battery voltage respectively (TINYOS, Accessed

May 2015). Finally, the last component of TinyOS used in our implementation is TimerC.

When a timer component in TinyOS is called, it raises a “timer-fired” event after a given time

(provided as a parameter to this call, in milliseconds) (TINYOS, Accessed May 2015).

We implemented two applications by following the described architecture and

algorithms (sections 4.3.3 and 4.3.4): (i) THESEUS sink manager (Sink Manager system of

THESEUS sink architecture, Figure 3), and (ii) THESEUS node manager (Node Manager

system of THESEUS node architecture, Figure 4). Figure 7 shows the components and

interfaces of THESEUS sink manager (TSM) application and Figure 8 shows the components

and interfaces of THESEUS node manager (TNM) application, which these figures were

created by TinyOS documentation (TINYOS, Accessed May 2015). The AM_MData_R

component in TSM is responsible to receive data messages. The detail of this component is out

of the scope of our work. We created it with the sole purpose of testing our routing protocol in

case of data aggregation and delivering data to the sink node.

TSM application was implemented by one task and two events based on the Sink-

Manager procedure (Figure 5), representing the Sink Manager component of THESEUS sink

manager architecture (Figure 3): MSync_broad_task task, MilliTimer.fired and

MSync_S.sendDone events. In our implementation, we assumed that parameters of the

application and QoS (such as cycle time and maximum accepted delay for aggregation) are

already defined as variables in initializing time of the sink node. After the sink node boots and

is initialized by MainC and ActiveMessageC components, it calls the TimerMiliC components

by cycle time value and periodic mode (“call MilliTimer.startPeriodic(CycleTime)”). As we

described, calling timer makes an event of the timer.fired (MilliTimer.fired). MilliTimer.fired

event calls MSync_broad_task task (“post MSync_broad_task();”). MSync_broad_task

Figure 7. Components and interfaces of THESEUS sink manager application (TinyOS)

57

broadcasts a Sync message to the network that contains the defined variables (application and

QoS parameter), using AM_MSync_S component (instantiate of AMSenderC, representing the

I-Send-MSync interface of THESEUS sink architecture, Figure 3). After the message is sent,

the process goes to MSync_S.sendDone event, which increments the cycle id (“nextCycle++;”).

TNM application was implemented in a similar way of TSM application. Some

procedures are implemented by dividing them into tasks and events. TNM application was

implemented by 4 functions, 3 tasks and 11 events based on the Node-Manager, Sync-Manager,

Election-Manager, Parent-Selector-Manager, Backbone-Fulfill-Manager, Coordinator-

Indication-Manager, Data-Manager, THESEUS-packet-aggregation procedures, and the app

function (Figure 6, Figure 2 and equation (6)), representing the Node Manager component and

all its components of THESEUS node manager architecture (Figure 4). After the sensor node

boots and is initialized by MainC and ActiveMessageC components, it waits to receive a

message: Sync, Coord, or data messages. Each message type makes an event and brings the

process to the related event (Node-Manager procedure).

Sync messages are received by AM_MSync_R (instantiate of AMReceiverC,

representing the I-Rec-MSync interface of THESEUS node architecture, Figure 4), which

creates the MSync_R.receive event. This event implemented the Sync-Manager procedure

(Synchronization Manager component of THESEUS node architecture) and it calls the

Election_Manager function based on the algorithm whenever it is needed.

Election-Manager procedure (Election Manager component of THESEUS node

architecture) was implemented in three parts. First part was implemented by a function named

Election_Manager, which calls the App_Function. The app function was implemented by

App_Function function. Election_Manager calls the RandomC component to get a random

Figure 8. Components and interfaces of THESEUS node manager application (TinyOS)

58

number for its process (described in section 4.3.4). Afterwards, it calls the MSync_broad_task

(a similar task of sink application). The second part was implemented in the

MSync_S.sendDone event (a similar event of sink application) based on the sendDone event,

which uses RandomC and Timer0 (instantiate of TimerC) in order to implement the wait time.

The third part was implemented in the Time0.fired event based on the timer.fired event, which

calls the Parent_Selector_Manager, Backbone_Fulfill_Manager functions, and Timer1

(instantiate of TimerC) to implement the sink valid-time timer (we considered 10 seconds

additional time besides the sink valid-time to be sure the new cycle message is not delayed

through the network). Parent-Selector-Manager procedure, the Parent Selector Manager

component of THESEUS node architecture, was implemented by a function named

Parent_Selector_Manager. Backbone-Fulfill-Manager procedure, the Backbone Fulfill

Manager component of THESEUS node architecture, was implemented by a function named

Backbone_Fulfill_Manager. Based on the algorithm Backbone_Fulfill_Manager calls the task

of MCoord_uni_task. This task unicasts a Coord message to the parent node, using

AM_MCoord_S component (instantiate of AMSenderC, representing the I-Send-MCoord

interface of THESEUS node architecture, Figure 4).

If the event of Timer1.fired happens, it means the selected sink node is not valid

anymore. We implemented the algorithm of lines 22 to 24 of the Sync-Manager procedure

(Figure 6) in this event to node change its selected sink node to another sink node.

Coord messages are received by AM_MCoord_R (instantiate of AMReceiverC,

representing the I-Rec-MCoord interface of THESEUS node architecture, Figure 4), which

creates the MCoord_R.receive event. The Coordinator-Indication-Manager procedure

(Coordinator Indication Manager component of THESEUS node architecture) was

implemented in this event. It calls the task of MSync_broad_task based on the algorithm

whenever it is needed.

The default data field size of TinyOS packet is 28 bytes (TINYOS, Accessed May

2015). Therefore, we divide these 28 bytes to 14 two bytes parts. The first used for the flag;

second for the source node id; third for the destination id (the sink node id); and fourth for the

sample value. The next ten two bytes were considered for five groups of node id and its sample

value for the aggregation purpose (more detail in section 4.3.1).

Data messages are received by AM_MDataF_R (instantiate of AMReceiverC,

representing the I-Rec-MData interface of THESEUS node architecture, Figure 4), which

59

creates the MDataF_R.receive event. The Data-Manager and THESEUS-packet-aggregation

procedures (Data Manager and Aggregation Manager components of THESEUS node

architecture) were implemented by MDataF_R.receive, Timer2.fired, and Timer3.fired events.

When the aggregation is terminated because of the timer or reaching the maximum packet data

field size, those events calls the task of forward MDataToParentTask. Timer2 and Timer3

(instantiate of TimerC) are used to control the aggregation time (MDTC and MDTE) regarding

the data delivery models (continuous and event-driven). The task of

forwardMDataToParentTask sends the aggregated data by AM_MDataF_S component

(instantiate of AMSenderC, representing the I-Send-MData interface of THESEUS node

architecture, Figure 4).

It is worth mentioning that sixteen real MICAz sensor nodes were used to verify and

debug the implementation functionality of THESEUS in the Ubiquitous Computing Laboratory

of PPGI-UFRJ, including the following tasks: route establishment, continuous data type

delivery, and event-driven data type delivery.

The implemented codes are available at Appendix B and online:

“https://github.com/mrezaim/THESEUS”.

60

6. EVALUATION

In this Chapter, we present the experiments performed to evaluate THESEUS. Our

evaluation is divided into four parts. The first evaluation is a comparison between THESEUS

and PROC. Since THESEUS routing algorithm is inspired by PROC, we compared the results

of their functionalities in the same scenarios with the goal of analyzing the improvements and

overheads of using THESEUS in SSNs. To the best of our knowledge, no other practical related

works were found in the literature of routing solutions specifically for SSNs. Therefore, it was

not possible to perform such a comparison with other routing protocol for SSNs. The second

evaluation consists of an analysis on the impact of the variation of important parameters on

THESEUS behavior. The third evaluation is an analysis of the impact of using more than one

sink nodes on THESEUS performance. Finally, we present a comparison between Real and

Simulated Nodes running THESEUS to verify the validation of the simulated results.

6.1 COMPARING THESEUS AND PROC

The main goal of the first set of performed experiments is to prove that THESEUS is

suitable for the SSN scenario, achieving satisfactory values of network lifetime in such

scenario. In this part of the evaluation, we compare PROC and THESEUS in order to highlight

the achievement of improving the network lifetime by THESEUS. We also performed a

thorough analysis of pros and cons of using THESEUS packet aggregation algorithm. Macedo

et al. (MACEDO et al., 2006) have already proved several essential characteristics of PROC

such as fault tolerance in case of “Transient and isolated failures”, “Permanent and isolated

failures” and “Permanent and grouped failures” (MACEDO et al., 2006). Since THESEUS uses

the same process for routing establishment as PROC, experiments to assess such features will

not be performed with THESEUS: we assume that such characteristics are inherited by

THESEUS.

6.1.1 GQM

Considering the objectives of the first part of the experiments and following the Goal,

Question, and Metric (GQM) methodology proposed by Basili et al. (BASILI et al., 1994), the

following goals were defined:

61

(i) Analysis of the improvements and overheads of using THESEUS instead of

PROC in SSNs regarding the SSN lifetime in the context of routing protocols, with the

purpose of comparing with PROC.

(ii) Analysis of the pros and cons of using THESEUS packet aggregation algorithm,

with the purpose of comparing with PROC.

These goals can be expressed by five questions. Q1, Q2, and Q3 are related to the first

goal, Q4 and Q5 are related to the second goal:

Q1: How much THESEUS improves the energy usage of the nodes, in comparison

with PROC?

Q2: How much THESEUS improves the energy usage balance through nodes, in

comparison with PROC?

Q3: How much overhead, in terms of memory, processing, time spent to build the

routes, and number of packets sent in the phase of routes construction, THESEUS

imposes to the SSN in relation to PROC?

Q4: What are the advantage(s) of using the packets aggregation technique, compared

with PROC, which does not use it?

Q5: What are the drawback(s) of using the packets aggregation technique, compared

with PROC, which does not use it?

Metrics were defined to support the answers to these questions. In the following, Mij

denotes the metric, where i corresponds to the question identifier and j is a counter used

whenever there is more than one metric per question. Moreover, all the following metrics are

calculated for each simulated scenario for both THESEUS and PROC, to allow comparing the

retrieved values of the metrics in order to analyze the improvements or worsening of using

THESEUS instead of PROC on SSNs, regarding each metric.

Regarding Q1, we defined the Energy Average, M11 as the average of the energy

consumption values of all nodes during each simulated scenario. Therefore, smaller values for

this metric mean that more energy is saved.

 In relation to Q2, we defined the Energy Population Standard Deviation, M21. This

statistical metric shows the deviation (from average) of the energy consumption of all nodes in

62

a network. In this case, all the sensor nodes of the SSN form the statistical population and M21

is the standard deviation of such population. Therefore, the routing protocol that returns a value

(for M21) more close to zero achieves better energy usage balance among sensor nodes.

In relation to Q3, we defined four metrics: M31: Memory usage, M32: CPU Active,

M33: Number of Packets used in Route Construction, and M34: Route Construction Time.

M31 is defined as the number of bytes of RAM used by the routing protocol. M32 is defined

as the average of the percentage of time that the CPU of a node remains active. M33 is defined

as the number of packets (Sync and Coord messages) exchanged among nodes that are required

to construct the routes (in average among all cycles). M34 is defined as the duration of routes

construction (in average among all cycles, and measured in milliseconds). AVRORA simulator

output log file provides the timestamps of each packet, and such values were used for keeping

track of the first and last packet used for constructing routes. Smaller values for M31, M32,

M33, and M34 mean improvements regarding these metrics. Therefore, we will compare the

values of these metrics on each simulated scenario by THESEUS and PROC to find the

appropriate answer to Q3.

In relation to Q4, we defined M41: Network traffic rate per samples, M42:

Aggregation Rate, and M43: Packet Loss metrics. M41 is defined as the average of packets

sent to deliver samples to the sink node inside the network, considering all repeated packets

(because of not receiving acknowledge message). It is calculated by dividing the number of

sent data packets per number of samples generated during the simulations. A smaller value for

this metric shows less network traffic, which means less energy usage on the network and less

probability of packet collision. M42 is defined as the average of samples aggregated in a packet.

It is calculated by dividing the number of samples per number of packets delivered in the sink

node during the simulation. A higher value for this metric means more samples are aggregated,

which means less number of packets has been transmitted on the network, resulting in

improvement of network lifetime. M43 is defined as the percentage of packets lost (any type of

packets) in the network during the simulation. A value closer to zero shows less packet loss on

the network.

Finally, in relation to Q5, we defined M51: Sample Loss and M52: Delay Time

metrics. M51 is the percentage of lost samples, calculated by equation (7):

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 = �𝐵𝐵−𝐴𝐴
𝐵𝐵
� ∗ 100 (7)

63

where A is the number of received samples in the sink node and B is the number of

samples generated by all nodes. Using packet aggregation, the number of network transmissions

is reduced and consequently the chance of losing packet gets lower. On the other hand, each

packet could contain more than one sample and could produce a higher value of sample loss.

Therefore, analyzing sample loss will give a better answer to the fifth question instead of

analyzing the packet loss. The last metric, M52 is defined as the average time each sample took

from generating until delivering at the sink node. Again, similar to M34, we used the AVRORA

simulator output log file for calculating this metric. A smaller value of M51 and M52 show

more improvement regarding these metrics.

6.1.2 Evaluation methodology and scenarios

The experiments for comparing THESEUS and PROC were performed using AVRORA

1.7.117 simulator (AVRORA SIMULATOR, Accessed May 2015), in similar conditions. For

performing its simulation process, AVRORA uses the same implementation code produced to

be deployed on real WSN platforms. We used the AVRORA default radio model (AEON). This

radio model is basically a distance-attenuation model where radio signal strength drops off with

the square of the distance (AVRORA SIMULATOR, Accessed May 2015).

In this set of experiments, we fixed the following parameter values (in the next set of

tests we analyzed the behaviour of THESEUS by varying such parameter values):

(i) Cycle time: in Macedo et al. (MACEDO et al., 2006), the authors mentioned

that they used 180 seconds for cycle time based on empirical observations of

PROC behavior, so the same value was used in our evaluation.

(ii) Maximum neighbor list size: considering the limited memory of sensor nodes,

this list should be restricted, and we used the same value as PROC, which was

20.

(iii) Minimum and maximum values of Backofftime: if these parameters are set

to form a short period, then the nodes cannot receive enough information from

their neighbors, while a long period results in a longer required time for routes

formation. Based on the results obtained by variation tests, we selected 120ms

and 512ms for these parameters in our evaluation (smaller values, as well as a

shorter period could be used in a denser network).

64

(iv) Packet Acknowledgments: similar to PROC, we used acknowledgments for

unicast packets. We also considered one more try for sending the packet, in case

of a packet loss (packet not acknowledged by the receiver).

In our evaluation, we varied the number of nodes in 50, 100, 150 and 200 nodes, and

in all of these scenarios, the first node (in the bottom left corner) was configured as the sink

node (the observation that we assessed the presence of more than one sink node in section6.3).

