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RESUMO

Xavier, Juliana Castanon. Numerical analysis of Boussinesq systems. 2016.
139 f. Thesis (Doctor in Computer Science) - PPGI, Instituto de Matemática, Insti-
tuto Tércio Pacitti de Aplicações e Pesquisas Computacionais, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, 2016.

Neste trabalho estudamos numericamente os sistemas de Boussinesq. Inicial-
mente, apresentamos a análise de estabilidade da família linear de sistemas de Bous-
sinesq com o objetivo de determinar a in�uência de seus parâmetros na e�ciência e
precisão do método espectral de colocação de Fourier aplicado na variável espacial,
juntamente com o método de Runge Kutta de quarta ordem aplicado na variável
temporal. São identi�cadas quais regiões de parâmetros são as mais adequadas para
a obtenção de uma solução numérica consistente. Na sequência, apresentamos a
análise de convergência da família não linear de sistemas de Boussinesq nos casos
em que a condição de estabilidade linear é dada por ∆t < C∆x. Essa análise nos
fornece estimativas de erro no espaço e no tempo para o cálculo da solução aproxi-
mada. Experimentos numéricos são fornecidos com o objetivo de validar o código
implementado para a determinação da solução aproximada, veri�car a estabilidade
das soluções do problema linear nas regiões de parâmetros que apresentam resolução
numérica com baixo custo computacional, bem como comprovar a ordem de con-
vergência esperada da solução numérica para o problema não linear. Também são
mostrados diversos experimentos referentes ao estudo numérico de ondas solitárias
para esses sistemas.

Palavras-chave: Sistemas de Boussinesq, Análise de Estabilidade, Análise de Con-
vergência, Método de Colocação de Fourier, Método de Runge Kutta, Simulações
Numéricas.
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ABSTRACT

Xavier, Juliana Castanon. Numerical analysis of Boussinesq systems. 2016.
139 f. Thesis (Doctor in Computer Science) - PPGI, Instituto de Matemática, Ins-
tituto Tércio Pacitti, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

In this thesis we perform the numerical analysis of the family of Boussinesq sys-
tems. Initially, the stability analysis of the linear family of these systems leads us
to determine the in�uence of its parameters on the e�ciency and accuracy of the
numerical scheme. As a consequence of this analysis, we identify which regions of
parameter space are most appropriate for obtaining a consistent numerical solution.
In sequence, we apply the convergence analysis to the nonlinear family of Boussinesq
system with stability condition of the type ∆t < C∆x in order to prove Hs−error
bounds of spectral accuracy in space and of fourth-order accuracy in time. The sys-
tems are discretized in space by the standard Fourier collocation spectral method
and in time by the explicit fourth order Runge-Kutta (RK4) scheme. Numerical ex-
periments are shown in order to validate the accuracy of our numerical method, and
verify the stability of the linear solution in each region of parameters as well as the
order of convergence of the numerical method applied in these systems. Moreover,
we also do some comments about what happens with the stability of the solution for
the nonlinear problem and study numerically the solitary waves for these systems.

Keywords: Boussinesq Systems, Stability Analysis, Convergence Analysis, Fourier
Collocation Method, Runge Kutta Method, Numerical Simulations.
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1 INTRODUCTION

The general aim of this thesis is to perform the numerical analysis of surface

waves propagation in a �uid with a well-de�ned volume. For an ideal �uid, which

means an inviscid, incompressible and irrotational �uid, the 2D Euler equations in

a continuous approximation, describes the motion of a free surface over a horizontal

bottom at height y = −h0 by

ut + uux + vuy +
1

ρ
px = 0, (1.1)

vt + uvx + vvy +
1

ρ
py = −g, (1.2)

ux + vy = 0, (1.3)

uy = vx, (1.4)

which holds for all t ≥ 0 and (x, y) ∈ Ωt = {(x, y) | x ∈ R, −h0 ≤ y ≤ η(x, t)},
h0 > 0. The function η(x, t) indicates the deviation of the free surface of the

�uid above its level of rest, g is the acceleration of gravity, u = u(x, y, t) and

v = v(x, y, t) denote, respectively, the horizontal and vertical velocity components,

ρ is the constant density and p = p(x, y, t) is the pressure.

The system (1.1)-(1.4) is supplemented by the free surface kinematic and

dynamic boundary conditions

ηt + uηx = v at y = η(x, t), (1.5)

p = 0 at y = η(x, t). (1.6)

At the bottom, we assume that

v = 0 at y = −h0. (1.7)
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Figure 1.1: 2D Euler equations variables. Source: KAMPANIS; DOUGALIS; EKA-
TERINARIS (2008)

We also assume that initial conditions for η and u have been speci�ed, and

let

η(x, 0) = Φ(x) for x ∈ R, (1.8)

u(x, y, 0) = Ψ(x, y) for (x, y) ∈ Ω0, (1.9)

where Φ(x) and Ψ(x) are given functions.

It happens that for some engineering applications, the full system (1.1)-(1.9)

has been more di�cult than it should be in some situations. For that reason, it has

been derived several asymptotic models from the Euler equations with some physical

restrictions.

A regime that arises in practical situations, is the one of waves in a channel

of approximately constant depth h0 that are uniform across the channel, which are

of small amplitude and long wavelength, and such that the associated nonlinear

and dispersive e�ects are balanced. If A denotes a typical wave amplitude and λ a

typical wavelength, the conditions just mentioned can be expressed as

A

h0

� 1,
h2

0

λ2
� 1,

Aλ2

h2
0

≈ 1. (1.10)
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In 1870, Boussinesq derived the �rst models for evolution equations. These

models were applicable, in principle, to describe motions that are two-dimensional

and which have the form of a perturbation of the one-dimensional wave equation (see

BOUSSINESQ (1872)). Moreover, these equations were derived directly from the

Eulerian formulation of the water wave problem using the assumption, among others,

that the waves travel only in one direction. As a consequence of this assumption,

these equations are formally comparable to the one derived by Korteweg and de-

Vries in KORTEWEG; VRIES (1895), the well-known Korteweg-de Vries equation,

or in other words, the KdV equation.

It is worth noting that Boussinesq in BOUSSINESQ (1871), also derived from

the Euler equations a system of two coupled equations,

ηt + ux + (uη)x = 0,
ut + ηx + uux + 1

3
uxxt = 0,

(1.11)

which are free of the assumption of unidirectionality, the main characteristic for

equations that models surface-wave propagation, similar to the �rst equations ob-

tained by him and the KdV equation.

One therefore expects that Boussinesq systems (1.11) will have more inte-

rest than the unidirectional models, because of their wider range of potential of

applicability.

As with unidirectional models, there are many di�erent but formally equiva-

lent Boussinesq systems, as explained in BONA; CHEN; SAUT (2002). However,

despite their formal equivalence as models for small-amplitude long waves, these

systems may have rather di�erent mathematical properties.

Our principal aim in this work is to examine some of the theoretical and
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numerical properties of Boussinesq systems of the form

ηt + ux + (uη)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(1.12)

which are �rst-order approximations of the Euler equations (1.1)-(1.9), with respect

to small parameters α and β introduced in (1.10), such that

a = 1
2

(
θ2 − 1

3

)
λ, b = 1

2

(
θ2 − 1

3

)
(1− λ),

c = 1
2

(
1− θ2

)
µ, d = 1

2

(
1− θ2

)
(1− µ),

(1.13)

with

a+ b+ c+ d =
1

3
, (1.14)

λ, µ ∈ R and 0 ≤ θ ≤ 1.