In each topology, we placed the nodes on a square grid (Figure 9) with a distance of 5 meters

between nodes in each horizontal and vertical direction in the Cartesian plane. In addition, to

bring more neighbors closer to the sink node, the sink node was placed slightly displaced from

the central point of the grid formed by the three nodes in the bottom left corner of the topology

(inside the grid formed by these three nodes) as seen in Figure 9.

Figure 9. Graph of data flows during a cycle of THESEUS simulation (100 nodes)

65

 To simulate the conditions of a SSN, we created two areas within each topology. PROC

only supports continuous data delivery model. However, the event-driven data delivery model

does not have a considerable effect on energy usage comparing to the effect of the continuous

data delivery model. This is due to the fact that each sample of event-driven model refers to an

unusual (rare) demand of sampling by applications (i.e. on-demand sampling) (AKKAYA et

al., 2005). Therefore, to perform the tests in more demanding conditions regarding data

transmissions, we decided to use two applications based on continuous data delivery model.

One application (monitoring humidity) runs in both areas with data sample rate time of 28

seconds, and another application (monitoring temperature) runs in just one of the areas with

same data sample rate time of 28 seconds, but starts monitoring with 14 seconds of delay after

the first application. We decided to use 28 seconds interval in order to avoid matching the same

value of the cycle time (180 seconds). Avoiding this matching is important to balance the

number of packet collisions in the network. In other words, the nodes in the first half of the

network (area 1) generate samples, each 14 seconds, and the nodes in the second half of

the network (area 2) generate samples, each 28 seconds. For instance, in a topology of 100

nodes, the nodes with ID from 1 to 49 generate samples at each 14 seconds (once humidity and

once temperature), and nodes with ID from 50 to 99 generate samples at each 28 seconds

(Figure 9 shows node positions).

Maximum accepted delay time for continuous dissemination samples (MDTC)

should not be bigger than minimum data sample rate and should be long enough for the nodes

to be able to aggregate packets. In this part of evaluation, we considered MDTC as 10 seconds.

6.1.3 Tests and analysis of results

In our evaluations, we selected an energy model to provide more generic comparison

results for energy related metrics. We chose the energy model described in (LI et al., 2014)

since it is a well-defined and generic energy model for wireless sensor nodes. As suggested by

(LI et al., 2014) we calculated energy consumption for each node based on sent packets. Our

simulation log files provided the necessary information on transmitted packets, regarding the

size, sender and receiver node IDs, and distance between sender and receiver (calculated by

using the related topology). The energy consumption of transmitting l-bit data over distance d

is defined as Etx(l, d):

Etx(l, d) = Eelec × l + εamp × l × d2 (8)

66

where Eelec and εamp are hardware-related parameters (MICAZ & MICA2, Accessed

May 2015).

In this evaluation, we made eight experiments (with 50, 100, 150 and 200 nodes for both

PROC and THESEUS) during five hours. In following, we analyze the results of each metric

and its impact in each scenario. The five hours of simulation comprise the execution of 100

cycles, which were all considered in the calculation of the presented metrics (in average among

all cycles performed).

Regarding Energy Average (M11), THESEUS shows better results in comparison to

PROC in all topologies. Regarding Q1, M11 for THESEUS was 10.70% lower than M11 for

PROC, in the 50 nodes topology. This advantage of THESEUS increases as the amount of nodes

in each topology rises, reaching 20.83% for the 200 nodes topology. Therefore, THESEUS is

more advantageous than PROC for larger networks (Figure 10). This result is explained

because, in relation to PROC, THESEUS has an aggregation algorithm, and so, it transmits

aggregated data in packets, requiring the transmission of a smaller number of packets than

PROC. For instance, a fully data aggregated packet in THESEUS is 20 bytes larger than a

PROC data packet. However, PROC would require more than one packet transmission for

delivering this same amount of data. So, PROC needs to activate its radio device more times

than THESEUS, spending more energy. Also, PROC spends more energy with header/trailer

bytes transmissions than THESEUS. Since radio transmissions have a significant impact on

energy usage in the radio component (LI et al., 2014), THESEUS shows a considerable

0.0567
0.0703

0.0817 0.0857

0.0634

0.0860

0.1010
0.1082

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 10. Results of the Energy Average metric

67

improvement in relation to PROC, even with the larger size of packets, because THESEUS

generates a smaller number of packets.

Regarding the Energy Population Standard Deviation (M21), THESEUS shows

better results in comparison to PROC in all topologies (Figure 11). Regarding Q2, M21 for

THESEUS was 32.33% lower than M21 for PROC, in the 50 nodes topology, and respectively

40.76%, 28.74% and 35.18% lower for 100, 150 and 200 nodes topologies. In average among

all topologies, THESEUS showed M21 values 34.25% lower than PROC. As the number of

nodes increase in the topology, the M21 values increase at a lower rate for THESEUS than for

PROC. These facts prove that THESEUS is more capable of balancing the energy usage in the

network than PROC. This is because THESEUS considers the specificities of a SSN

environment (i.e. multiple applications running on nodes) for selecting coordinators, thus

resulting in better choices of coordinators than PROC.

Memory usage (M31): This value was retrieved from TinyOS at compile time for real

nodes (it is the same for all simulations). Regarding this metric, THESEUS used 757 bytes of

memory, which corresponds to 18.48% of node memory in MICAz platform (4096 bytes). In

relation to PROC, THESEUS used 195 bytes more of the node memory, representing less free

memory as an overhead (worsening 4.76%). However, the remaining free memory (3339 bytes)

is adequate to be used by any other required protocol, application code, etc.

CPU Active (M32): AVRORA provides the values of the time the CPU of the nodes

remain active during the performed simulations (AVRORA SIMULATOR, Accessed May

0.0199
0.0300

0.0456 0.04950.0294

0.0506

0.0640

0.0764

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 11. Results of the Energy PSTD metric

68

2015). An overhead was expected regarding this metric, based on the higher complexity of

THESEUS, mainly driven by its aggregation algorithm. However, the results show that the

impact of sending more packets (as in PROC) on the CPU usage is greater than the effect caused

by THESEUS packet aggregation algorithm. In an average of all tests with THESEUS, nodes

CPU were active 0.53% of the time instead of 0.76% for the average of all tests with PROC. In

one of the scenarios, THESEUS improved this metric by 37.80%. In average of tests, the

improvement is 24.22% in relation to PROC (Figure 12). So, THESEUS proved to be better

than PROC regarding this metric.

 Number of Packets used in Route Construction (M33) and Route Construction

Time (M34): as expected, M33 and M34 showed almost the same values for THESEUS and

PROC in each simulation since the route construction processes of both are similar (Figure 13

and Figure 14 respectively for M33 and M34). Furthermore, we tested THESEUS for 500 and

1000 nodes, regarding these metrics, and the results were 617 and 1350 packets respectively

for M33, 740 and 868 milliseconds respectively for M34. These results are important because

they show that THESEUS (as well as PROC) route construction procedure is scalable regarding

the number of nodes. Regarding M33, THESEUS spends only 54 packets for constructing

routes in a 50 nodes topology. This value increases to 235 packets in topologies with 200 nodes.

Therefore, it is possible to assume that THESEUS is scalable to the number of nodes, because

as the network size increases, a proportional (linear) number of packets is required for

constructing routes. This number of packets was measured for the highest possible amount of

0.2537
0.3584 0.4348

1.0713

0.2869

0.4605
0.5825

1.7224

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 12. Results of the CPU Active metric

69

sensor nodes in simulations (1000 nodes), and THESEUS still worked well, following this

linear relation. And finally, M34 also helps supporting these conclusions.

Therefore, regarding Q3, the overhead of using THESEUS instead of PROC, in terms

of memory, is 4.76%, but for processing THESEUS improved more than 24% in average.

Regarding the duration and the number of packets sent on routes construction phase, the results

showed that THESEUS and PROC route construction procedure is scalable.

Network traffic Rate per samples (M41): This parameter showed an improvement

between 19.57% and 32.33%, getting better as the network size increases (Figure 15). Because

54

115

175

237

54

116

175

235

0

50

100

150

200

250

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUES

Figure 13. Results of the Number of Packets used in Route Construction metric

565

626

685

729

571

630

672

720

550

570

590

610

630

650

670

690

710

730

750

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUES

Figure 14. Results of the Route Construction Time metric

70

of less traffic in the network, THESEUS is less prone to packet loss and energy usage than

PROC. The reduced traffic rate in THESEUS, in relation to PROC, is explained by the packet

aggregation algorithm used in THESEUS. THESEUS packet aggregation imposes a smaller

number of packet, as well as less byte transmissions by each sensor node than PROC.

Aggregation Rate (M42): This parameter showed 2.28 samples were aggregated in

each data packet in the average of all five scenarios during five hours of simulation time (Figure

17). In this implementation of THESEUS, each data packet could carry up to six samples

(Figure 17). Moreover, the results showed more number of nodes in a network could improve

the aggregation chance of more number of samples in a data packet during the same limited

time (MDTC). In other words, in a 50 nodes topology there are less aggregated packets with 6

samples, but in a 200 nodes topology, the percentage of aggregated packets with 6 samples

increases. This can be perceived in Figure 16, since the orange bars in the outer circles are

increasingly bigger than in the inner circles. On the other hand, the percentage of aggregated

packets with one sample is reduced in the outer circles (blue bars in Figure 17), so the proportion

of large aggregated packets (4-6 samples per packet) increases and the proportion of small

aggregated packets (1-3 samples per packet) decreases, as the network size increases. It means

THESEUS could work more efficient in a bigger network.

Packet Loss (M43): AVRORA provides the packet loss report in the performed

simulations (AVRORA SIMULATOR, Accessed May 2015). This packet loss includes all

types of packets sent over the network (Sync, Coord, and Data messages). This parameter

showed that THESEUS improved packet loss 11.51% in average of all tests in comparison with

2.42
2.94

3.44 3.57

3.01

4.14

4.89
5.28

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 15. Results of the Net. Rate metric

71

PROC (Figure 18). Furthermore, larger networks showed more improvement. Such

improvement happens because of THESEUS reducing the number of packets, and

consequently, reducing the chance of packet collisions.

Regarding Q4, about advantage(s) of using the packet aggregation technique,

THESEUS reduced network traffic in 27.59% and packet loss 11.51% in average of all tests,

compared with PROC. Moreover, THESEUS showed it works more efficient than PROC when

the number of nodes increases. This is a promising and expected result since THESEUS is

tailored for SSNs, which are potentially large-scale networks.

1.63

2.23

2.59
2.66

1.30

1.50

1.70

1.90

2.10

2.30

2.50

2.70

2.90

50 Nodes 100 Nodes 150 Nodes 200 Nodes

Figure 16. Results of the Aggregation Rate metric

percent of 1 sample/packet

percent of 2 samples/packet

percent of 3 samples/packets

percent of 4 samples/packets

percent of 5 samples/packets

percent of 6 samples/packets

50 Nodes
100 Nodes
150 Nodes
200 Nodes

Figure 17. Aggregation detail

72

Sample Loss (M51): In the average of all simulations, THESEUS improved sample

loss by 51.29% in comparison to PROC. This happens because THESEUS aggregation

algorithm helps reducing the amount of network traffic, so it reduces packet loss. Therefore, as

the network size increases, this metric shows better results (Figure 19). In PROC, the network

traffic increases faster than in THESEUS when the network size increases. It is worth

mentioning that in our THESEUS implementation, a packet loss could cause six samples losses

(so, packet losses in THESEUS are more critical). However, even with this potential drawback,

the packet losses in THESEUS were reduced, and sample losses result improved.

Delay Time (M52): In the average of all simulations, THESEUS delivered samples

with a delay of 6435ms and PROC with 153ms of delay. Such delay in THESEUS is acceptable

3.29%

6.56%

10.10%

11.46%

3.24%

6.44%

7.89%

9.10%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 18. Results of the Packet Loss metric

2.00%

6.46%
9.11%

10.83%

2.66%

13.54%

25.43%

29.95%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 19. Results of the Sample Loss metric

73

and is not considered as a disadvantage, since the maximum accepted delay time (MDTC) was

set to 10 seconds and THESEUS delivered samples in less than 65% of MDTC. In other words,

THESEUS improved the network lifetime and efficiency using a delay time that was acceptable

by applications, thus without sacrificing the provided QoS.

Finally, Regarding Q5, about drawback(s) of using the packet aggregation technique,

using larger packet size (consequently using more energy and imposing a higher risk of losing

more samples per packet loss) could be a drawback. Nonetheless, the evaluation showed that,

since THESEUS reduces network traffic, such potential drawback was transformed into an

advantage. THESEUS improved the sample loss metric 51.29% in average of all tests.

Moreover, THESEUS showed it delivers packet in a time smaller than the maximum accepted

delay defined.

At the end, these results prove that we achieved our goal of improving the SSNs lifetime

and confirming the advantages of using THESEUS packet aggregation algorithm.

118 ms 137 ms
162 ms

194 ms

5,805 ms 6,576 ms 6,623 ms 6,737 ms

100 ms

200 ms

400 ms

800 ms

1,600 ms

3,200 ms

6,400 ms

12,800 ms

50 Nodes 100 Nodes 150 Nodes 200 Nodes

PROC

THESEUS

Figure 20. Results of the Delay Time metric

74

6.2 ANALYSIS OF THE IMPACTS OF VARIATION OF IMPORTANT

PARAMETERS

The main goal of this evaluation is to analyze the impact of important parameters on

THESEUS that were fixed in the previous evaluation. Moreover, the results of this set of

evaluation show the functionality of THESEUS on SSNs in absolute terms.

6.2.1 GQM

Similar to the previous evaluation (section 6.1), following the Goal, Question, and

Metric (GQM) methodology (BASILI et al., 1994), the following goal was defined for this set

of experminets:

(i) Analysis of THESEUS by varying the number of applications, nodes distance, nodes

random position, sink node position, cycle time, MDTC, and simulation time with the

purpose of finding the impact of such parameters on the network behavior.

This goal can be expressed by seven questions:

Q1: What is the impact of the number of applications on THESEUS?

Q2: What is the impact of the distance between nodes on THESEUS?

Q3: What is the impact of the displacement of nodes on THESEUS (in comparison to

the grid position format)?

Q4: What is the impact of the sink node position on THESEUS?

Q5: What is the impact of the cycle time on THESEUS?

Q6: What is the impact of the MDTC on THESEUS?

Q7: What is the impact of simulation time on THESEUS in regards to energy

consumption of nodes?

We used the same 11 metrics defined in the previous section (6.1) on this evaluation to

answer each question. However, Memory usage (M31) metric has the same value, independent

of the test scenario (since this metric depends on the implementation code, which did not

change); therefore, we did not analyze this metric here (it is available in section 6.1.3).

75

6.2.2 Evaluation methodology and scenarios

In this evaluation, we compared the result of variation of each parameter to find its

impacts on THESEUS using AVRORA 1.7.117 simulator (AVRORA SIMULATOR, Accessed

May 2015). We considered the evaluation methodology of the perivious section as a basic

configuration for this set of experiments. We used the topology of 100 nodes that was defined

in section 6.1.3. In each set of following tests, we varied one of the aforementioned parameters

(all other parameters were similar to the last evaluation).

6.2.3 Tests and analysis of results

In this evaluation, we performed six group of experiments, each group for assessing the

variation of one of the aforementioned parameters. The simulations for all these experiments

ran for five hours. In the following section, we analyze the results of each group of tests and

the impact(s) of each parameter.

6.2.3.1 number of applications

In the previous tests, we considered two applications in two areas of the network. In the

scenario of 100 nodes, the first application (app1, monitoring humidity) runs in all sensor nodes

(with ID from 1 to 99) and sample rate of 28 seconds. The second application (app2, monitoring

temperature) runs in first half of the sensor nodes (with ID from 1 to 49) and with the same

sample rate of 28 seconds. For this evaluation, we add two other applications. The third

application app3 was specified to monitor luminosity and runs in sensor nodes with ID from 30

to 69 and sample rate of 42 seconds. The fourth application (app4, monitoring air pressure) runs

in sensor nodes with ID from 30 to 49 and sample rate of 14 seconds (Figure 21).

Therefore, we considered four scenarios: (i) one application (app1); (ii) two applications

(app1 and app2); (iii) three applications (app1, app2, and app3); and finally (iv) four

applications (app1, app2, app3, and app4) running on the network. We performed the tests for

each scenario using THESEUS and PROC to illustrate the difference of sharing the network

with more applications (since we did not find any applicable routing protocol specific for

SSNs). In the following, we compare and analyze the results using the same metrics that we

defined in the previous evaluation.

76

Regarding Q1, Table 2 shows the values of the defined metrics for each scenario. As

expected, the metrics, Number of Packets used in route construction (M33) and Route

Construction Time (M34), showed almost the same values in all tests because the routes

construction process of THESEUS and PROC are similar. Moreover, it shows the route

Figure 21. Topology of 100 nodes and 4 applications

Table 2. Results of Number of running applications variation tests

100 Nodes
5 hours M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

One
App

THESEUS 0.0572 0.0191 0.29% 115.9 630 ms 3.16 2.396 7.89% 7.02% 6,811 ms
PROC 0.0693 0.0359 0.38% 115.0 629 ms 4.61 0.000 8.31% 18.23% 73 ms

Two
Apps

THESEUS 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.226 6.44% 6.46% 6,576 ms
PROC 0.0860 0.0506 0.46% 115.0 626 ms 4.14 0.000 6.56% 13.54% 137 ms

Three
Apps

THESEUS 0.0729 0.0307 0.37% 113.2 632 ms 2.98 2.255 6.17% 6.42% 6,621 ms
PROC 0.0867 0.0509 0.47% 113.8 634 ms 4.05 0.000 7.30% 16.29% 166 ms

Four
Apps

THESEUS 0.0744 0.0331 0.38% 114.0 629 ms 3.05 2.264 6.17% 6.64% 6,220 ms
PROC 0.0888 0.0526 0.47% 114.1 633 ms 4.24 0.000 6.98% 16.45% 178 ms

77

construction process is independent of number of applications. Regarding the Energy Average

(M11) and Energy Population Standard Deviation (M21) metrics, THESEUS shows more

improvement when the number of applications increases than PROC (Figure 22 and Figure 23).

Even, in the case of single application scenario, THESEUS was more energy efficient than

PROC based on its aggregation ability. In these scenarios, the app3 and app4 have not a big

impact on increasing the sample rates; therefore, the graphs does not show a tangible

improvement of M11 and M21 metrics for THESEUS using three applications and four

applications. Analyzing this metrics by considering more applications and more demanding rate

is a considerable future work to show better the THESEUS ability regarding handling multiple

applications. The CPU Active (M32) metric shows that more number of applications brings

0.0572
0.0703 0.0729 0.0744

0.0693

0.0860 0.0867 0.0888

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

One App Two Apps Three Apps Four Apps

PROC

THESEUS

Figure 22. Results of the Energy Average metric

0.0191

0.0300 0.0307 0.0331

0.0359

0.0506 0.0509
0.0526

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

One App Two Apps Three Apps Four Apps

PROC

THESEUS

Figure 23. Results of the Energy PSTD metric

78

more CPU activity on nodes in both protocols. Moreover, the result shows almost in all cases

that THESEUS uses nodes’ CPU 20% less than PROC. About the Network traffic rate per

sample (M41), Packet Loss (M43) and Sample Loss (M51) metrics results show similar values

in all scenarios, showing THESEUS worked better than PROC in all of them (we analyzed

these metrics in section 6.1.3). The Delay Time (M52) metric shows THESEUS performs better

by raising the number of applications. More application means more samples were generated

during the defined limited time (MDTC). Therefore, the aggregation process finished faster

since the maximum packets size were reached before the maximum accepted delay elapsed. On

the other hand, the Delay Time metric increases by raising the number of applications in PROC,

since the probability of packet collisions increases as more data samples are simultaneously

generated.

6.2.3.2 distance between Nodes

In our previous tests, we placed the nodes on a square grid with a distance of 5 meters

between nodes in each horizontal and vertical direction in the Cartesian plane. In this group of

experiments, we varied such distance by 3, 10, and 15 meters in order to find the impact of this

parameter on THESEUS. The 3, 10, and 15 meters distances were chosen based on the MICAz

datasheet (MICAZ & MICA2, Accessed May 2015). The indoor wireless range of this platform

is 20 to 30 meters, but experimental tests by varying the distance between nodes in AVRORA

show that this simulator considers coverage rate for this platform around 15 meters.

Regarding Q2, Table 3 shows the results of distance variation tests. All metrics

improved as the nodes got closer to each other. Such improvement happens due to the

participation of more nodes in the process of aggregating the samples and routing packets.

Denser networks bring more neighbors for each node, which is important for selecting different

parent node in order to balance energy in each cycle. Figure 24 shows the routes in a cycle of

each scenario, showing how a denser network brings more chance for aggregating samples and

balancing energy.

Table 3. Results of Nodes Distance variation tests

100
Nodes

5 hours
M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

3 meters 0.0669 0.0194 0.53% 102.4 607 ms 2.45 1.93 5.30% 4.66% 3,154 ms
5 meters 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.23 6.44% 6.46% 6,576 ms

10 meters 0.1312 0.0950 0.38% 133.7 682 ms 5.95 2.14 4.03% 15.58% 9,561 ms
15 meters 0.2570 0.1242 0.55% 150.6 713 ms 11.26 1.49 5.37% 37.85% 9,611 ms

79

Figure 24. Graphs of data flows during a cycle of THESEUS simulation (100 nodes) for 3, 5, 10, and 15 meters distances

80

6.2.3.3 random Position of Nodes

In our previous tests, we placed the nodes on a square grid in the Cartesian plane. In

this group of experiments, we used three different random positions for nodes in order to show

the impact of the displacement of nodes on THESEUS We compared the results of these three

random positions with the previous scenario of square grid positions in the same area size to

find the impact of this change on THESEUS.

Regarding Q4, the results in Table 4 show no tangible differences regarding any

assessed metrics, which proves that networks with similar density have similar results. Based

Figure 25. Graph of data flows during a cycle of THESEUS simulation (100 nodes) for one of nodes random positions

Table 4. Results of the Nodes Random Position variation tests

100
Nodes

5 hours
M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

5m Sq. Gr. 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.23 6.44% 6.46% 6,576 ms
Rnd.P. 1 0.0799 0.0430 0.44% 111.8 618 ms 3.24 2.53 5.04% 8.28% 7,021 ms
Rnd.P. 2 0.0706 0.0331 0.39% 111.4 623 ms 2.89 2.29 5.34% 8.05% 5,989 ms
Rnd.P. 3 0.0733 0.0330 0.39% 111.4 620 ms 3.00 2.51 5.46% 7.50% 7,175 ms

81

on the results from variation of nodes distance (previous tests) and nodes random positions, it

is possible to conclude that the network density i.e. the average of number of nodes per square

meter could change the network behavior, but nodes displacement with similar density does not

change network behavior. Moreover, THESEUS proved that it guarantees network connectivity

in any configuration of nodes’ positions. This is based on the tests’ results (sample loss and no

rise in Nrj. PSTD) and considering Figure 25, which shows routes that THESEUS created for

a cycle of one of random position tests.

6.2.3.4 sink node position

In all of our experiments, we placed the sink node in the corner of the topology to

maximize the network depth. In this experiment, we compare the result of 100 nodes scenario

from previous section with the new experiment of placing the sink node near the center of the

network topology (we changed the place of node with ID 44 by the sink node, Figure 26). Table

5 shows the results of previous and new tests.

Figure 26. Graph of data flows during a cycle of THESEUS simulation (100 nodes) for the central sink node

82

Regarding Q4, the results indicate that all metrics (excluding aggregation rate metric)

were improved when the sink node was placed in the center of the network. It happened because

when the sink was placed in the center, there are more routes from more directions to access it.

Therefore THESEUS balanced the energy better than in the previous test. In addition, the

number of hops to deliver messages to the sink node is smaller than before, so the energy

consumption of nodes was improved. Regarding the aggregation rate metric, which had better

value in the test with the sink node in the corner, we can conclude that many nodes delivered

the data samples directly to the sink node without passing through coordinators, since they have

been placed around the sink. Therefore, coordinators had less chance to aggregate samples.

6.2.3.5 cycle time

In the previous evaluation, we fixed this parameter to 180 seconds. In this group of

experiments, we varied this parameter by 60, 1800, and 3600 seconds, and performed another

test with just one cycle of route construction (without reconstruction of routes during five hours

of simulation) to verify the impact of variation of this parameter on THESEUS.

Regarding Q5, Table 6 shows the results of these variation tests. Analytically, as we

discussed previously, a long period of cycle time damages the energy usage balance among the

nodes and increases the probability of losing more samples if some coordinator nodes fail

during that cycle time. On the other hand, a short period of cycle time increases the energy

usage of nodes and the probability of packet collisions. The results of energy balance metric

(M21) shows that the value of 180 seconds for the cycle time in our scenarios (based on sample

Table 5. Results of the Sink Node Position tests

100
Nodes

5 hours
M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

Corner 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.23 6.44% 6.46% 6,576 ms
Center 0.0608 0.0193 0.32% 107.1 613 ms 2.61 1.91 6.16% 3.13% 5,777 ms

Table 6. Results of the Cycle time variation tests

100 Nodes
5 hours M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

60 sec. 0.1041 0.0347 0.46% 113.5 630 ms 3.06 2.24 11.41% 6.71% 6,485 ms
3 min. 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.23 6.44% 6.46% 6,576 ms

30 min. 0.0519 0.0341 0.31% 117.6 628 ms 2.95 2.23 1.23% 6.24% 6,183 ms
1 hour 0.0495 0.0398 0.30% 116.8 619 ms 2.88 2.25 0.84% 5.28% 6,511 ms

one cycle 0.0476 0.0607 0.29% 117.0 619 ms 2.83 2.23 0.53% 5.45% 6,516 ms

83

rates) is the optimum value for this parameter. However, considering all other metrics such as

energy average, packet loss, and delay time the value of 1800 seconds (30 minutes) of cycle

time shows the best option for our scenario. This is becauses instead of losing negligible energy

usage balance; the energy usage, packet loss, and delay time were more improved.

The improvement of this metric is related to the number of cycles in tests because more

cycles of reconstruction of routes mean changes in the node that is playing the role of

coordinator. As the roles of the nodes change, THESEUS can better balance energy

consumption among the SSN nodes.

6.2.3.6 MDTC

This parameter was initially fixed to 10 seconds. Now, we varied it by 250 milliseconds,

1, 5, 30, and 60 seconds to analyze the impacts of variation of this parameter on THESEUS.

Regarding Q6, Table 7 shows the obtained results. The results of tests with 30 and 60 seconds

shows more sample loss since most of the delivered packets carried the maximum number of

samples (losing a packet means losing more samples), but these tests show less energy usage.

The 1-second test proves that our packet aggregation method could play a crucial role to save

more energy considering packets delivered to the sink node with a delay smaller than one

second. For instance, this test (1-second test with THESEUS) improved the node energy usage

around 20% in comparison to the similar test with PROC (one second data delivery delay is

negligible for most of existing application demands).

6.2.3.7 simulation Time

In order to observe the changes in the metrics with variation of simulation time, we

experimented different simulation times of 1, 10, and 20 hours for the same 100 nodes scenario.

Table 7. Results of the MDTC variation tests

100 Nodes
5 hours M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

250 ms. 0.0727 0.0336 0.38% 114.3 629 ms 3.13 1.967 6.64% 7.76% 249 ms
1 sec. 0.0720 0.0320 0.37% 114.1 631 ms 3.04 2.229 6.20% 6.31% 956 ms
5 sec. 0.0731 0.0358 0.38% 113.5 633 ms 3.09 2.203 6.12% 5.95% 3,563 ms

10 sec. 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.226 6.44% 6.46% 6,576 ms
30 sec. 0.0646 0.0232 0.30% 115.1 635 ms 2.59 3.095 7.78% 12.72% 10,383 ms
60 sec. 0.0645 0.0254 0.30% 113.9 635 ms 2.63 3.236 7.46% 13.04% 13,298 ms

84

The Table 8 shows the changes in energy consumption corresponding to each simulation time.

As it is observed the energy usage average and balance metrics increase linearly with simulation

time. Other metrics provide similar values in all tests which proves that the proposed routing

protocol is resilient with simulation time variations.

Regarding Q7, the reason for these experiments was to show the resiliency/flexibility

of routing protocol in regard to longer simulation time. Hence, we showed that energy

consumption level increases linearly with simulation time and the other metrics remain the

same.

Table 8. Results of the Simulation time variation tests

100
Nodes M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

1 hour 0.0152 0.0106 0.36% 114.2 624 ms 3.20 2.15 5.10% 5.95% 6,699 ms
5 hours 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.23 6.44% 6.46% 6,576 ms

10 hours 0.1436 0.0613 0.36% 115.5 629 ms 3.03 2.27 6.38% 6.58% 6,703 ms
20 hours 0.2905 0.1181 0.37% 114.4 628 ms 3.12 2.27 6.09% 7.73% 6,609 ms

85

6.3 ANALYSIS OF THE IMPACTS OF USING MORE THAN ONE SINK

NODE ON THESEUS

The main goal of this set of evaluations is to analyze the impact of the number of sink

nodes on THESEUS, which is one of the features that THESEUS provides and PROC does not.

6.3.1 GQM

The following goal was defined for this evaluation:

(i) Analysis of THESEUS by varying the number of sink nodes with the purpose of

finding the impact of using more than one sink node on a network.

Two questions can express this goal:

Q1: Does THESEUS support more than one sink node, and does it support adding and

removing sink nodes from the network dynamically?

Q2: What is the impact of the number of sink nodes on THESEUS?

6.3.2 Evaluation methodology and scenarios

In this evaluation, we used similar conditions and parameters of the scenario with 100

nodes from our previous evaluation. About Q1, we modified our previous scenario by adding

second sink node, also turning off the first sink node for three cycles in the middle of the

simulation, and compare the result with similar test without turning off the sink node. This will

enable us to analyze the THESEUS behavior regarding adding and removing sink nodes

dynamically. Regarding the Q2, we varied the number of sink nodes by two and four in the

same scenario with 100 nodes. We used metrics that were defined in the section 6.1.1 to

compare the results of this set of test for answering the aformentioned questions.