It is worth to observe that di�erent choices of λ, µ and θ give rise to di�erent

parameters a, b, c, d. Therefore, the equations (1.12) denote a family of systems.

The independent variables x and t indicate the position of a particle of the

�uid along the channel and time, respectively. The dependent variables η = η(x, t)

and u = u(x, t) evaluated in each point (x, t) indicate, respectively, the deviation

of the free surface of the �uid above its level of rest and the horizontal velocity

component in some point above the bottom of the channel.

In BONA; CHEN; SAUT (2002) and BONA; CHEN; SAUT (2004), Bona et

al. introduced and analyzed several types of Boussinesq systems arising from (1.12).

Moreover, the authors raised important issues about the numerical resolution of

such systems, mainly because in general, the initial-boundary-value problems(IVPs)

associated with these systems do not present a analitic solution determined.

After these papers, many works appeared in this �eld. The numerical analysis

of some of those systems have been carried out in ANTONOPOULOS; DOUGA-
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LIS (2010), ANTONOPOULOS; DOUGALIS (2012a), ANTONOPOULOS; DOU-

GALIS (2012b), ANTONOPOULOS; DOUGALIS; MITSOTAKIS (2010a), BONA;

DOUGALIS; MITSOTAKIS (2007) and DOUGALIS; MITSOTAKIS; SAUT (2010).

These papers addressed a very important question raised in BONA; CHEN; SAUT

(2002) concerning the construction of accurate, e�cient numerical schemes for ap-

proximating solutions of interesting IVPs related to those systems. Nonetheless, it

would be useful to explore in a more consistent way the properties of those Boussi-

nesq type systems as a family in the construction of e�cient numerical schemes.

Our purpose in this thesis is to identify the in�uence of the parameters (1.13)

of the Boussinesq systems (1.12) on the e�ciency and accuracy of a numerical

scheme. With this aim in mind, we propose the development of numerical sche-

mes based on the spectral Fourier collocation method for the spatial discretization

along with an explicit fourth-order Runge Kutta time discretization.

The convergence analysis related to the spatial semi discretization will indi-

cate how accurate in space we can obtain approximate solutions. This is expected

to be strongly related to the regularity of the solutions of (1.12). On the other hand,

the analysis of the time discretization should indicate how we can do an e�cient and

accurate time approximation. This information is not directly related to the space

regularity of the solutions, but to the dispersive and stability properties of the time

discretized equations.

Therefore, after carrying out the full numerical analysis, we shall identify

which particular systems, or in other words, which parameter regions, are best suited

for an accurate and e�cient numerical solution. As an important application of this

analysis we shall carry out the numerical simulations of solitary wave propagation

and interaction.
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This text have 6 chapters, which are organized as follows: in chapter 2 we

give some notations, de�nitions and important results that are used in the following

chapters; in chapter 3 we give an overview of the state of art of the analysis of

Boussinesq systems, starting with their deduction from Euler equations, giving some

examples and the most import results about well-posedness that are found in the

literature. In chapter 4, we perform the numerical analysis of these systems, starting

with the stability analysis of the linear family of Boussinesq systems, followed by

the convergence analysis of the nonlinear family of Boussinesq systems. In chapter

5 we give some numerical simulations in order to validate our numerical method and

to testify the results obtained during the numerical analysis. We �nish in chapter 6

giving the conclusions.
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2 BACKGROUND

In this chapter we give the main results contained in the literature with

respect to the spectral methods and methods for solving numerically systems of

ordinary di�erential equations (ODEs). We also cover some results about Sobolev

spaces and give some important inequalities, both necessary during the convergence

analysis in the chapter 4,

2.1 Spectral Methods

The spectral methods are one of the three major methods for solving nume-

rically di�erential equation, along with the �nite element method (FEM) and �nite

di�erence method (FDM). As a consequence, these three methods have large ap-

plications in areas such as �uid mechanics, quantum mechanics, wave phenomena,

complex analysis, and so on.

Spectral methods are named in this way because they are based on the spec-

trum of a function, i.e., the values of its Fourier transform. They are a class of spatial

discretizations for di�erential equations. The key components for their formulation

are the trial functions, also called the expansion or approximating functions, and

the test functions, also known as weight functions. The test functions are used to

ensure that the di�erential equation and perhaps some boundary conditions are sa-

tis�ed as closely as possible by the truncated series expansion. This is achieved by

minimizing, with respect to a suitable norm, the residual produced by using the

truncated expansion instead of the exact solution.
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The choice of the trial functions is one of the features that distinguishes the

early versions of spectral methods from �nite-element and �nite di�erence methods.

The trial basis functions, for what can now be called classical spectral methods, are

global, in�nitely di�erentiable and nearly orthogonal, i.e., the matrix consisting of

their inner products has very small bandwidth; in many cases this matrix is diagonal.

In contrast, for the h version of FEM, the domain is divided into small ele-

ments, and low-order trial functions are speci�ed in each element. The trial basis

functions for FEM are thus local in character and still nearly orthogonal, but not

in�nitely di�erentiable. They are thus well suited for handling complex geometries.

The FE methods are typically viewed from a pointwise approximation perspective

rather than from a trial function/test function perspective. However, when appropri-

ately translated into a trial function/test function formulation, the �nite-di�erence

trial basis functions are likewise local.

Therefore, for solving di�erential equations with smooth initial data in a sim-

ple domain with high accuracy, in general the spectral methods show better results

than the FEM or FDM. The spectral methods can reach a 10 digits precision in some

cases, against 2 or 3 digits from the FEM or FDM. Moreover, for lower accuracy,

spectral methods require less computational cost than the other two methods (see

CANUTO et al. (2006) for details).

Another advantage of the spectral methods is the possibility of choosing

the trial functions. The most frequent are the trigonometric polynomial functions,

Chebyshev polynomials and Legendre polynomials. The choice of test functions

distinguishes between the three earliest types of spectral schemes, namely, the Ga-

lerkin, collocation, and tau versions. In this text, we only detail the collocation

method and give an example of its application in section 2.3. More details about

other spectral methods can be consulted in CANUTO et al. (2006).
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As we mentioned that the spectral methods are essentially based on the

concepts of the Fourier transform. Therefore, before we de�ne the spectral Fourier

collocation method, we give in the following section some of the most important

results about this theory.

2.2 Fourier Analysis

The expansion of a function u in terms of an in�nite sequence of orthogonal

functions φk, e.g., u =
∑∞

k=−∞ ûkφk or u =
∑∞

k=0 ûkφk, underlies many numerical

methods of approximation. The accuracy of the approximations and the e�ciency

of their implementation in�uence decisively the domain of applicability of these

methods in scienti�c computations.

The expansion in terms of an orthogonal system introduces a linear transfor-

mation between u and the sequence of its expansion coe�cients ûk. This is usually

called the transform of u between physical space (space for variable x) and Fou-

rier space (space for the wave number k). If the system is complete in a suitable

Hilbert space, this transform can be inverted. Hence, functions can be described

both through their values in physical space and through their coe�cients in Fourier

space.

The expansion coe�cients depend on (almost) all the values of u in physical

space, and they can rarely be computed exactly. A �nite number of approximate

expansion coe�cients can be easily computed using the values of u at a �nite num-

ber of selected points, usually the nodes of high-precision quadrature formulas. This

procedure de�nes a discrete transform between the set of values of u at the qua-

drature points and the set of approximate, or discrete, coe�cients. With a proper

choice of the quadrature formulas, the �nite series de�ned by the discrete transform
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is actually the interpolant of u at the quadrature nodes.

In the following sections, we give an overview of the main results about the

continuous and discrete Fourier expansions.