6.3.3 Tests and analysis of results

The tests regarding verifying the THESEUS ability to add and remove the sink node

were done during ten cycles (1800 seconds). In our implementation, we considered around 10

seconds tolerance for checking valid time of the last received Sync message (section 4.3.4),

based on considering network latency for delivering Sync messages. Therefore, removing a

sink node could cause some sample loss for those 10 seconds.

86

Regarding Q1, Table 9 shows the results of the test without removing the sink node

(normal) and the other one that first sink node was removed during three cycles (Figure 27).

The result shows that removing and adding a sink node brings some limited impacts on the

nodes such as using more energy, losing the energy usage balance and losing some samples.

However, even in the short time of tests, these impacts are not considerable. Such impacts are

not tangible during long time tests either.

Regarding Q2, the impacts of using more than one sink node, we tested THESEUS by

adding sink nodes to the scenario of 100 nodes from previous evaluation (section 6.1). We

simulated that same scenario with two sink nodes and four sink nodes (Figure 28). Table 10

shows the results of varying the number of sink nodes. As results show, network lifetime

increased since the energy usage average and balance improved by increasing the number of

sink nodes. Such improvements happen because the presence of more sink nodes allows

dividing the network into smaller network with less network depth. Consequently, the packets

are delivered to the sink node by traversing fewer hops. Moreover, the sample loss and delay

time metrics improved when the network had more sink nodes to deliver samples.

Table 9. Results of the add and remove Sink Node

2 sinks + 99
Nodes 30
minutes

M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

Normal 0.0067 0.0022 0.37% 116.9 618 ms 2.76 1.67 6.26% 2.45% 6,408 ms
3 cycles by

one sink 0.0073 0.0032 0.40% 116.5 696 ms 2.91 1.76 5.69% 5.06% 5,800 ms

Table 10. Results of the add and remove Sink Node

sinks + 99
Nodes 5

hours
M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

1 Sink 0.0703 0.0300 0.36% 115.6 630 ms 2.94 2.23 6.44% 6.46% 6,576 ms
2 Sinks 0.0672 0.0242 0.30% 115.1 645 ms 2.82 1.71 6.64% 4.35% 6,497 ms
4 Sinks 0.0580 0.0190 0.25% 112.9 665 ms 2.50 1.29 7.74% 4.48% 3,888 ms

87

 Figure 27. Graphs of data flows of six cycles of multi sink test, where the first sink removed in cycle ids: 3, 4, and 5

88

Figure 28. Graph of data flows during a cycle of simulating 99 nodes and 4 sinks

89

6.4 COMPARISON BETWEEN REAL AND SIMULATED NODES

In this experiment, we analyzed the differences of behavior of real nodes and simulated

nodes to verify the validity of our previous simulated results. Since our main goal is prolonging

the network lifetime, comparing the results of M11 (Energy Average) and M21 (Energy PSTD)

metrics are our main concern in this section.

Sixteen real MICAz sensor nodes were used to make a real test of THESEUS in the

Ubiquitous Computing Laboratory of PPGI-UFRJ. We placed the nodes as shown in Figure 29

in our Laboratory. The previously defined app1 was set for nodes with ID 1 to 16 and app2 was

set for nodes with ID 1 to 12. We connected the sink node and nodes with ID 1 to 5 through a

USB cable and proper board (crossbow) to the computer. PrintF function of TinyOS was used

to save the log of all performed activities. During one hour of test, 3525 samples were received

in the sink node. We simulated a same scenario (to the real test) with same parameters and

Figure 29. Graph of data flows during a cycle of real test scenario

90

conditions (such as node positions) in AVRORA simulator. Table 11 shows the results of real

and simulated tests. M32 (CPU Active), M34 (Route construction time), and M52 (Delay Time)

metrics were not measurable in our real nodes. Regarding energy usage average (M11) and

energy usage balance (M21) metrics, our real test showed that AVRORA simulation results are

well promising and our simulated results are valid. Moreover, we realized AVRORA considers

more packet loss (M43) than real nodes. However, sample loss (M51) was zero for both tests

because of using packet acknowledgement feature.

Table 11. Results of the real and simulated tests

sink + 15 Nodes
1 hour M11 M21 M32 M33 M34 M41 M42 M43 M51 M52

Real 0.0079 0.0013 NA 16.0 NA 1.01 0.00 0.11% 0.00% NA
AVRORA 0.0086 0.0012 0.18% 16.0 <1 ms 1.10 0.00 0.75% 0.00% <1 ms

91

7. CONCLUSIONS AND FUTURE WORK

In this work, we proposed THESEUS as an application generic routing system for SSNs.

THESEUS routing algorithm is inspired by PROC. The primary goal of THESEUS is to extend

the lifetime of the network by reducing the amount of energy usage and balancing energy usage

among all nodes for the multi-application environments. To the best of our knowledge,

THESEUS is the first applicable routing protocol for SSNs with support of dynamic multiple

sink nodes.

Considering the specific features of SSN, our main contribution is creating an energy

efficient and application generic routing system for SSNs. Regarding the routing technique

THESEUS detailed contributions are:

(i) THESEUS packet aggregation is independent of the packet. The goals of such

technique are: to avoid a dependency on the data content in the aggregation process; and to

work completely inside the network layer.

(ii) THESEUS app function. The main goal of this function is to select the best nodes

to be a coordinator. To better match the functionality of this function by SSN conditions, we

considered the number of applications and network traffic during the coordinator selection to

select more coordinators among the set of nodes that generate more data samples.

(iii) THESEUS makes use of QoS parameters and applications’ requirements to adapt

the routing paths.

(iv) THESEUS supports multiple sink nodes dynamically, bringing the ability of using

more than one sink node in nework (which will be probably the typical case for SSN), and also

bringing the ability to add or remove sink nodes while the network is working.

We introduced a well-detailed software architecture for the proposed Routing system.

Moreover, the running algorithms are presented for all software components. To verify our

proposed system, we implemented a routing protocol based on THESEUS routing system for

MICAz platform to assess its performance. We also implemented PROC routing protocol by

making changes in THESEUS implementation. All the performed evaluation followed the

“Goal, Question, Metric” (GQM) methodology. We evaluated THESEUS in four group of tests:

(i) Comparing THESEUS and PROC. As to the best of our knowledge, no other

practical related work were found in the literature of routing solutions for SSNs

92

for performing such a comparison. The results showed great improvements of

THESEUS, in relation to PROC, when operating in a shared sensor network

scenario. Such improvements are related to energy saving and balancing in the

network, in the face of a negligible increase of memory usage.

(ii) Analysis of the impact of the variation of important parameters on THESEUS

behavior. The variation tests prove the functionality, efficiency, and scalability

of THESEUS features, such as routes construction and THESEUS packet

aggregation techniques.

(iii) Analysis of the impact of using more than one sink node on THESEUS

performance, which the results proved the THESEUS ability to adapt the

network by adding and removing sink nodes dynamically.

(iv) Comparison between Real and Simulated Nodes. This test proved the validity of

our simulated results.

Based on the analysis of aforementioned tests, our proposed routing system is an

efficient, stable and scalable solution for routing on SSNs.

It is worth to mention that our article of THESEUS (THESEUS: A Routing System for

Shared Sensor Networks) was accepted on Computer and Information Technology (CIT-IEEE)

2015 conference (CAPES quails B1) successfully (Appendix A).

7.1 FUTURE WORK

As proposals for future work, we emphasize the following three developments regarding

our routing system.

First, we identified in our experiments that in certain topologies, some coordinators are

idle after elected, i.e. they are not chosen as part of the path for routing messages. Therefore, it

is suggested to investigate solutions for improving the efficiency with which the decision of

setting each nodes' role is taken, avoiding idle coordinators. In our system, the election of

coordinator nodes is guided by the result of the app function, which is performed within each

node and returns the probability of this node becoming a coordinator. It is possible to improve

this value returned by the app function, seeking better coordinator selection. This could be done

by keeping track of recent history regarding the roles that each node is assumed to have, and

93

thus using simple and applicable machine learning techniques on nodes for analyzing this

history, in order to make better decisions.

Second, we realized, in the experiments performed in this work, the network running

THESEUS could behave better by configuring it with lower values of Backoff Time and higher

value of Cycle Time. This would allow THESEUS to save time and network resources when

few applications are sharing the network. For performing this configuration, while keeping the

ability to restore it when more applications arrive, it is required to add to THESEUS the

capability of self-adaptating to the number of running applications and network density. Similar

to the previous suggested development, it is possible to use simple and applicable machine

learning techniques that will respond to the number of applications running in the network and

network density, selecting most adequate values of Backoff Time and Cycle Time.

Third, we suggest a thorough research on different auxiliary protocols for SSN, useful

for supporting THESEUS and more suitable to its requirements. A class of protocols that can

be investigated are the class of time synchronization protocols, seeking to find protocols that

are more suitable to SSN requirements. It is important to investigate solutions for providing

THESEUS with the capability of time synchronization, so that it can become more efficient and

capable. In future works, some key concepts of several existing time synchronization protocols

in the literature can be easily implemented in THESEUS by changing (adding fields to) the

content of already defined route messages.

94

REFERENCES

AKKAYA, K.; YOUNIS, M. A survey on routing protocols for wireless sensor networks. Ad
hoc networks, v. 3, n. 3, p. 325-349, 2005.

AL-KARAKI, J. N.; KAMAL, A. E.. Routing techniques in wireless sensor networks: a survey.
IEEE Wireless Communications, New York, v. 11, n. 6, p. 6-28, 2004.

AVRORA SIMULATOR. Disponível em: <http://compilers.cs.ucla.edu/avrora>. Acesso em:
14 mar. 2015.

BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. Goal question metric paradigm. In:
______. Encyclopedia of Software Engineering. Hoboken: Wiley, 1994. p. 528-532. 2 v

BHATTACHARYA, S. et al. Multi-application deployment in shared sensor networks based
on quality of monitoring. IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND
APPLICATIONS SYMPOSIUM (RTAS)16., 2010, Stockholm. Proceedings… New York:
IEEE, 2010. p. 259-268.

CHEN, M.; GONZALEZ, S.; LEUNG, V. C. M.. Applications and design issues for mobile
agents in wireless sensor networks. IEEE Wireless Communications, New York, v. 14, n. 6,
p. 20-26, 2007.

DELICATO, F. C. et al. Energy Awareness and Efficiency in Wireless Sensor Networks: From
Physical Devices to the Communication Link. In: ZOMAYA, Albert Y. Energy-Efficient
Distributed Computing Systems. Hoboken: Wiley, 2012. p. 673-707.

DELICATO, F. C. et al. MARINE: MiddlewAre for resource and mIssion-oriented sensor
NEtworks. Mobile Computing and Communications Review, New York, v. 17, n. 1, p. 40-
54, 2013.

DEMIRKOL, I.; ERSOY, C.; ALAGOZ, F. MAC protocols for wireless sensor networks: a
survey. IEEE Communications Magazine, New York, v. 44, n. 4, p. 115-121, 2006.

DIETRICH, I.; DRESSLER, F. On the lifetime of wireless sensor networks. ACM
Transactions on Sensor Networks, New York, v. 5, n. 1, p. 1-38, 2009.

EFSTRATIOU, C. et al. A shared sensor network infrastructure. ACM CONFERENCE ON
EMBEDDED NETWORKED SENSOR SYSTEMS, 8., 2010, Zurich. Proceedings… New
York: ACM, 2010. p. 367-368.

ELTARRAS, R.; ELTOWEISSY, M. Adaptive Multi-Criteria Routing for Shared Sensor-
Actuator Networks. In: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 2010,
Miami. Proceedings… New York: IEEE, 2010, p. 1-6.

FARIAS, C. et al. Multisensor data fusion in Shared Sensor and Actuator Networks.
INTERNATIONAL CONFERENCE ON INFORMATION FUSION, 17., 2014, Salamanca.
Proceedings… New York: IEEE, 2014, p. 1-8.

FLORES-CORTÉS, C. A.; BLAIR, G. S.; GRACE. P. An Adaptive Middleware to Overcome
Service Discovery Heterogeneity in Mobile Ad Hoc Environments. IEEE Distributed Systems
Online, v. 8, n. 7, p. 1-11, 2007.

http://www.sciencedirect.com/science/article/pii/S1570870503000738
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kamal,%20A.E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gonzalez,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leung,%20V.C.M..QT.&newsearch=true

95

HEFEIDA, M. et al. Context modeling in collaborative sensor network applications. In:
INTERNATIONAL CONFERENCE COLLABORATION TECHNOLOGIES AND
SYSTEMS, 2011, Philadelphia. Proceeding… New York: IEEE, p. 274-279, 2011.

HEINZELMAN, W. R.; CHANDRAKASAN, A.; BALAKRISHNAN, H. Energy-efficient
communication protocol for wireless microsensor networks. In: ANNUAL HAWAII
INTERNATIONAL CONFERENCE SYSTEM SCIENCES, 33, 2000. Proceedings… New
York: IEEE, 2000. p. 1-10.

HUGHES, D. et al. LooCI: a loosely-coupled component infrastructure for networked
embedded systems. In: INTERNATIONAL CONFERENCE ON ADVANCES IN MOBILE
COMPUTING AND MULTIMEDIA, 7. 2009, Kuala Lumpur. Proceedings… New York:
ACM, 2009, p. 195-203.

INOUE, N. et al. A cooperative routing method with shared nodes for overlapping wireless
sensor networks. In: INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE
COMPUTING CONFERENCE, 2014, Nicosia. Proceedings… New York: IEEE, 2014, p.
1106-1111.

JAYASUMANA, A. P.; HAN, Q.; ILLANGASEKARE, T. H. Virtual Sensor Networks - A
Resource Efficient Approach for Concurrent Applications. In: INTERNATIONAL
CONFERENCE ON INFORMATION TECHNOLOGY, 4., 2007, Las Vegas. Proceedings…
New York: IEEE, 2007. p. 111-115.

KULKARNI, S. S. TDMA service for sensor networks. In: INTERNATIONAL
CONFERENCE DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS, 24., 2004,
Proceedings… New York: IEEE, 2004. p. 604-609.

LE, T.; NORMAN, T. J.; VASCONCELOS, W. Agent-based sensor-mission assignment for
tasks sharing assets. In: INTERNATIONAL WORKSHOP ON AGENT TECHNOLOGY FOR
SENSOR NETWORKS, 3., 2009, Budapest. Proceedings… 2009. p. 33-40.

LEONTIADIS, I. et al. SenShare: transforming sensor networks into multi-application sensing
infrastructures. In: EUROPEAN CONFERENCE ON WIRELESS SENSOR NETWORKS, 9.,
2012, Trento. Proceedings…Berlin: Springer, 2012. p. 65-81.

LI, C. et al. A survey on routing protocols for large-scale wireless sensor networks. Sensors, v.
11, n. 4, p. 3498-3526, 2011.

LI, W.; DELICATO, F. C.; ZOMAYA, A. Adaptive energy-efficient scheduling for
hierarchical wireless sensor networks. ACM Transactions on Sensor Networks, New York,
v. 9, n. 3, p. 33, 2013.