2.2.1 Continuous Fourier Expansion

The continuous Fourier expansion, or the Fourier transform of a function

u(x), x ∈ R is the function û(k) de�ned by

ûk =

∫ ∞
−∞

u(x)e−ikxdx, k ∈ R. (2.1)

The number û(k) can be interpreted as the amplitude density of u at wave-

number k. Conversely, we can reconstruct u from û by the inverse Fourier transform

u(x) =
1

2π

∫ ∞
−∞

û(k)eikxdk, x ∈ R. (2.2)

From now on, the variable x is called the physical variable and k is called the

Fourier variable or wavenumber. The integrals in (2.1) and (2.2) are de�ned in the

sense of Lebesgue.

The well-known results about the continuous Fourier expansion as its proper-

ties, convergence theorems and convolution forms can be found in CANUTO et al.

(2006), TREFETHEN (2000), IÓRIO; IÓRIO (2001) and KREYSZIG (1978). Since

the aim of this thesis is concentrated in the numerical analysis area, and we have

to use computers to simulate experiments, we are limited to perform all the calcu-

lations considering discrete data in a �nite quantity. Because of that, we introduce

in the following sections the most appropriate versions of the Fourier transform to

complete this goal.
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2.2.2 Discrete Fourier Expansion

In this section, we start considering x ranging over

hZ = {xj = jh ∈ R, j ∈ Z},

rather than R.

Precise analogues of the Fourier transform and its inverse exist for this case.

The crucial point is that because the spatial domain is discrete, the wavenumber k

will no longer range over all of R. Instead, the appropriate wavenumber domain is a

bounded interval of length 2π/h, and one suitable choice is [−π/h, π/h]. It is worth

noticing that k is bounded because x is discrete; in fact,

Physical space : discrete, unbounded : x ∈ hZ
l l

Fourier space : bounded, continuous : k ∈ [−π/h, π/h]

The reason for these connections is the phenomenon known as aliasing, which

means that for any complex exponential eikx, there are in�nitely many other complex

exponentials that match it on the grid hZ. Consequently it su�ces to measure

wavenumbers for the grid in an interval of length 2π/h, and for reasons of symmetry,

we choose the [−π/h, π/h]. This fact is illustrated in the next �gure.

For a function v de�ned on hZ with value vj at xj , the semidiscrete Fourier

transform is de�ned by

v̂(k) = h

infty∑
j=−∞

e−ikxjvj, k ∈ [−π/h, π/h], (2.3)

and the inverse semidiscrete Fourier transform by

vj =
1

2π

∫ π/h

−π/h
eikxj v̂(k)dk, j ∈ Z. (2.4)
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Figure 2.1: An example of aliasing. On the grid 1/4Z, the functions sin(πx) and
sin(9πx) are identical. Source: TREFETHEN (2000)

The equation (2.3) approximates (2.1) by a trapezoidal rule, and (2.4) appro-

ximates (2.2) by truncating R to [−π/h, π/h]. As h → 0, the two pair of formulas

converge (see TREFETHEN (2000)).

In fact, the expression "semidiscrete Fourier transform" is unfamiliar, and it

is being used here to emphasize that our concern is in the case where the variable x is

discrete and the Fourier variable k is a bounded interval. This is the inverse problem

compared to the Fourier series, which represents a function on a bounded interval as

a sum of complex exponentials at discrete wavenumbers. However, mathematically,

there is no di�erence from the theory of Fourier series.

Here, the semidiscrete Fourier transform is used to obtain an unique in-

terpolant that is band-limited to wavenumbers in the interval [−π/h, π/h]. This

interpolant is used to derive the spectral di�erentiation theory, which has as main

result that if u is a di�erentiable function with Fourier transform û, then the Fourier

transform of u
′
is given by

û′(k) = ikû(k). (2.5)

Observe that using the equation (2.5), one can recover the function u
′
ap-

plying the inverse Fourier transform. More details about the derivation of (2.5) can

be found in TREFETHEN (2000).



25

We pass now to the concept of the discrete Fourier transform (DFT). The

biggest gain of this formulation is that it can be computed by the Fast Fourier

Transform (FFT), which will be detailed in the following.

We consider fully discretized periodic functions evaluated in �nite quantity

of points, with period 2π. At �rst sight, the requirement of periodicity may suggest

that this method has limited relevance for practical problems. Yet periodic grids

are surprisingly useful in practice. Often in scienti�c computing a phenomenon is

of interest that is unrelated to boundaries, such as the interaction of solitons in

the KdV equation (see KORTEWEG; VRIES (1895)). For such problems, periodic

boundary conditions often prove the best choice for computation. In addition, some

geometries are physically periodic, such as crystal lattices or rows of turbine blades.

Finally, even if the physics is not periodic, the coordinate space may be, as is the

case for a θ or φ variable in a computation involving polar or spherical coordinates

(see chapter 11 of TREFETHEN (2000)).

We consider a periodic grid as a subset of the interval [0, 2π]. Note that,

when we say periodic grid, we mean that any data values on the grid come from

evaluating a periodic function. We may regard the periodic grid as one cycle of

length N , extracted from an in�nite grid with data satisfying vj+mN = vj for all

j,m ∈ Z. We consider that N is always an even number.

The space step h is calculated as h = 2π/N , which implies that
π

h
=

N

2
.

Therefore, here the Fourier domain is discrete as well as bounded. This is because

waves in physical space must be periodic over the interval [0, 2π], and only waves

eikx with integer wavenumbers have the required period 2π. Then, we �nd

Physical space : discrete, bounded : x ∈ {h, 2h, . . . , 2π − h, 2π}
l l

Fourier space : bounded, discrete : k ∈ {−N
2

+ 1,−N
2

+ 2, . . . , N
2
}
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The formula for the DFT is

v̂k = h
N∑
j=1

e−ikxjvj, k = −N
2

+ 1, . . . ,
N

2
, (2.6)

and the inverse discrete Fourier transform is given by

vj =
1

2π

N/2∑
k=−N/2+1

eikxj v̂k, j = 1, . . . , N. (2.7)

The spectral di�erentiation in this formulation follows the same idea for the

semidiscrete Fourier transform mentioned before. However, in this case we have a

complication to address: evaluating the inverse transform (2.7) as it stands would

give a term eiNx/2 with derivative (iN/2)eiNx/2. Since eiNx/2 represents a real, sawto-

oth wave on the grid, its derivative should be zero at the grid points, not a complex

exponential. The problem is that (2.7) treats the highest wavenumber asymmetri-

cally. We can �x this by de�ning v̂−N/2 = v̂N/2 and replacing (2.7)

vj =
1

2π

N/2∑′

k=−N/2+1

eikxj v̂k, j = 1, . . . , N, (2.8)

where the prime indicates that the terms K = ±N/2 are multiplied by 1
2
.

The spectral di�erentiation can be summed as: given a function v, we com-

pute its DFT v̂; then, we de�ne ŵk = ikv̂k, taking special care of the ŵN/2 term. In

sequence, compute w from ŵ. The problematic term associated with the wavenum-

ber k = N/2 generates a loss of symmetry for odd derivatives, and we have to set

ŵN/2 = 0 in order to compute higher derivatives.

In fact, to approximate the νth derivative, we do:

• Given v, compute v̂;
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• De�ne ŵk = (ik)ν v̂k, setting ŵN/2 = 0 if ν is odd;

• Compute w from ŵ.

The computation of the discrete Fourier transform can be accomplished by

the Fast Fourier Transform (FFT), discovered in 1965 by Cooley and Tukey. If N

is highly composite, that is, a product of small prime factors, then the Fast Fourier

Transform enables us to compute the discrete Fourier transform, and hence spectral

derivatives, in O(N logN) �oating point operations.

It is worth noticing that spectral derivatives obtained by di�erentiation ma-

trix, which means that the formulas (2.6) and (2.7) were used directly, are calculated

in O(N2) �oating points operations. This comparison proves the real numerical gain

in using the FFT (see CANUTO et al. (2006) and TREFETHEN (2000) for details).

2.3 Fourier Collocation Method - Formulation and Applica-

tion

In the collocation approach the test functions are translated Dirac delta-

functions centered at special, so-called collocation points. This approach requires

the di�erential equation to be satis�ed exactly at the collocation points. In the

following we illustrate the basic principles of the collocation method and the basic

properties of the set of polynomials chosen as trial functions.

We consider the nonlinear Burguers equation, derived in 1948 as a simpli�ed

model of the Navier-Stokes equation, given by

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0, (2.9)
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for all t > 0, considering Ω = [0, 2π] and ν is a positive constant. We supplement

this equation with the initial condition u(x, 0) = u0(x) in Ω.

We seek for a function uN , which is considered an approximate solution in Ω

of the equation (2.9), obtained through the collocation Fourier method.

We consider the trial space SN = span
{
e−ikx : −N ≤ k ≤ N

}
, the set of all

trigonometric polynomials of degree≤ N/2. The set of functions SN is an orthogonal

system over the interval (0, 2π), such that∫ 2π

0

e−ikxe−ilxdx = 2πδkl =

{
0 if k 6= l,
2π if k = l.

(The overline on e−ilx denotes its complex conjugate.)

The approximate solution uN is represented by its values at the grid points

xj = 2πj/N , j = 0, . . . , N − 1. In turn, the grid point values of uN are related to

its discrete Fourier coe�cients (de�ned in section 2.2.2) by

ûk =
1

N

N∑
j=1

u(xj)e
−ikxj , k = −N/2 + 1, . . . , N/2, (2.10)

and

u(xj) =

N/2∑
k=−N/2+1

ûke
ikxj , j = 1, . . . , N. (2.11)

For the collocation method we require that the respective system be satis�ed

at these grid points, that is,

∂uN
∂t

+ uN
∂uN
∂x
− ν ∂

2uN

∂x2

∣∣∣∣∣
x=xj

= 0, j = 0, 1, . . . , N − 1, (2.12)

with initial condition at each collocation point given by uN(xj, 0) = u0(xj).
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Taking u(t) = (uN(x0, t), uN(x1, t), . . . , uN(xN−1, t))
T , we can write (2.12) in

a vector form as
du

dt
+ u⊗DNu− νD2

Nu = 0, (2.13)

or
du

dt
+

1

2
DN(u⊗ u)− νD2

Nu = 0, (2.14)

where u⊗ v indicates each component of the product between u and v, and DN is

a di�erentiate matrix (see section 2.1 of CANUTO et al. (2006) for details).

As we commented, equations (2.13) and (2.14) are usually solved in a O(N2)

�oating points operations. However, using the FFT, this calculation can be perfor-

med in O(N logN) �oating point operations, as we mentioned in section 2.2.2.

2.4 Some Results about Functional Analysis

In this section, we present some de�nitions and important results about func-

tional analysis that are used in the following chapters. The proofs of these results

are omitted but properly referenced.

De�nition 1. Let (X,A, µ) a measure space, Y = R or C and p ∈ [1,∞). The

space Lp(X) = Lp(X,A, µ, Y ) is de�ned as

Lp(X) =

{
f : X → Y |f is measurable and

∫
X

|f |pdµ <∞
}
.

De�nition 2. Let Y = R or C. A function f : X → Y is essentially bounded if

there exists some r ∈ R such that |f(x)| ≤ r almost everywhere in X.

De�nition 3. Let (X,A, µ) a measure space and Y = R or C. The space L∞(X) =

L∞(X,A, µ, Y ) is de�ned as

L∞(X) = {f : X → Y |f is measurable and essentially bounded} .
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The Lp and L∞ spaces de�ned are real (or complex) vector spaces, where

‖f‖p =
(∫

X

|f |pdµ
)1/p

, f ∈ Lp,

is a semi norm in Lp, and

‖f‖∞ = inf {r ≥ 0, |f | ≤ r almost everywhere in X} , f ∈ L∞,

is a semi norm in L∞.

De�nition 4. Let (X,A, µ) a measure space, Y = R or C and p ∈ [1,∞). The

space Lp(X) = Lp(X,A, µ, Y ) is de�ned as the quotient space with respect to the

equivalence relation f ∼ g ⇔ f = g almost everywhere in X. That is,

Lp(X) = {[f ], f ∈ Lp} ,

where [f ] = {g ∈ Lp(X), g = f almost everywhere in X}.

The Lp(X) space is a Banach space with respect to the norm ‖[f ]‖p = ‖f‖p,
p ∈ [1,∞].

The continuous Fourier transform de�ned in section 2.2.1 of a function f ∈
L1(R) is well de�ned for all k ∈ R, being a uniformly continuous and bounded

function, such that ‖f̂‖∞ ≤ ‖f‖1.

Lemma 1 (Riemann-Lebesgue). Let f : R→ C be an absolutely integrable function,

such that f is piecewise continuous in each interval [a, b] ⊆ R. Then, f̂(k) → 0 as

|k| approaches in�nity.

Proof. See KREYSZIG (1978).
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De�nition 5 (Schwartz space). The Schwartz space or space of rapidly decreasing

functions, denoted by S(R), is the set of the functions f : R → C such that f ∈
C∞(R) and

lim
|x|→+∞

xkDαf(x) = 0,

for all k, α ∈ N, where Dα denotes the αth derivative.

The inverse countinuous Fourier transform (2.2) is well de�ned for functions

f ∈ S(R).

De�nition 6 (Sequence spaces). Let p ∈ [1,∞). The space `p = `p(Z) is de�ned as

`p(Z) =

{
u = (uj)j∈Z,

∞∑
k=−∞

|uk|p <∞

}
,

with the norm ‖u‖p =
( ∞∑
k=−∞

|uk|p
)1/p

. Similarly, the space `∞ = `∞(Z) is de�ned

as

`∞(Z) =

{
u = (uj)j∈Z, sup

k∈Z
|uk| <∞

}
,

with norm ‖u‖∞ = supk∈Z |uk|.

The `p and `∞ are also Banach spaces. The formulation of the DFT and the

inverse DFT given in section 2.2.2 are well de�ned when we consider the function

v ∈ `2
N , which is the set of functions de�ned at each mesh point {xj}, N -periodic

with respect to j (or 2π-periodic with respect to x), with the norm

‖v‖ =
(

∆x
N∑
j=1

|vj|2
)1/2

,

where ∆x is the spacial step size used to discretize the the 2π- periodic interval.

De�nition 7 (Sobolev spaces). Let s ∈ R. The Sobolev space Hs
per = Hs

per([−π, π])

is the set of all functions f ∈ P ′, which is the set of periodic distributions, such that

‖f‖2
s = 2π

∞∑
k=−∞

(1 + |k|2)s|f̂(k)|2 <∞.
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In other words, a periodic distribution f is in Hs
per if and only if(

(1 + |k|2)
s
2 |f̂(k)|

)
k∈Z
∈ `2(Z).

We denote by `2
s = `2

s(Z) the space of sequences α = αk, k ∈ Z, such that

‖α‖`2s =
(

2π
∞∑

k=−∞

(1 + |k|2)s|αk|2
)1/2

.