LI, W. et al. Efficient allocation of resources in multiple heterogeneous Wireless Sensor
Networks. Journal of Parallel and Distributed Computing, New York, v. 74, n. 1, p. 1775-
1788, 2014.

LOVETT, G. M. et al. Who needs environmental monitoring? Frontiers in Ecology and the
Environment, v. 5, n. 5, p. 253-260, 2007.

96

MACEDO, D. F. et al. A rule-based adaptive routing protocol for continuous data dissemination
in WSNs. Journal of Parallel and Distributed Computing, New York, v. 66, n. 4, p. 542-
555, 2006.

MADRIA, S.; KUMAR, V.; DALVI, R. Sensor cloud: a cloud of virtual sensors. IEEE
Software, Los Angeles, v. 31, n. 2, p. 70-77, 2014.

MICAZ & MICA2. Disponível em: <http://www.memsic.com/wireless-sensor-networks>.
Acesso em: 14 mar. 2015.

NAKAMURA, E. F.; LOUREIRO, A. A. F.; FRERY, A. C. Information fusion for wireless
sensor networks: methods, models, and classifications. ACM Computing Surveys, New York,
v. 39, n. 3, p. 9, 2007.

NS-2. Disponível em: <http://www.isi.edu/nsnam/ns/>. Acesso em: 14 maio 2015.

QUALNET SIMULATOR. Disponível em: <http://web.scalable-networks.com/>. Acesso em:
12 maio 2015.

RAICU, I. et al. Toward loosely coupled programming on petascale systems. In: ACM/IEEE
CONFERENCE ON SUPERCOMPUTING, 2008, Austin. Proceedings… New York: ACM,
2008. p. 22.

RAJAGOPALAN, R.; VARSHNEY, P. K. Data aggregation techniques in sensor networks: a
survey. IEEE Communications Surveys & Tutorials , v. 8, n. 4, p. 48-63, 2006.

RODRIGUES, T. et al. Model-driven approach for building efficient wireless sensor and
actuator network applications. In: INTERNATIONAL WORKSHOP SOFTWARE
ENGINEERING FOR SENSOR NETWORK APPLICATIONS, 4., 2013, San Francisco.
Proceedings… New York: IEEE, 2013. p. 43-48.

SHAH, S. Y.; SZYMANSKI, B. K. Dynamic multipath routing of multi-priority traffic in
wireless sensor networks. In: ANNUAL CONFERENCE OF INTERNATIONAL
TECHNOLOGY ALLIANCE, 6., 2012, Southampton. Proceedings… 2012.

TILAK, S.; ABU-GHAZALEH, N. B.; HEINZELMAN, W. A taxonomy of wireless micro-
sensor network models. Mobile Computing and Communications Review, New York, v. 6,
n. 2, p. 28-36, 2002.

TINYOS. Disponível em: <http://www.tinyos.net>. Acesso em: 14 mar. 2015.

VIJAY, G.; BEN ALI BDIRA, E.; IBNKAHLA, M. et al. Cognition in wireless sensor networks: a
perspective. IEEE Sensors Journal, v. 11, n. 3, p. 582-592, 2011.

WU, C. et al. Submodular game for distributed application allocation in shared sensor networks.
In: IEEE INFOCOM, 2012, Orlando. Proceedings… New York: IEEE, 2012. p. 127-135.

YU, Y. et al. Supporting concurrent applications in wireless sensor networks. In:
INTERNATIONAL CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS,
4., 2006, Boulder. Proceedings… New York: ACM, 2006. p. 139-152.

97

APPENDIX A, THE PUBLISHED ARTICLE:

98

99

100

101

102

103

104

105

APPENDIX B, THE IMPLEMENTED CODES FOR TINYOS:

I) THESEUS SINK MANAGER APPLICATION

1) Makefile

COMPONENT=THESEUS_SinkManagerAppC
 include $(MAKERULES)

2) message.h

#ifndef THESEUS_H
#define THESEUS_H
typedef nx_struct MSync {
 nx_uint16_t Node_ID;
 nx_uint8_t hops;
 nx_uint16_t cycle;
 nx_uint8_t coord;
 nx_uint16_t energy;
 nx_uint16_t appparam_MDTC;
 nx_uint16_t appparam_MDTE;
 nx_uint8_t appparam_a;
 nx_uint8_t appparam_b;
 nx_uint8_t appparam_c;
 nx_uint8_t appparam_d;
 nx_uint8_t SinkID;
 nx_uint8_t appparam_SPpMTI_1;
 nx_uint8_t appparam_SPpMTI_2;
 nx_uint8_t appparam_SPpMTI_3;
 nx_uint8_t appparam_SPpMTI_4;
 nx_uint8_t appparam_mSPpMTI;
 nx_uint16_t Parent_ID;
 nx_uint16_t Valid_Time;
} MSync_t;
typedef nx_struct MData0 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
} MData0_t;
typedef nx_struct MData1 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
} MData1_t;
typedef nx_struct MData2 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
} MData2_t;
typedef nx_struct MData3 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
 nx_uint16_t app_data6;
 nx_uint16_t app_data7;
} MData3_t;

106

typedef nx_struct MData4 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
 nx_uint16_t app_data6;
 nx_uint16_t app_data7;
 nx_uint16_t app_data8;
 nx_uint16_t app_data9;
} MData4_t;
typedef nx_struct MData5 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
 nx_uint16_t app_data6;
 nx_uint16_t app_data7;
 nx_uint16_t app_data8;
 nx_uint16_t app_data9;
 nx_uint16_t app_data10;
 nx_uint16_t app_data11;
} MData5_t;
enum {
 AM_MSYNC = 1,AM_MDATA = 3,
};

 #endif

3) THESEUS_SinkManagerAppC.nc

#include "messages.h"
configuration THESEUS_SinkManagerAppC {}
implementation {
 components MainC, THESEUS_SinkManagerC as App;
 components new TimerMilliC();
 components new TimerMilliC() as TIMER1;
 components ActiveMessageC;
 components new AMSenderC(AM_MSYNC) as AM_MSync_S;
 components new AMReceiverC(AM_MDATA) as AM_MData_R;
 App.Boot -> MainC.Boot;
 App.MSync_S -> AM_MSync_S.AMSend;
 App.MSync_P -> AM_MSync_S.Packet;
 App.MData_R -> AM_MData_R.Receive;
 App.AMControl -> ActiveMessageC;
 App.MilliTimer -> TimerMilliC;
 App.MilliTimerstart -> TIMER1;

 }

4) THESEUS_SinkManagerC.nc

#include "Timer.h"
#include "messages.h"
#define CycleTime 0xF000 // cycle timer set to 61440 milliseconds (60 seconds)
#define MCycle 0x00000003 //Cycle time in minutes, it will make new cycle every 3 times of CycleTime fires
// Values of app parameter should be set here:
#define f_appparam_MDTC 0x2800 // 10 seconds
#define f_appparam_MDTE 0x0400 // 1 second
#define f_appparam_a 0x0001
#define f_appparam_b 0x0001
#define f_appparam_c 0x0001
#define f_appparam_d 0x0001
#define f_appparam_SPpMTI_1 0x0002
#define f_appparam_SPpMTI_2 0x0001
#define f_appparam_SPpMTI_3 0x0001
#define f_appparam_SPpMTI_4 0x0001

107

#define f_appparam_mSPpMTI 0x0002

module THESEUS_SinkManagerC {
 uses {
 interface Boot;
 interface Timer<TMilli> as MilliTimer;
 interface Timer<TMilli> as MilliTimerstart;
 interface SplitControl as AMControl;
 interface Packet;
 interface AMSend as MSync_S;
 interface Packet as MSync_P;
 interface Receive as MData_R;
 interface Packet as MData_P;
 }
}
implementation {
 message_t packet;
 uint8_t cyclecounter = 0x0000;
 bool locked;
 uint16_t nextCycle = 0x0001;
 uint16_t flags = 0;
 uint16_t source_add;
 uint16_t destination_add = 0;
 uint16_t app_data1 = 0;
 uint16_t app_data2 = 0;
 uint16_t app_data3 = 0;
 uint16_t app_data4 = 0;
 uint16_t app_data5 = 0;
 uint16_t app_data6 = 0;
 uint16_t app_data7 = 0;
 uint16_t app_data8 = 0;
 uint16_t app_data9 = 0;
 uint16_t app_data10 = 0;
 uint16_t app_data11 = 0;
 uint16_t appparam_MDTC;
 uint16_t appparam_MDTE;
 uint8_t appparam_a;
 uint8_t appparam_b;
 uint8_t appparam_c;
 uint8_t appparam_d;
 uint8_t SinkID;
 uint8_t appparam_SPpMTI_1;
 uint8_t appparam_SPpMTI_2;
 uint8_t appparam_SPpMTI_3;
 uint8_t appparam_SPpMTI_4;
 uint8_t appparam_mSPpMTI;

 task void MSync_broad_task(){ //Task of broad-casting MSync message
 if (!locked) {
 MSync_t* rcm = (MSync_t*)call MSync_P.getPayload(&packet, sizeof(MSync_t));
 if (rcm == NULL) {return;}
 rcm->Node_ID = TOS_NODE_ID;
 rcm->cycle = nextCycle;
 rcm->hops = 0;
 rcm->coord = 0x0001;
 rcm->energy = 0xFFFF; //energy of sink node is always full
 rcm->appparam_MDTC = f_appparam_MDTC;
 rcm->appparam_MDTE = f_appparam_MDTE;
 rcm->appparam_a = f_appparam_a;
 rcm->appparam_b = f_appparam_b;
 rcm->appparam_c = f_appparam_c;
 rcm->appparam_d = f_appparam_d;
 rcm->SinkID = TOS_NODE_ID;
 rcm->appparam_SPpMTI_1 = f_appparam_SPpMTI_1;
 rcm->appparam_SPpMTI_2 = f_appparam_SPpMTI_2;
 rcm->appparam_SPpMTI_3 = f_appparam_SPpMTI_3;
 rcm->appparam_SPpMTI_4 = f_appparam_SPpMTI_4;
 rcm->appparam_mSPpMTI = f_appparam_mSPpMTI;
 rcm->Parent_ID = 0xFFFF; // sink does not have parent
 rcm->Valid_Time = MCycle; //cycle time in minutes
 if (call MSync_S.send(AM_BROADCAST_ADDR, &packet, sizeof(MSync_t)) == SUCCESS) {
 locked = TRUE;
 }
 }

108

 else{post MSync_broad_task();}
 }

 event void Boot.booted() {
 call AMControl.start();
 }

 event void AMControl.startDone(error_t err) {//Sink Node start to work and startPeriodic(CycleTime)
 if (err == SUCCESS) {
 call MilliTimer.startPeriodic(CycleTime);
 }
 else {
 call AMControl.start();
 }
 }

 event void AMControl.stopDone(error_t err) {//Sink Node doesn't start to work
 // do nothing
 }

 event void MilliTimer.fired() { // For each cycle broad-cast new MSync message
 cyclecounter++;
 if (cyclecounter == MCycle){
 cyclecounter = 0;
 post MSync_broad_task();
 }
 }

 event message_t* MData_R.receive(message_t* bufPtrD, //Receive data
 void* payload, uint8_t len) {
 //application should decide to what to do with data
 return bufPtrD;
 }

 event void MSync_S.sendDone(message_t* bufPtrS, error_t error) { //call new cycle
 if (&packet == bufPtrS) {
 locked = FALSE;
 nextCycle++;
 }
 }
}

II) THESEUS NODE MANAGER APPLICATION

1) Makefile

COMPONENT=THESEUS_NodeManagerAppC
 include $(MAKERULES)

2) message.h

#ifndef THESEUS_H
#define THESEUS_H
typedef nx_struct MSync {
 nx_uint16_t Node_ID;
 nx_uint8_t hops;
 nx_uint16_t cycle;
 nx_uint8_t coord;
 nx_uint16_t energy;
 nx_uint16_t appparam_MDTC;
 nx_uint16_t appparam_MDTE;
 nx_uint8_t appparam_a;
 nx_uint8_t appparam_b;
 nx_uint8_t appparam_c;
 nx_uint8_t appparam_d;
 nx_uint8_t SinkID;
 nx_uint8_t appparam_SPpMTI_1;
 nx_uint8_t appparam_SPpMTI_2;
 nx_uint8_t appparam_SPpMTI_3;
 nx_uint8_t appparam_SPpMTI_4;

109

 nx_uint8_t appparam_mSPpMTI;
 nx_uint16_t Parent_ID;
 nx_uint16_t Valid_Time;
} MSync_t;
typedef nx_struct MCoord {
 nx_uint16_t Node_ID;
 nx_uint8_t hops;
 nx_uint16_t cycle;
 nx_uint8_t coord;
 nx_uint16_t energy;
 nx_uint16_t appparam_MDTC;
 nx_uint16_t appparam_MDTE;
 nx_uint8_t appparam_a;
 nx_uint8_t appparam_b;
 nx_uint8_t appparam_c;
 nx_uint8_t appparam_d;
 nx_uint8_t SinkID;
 nx_uint8_t appparam_SPpMTI_1;
 nx_uint8_t appparam_SPpMTI_2;
 nx_uint8_t appparam_SPpMTI_3;
 nx_uint8_t appparam_SPpMTI_4;
 nx_uint8_t appparam_mSPpMTI;
 nx_uint16_t Parent_ID;
 nx_uint16_t Valid_Time;
} MCoord_t;
typedef nx_struct MData0 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
} MData0_t;
typedef nx_struct MData1 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
} MData1_t;
typedef nx_struct MData2 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
} MData2_t;
typedef nx_struct MData3 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
 nx_uint16_t app_data6;
 nx_uint16_t app_data7;
} MData3_t;
typedef nx_struct MData4 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
 nx_uint16_t app_data6;
 nx_uint16_t app_data7;
 nx_uint16_t app_data8;
 nx_uint16_t app_data9;

110

} MData4_t;
typedef nx_struct MData5 {
 nx_uint16_t flags;
 nx_uint16_t source_add;
 nx_uint16_t destination_add;
 nx_uint16_t app_data1;
 nx_uint16_t app_data2;
 nx_uint16_t app_data3;
 nx_uint16_t app_data4;
 nx_uint16_t app_data5;
 nx_uint16_t app_data6;
 nx_uint16_t app_data7;
 nx_uint16_t app_data8;
 nx_uint16_t app_data9;
 nx_uint16_t app_data10;
 nx_uint16_t app_data11;
} MData5_t;
typedef struct {
 uint16_t node_id;
 uint8_t hops;
 uint16_t cycle;
 uint8_t sink_id;
 bool coord;
 uint16_t energy;
} Neighbors_t;
typedef struct {
 uint16_t scycle;
 uint16_t valid_time;
} SinkCycle_t;
enum {
 AM_MSYNC = 1,AM_MCOORD = 2,AM_MDATA = 3,AM_AVRORA = 4,
};