Therefore, f ∈ Hs
per if and only if

(
f̂(k)

)
k∈Z
∈ `2

s. In this case, ‖f‖s = ‖f̂‖`2s .
It also can be shown that for s ∈ R, Hs

per is a Hilbert space with respect to the inner

product

(f, g)s = 2π
∞∑

k=−∞

(1 + |k|2)sf̂(k)ĝ(k).

Observe that when s = 0, we have a Hilbert space that is isometrically

isomorphic to L2([−π, π]). The following results are all valid.

Proposition 1. Let s ≥ r ∈ R. Then, Hs
per ↪→ Hr

per continuously, and ‖f‖r ≤
C‖f‖s for all f ∈ Hs

per. In particular, if s ≥ 0, then Hs
per ⊂ L2([−π, π]). Moreover,

the topological dual space, (Hs
per)

′
, of Hs

per is isometrically isomorphic to H−sper for all

s ∈ R, and it holds that

< f, g >H−s
per×Hs

per
= 2π

∞∑
k=−∞

f̂(k)ĝ(k).

Proposition 2. Let m ∈ N. Then, f ∈ Hm
per if and only if ∂jf = f (j) ∈ L2

per, j =

0, 1, . . . ,m, where the derivatives are taking in the distribution sense (di�erentiation

in P ′). Moreover, ‖f‖m and

‖ |f | ‖m =
(∑
j=0

m‖∂jf 2‖L2
per

)1/2

,

are equivalent, which means that there exist positive constants Cm and C
′
m such that

Cm‖f‖2
m ≤ ‖ |f | ‖2

m ≤ C
′

m‖f‖2
m, f ∈ Hm

per.
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Lemma 2 (Sobolev Lemma). Let s > 1
2
. Then, Hs

per ↪→ Cper and ‖f‖∞ ≤ ‖f̂‖`1 ≤
C‖f‖s for all f ∈ Hs

per.

The proofs of the last two propositions and the Sobolev lemma can be found

in KREYSZIG (1978).

2.5 Numerical Methods for Solving ODEs

Runge-Kutta (RK) methods along the linear multistep methods are the two

most popular families of methods for solving numerically ordinary di�erential equa-

tions (ODEs). In this section, we give the basic and general concepts of local trun-

cation error, consistency and order of accuracy of such methods, emphasizing what

is valid for the RK methods.

In order to perform this presentation, we consider a nonlinear ODE system

given by
dy

dt
≡ y

′
= f(t, y), t > 0, (2.15)

subject to initial conditions y(0) = y0.

In general, y and f have m components each, m ≥ 1. Here, to simplyfy the

analysis, we consider m = 1, but the RK method described in the following can be

readily generalized to ODE systems.

2.5.1 Runge-Kutta Methods

Runge�Kutta are one-step methods in which f in (2.15) is repeatedly eva-

luated within one mesh interval to obtain a higher order method. In general, an
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s-stage Runge�Kutta method for the ODE (2.15) can be written in the form

Yi = yn + ∆t
s∑
j=1

aijf(tn + cj∆t, Yj), 1 ≤ i ≤ s, (2.16)

yn+1 = yn + ∆t
s∑
i=1

bif(tn + ci∆t, Yi), (2.17)

where each Yi, i = 1, . . . , s is an intermediate approximation to the solution at time

tn + ci∆t, which may be correct to a lower order of accuracy than the order for the

solution yn+1 at the end of the step.

We shall always require that

1 =
s∑
j=1

bj, ci =
s∑
j=1

aij, i = 1, . . . , s.

The coe�cients of the RK methods are chosen in part to make error terms

cancel in such a way that yn+1 is more accurate. As for multistep methods, the

local truncation error dn is de�ned as the amount by which the exact solution fails

to satisfy the numerical formula per step (2.17), divided by ∆t. The order of the

method is then p if dn = O(∆tp). A method whose order is at least 1 is said to be

consistent (see ASCHER (2008) for details).

The RK method is explicit if aij = 0, for all i ≤ j; we can cite as examples, the

forward Euler method and the classical fourth order Runge-Kutta method (RK4).

In general, the order p of an explicit RK method satis�es p ≤ s, with p = s for both

forward Euler and the RK4 methods. There are no such methods with p = s > 4.

If the RK method is not explicit, then it is implicit. The backward Euler

method can be cited as an example of an implicit RK method. More details about

the order of convergence for this type of RK method can be found in ASCHER

(2008).
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Remark 1. When s = 4 in (2.16)-(2.17), we have the fourth order Runge Kutta

method, or RK4 as already mentioned. A simpler version of these equations in this

case is given by

y0 = y(0) (initial data),

k1 = ∆tf(ti, yi),

k2 = ∆tf
(
ti + ∆t

2
, yi + 1

2
k1

)
,

k3 = ∆tf
(
ti + ∆t

2
, yi + 1

2
k2

)
,

k4 = ∆tf(ti+1, yi + k3),

yi+1 = yi + 1
6

(k1 + 2k2 + 2k3 + k4) .

for each i = 0, 1, . . . ,M − 1, where M > 0 denotes the number of steps in the time

interval. The intermediate steps are represented here by k1, k2, k3, k4 to eliminate

the need for successive nesting in the second variable of f(t, y). More details about

this can be found in BURDEN; FAIRES (2010).

2.5.2 Convergence and Stability

The initial approach for solving an ODE system is to ask what is required for

the ODE problem to be well-posed and then to require that the numerical method

behave similarly. In this case, behave similarly means to choose a stable numerical

method; the stability of a numerical method behaves, in a similarly way, as the well

posedness of the initial value problem (IVP).

In fact, for ODEs, the requirement for well-posedness can be easily stated in

a more general way, requiring only Lipschitz continuity of f in terms of y. Here is

the fundamental theorem for initial value ODEs.

Theorem 1. Let f(t, y) be continuous for all (t, y) in a region D = {0 ≤ t ≤ b, |y| <∞}.
Moreover, assume Lipschitz continuity of f in y: there exists a constant L such that

for all (t, y) and (t, ŷ) in D, |f(t, y)− f(t, ŷ)| ≤ L|y − ŷ|. Then,
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• For any initial value vector y0 ∈ Rn there exists a unique solution y(t) for the

IVP throughout the interval [0, b]. This solution is di�erentiable.

• The solution y depends continuously on the initial data: if ŷ also satis�es the

ODE (but not the same initial values), then

|y(t)− ŷ(t)| ≤ eLt|y(0)− ŷ(0)|,

• If ŷ satis�es, more generally, a perturbed ODE

ŷ
′
= f(t, ŷ) + r(t, ŷ),

where r is bounded on D, |r| ≤M , then

|y(t)− ŷ(t)| ≤ eLt|y(0)− ŷ(0)|+ M

L
(eLt − 1).

Proof. See ASCHER (2008).

Thus we have solution existence, uniqueness, and continuous dependence on

the data, or in other words, a well-posed problem, provided that the conditions of

the theorem hold.

Considering next the numerical method approximating the ODE problem

(2.15), let yπ be a mesh function which takes on the value yπ at each tn, i.e., yπ(tn) =

yn, n = 0, 1, . . . , N . The function yπ(t) can be seen as a function de�ned for all t,

but all that matters is what it does at the mesh points.

Then, the numerical method is given by Nπyπ(tn) = 0, where Nπ may be

taken as a �nite di�erence operator. Under the conditions of the Theorem 1, we

de�ne the numerical method to be 0-stable if there are positive constants k0 and K
such that for any mesh functions xπ and zπ with ∆t ≤ k0

|xπ − zπ| ≤ K
{
|x0 − z0|+ max

1≤j≤N
|Nπxπ(tj)−Nπzπ(tj)|

}
, 1 ≤ j ≤M. (2.18)
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What this bound says in e�ect is that the di�erence operator Nπ is invertible
and that its inverse is bounded by K. The de�nition (2.18) lead to proof the following
result.