 #endif

3) THESEUS_NodeManagerAppC.nc

#include "messages.h"
configuration THESEUS_NodeManagerAppC {}
implementation {
 components MainC, THESEUS_NodeManagerC as App;
 components new TimerMilliC() as TIMER0;
 components new TimerMilliC() as TIMER1;
 components new TimerMilliC() as TIMER2;
 components new TimerMilliC() as TIMER3;
 components new TimerMilliC() as TIMER4;
 components new TimerMilliC() as TIMER5;
 components ActiveMessageC;
 components new AMSenderC(AM_MSYNC) as AM_MSync_S;
 components new AMReceiverC(AM_MSYNC) as AM_MSync_R;
 components new AMSenderC(AM_MCOORD) as AM_MCoord_S;
 components new AMReceiverC(AM_MCOORD) as AM_MCoord_R;
 components new AMSenderC(AM_MDATA) as AM_MData_S;
 components new AMSenderC(AM_MDATA) as AM_MDataF_S;
 components new AMReceiverC(AM_MDATA) as AM_MDataF_R;
 components new AMSenderC(AM_AVRORA) as AM_Avrora_S;
 components RandomC;
 components new VoltageC() as Battery;
 App.Boot -> MainC.Boot;
 App.MSync_R -> AM_MSync_R.Receive;
 App.MSync_S -> AM_MSync_S.AMSend;
 App.MSync_P -> AM_MSync_S.Packet;
 App.MCoord_R -> AM_MCoord_R.Receive;
 App.MCoord_S -> AM_MCoord_S.AMSend;
 App.MCoord_P -> AM_MCoord_S.Packet;
 App.PacketAcknowledgements -> AM_MCoord_S;
 App.MData_S -> AM_MData_S.AMSend;
 App.MData_P -> AM_MData_S.Packet;
 App.PacketAcknowledgements -> AM_MData_S;
 App.MDataF_R -> AM_MDataF_R.Receive;
 App.MDataF_S -> AM_MDataF_S.AMSend;
 App.MDataF_P -> AM_MDataF_S.Packet;
 App.PacketAcknowledgements -> AM_MDataF_S;
 App.AMControl -> ActiveMessageC;

111

 App.MilliTimer -> TIMER0;
 App.MilliTimerApp -> TIMER1;
 App.MilliTimerBuf -> TIMER2;
 App.MilliTimerBufE -> TIMER3;
 App.MilliTimerACK -> TIMER4;
 App.MilliTimerValidTime -> TIMER5;
 App.Random -> RandomC.Random;
 App.Battery -> Battery;

 }

4) THESEUS_NodeManagerAppC.nc

#include "Timer.h"
#include "messages.h"
#define NeighborsLen 0x0014 //Maximum number of neighbours on the list is 20
#define SinknodesLen 0x000A //Maximum number of sink nodes on the list is 10
#define MAX_RANDOM_THRESHOLD 0x0200 //Maximum backoff time 512ms
#define MIN_RANDOM_THRESHOLD 0x0078 //Minimum backoff time 120ms
//Set bits for changing flags
#define B01_16 0x8000
#define B02_16 0x4000

module THESEUS_NodeManagerC { //interfaces
 uses {
 interface Boot;
 interface Timer<TMilli> as MilliTimer;
 interface Timer<TMilli> as MilliTimerApp;
 interface Timer<TMilli> as MilliTimerBuf;
 interface Timer<TMilli> as MilliTimerBufE;
 interface Timer<TMilli> as MilliTimerACK;
 interface Timer<TMilli> as MilliTimerValidTime;
 interface SplitControl as AMControl;
 interface Receive as MSync_R;
 interface AMSend as MSync_S;
 interface Packet as MSync_P;
 interface Receive as MCoord_R;
 interface AMSend as MCoord_S;
 interface Packet as MCoord_P;
 interface AMSend as MData_S;
 interface Packet as MData_P;
 interface Receive as MDataF_R;
 interface AMSend as MDataF_S;
 interface Packet as MDataF_P;
 interface PacketAcknowledgements;
 interface Random;
 interface Read<uint16_t> as Battery;
 }
}

implementation {
 //start: defining variables
 //Messages variables
 message_t packet;
 bool locked;
 //The nodes choose areas based on ID
 uint8_t node_area = 0x0000;
 uint8_t node_area1_start = 0x0001; //Node_ID 1 to 49 is area 1
 uint8_t node_area1_end = 0x0031;
 uint8_t node_area2_start = 0x0032; //Node_ID 50 to 200 is area 2
 uint8_t node_area2_end = 0x00C8;
 uint16_t node_area3_start = 0x00C9; //Node_ID 201 to 300 is area 3
 uint16_t node_area3_end = 0x012C;
 uint16_t node_area4_start = 0x012D; //Node_ID 301 to 400 is area 4
 uint16_t node_area4_end = 0x0190;
 //ACK variables
 int trycoord = 0;
 int trydata = 0;
 int trydataF = 0;
 uint8_t rep_mode = 0;
 //battery variables
 uint16_t counter_send = 0;
 //Arrays
 SinkCycle_t SinkCycle[SinknodesLen];//Array of SinksCycles

112

 Neighbors_t neighbors[NeighborsLen]; //Array of neighbours
 int ID = -1;
 uint8_t i;
 //process control variables
 uint16_t Valid_Time;
 bool coord = FALSE;
 bool cont_sync_task = FALSE;
 int parent_add = -2;
 int SinkID = -1;
 uint8_t parent_hops;
 bool parent_coord;
 bool find;
 float randBackoffPeriod=0.0F;
 int Sinks_n;
 //App function variables
 float F1;
 float F2;
 float F3;
 float F4;
 float prob;
 float tmp_rnd;
 uint8_t Neighbors_n = 0; //0 to NeighborsLen, count the number of neighbours in each cycle
 uint16_t AppCycleTime = 0x3800; // 14 seconds
 uint16_t currEnergy = 0x2800; // first cycle will not read energy, this is default startup energy just for first cycle
 uint8_t Appcounter = 0x0000;
 uint8_t appparam_a;
 uint8_t appparam_b;
 uint8_t appparam_c;
 uint8_t appparam_d;
 uint8_t appparam_SPpMTI_1;
 uint8_t appparam_SPpMTI_2;
 uint8_t appparam_SPpMTI_3;
 uint8_t appparam_SPpMTI_4;
 uint8_t appparam_mSPpMTI;
 uint8_t last_cycle_coord = 0x0000;
 uint8_t count_coord = 0x0000;
 //DATA MANAGER VARIABLES
 uint16_t flags = 0;
 uint16_t source_add;
 uint16_t destination_add = 0;
 uint16_t app_data1 = 0;
 uint16_t app_data2 = 0;
 uint16_t app_data3 = 0;
 uint16_t app_data4 = 0;
 uint16_t app_data5 = 0;
 uint16_t app_data6 = 0;
 uint16_t app_data7 = 0;
 uint16_t app_data8 = 0;
 uint16_t app_data9 = 0;
 uint16_t app_data10 = 0;
 uint16_t app_data11 = 0;
 uint16_t buff_data1 = 0;
 uint16_t buff_data2 = 0;
 uint16_t buff_data3 = 0;
 uint16_t buff_data4 = 0;
 uint16_t buff_data5 = 0;
 uint16_t buff_data6 = 0;
 uint16_t buff_data7 = 0;
 uint16_t buff_data8 = 0;
 uint16_t buff_data9 = 0;
 uint16_t buff_data10 = 0;
 uint16_t buff_data11 = 0;
 uint16_t buff_source_add;
 uint16_t appparam_MDTC = 0x0001; // 1ms default
 uint16_t flags_buff = 0;
 uint16_t buffE_data1 = 0;
 uint16_t buffE_data2 = 0;
 uint16_t buffE_data3 = 0;
 uint16_t buffE_data4 = 0;
 uint16_t buffE_data5 = 0;
 uint16_t buffE_data6 = 0;
 uint16_t buffE_data7 = 0;
 uint16_t buffE_data8 = 0;
 uint16_t buffE_data9 = 0;

113

 uint16_t buffE_data10 = 0;
 uint16_t buffE_data11 = 0;
 uint16_t buffE_source_add;
 uint16_t appparam_MDTE = 0x0001; // 1ms default
 uint16_t flags_buffE = 0;
 uint16_t rndDATA = 0;
 //finish: defining variables

 void count_neighbors(){ //count number of neighbours in the array
 Neighbors_n = 0;
 for (i=0;i<NeighborsLen;i++){ //number of neighbours
 if ((neighbors[i].cycle > 0)){
 Neighbors_n = Neighbors_n + 1;
 }
 }
 }

 void count_sinks(){ //count number of neighbours in the array
 Sinks_n = 0;
 for (i=0;i<SinknodesLen;i++){ //number of neighbours related to selected sink
 if (SinkCycle[i].scycle > 0) {
 Sinks_n = Sinks_n + 1;
 }
 }
 }

 void App_Function(){ //App Function
 count_neighbors();
 F1 = 100.0F-(((float)(last_cycle_coord) * 50.0F)+(((float)(count_coord)/(float)(SinkCycle[SinkID].scycle))*50.0F));
 F2 = 100.0F-(((float)(Neighbors_n)/(float)(NeighborsLen+1))*100.0F);
 F3 = 100.0F / (((float)(parent_hops) + 1.0F));
 if (node_area == 0x0001){F4 = 100.0F * ((float)(appparam_SPpMTI_1) / (float)(appparam_mSPpMTI+1));} //this is

for a node in area 1
 if (node_area == 0x0002){F4 = 100.0F * ((float)(appparam_SPpMTI_2) / (float)(appparam_mSPpMTI+1));} //this is

for a node in area 2
 if (node_area == 0x0003){F4 = 100.0F * ((float)(appparam_SPpMTI_3) / (float)(appparam_mSPpMTI+1));} //this is

for a node in area 3
 if (node_area == 0x0004){F4 = 100.0F * ((float)(appparam_SPpMTI_4) / (float)(appparam_mSPpMTI+1));} //this is

for a node in area 4
 prob = ((float)(appparam_a))*((float)(F1));
 prob += ((float)(appparam_b))*((float)(F2));
 prob += ((float)(appparam_c))*((float)(F3));
 prob += ((float)(appparam_d))*((float)(F4));
 prob = prob / ((float)(appparam_a + appparam_b + appparam_c + appparam_d));
 }

 task void msync_broad_task(){ //Task of broadcasting MSync message with updated fields from this node
 if (!locked) {
 MSync_t* rcm = (MSync_t*)call MSync_P.getPayload(&packet, sizeof(MSync_t));
 rcm->Node_ID = TOS_NODE_ID;
 rcm->cycle = SinkCycle[SinkID].scycle;
 rcm->hops = parent_hops + 1;
 if (coord == TRUE){rcm->coord = 1;}else if(coord == FALSE){rcm->coord = 0;};
 rcm->energy = currEnergy;
 rcm->appparam_MDTC = appparam_MDTC;
 rcm->appparam_MDTE = appparam_MDTE;
 rcm->appparam_a = appparam_a;
 rcm->appparam_b = appparam_b;
 rcm->appparam_c = appparam_c;
 rcm->appparam_d = appparam_d;
 rcm->SinkID = SinkID;
 rcm->appparam_SPpMTI_1 = appparam_SPpMTI_1;
 rcm->appparam_SPpMTI_2 = appparam_SPpMTI_2;
 rcm->appparam_SPpMTI_3 = appparam_SPpMTI_3;
 rcm->appparam_SPpMTI_4 = appparam_SPpMTI_4;
 rcm->appparam_mSPpMTI = appparam_mSPpMTI;
 rcm->Parent_ID = parent_add;
 rcm->Valid_Time = Valid_Time; //valid cycle time
 if (call MSync_S.send(AM_BROADCAST_ADDR, &packet, sizeof(MSync_t)) == SUCCESS) {
 locked = TRUE;
 counter_send++;
 }
 }
 else{post msync_broad_task();}

114

 }

 void Election_Manager(){ //Election Manager
 coord = FALSE;
 App_Function();
 // coordinator or not, random limited to prob from app function
 tmp_rnd = (float)(call Random.rand16());
 tmp_rnd = 100.0F * (tmp_rnd/65535.0F);
 if (tmp_rnd < prob) {coord = TRUE;} else {coord = FALSE;}
 last_cycle_coord = 0;
 if (coord == TRUE) {count_coord++;last_cycle_coord = 1;}
 cont_sync_task = TRUE;
 post msync_broad_task();
 }

 void Parent_Selector_Manager(){ //select parent within neighbours list
 if (coord == 1){
 //priority: 1)minimum hops, 2)being coordinator, 3)maximum energy
 uint8_t min_hop = 255;
 uint16_t max_energy = 0;
 for (i=0;i<NeighborsLen;i++){
 if (neighbors[i].hops < min_hop && (!neighbors[i].energy == 0) && (neighbors[i].energy > 0) &&

(SinkID == neighbors[i].sink_id)) {
 min_hop = neighbors[i].hops;
 }
 }
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].hops == min_hop && neighbors[i].coord == 1) && (neighbors[i].energy > 0)&&

(SinkID == neighbors[i].sink_id)) {
 if (max_energy < neighbors[i].energy) {max_energy = neighbors[i].energy;

parent_add = neighbors[i].node_id;
 parent_hops = neighbors[i].hops;parent_coord = neighbors[i].coord;}
 }
 }
 if (max_energy == 0){
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].hops == min_hop) && (neighbors[i].energy > 0)&& (SinkID ==

neighbors[i].sink_id)) {
 if (max_energy < neighbors[i].energy) {max_energy = neighbors[i].energy;

parent_add = neighbors[i].node_id;
 parent_hops = neighbors[i].hops;parent_coord = neighbors[i].coord;}
 }
 }
 }
 }
 else{
 //priority: 1)being coordinator, 2)minimum hops, 3)maximum energy
 uint8_t min_hop = 255;
 uint16_t max_energy = 0;
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].coord == 1) && (neighbors[i].energy > 0)&& (SinkID == neighbors[i].sink_id)) {
 if (neighbors[i].hops < min_hop && (!neighbors[i].energy == 0)) {min_hop =

neighbors[i].hops;}
 }
 }
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].hops == min_hop) && (neighbors[i].coord == 1) && (neighbors[i].energy >

0)&& (SinkID == neighbors[i].sink_id)) {
 if (max_energy < neighbors[i].energy) {max_energy = neighbors[i].energy;

parent_add = neighbors[i].node_id;
 parent_hops = neighbors[i].hops;parent_coord = neighbors[i].coord;}
 }
 }
 if (max_energy == 0){
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].hops < min_hop) && (neighbors[i].energy > 0)&& (SinkID ==

neighbors[i].sink_id)) {min_hop = neighbors[i].hops;}
 }
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].hops == min_hop) && (neighbors[i].energy > 0)&& (SinkID ==

neighbors[i].sink_id)) {
 if (max_energy < neighbors[i].energy) {max_energy = neighbors[i].energy;

parent_add = neighbors[i].node_id;
 parent_hops = neighbors[i].hops;parent_coord = neighbors[i].coord;}

115

 }
 }
 }
 }
 }

 int Index_finder(uint16_t id){ //Function to find the index of array related to given node_id or create a new index
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].node_id == id)||(neighbors[i].energy == 0)) {
 neighbors[i].node_id = id;
 return i;
 }
 }
 return -1;
 }

 event message_t* MSync_R.receive(message_t* bufPtrS, //Receive MSync message
 void* payload, uint8_t len) {
 MSync_t* rcm = (MSync_t*)payload;
 //start Sync-Manager
 if (SinkID == -1){SinkID = rcm->SinkID;SinkCycle[(rcm->SinkID)].scycle = (rcm->cycle);SinkCycle[(rcm-

>SinkID)].valid_time = (rcm->Valid_Time);} //for the first time
 if ((SinkCycle[(rcm->SinkID)].scycle < (rcm->cycle))||(Neighbors_n == 0)){ //MSync message of new cycle
 SinkCycle[(rcm->SinkID)].scycle = (rcm->cycle);
 SinkCycle[(rcm->SinkID)].valid_time = (rcm->Valid_Time);
 //empty the list of neighbours for new cycle for the related sink
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].sink_id == rcm->SinkID)&&(neighbors[i].cycle > 0)){
 neighbors[i].node_id = 0;
 neighbors[i].hops = 0;
 neighbors[i].sink_id = 0;
 neighbors[i].energy = 0;
 neighbors[i].coord = 0;
 neighbors[i].cycle = 0;
 }
 }
 //add new cycle data to neighbours and parameters
 ID = Index_finder(rcm->Node_ID);
 if (ID>-1){
 neighbors[ID].hops = rcm->hops;
 neighbors[ID].cycle = rcm->cycle;
 neighbors[ID].sink_id = rcm->SinkID;
 neighbors[ID].coord = rcm->coord;
 neighbors[ID].energy = rcm->energy;
 }
 appparam_MDTC = rcm->appparam_MDTC;
 appparam_MDTE = rcm->appparam_MDTE;
 appparam_a = rcm->appparam_a;
 appparam_b = rcm->appparam_b;
 appparam_c = rcm->appparam_c;
 appparam_d = rcm->appparam_d;
 appparam_SPpMTI_1 = rcm->appparam_SPpMTI_1;
 appparam_SPpMTI_2 = rcm->appparam_SPpMTI_2;
 appparam_SPpMTI_3 = rcm->appparam_SPpMTI_3;
 appparam_SPpMTI_4 = rcm->appparam_SPpMTI_4;
 appparam_mSPpMTI = rcm->appparam_mSPpMTI;
 Valid_Time = rcm->Valid_Time; //valid cycle time
 if (SinkID == rcm->SinkID){ //same sink
 //set default parent to the new MSync sender
 parent_add = rcm->Node_ID;
 parent_hops = rcm->hops;
 parent_coord = rcm->coord;
 call MilliTimerValidTime.stop();
 Election_Manager();
 }else if((rcm->hops) < parent_hops){ //new sink is better because it has less hops to sink
 parent_add = rcm->Node_ID;
 parent_hops = rcm->hops;
 parent_coord = rcm->coord;
 SinkID = rcm->SinkID;
 call MilliTimerValidTime.stop();
 Election_Manager();
 }
 }else if (SinkCycle[(rcm->SinkID)].scycle == (rcm->cycle)) {//MSync message of same cycle, which completes the

neighbour list

116

 ID = Index_finder(rcm->Node_ID);
 if (ID>-1){
 neighbors[ID].hops = rcm->hops;
 neighbors[ID].cycle = rcm->cycle;
 neighbors[ID].sink_id = rcm->SinkID;
 neighbors[ID].coord = rcm->coord;
 neighbors[ID].energy = rcm->energy;
 }
 }
 //stop Sync-Manager
 return bufPtrS;
 }

 event message_t* MCoord_R.receive(message_t* bufPtrC, //Receive MCoord message, the node force to be

coordinator, complete the neighbour list
 void* payload, uint8_t len) {
 MCoord_t* rcm = (MCoord_t*)payload;
 //start Coordinator_Indication_Manager, if a node receive MCoord, it will force to be a coordinator
 ID = Index_finder(rcm->Node_ID);
 if (ID>-1){
 neighbors[ID].hops = rcm->hops;
 neighbors[ID].cycle = rcm->cycle;
 neighbors[ID].sink_id = rcm->SinkID;
 neighbors[ID].coord = rcm->coord;
 neighbors[ID].energy = rcm->energy;
 }
 appparam_MDTC = rcm->appparam_MDTC;
 appparam_MDTE = rcm->appparam_MDTE;
 appparam_a = rcm->appparam_a;
 appparam_b = rcm->appparam_b;
 appparam_c = rcm->appparam_c;
 appparam_d = rcm->appparam_d;
 appparam_SPpMTI_1 = rcm->appparam_SPpMTI_1;
 appparam_SPpMTI_2 = rcm->appparam_SPpMTI_2;
 appparam_SPpMTI_3 = rcm->appparam_SPpMTI_3;
 appparam_SPpMTI_4 = rcm->appparam_SPpMTI_4;
 appparam_mSPpMTI = rcm->appparam_mSPpMTI;
 Valid_Time = rcm->Valid_Time; //valid cycle time
 coord = TRUE;
 count_coord++;last_cycle_coord = 1;
 cont_sync_task = FALSE;
 post msync_broad_task();
 //stop Coordinator_Indication_Manager
 return bufPtrC;
 }

 task void mcoord_uni_task(){ //Task of uni-casting MCoord message with updated fields to the parent which is not a

coordinator
 if (!locked) {
 MCoord_t* rcm = (MCoord_t*)call MCoord_P.getPayload(&packet, sizeof(MCoord_t));
 rcm->Node_ID = TOS_NODE_ID;
 rcm->cycle = SinkCycle[SinkID].scycle;
 rcm->hops = parent_hops + 1;
 if (coord == TRUE){rcm->coord = 1;}else if(coord == FALSE){rcm->coord = 0;};
 rcm->energy = currEnergy;
 rcm->appparam_MDTC = appparam_MDTC;
 rcm->appparam_MDTE = appparam_MDTE;
 rcm->appparam_a = appparam_a;
 rcm->appparam_b = appparam_b;
 rcm->appparam_c = appparam_c;
 rcm->appparam_d = appparam_d;
 rcm->SinkID = SinkID;
 rcm->appparam_SPpMTI_1 = appparam_SPpMTI_1;
 rcm->appparam_SPpMTI_2 = appparam_SPpMTI_2;
 rcm->appparam_SPpMTI_3 = appparam_SPpMTI_3;
 rcm->appparam_SPpMTI_4 = appparam_SPpMTI_4;
 rcm->appparam_mSPpMTI = appparam_mSPpMTI;
 rcm->Parent_ID = parent_add;
 rcm->Valid_Time = Valid_Time; //valid cycle time
 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MCoord_S.send(parent_add, &packet, sizeof(MCoord_t)) == SUCCESS) {
 trycoord = trycoord+1;
 locked = TRUE;
 counter_send++;

117

 }
 }
 }
 else{post mcoord_uni_task();}
 }

 void Backbone_Fulfil_Manager(){ //Backbone Fulfill Manager
 if (parent_coord == 0){
 //Send MCoord message to parent with residual info to force parent to be coordinator
 post mcoord_uni_task();
 //update neighbour list
 parent_coord = TRUE;
 for (i=0;i<NeighborsLen;i++){
 if (neighbors[i].node_id == parent_add) {
 neighbors[i].coord = TRUE;
 }
 }
 }
 }

 event void Boot.booted() { //Node start to boot
 call AMControl.start();
 }

 event void AMControl.startDone(error_t err) { //Node start to work. Based on given ID, node choose the area number

and startPeriodic(AppCycleTime)
 if (err == SUCCESS) {
 call Battery.read(); //for first cycle reading battery
 //When node starts, based on ID, choose the area
 if (TOS_NODE_ID > (node_area1_start-1) && TOS_NODE_ID < (node_area1_end+1)){node_area = 0x0001;}
 if (TOS_NODE_ID > (node_area2_start-1) && TOS_NODE_ID < (node_area2_end+1)){node_area = 0x0002;}
 if (TOS_NODE_ID > (node_area3_start-1) && TOS_NODE_ID < (node_area3_end+1)){node_area = 0x0003;}
 if (TOS_NODE_ID > (node_area4_start-1) && TOS_NODE_ID < (node_area4_end+1)){node_area = 0x0004;}
 //define the array of SinkCycle
 for (i=0;i<SinknodesLen;i++){
 SinkCycle[i].scycle = 0;
 SinkCycle[i].valid_time = 0;
 }
 //define the array of neighbors
 for (i=0;i<NeighborsLen;i++){
 neighbors[i].node_id = 0;
 neighbors[i].hops = 0;
 neighbors[i].sink_id = 0;
 neighbors[i].energy = 0;
 neighbors[i].coord = 0;
 neighbors[i].cycle = 0;
 }
 call MilliTimerApp.startPeriodic(AppCycleTime);
 }
 else {
 call AMControl.start();
 }
 }

 event void AMControl.stopDone(error_t err) { //Node doesn't start to work
 }

 task void forwardMDataToParentTask(){ //Task of Forwarding Data packets to parent
 if (!(app_data10 == 0)){
 if ((!locked)&&(parent_add > -1)) {
 MData5_t* rcm = (MData5_t*)call MDataF_P.getPayload(&packet, sizeof(MData5_t));
 rcm->flags = flags;
 rcm->source_add = source_add;
 rcm->destination_add = destination_add;
 rcm->app_data1 = app_data1;
 rcm->app_data2 = app_data2;
 rcm->app_data3 = app_data3;
 rcm->app_data4 = app_data4;
 rcm->app_data5 = app_data5;
 rcm->app_data6 = app_data6;
 rcm->app_data7 = app_data7;
 rcm->app_data8 = app_data8;
 rcm->app_data9 = app_data9;
 rcm->app_data10 = app_data10;

118

 rcm->app_data11 = app_data11;

 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MDataF_S.send(parent_add, &packet, sizeof(MData5_t)) == SUCCESS) {
 trydataF = trydataF+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post forwardMDataToParentTask();}
 }
 else if (!(app_data8 == 0)){
 if ((!locked)&&(parent_add > -1)) {
 MData4_t* rcm = (MData4_t*)call MDataF_P.getPayload(&packet, sizeof(MData4_t));
 rcm->flags = flags;
 rcm->source_add = source_add;
 rcm->destination_add = destination_add;
 rcm->app_data1 = app_data1;
 rcm->app_data2 = app_data2;
 rcm->app_data3 = app_data3;
 rcm->app_data4 = app_data4;
 rcm->app_data5 = app_data5;
 rcm->app_data6 = app_data6;
 rcm->app_data7 = app_data7;
 rcm->app_data8 = app_data8;
 rcm->app_data9 = app_data9;

 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MDataF_S.send(parent_add, &packet, sizeof(MData4_t)) == SUCCESS) {
 trydataF = trydataF+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post forwardMDataToParentTask();}
 }
 else if (!(app_data6 == 0)){
 if ((!locked)&&(parent_add > -1)) {
 MData3_t* rcm = (MData3_t*)call MDataF_P.getPayload(&packet, sizeof(MData3_t));
 rcm->flags = flags;
 rcm->source_add = source_add;
 rcm->destination_add = destination_add;
 rcm->app_data1 = app_data1;
 rcm->app_data2 = app_data2;
 rcm->app_data3 = app_data3;
 rcm->app_data4 = app_data4;
 rcm->app_data5 = app_data5;
 rcm->app_data6 = app_data6;
 rcm->app_data7 = app_data7;

 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MDataF_S.send(parent_add, &packet, sizeof(MData3_t)) == SUCCESS) {
 trydataF = trydataF+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post forwardMDataToParentTask();}
 }
 else if (!(app_data4 == 0)){
 if ((!locked)&&(parent_add > -1)) {
 MData2_t* rcm = (MData2_t*)call MDataF_P.getPayload(&packet, sizeof(MData2_t));
 rcm->flags = flags;
 rcm->source_add = source_add;
 rcm->destination_add = destination_add;
 rcm->app_data1 = app_data1;
 rcm->app_data2 = app_data2;
 rcm->app_data3 = app_data3;
 rcm->app_data4 = app_data4;
 rcm->app_data5 = app_data5;

119

 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MDataF_S.send(parent_add, &packet, sizeof(MData2_t)) == SUCCESS) {
 trydataF = trydataF+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post forwardMDataToParentTask();}
 }
 else if (!(app_data2 == 0)){
 if ((!locked)&&(parent_add > -1)) {
 MData1_t* rcm = (MData1_t*)call MDataF_P.getPayload(&packet, sizeof(MData1_t));
 rcm->flags = flags;
 rcm->source_add = source_add;
 rcm->destination_add = destination_add;
 rcm->app_data1 = app_data1;
 rcm->app_data2 = app_data2;
 rcm->app_data3 = app_data3;

 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MDataF_S.send(parent_add, &packet, sizeof(MData1_t)) == SUCCESS) {
 trydataF = trydataF+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post forwardMDataToParentTask();}
 }
 else if (!(source_add == 0)){
 if ((!locked)&&(parent_add > -1)) {
 MData0_t* rcm = (MData0_t*)call MDataF_P.getPayload(&packet, sizeof(MData0_t));
 rcm->flags = flags;
 rcm->source_add = source_add;
 rcm->destination_add = destination_add;
 rcm->app_data1 = app_data1;

 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MDataF_S.send(parent_add, &packet, sizeof(MData0_t)) == SUCCESS) {
 trydataF = trydataF+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post forwardMDataToParentTask();}
 }
 }

 event message_t* MDataF_R.receive(message_t* bufPtrFD, //Receive MData message, performing aggregation, and

forwarding to parent
 void* payload, uint8_t len) {
 app_data1 = 0; app_data2 = 0;app_data3 = 0;app_data4 = 0;app_data5 = 0;app_data6 = 0;
 app_data7 = 0;app_data8 = 0;app_data9 = 0;app_data10 = 0;app_data11 = 0;
 if (len == sizeof(MData5_t)){
 MData5_t* rcm = (MData5_t*)payload;
 flags = rcm->flags;
 source_add = rcm->source_add;
 destination_add = rcm->destination_add;
 app_data1 = rcm->app_data1;
 app_data2 = rcm->app_data2;
 app_data3 = rcm->app_data3;
 app_data4 = rcm->app_data4;
 app_data5 = rcm->app_data5;
 app_data6 = rcm->app_data6;
 app_data7 = rcm->app_data7;
 app_data8 = rcm->app_data8;
 app_data9 = rcm->app_data9;
 app_data10 = rcm->app_data10;
 app_data11 = rcm->app_data11;
 }
 else if (len == sizeof(MData4_t)){
 MData4_t* rcm = (MData4_t*)payload;