Theorem 2.

Consistency + 0-Stability ⇒ Convergence

Indeed, if the method is consistent of order p and 0-stable, then it is convergent of

order p, and

|yn − y(tn)| ≡ |en| ≤ K max
j
|dj| = O(kp).

Proof. See ASCHER (2008).

It is important to distinguish between the stability concepts arising in PDEs

and those arising in ODEs. They are related but are not quite the same. More

details about this can be found in ASCHER (2008).

2.5.3 Absolute Stability

In the following, we talk about the absolute stability of numerical methods

for solving ODEs. To perform this, we consider the test equation y
′

= λy, t > 0,

where λ is a constant, complex scaler standing. The solution of this test equation

is y(t) = eλty(0), and satis�es that |y(t)| ≤ |y(0)| ⇔ Re λ > 0.

Correspondingly, for a numerical method we de�ne the region of absolute

stability as that region of the complex z-plane containing the origin where |yn+1| ≤
|yn|, n = 0, 1, . . . , when applying the method for the test equation, with z = kλ

from within this region. Note that 0-stability for the test equation corresponds to

having the origin z = 0 belong to the absolute stability region.
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For a RK method in the general form (2.16)-(2.17) applied to the test equa-

tion, we have

Yi = yn + z
s∑
j=1

aijYj, yn+1 = yn + z

s∑
j=1

bjYj.

Eliminating the internal stages Y1, . . . , Ys and substituting in the expression

for yn+1, we obtain

yn+1 = R(z)yn, R(z) = 1 + zbT (I − zA)−11, (2.19)

where the term bT (I − zA)−11 is de�ned similarly to the equation (2.13) in chapter

2 of ASCHER (2008).

The stability regions for explicit Runge�Kutta methods of the �rst few orders

are showed in Figure 2.2 .

Figure 2.2: Stability regions for p-stage explicit RK methods of order p = 1, 2, 3, 4.
Source: ASCHER (2008).

In Figure 2.2, the blue region represents the stability region for 1-stage RK

method; the green region for the 2-stage RK method; the pink and the red regions
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represent the stability regions for 3,4-stage RK method, respectively. It is important

to note that whereas the regions for the Runge�Kutta methods of order 1 and 2

have no intersection with the imaginary axis, those for the higher order methods do.

The observation in Figure 2.2 for the classical RK4 regarding the intersection of its

absolute stability region with the imaginary axis is a major reason for the popularity

of this method in time discretizations of hyperbolic PDEs (see ASCHER (2008)).

2.6 Important inequalities and notations

Cauchy-Schwartz inequality in L2(Ω)

Let f : Ω −→ R and g : Ω −→ R be two square integrable functions. Then,

|(f, g)|L2 =
∣∣∣ ∫

Ω

f(x)g(x) dx
∣∣∣ ≤ [∫

Ω

|f(x)|2 dx
] 1

2
[∫

Ω

|fg(x)|2 dx
] 1

2

= ‖f‖L2‖g‖L2 .

Hölder inequality

Let pi ≥ 1, i = 1, 2, ...,m, such that
m∑
i=1

1

pi
= 1.

If fi ∈ Lpi(Ω) for i = 1, 2, ...,m, then it holds that
m∏
i=1

fi ∈ L1(Ω) and

∫
Ω

∣∣∣ m∏
i=1

fi(x)
∣∣∣ dx ≤ m∏

i=1

(∫
Ω

|fi(x)|pi dx
) 1

pi

.

Young inequality

Let a, b ≥ 0 and p, q ≥ 0 constants such that
1

p
+

1

q
= 1. Then, it holds that

ab ≤ ap

p
+
bq

q
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.

Continuous Gronwall inequality

Let f , g and h be positive functions satisfying

f(t) + h(t) ≤ g(t) + c

∫ t

a

f(s)ds, ∀t ∈ [0, T ].

Then, it holds that

f(t) + h(t) ≤ ec(t−a)g(t).

Discrete Gronwall inequality

Let kn be a sequence of non negative real numbers. Consider a sequence φn ≥ 0

such that φ0 ≤ g0,

φn ≤ g0 +
n−1∑
s=0

ps +
n−1∑
s=0

ksφs, n ≥ 1,

with g0 ≥ 0 and ks ≥ 0. Then, for all n ≥ 1, it holds that

φn ≤

(
g0 +

n−1∑
s=0

ps

)
exp

{
n−1∑
s=0

ks

}
.

Notation

The standard norm in Lp(R) will be written | · |p for 1 ≤ p ≤ ∞. If f ∈ Hs = Hs(R),

where s ≥ 0, the Sobolev class of L2-functions whose �rst s derivatives are also

belong in L2, then its norm is written ‖f‖s. If s is not an integer, the notation

is extended via the Fourier transform in the usual way; see BONA; CHEN; SAUT

(2002) for details.
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3 BOUSSINESQ SYSTEMS

In this chapter, we give an overview of the principal aspects of the Boussinesq

systems (1.12), speci�cally its deduction from the Euler equations and well posedness

results.

3.1 Deduction from Euler Equations

We consider the 2D Euler equations gave in chapter 1 by equations (1.1)-(1.9),

where Ψ satis�es the compatibility condition

∂Ψ

∂y
(x, y) = −

∫ y

h0

∂2Ψ

∂x2
(x, y

′
)dy

′
in Ω0,

which follows by assuming that (1.3), (1.4) and (1.7) hold at t = 0.

The �rst step to obtain (1.12) from the Euler equations is to remove, parcial

or totally, the dimensionalization of (1.1)-(1.9), scaling these equations in an appro-

priate way. Since to scale a problem is related with the nature of the problem, and

we are interested in the regime of long surface waves of small amplitude, we consider

the variables ε and σ such that,

ε :=
A

h0

� 1, σ :=
h0

λ
� 1, (3.1)

where A and λ represent, respectively, a typical amplitude and wavelength of the

waves.

Following PEREGRINE (1972), we make the change of variables

x∗ = σ
h0
x, y∗ = 1

h0
y, t∗ = σg

c0
t, η∗ = 1

εh0
η,

u∗ = 1
εc0
u, v∗ = 1

εσ
v
c0
, p∗ = 1

ρc20
p,
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where c0 =
√
gh0.

With respect to this new variables, we obtain that

u = εc0u
∗ ⇒

ut = εσgu∗t∗ ,

ux = εc0u
∗
x∗

σ
h0
,

uy = εc0u
∗
y∗

1
h0
,

(3.2)

p = ρc2
0p
∗ ⇒

px = ρσgp∗x∗ ,

py = ρgp∗y∗
1
h0
,

(3.3)

v = εσc0v
∗ ⇒

vx = εσ2 c0
h0
v∗x∗ ,

vy = εσc0v
∗
y∗

1
h0
.