120

 flags = rcm->flags;
 source_add = rcm->source_add;
 destination_add = rcm->destination_add;
 app_data1 = rcm->app_data1;
 app_data2 = rcm->app_data2;
 app_data3 = rcm->app_data3;
 app_data4 = rcm->app_data4;
 app_data5 = rcm->app_data5;
 app_data6 = rcm->app_data6;
 app_data7 = rcm->app_data7;
 app_data8 = rcm->app_data8;
 app_data9 = rcm->app_data9;
 }
 else if (len == sizeof(MData3_t)){
 MData3_t* rcm = (MData3_t*)payload;
 flags = rcm->flags;
 source_add = rcm->source_add;
 destination_add = rcm->destination_add;
 app_data1 = rcm->app_data1;
 app_data2 = rcm->app_data2;
 app_data3 = rcm->app_data3;
 app_data4 = rcm->app_data4;
 app_data5 = rcm->app_data5;
 app_data6 = rcm->app_data6;
 app_data7 = rcm->app_data7;
 }
 else if (len == sizeof(MData2_t)){
 MData2_t* rcm = (MData2_t*)payload;
 flags = rcm->flags;
 source_add = rcm->source_add;
 destination_add = rcm->destination_add;
 app_data1 = rcm->app_data1;
 app_data2 = rcm->app_data2;
 app_data3 = rcm->app_data3;
 app_data4 = rcm->app_data4;
 app_data5 = rcm->app_data5;
 }
 else if (len == sizeof(MData1_t)){
 MData1_t* rcm = (MData1_t*)payload;
 flags = rcm->flags;
 source_add = rcm->source_add;
 destination_add = rcm->destination_add;
 app_data1 = rcm->app_data1;
 app_data2 = rcm->app_data2;
 app_data3 = rcm->app_data3;
 }
 else if (len == sizeof(MData0_t)){
 MData0_t* rcm = (MData0_t*)payload;
 flags = rcm->flags;
 source_add = rcm->source_add;
 destination_add = rcm->destination_add;
 app_data1 = rcm->app_data1;
 }
 if ((flags & B01_16) == 0){ //Aggregation bit is 0, means the packet is not able to aggregate and should just forward
 //forward to parent
 post forwardMDataToParentTask();
 }
 else if (!((app_data11 == 0)&&(app_data10 == 0))){ //Means the packet is full and not able to aggregate and should

just forward
 flags = flags ^ B01_16; //Set the aggregation bit to 0
 //forward to parent
 post forwardMDataToParentTask();
 }
 else if ((flags & B02_16) == 0){ //Data type bit is 0, means continuous data type
 //start the timer of MDTC
 call MilliTimerBuf.startOneShot(appparam_MDTC);
 if (flags_buff == 0) {flags_buff = flags;}
 if (buff_data1 == 0) { buff_source_add = source_add; buff_data1= app_data1;}
 else if (buff_data2 == 0) { buff_data2 = source_add; buff_data3 = app_data1;}
 else if (buff_data4 == 0) { buff_data4 = source_add; buff_data5 = app_data1;}
 else if (buff_data6 == 0) { buff_data6 = source_add; buff_data7 = app_data1;}
 else if (buff_data8 == 0) { buff_data8 = source_add; buff_data9 = app_data1;}
 else if (buff_data10 == 0) { buff_data10 = source_add; buff_data11 = app_data1;}
 else {flags = flags_buff ^ B01_16;source_add = buff_source_add; app_data1 = buff_data1;

121

 app_data2 = buff_data2;app_data3 = buff_data3;app_data4 = buff_data4;
 app_data5 = buff_data5;app_data6 = buff_data6;app_data7 = buff_data7;
 app_data8 = buff_data8;app_data9 = buff_data9;app_data10 = buff_data10;
 app_data11 = buff_data11; buff_data1 = 0; buff_data2 = 0; buff_data3 = 0; buff_data4 = 0;
 buff_data5 = 0; buff_data6 = 0; buff_data7 = 0; buff_data8 = 0; buff_data9 = 0; buff_data10

= 0;
 buff_data11 = 0; flags_buff = 0; post forwardMDataToParentTask(); call MilliTimerBuf.stop();
 }
 }
 else if ((flags & B02_16) == 1){ //Data type bit is 1, means event data type
 //start the timer of MDTE
 call MilliTimerBufE.startOneShot(appparam_MDTE);
 if (flags_buffE == 0) {flags_buffE = flags;}
 if (buffE_data1 == 0) { buffE_source_add = source_add; buffE_data1= app_data1;}
 else if (buffE_data2 == 0) { buffE_data2 = source_add; buffE_data3 = app_data1;}
 else if (buffE_data4 == 0) { buffE_data4 = source_add; buffE_data5 = app_data1;}
 else if (buffE_data6 == 0) { buffE_data6 = source_add; buffE_data7 = app_data1;}
 else if (buffE_data8 == 0) { buffE_data8 = source_add; buffE_data9 = app_data1;}
 else if (buffE_data10 == 0) { buffE_data10 = source_add; buffE_data11 = app_data1;}
 else {flags = flags_buffE ^ B01_16;source_add = buffE_source_add; app_data1 = buffE_data1;
 app_data2 = buffE_data2;app_data3 = buffE_data3;app_data4 = buffE_data4;
 app_data5 = buffE_data5;app_data6 = buffE_data6;app_data7 = buffE_data7;
 app_data8 = buffE_data8;app_data9 = buffE_data9;app_data10 = buffE_data10;
 app_data11 = buffE_data11; buff_data1 = 0; buffE_data2 = 0; buffE_data3 = 0; buffE_data4 =

0;
 buffE_data5 = 0; buffE_data6 = 0; buffE_data7 = 0; buffE_data8 = 0; buffE_data9 = 0;

buffE_data10 = 0;
 buffE_data11 = 0; flags_buffE = 0; post forwardMDataToParentTask(); call

MilliTimerBufE.stop();
 }
 }
 return bufPtrFD;
 }

 task void sendMDataTask(){ //Task of sending random value as monitored data
 if ((!locked)&&(parent_add > -1)) {
 MData0_t* rcm = (MData0_t*)call MData_P.getPayload(&packet, sizeof(MData0_t));
 flags = 0x8000;
 rcm->flags = flags;
 rcm->source_add = TOS_NODE_ID;
 rcm->destination_add = parent_add;
 rcm->app_data1 = rndDATA; // random sensed data
 if(call PacketAcknowledgements.requestAck(&packet)==SUCCESS){
 if (call MData_S.send(parent_add, &packet, sizeof(MData0_t)) == SUCCESS) {
 trydata = trydata+1;
 locked = TRUE;
 counter_send++;
 }
 }
 }
 else{post sendMDataTask();}
 }

 event void MSync_S.sendDone(message_t* bufPtrS, error_t error) { //MSync broad-casting done
 if (&packet == bufPtrS) {
 locked = FALSE;
 if (cont_sync_task == TRUE){ //for case of MSync message after a new cycle, it call random backoff time

to receive neighbours packets
 cont_sync_task = FALSE;
 //wait random backoff time
 randBackoffPeriod = (float)(call Random.rand16());
 randBackoffPeriod = (randBackoffPeriod/65535.0F);
 randBackoffPeriod = randBackoffPeriod * MAX_RANDOM_THRESHOLD;
 if (randBackoffPeriod < ((float)(MIN_RANDOM_THRESHOLD))){randBackoffPeriod =

randBackoffPeriod +((float)(MIN_RANDOM_THRESHOLD));}
 call MilliTimer.startOneShot((uint16_t)(randBackoffPeriod)); //start random backoff time
 }
 }
 }

 event void MilliTimerACK.fired(){ //repeat message after 512ms
 if (rep_mode != 0){
 if (rep_mode == 1){post mcoord_uni_task();rep_mode = 0;}
 if (rep_mode == 2){post sendMDataTask();rep_mode = 0;}

122

 if (rep_mode == 3){post forwardMDataToParentTask();rep_mode = 0;}
 }
 }

 event void MData_S.sendDone(message_t* bufPtrD, error_t error) { //MData sending done
 if ((&packet == bufPtrD)){locked = FALSE;}
 if ((&packet == bufPtrD) && (call PacketAcknowledgements.wasAcked(bufPtrD)==SUCCESS)){
 locked = FALSE;
 trydata = 1;
 }else{
 if (trydata < 3){
 trydata = trydata+1;
 rep_mode = 2;
 call MilliTimerACK.startOneShot(512); //repeat message after 512ms
 }
 }
 }

 event void MDataF_S.sendDone(message_t* bufPtrFD, error_t error) { //MData sending done
 if ((&packet == bufPtrFD)){locked = FALSE;}
 if ((&packet == bufPtrFD) && (call PacketAcknowledgements.wasAcked(bufPtrFD)==SUCCESS)){
 locked = FALSE;
 trydataF = 1;
 }else{
 if (trydataF < 3){
 trydataF = trydataF+1;
 rep_mode = 3;
 call MilliTimerACK.startOneShot(512); //repeat message after 512ms
 }
 }
 }

 event void MCoord_S.sendDone(message_t* bufPtrC, error_t error) { //MCoord sending done
 if ((&packet == bufPtrC)){locked = FALSE;}
 if ((&packet == bufPtrC) && (call PacketAcknowledgements.wasAcked(bufPtrC)==SUCCESS)){
 locked = FALSE;
 trycoord = 1;
 }else{
 if (trycoord < 4){
 trycoord = trycoord+1;
 rep_mode = 1;
 call MilliTimerACK.startOneShot(100); //repeat message after 100ms
 }
 }
 }

 event void MilliTimerValidTime.fired(){ //it means the selected sink is not valid any more
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].sink_id == SinkID)&&(neighbors[i].cycle > 0)){
 neighbors[i].node_id = 0;
 neighbors[i].hops = 0;
 neighbors[i].sink_id = 0;
 neighbors[i].energy = 0;
 neighbors[i].coord = 0;
 neighbors[i].cycle = 0;
 }
 }
 //change selected sink to another sink from neighbours list if there is
 find = 0;
 for (i=0;i<NeighborsLen;i++){
 if ((neighbors[i].sink_id != SinkID)&&(neighbors[i].cycle > 0)){
 SinkID = neighbors[i].sink_id;
 find = 1;
 }
 }
 //maybe it does not have info from other sink
 if (find == 1){
 Parent_Selector_Manager();
 Election_Manager();
 }else {
 SinkID = -1;
 }
 }

123

 event void MilliTimer.fired(){ //End of random backoff time
 //call valid time timer to find invalid sink, considering an amount of delay time and stagger of dissemination
 if ((SinkCycle[SinkID].valid_time) > 0){call MilliTimerValidTime.stop();
 call

MilliTimerValidTime.startOneShot((uint32_t)(((SinkCycle[SinkID].valid_time)*61440)+10240+(5120/(parent_hops+2))));}
 Parent_Selector_Manager();
 Backbone_Fulfil_Manager();
 }

 event void MilliTimerBuf.fired(){ //If MDTC end, the aggregation stops and the packet forward to parent
 flags = flags_buff ^ B01_16;source_add = buff_source_add; app_data1 = buff_data1;
 app_data2 = buff_data2;app_data3 = buff_data3;app_data4 = buff_data4;
 app_data5 = buff_data5;app_data6 = buff_data6;app_data7 = buff_data7;
 app_data8 = buff_data8;app_data9 = buff_data9;app_data10 = buff_data10;
 app_data11 = buff_data11; buff_data1 = 0; buff_data2 = 0; buff_data3 = 0; buff_data4 = 0;
 buff_data5 = 0; buff_data6 = 0; buff_data7 = 0; buff_data8 = 0; buff_data9 = 0; buff_data10 = 0;
 buff_data11 = 0; flags_buff = 0;
 post forwardMDataToParentTask();
 }

 event void MilliTimerBufE.fired(){ //If MDTE end, the aggregation stops and the packet forward to parent
 flags = flags_buffE ^ B01_16;source_add = buffE_source_add; app_data1 = buffE_data1;
 app_data2 = buffE_data2;app_data3 = buffE_data3;app_data4 = buffE_data4;
 app_data5 = buffE_data5;app_data6 = buffE_data6;app_data7 = buffE_data7;
 app_data8 = buffE_data8;app_data9 = buffE_data9;app_data10 = buffE_data10;
 app_data11 = buffE_data11; buff_data1 = 0; buffE_data2 = 0; buffE_data3 = 0; buffE_data4 = 0;
 buffE_data5 = 0; buffE_data6 = 0; buffE_data7 = 0; buffE_data8 = 0; buffE_data9 = 0; buffE_data10 = 0;
 buffE_data11 = 0; flags_buffE = 0;
 post forwardMDataToParentTask();
 }

 event void MilliTimerApp.fired(){ //The application timer to call sample application, also in each period the current

energy of node updates
 // Updates battery
 call Battery.read();
 // Application sends MData
 Appcounter++;
 if (node_area == 0x0001){ //This timer fires every 14 second, area1 will monitor and send data every 14 seconds
 if (Appcounter == 1){
 rndDATA = call Random.rand16(); // random sensed data
 post sendMDataTask();
 Appcounter = 0x0000;
 }
 }
 else if (node_area == 0x0002){ //This timer fires every 14 second, area2 will monitor and send data every

28 seconds
 if(Appcounter == 2){
 rndDATA = call Random.rand16(); // random sensed data
 post sendMDataTask();
 Appcounter = 0x0000;
 }
 }else if (node_area == 0x0003){
 }else if (node_area == 0x0004){
 }
 }

 event void Battery.readDone(error_t result, uint16_t data){ //For update current energy of node
 if (result == SUCCESS) {
 currEnergy = data;
 }
 }

 }

	1. INTRODUCTION
	1.1 MOTIVATION
	1.2 CONTRIBUTIONS
	1.3 ORGANIZATION

	2. BASIC CONCEPTS
	2.1 SHARED SENSOR NETWORKS
	2.2 ROUTING ON SSNS

	3. RELATED WORK
	4. PROPOSAL
	4.1 PROC OVERVIEW
	4.2 SSN MODEL AND ASSUMPTIONS
	4.3 THESEUS
	4.3.1 THESEUS packet aggregation
	4.3.2 THESEUS application function
	4.3.3 THESEUS architecture
	4.3.4 THESEUS operation

	5. IMPLEMENTATION
	6. EVALUATION
	6.1 COMPARING THESEUS AND PROC
	6.1.1 GQM
	6.1.2 Evaluation methodology and scenarios
	6.1.3 Tests and analysis of results

	6.2 ANALYSIS OF THE IMPACTS OF VARIATION OF IMPORTANT PARAMETERS
	6.2.1 GQM
	6.2.2 Evaluation methodology and scenarios
	6.2.3 Tests and analysis of results
	6.2.3.1 number of applications
	6.2.3.2 distance between Nodes
	6.2.3.3 random Position of Nodes
	6.2.3.4 sink node position
	6.2.3.5 cycle time
	6.2.3.6 MDTC
	6.2.3.7 simulation Time

	6.3 ANALYSIS OF THE IMPACTS OF USING MORE THAN ONE SINK NODE ON THESEUS
	6.3.1 GQM
	6.3.2 Evaluation methodology and scenarios
	6.3.3 Tests and analysis of results

	6.4 COMPARISON BETWEEN REAL AND SIMULATED NODES

	7. CONCLUSIONS AND FUTURE WORK
	7.1 FUTURE WORK

	REFERENCES
	APPENDIX B, THE IMPLEMENTED CODES FOR TINYOS:
	I) THESEUS SINK MANAGER APPLICATION
	1) Makefile
	2) message.h
	3) THESEUS_SinkManagerAppC.nc
	4) THESEUS_SinkManagerC.nc

	II) THESEUS NODE MANAGER APPLICATION
	1) Makefile
	2) message.h
	3) THESEUS_NodeManagerAppC.nc
	4) THESEUS_NodeManagerAppC.nc