(3.4)

Then, using (3.2), (3.3) and (3.4), we can rewrite the system (1.1)-(1.9) as

εu∗t∗ + ε2u∗u∗x∗ + ε2v∗u∗y∗ + p∗x∗ = 0, (3.5)

εσ2v∗t∗ + ε2σ2u∗v∗x∗ + ε2σ2v∗v∗y∗ + p∗y∗ = −1, (3.6)

u∗x∗ + v∗y∗ = 0, (3.7)

u∗y∗ − σ2v∗x∗ = 0, (3.8)

with boundary and initial conditions given by

η∗t∗ + εu∗η∗x∗ = v∗ if y∗ = εη∗(x∗, t∗), (3.9)

p∗ = 0 if y∗ = εη∗(x∗, t∗), (3.10)

v∗ = 0 , if y∗ = −1, (3.11)

η∗(x∗, 0) = Φ∗(x∗), (3.12)

u∗(x∗, y∗, 0) = Ψ∗(x∗, y∗), (3.13)

where the initial conditions are de�ned, in terms of Φ and Ψ, by

Φ∗(x∗) :=
1

h0ε
Φ(
x∗h0

σ
), Ψ∗(x∗, y∗) :=

1

εc0

Ψ(
h0

σ
x∗, h0y

∗). (3.14)
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We can solve the system (3.7)-(3.8)-(3.11), and considering, for example,

U∗ = U∗(x∗, t∗) := u∗(x∗, 0, t∗), we can represent its solution by

u∗(x∗, y∗, t∗) = U∗ − σ2
(
y∗ +

1

2
(y∗)2

)
U∗x∗x∗ + O(σ4), (3.15)

v∗(x∗, y∗, t∗) = −(y∗ + 1)U∗x∗ +
σ2

6
(3(y∗)2 + (y∗)3 − 2)U∗x∗x∗x∗ + O(σ4). (3.16)

On the other hand, using (3.6) along with (3.15), (3.16) and (3.10), we obtain

p∗(x∗, y∗, t∗) = −y∗ + εη∗ + εσ2y∗
(

1 +
1

2
y∗
)
U∗x∗t∗ + O(εσ4, ε2σ2). (3.17)

Using (3.15), (3.16) and (3.17) in (3.5), we get

U∗t∗ + η∗x∗ + εU∗U∗x∗ = O(σ4, εσ2). (3.18)

Another equation coupling U∗ and η∗ is obtained by evaluating (3.15) and

(3.16) at y∗ = εη∗ and substituting in em (3.9). This gives us

η∗t∗ + U∗x∗ + ε(η∗U∗x∗) +
σ2

3
U∗x∗x∗x∗ = O(εσ2, σ4). (3.19)

If we assume that the dispersive and nonlinear terms U∗x∗x∗x∗ and U∗U∗x∗ ,

respectively, in the systems (3.18) and (3.19) are of equal importance, that is, the

Stokes number S =
ε

σ2
= O(1), and put for de�niteness ε = σ2, we obtain the

Boussinesq type system

η∗t∗ + U∗x∗ + ε(η∗U∗)x∗ + ε
3
U∗x∗x∗x∗ = 0,

U∗t∗ + η∗x∗ + εU∗U∗x∗ = 0.
(3.20)

Following BONA; CHEN; SAUT (2002), we choose as velocity variable the

horizontal velocity of the �uid u∗θ(x
∗, t∗) at the height y∗ = −1+θ(1+εη∗), for some
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θ ∈ [0, 1]. That is equivalent to set u∗θ(x
∗, t∗) = u∗(x∗,−1 + θ(1 + εη∗), t∗). Taylor

expansions and the use of (3.15) with σ2 = ε, let us to obtain

u∗θ = U∗ +
1

2
ε(1− θ2)U∗x∗x∗ + O(ε2),

which we may invert, using e.g., the Fourier transform, to obtain

U∗ = u∗θ −
1

2
ε(1− θ2)u∗θ,x∗x∗ + O(ε2). (3.21)

Substituting this expression into the system (3.20), we obtain the Boussinesq

system
η∗t∗ + u∗θ,x∗ + ε(η∗u∗θ)x∗ + ε

2

(
θ2 − 1

3

)
u∗θ,x∗x∗x∗ = 0,

u∗θ,t∗ + η∗x∗ + εu∗θu
∗
θ,x∗ − ε

2
(1− θ2)u∗θ,x∗x∗t∗ = 0,

(3.22)

valid for x∗ ∈ R, t∗ ≥ 0, with initial conditions given by

η∗(x∗, 0) = η∗0(x∗) := Φ∗(x∗), (3.23)

and

u∗θ(x
∗, 0) = u∗θ,0(x∗) := Ψ∗(x∗,−1 + θ(1 + εη∗0(x∗))), (3.24)

with Φ∗ and Ψ∗ given in (3.14).

Observing that, since u∗θ and η∗ are determined by (3.22)-(3.23)-(3.24), we

can compute the functions U∗, u∗, v∗ and p∗ from the relations given by (3.15),

(3.16), (3.17) e (3.21).

Following BONA; CHEN; SAUT (2002) and BENJAMIN; BONA; MAHONY

(1972), we observe that (3.22) gives us that

η∗t∗ + u∗θ,x∗ = O(ε),

u∗θ,t∗ + η∗x∗ = O(ε),

which allows us to conclude that the third order derivatives of u∗θ in (3.22) may be

expressed in terms of the third order derivatives of η∗ with an error of O(ε), namely
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uθ,x∗x∗x∗ = −η∗x∗x∗t∗ + O(ε). More generally, using a real parameter ν, we can write

uθ,x∗x∗x∗ = νuθ,x∗x∗x∗ − (1− ν)η∗x∗x∗t∗ + O(ε).

Using similar arguments, we can write uθ,x∗x∗t∗ depending on another real

parameter, namely µ, and using such expressions in (3.22), we obtain a family of

Boussinesq systems in nondimensional, scaled variables given by

η∗t∗ + u∗θ,x∗ + ε(η∗u∗θ)x∗ + ε(auθ,x∗x∗x∗ − bη∗x∗x∗t∗) = 0,

u∗θ,t∗ + η∗x∗ + εu∗θu
∗
θ,x∗ + ε(cη∗x∗x∗x∗ − duθ,x∗x∗t∗) = 0,

(3.25)

where the constants a, b, c, d are given in (1.13), with θ ∈ [0, 1] and ν, µ ∈ R. The

system (3.25) is supplemented with the initial conditions (3.23) e (3.24).

The next step is to eliminate the dependence of the scale variable ε of the

family (3.25), whenever this scale variable plays no essencial rule in the analytical

or numerical analysis. Considering the change of variables given by

ũ = εu∗θ, η̃ = εη∗, x̃ = ε−1/2x∗, t̃ = ε−1/2t∗,

we obtain the system

η̃t̃ + ũx̃ + (η̃ũ)x̃ + aũx̃x̃x̃ − bη̃x̃x̃t̃ = 0,

ũt̃ + η̃x̃ + ũũx̃ + cη̃x̃x̃x̃ − dũx̃x̃t̃ = 0,
(3.26)

for x̃ ∈ R and t̃ ≥ 0, with initial conditions

η̃(x̃, 0) = η̃0(x̃), ũ(x̃, 0) = ũ0(x̃),

obtained by (3.23) and (3.24) using the last mentioned change of variables.

Since (3.26) is intended to model waves of small amplitude and large wave-

length, we have that η̃0 = O(ε), as well as ũ0. This means that the system (3.26)

should be integrated with small initial data. It is also worth noticing that, during
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the approximation process which leads us to the system (3.26), one-way propagation

assumptions were nowhere made. Therefore, these systems can be used to study the

two-way propagation of long surface waves of small amplitude.

Finally, if we omit the tilde in (3.26) in order to simplify the notation, we get

the Boussinesq system represented by

ηt + ux + (uη)x + auxxx − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,

with the constants a, b, c, d given in (1.13).

3.2 Examples of Boussinesq Systems

We have several possibilities for the parameters a, b, c, d in (1.13), which give

rise to di�erent but equivalent systems, in the sense that all of them model surface

waves propagation. Some particular choices of these parameters a, b, c, d, have often

appeared in the literature. These particular systems have interesting characteris-

tics (see KAMPANIS; DOUGALIS; EKATERINARIS (2008) for more information),

such that

(i) Have favorable mathematical properties. Some of theses systems are linearly

ill-posed and should be excluded from further study as useful model equati-

ons. Among the linearly well-posed ones, we should consider systems whose

Cauchy problem is at least locally (nonlinearly) well-posed with long enough

temporal interval of existence solutions. Moreover, existence of solutions to

initial-boundary-value problem (IBVP) is an important requirement. It is also

worth noticing that these systems in their scaled form should be rigorously

justi�ed to be good approximations of the Euler equations as ε→ 0.
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(ii) Have solitary waves solutions. Since Boussinesq systems are approximations

to Euler equation, it is expected that they have solitary wave solutions. The-

refore, attention must be paid to systems that have solitary waves, whose

uniqueness, stability and other properties should be also studied.

(iii) Can be easily solved numerically with high accuracy. The scarcity of closed

form analytical solutions and the need to study, for example, the stability and

the interactions of the solitary waves of some of theses systems, as well as the

characteristics of the long-time evolution of their solutions make it imperative

that the systems should be solved numerically by fully discrete methods.

A forth, and perhaps the most important, criterion for selecting a `good'

system is, of course, the favorable comparison of its solutions with experimental

data of propagation of surface waves. This issue of modeling is studied in detail in

BONA; CHEN; SAUT (2002) and BONA; CHEN (1998).

In sequel, we list some examples of particular Boussinesq systems of the form

(1.12), whose the initial-value problem (IVP) for all these systems have be shown to

be at least nonlinearly well-posed locally in time (see BONA; CHEN; SAUT (2002)).

(i) `Classical' Boussinesq system (θ2 = 1
3
, λ arbitrary, µ = 0)

ηt + ux + (uη)x = 0,

ut + ηx + uux − 1
3
uxxt = 0,

which the corresponding IVP is globally well-posed as can be seen in AMICK

(1984) and SCHONBEK (1981).

(ii) BBM-BBM system (ν = µ = 0, θ2 = 2
3
, i.e., a = c = 0, b = d = 1

6
)

ηt + ux + (uη)x − 1
6
ηxxx = 0,

ut + ηx + uux − 1
6
uxxt = 0,



48

which the corresponding IVP is locally well-posed as can be seen in BONA;

CHEN; SAUT (2004) and BONA; CHEN (1998).

(iii) Bona-Smith system (ν = 0, µ = 4−6θ2

3(1−θ2)
, i.e., a = 0, b = d = 3θ2−1

6
, c = 2−3θ2

3
,

with 2
3
< θ2 < 1)

For these parameters, the IVP is globally well-posed as can be seen in BONA;

SMITH (1976). The limiting form of this system as θ → 1, corresponding to

a = 0, b = d = 1
3
and c = −1

3
, which it was studied by Bona and Smith in

BONA; SMITH (1976), is given by

ηt + ux + (uη)x − 3θ2−1
6
ηxxx = 0,

ut + ηx + uux + 2−3θ2

3
ηxxx − 3θ2−1

6
uxxt = 0,

(iv) KdV-KdV system (ν = µ = 1, θ2 = 2
3
, i.e., a = c = 1

6
e b = d = 0)

ηt + ux + (uη)x − 1
6
uxxx = 0,

ut + ηx + uux + 1
6
ηxxx = 0,

which the corresponding IVP is locally well-posed as can be seen in BONA;

CHEN; SAUT (2002) and BONA; DOUGALIS; MITSOTAKIS (2007).

3.3 Results about Well-Posedness of Boussinesq Systems

In this section we brie�y present the most relevant results concerning the

existence and uniqueness of solutions of the Boussinesq system that were presented

in BONA; CHEN; SAUT (2002) AND BONA; CHEN; SAUT (2004). We divide

the section in two sub sections, containing the results for the linear and nonlinear

families.
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3.3.1 Linear Models

The initial-value problem for the linear model obtained from the original

system in section 3.1 by ignoring the nonlinear terms (uη)x and uux was analyzed

in BONA; CHEN; SAUT (2002). The linear family of Boussinesq systems is given

by
ηt + ux + auxxx − bηxxt = 0,
ut + ηx + cηxxx − duxxt = 0,

(3.27)

where a, b, c, d are de�ned in (1.13).

The system (3.27) is straightforwardly understood using Fourier analysis, in

the sense that this analysis gives us information about the well-posedness of the

initial value problem.

Consider η(0, x) = η0(x) and u(0, x) = u0(x) for x ∈ R the initial conditions

for system (3.27). Taking the Fourier transform with respect to x, the system (3.27)

may be written in the form(
η̂(k, t)
û(k, t)

)
= e−ikA(k)t

(
η̂0(k)
û0(k)

)
, (3.28)

where

A(k) =

(
0 w1(k)

w2(k) 0

)
,

and

w1(k) =
1− ak2

1 + bk2
, w2(k) =

1− ck2

1 + dk2
. (3.29)

Using standard results from Fourier theory, in BONA; CHEN; SAUT (2002)

it is shown that the well-posedeness of system (3.27) is guaranteed by the following

result:

Proposition 3. For a, b, c, d satisfying (1.13), the matrix e−ikA(k)t is bounded on

�nite intervals of wavenumbers k if and only if one of the following sets of conditions



50

hold:

(C1) b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0;

(C2) b ≥ 0, d ≥ 0, a = c > 0;

(C3) b = d < 0, a = c > 0.

After straightforward computations we conclude that in all three cases (C1),

(C2) and (C3), w1(k)w2(k) ≥ 0 is true and then

e−ikA(k)t =

(
cos(kσ(k)t) −i sin(kσ(k)t)w1(k)

σ

−i sin(kσ(k)t)w2(k)
σ

cos(kσ(k)t)

)
, (3.30)

where σ(k) =
√
w1(k)w2(k).

A consequence of (3.28) and (3.30) is that for any value of the index s, a

solution of (3.27) satis�es

‖η‖2
s + ‖Hu‖2

s = ‖η0‖2
s + ‖Hu0‖2

s,

where H represents the Fourier multiplier operator de�ned by

Ĥg(k) =

(
w1(k)

w2(k)

) 1
2

ĝ(k).

Let the order of the operator H be the integer ` such that(
w1(k)

w2(k)

) 1
2

∼ C|k|`,

as k approaches in�nity. Then H is a bijective bounded linear operator from Hs to

Hs−` for any index s.

As a consequence the following result about well-posedness for the initial-

value problem for (3.27) follows (BONA; CHEN; SAUT, 2002, Theorem 3.2).



51

Theorem 3. Let a, b, c, d satisfy one of the conditions (C1)-(C3) in Proposition 3.

Let m1 = max(0,−`), m2 = max(0, `). Then, the corresponding linear initial-value

problem (3.27) is well posed in Hs+m1 ×Hs+m2, for any s ≥ 0.

Taking s = 0, the Theorem 3 implies that,

Order of H Well-Posed in
2 H0 ×H2

1 H0 ×H1

0 H0 ×H0

−1 H1 ×H0

−2 H2 ×H0

Remark 2. The systems with H having order −2 are not admissible as models of

the underlying physical situation. In this case, a = d = 0 and b 6= 0, c 6= 0, which is

incompatible with (1.13) and any conditions in the Proposition 3.

3.3.2 Nonlinear Models

The analysis of the nonlinear Boussinesq system was carried out in BONA;

CHEN; SAUT (2004). There were studied the local and global well-posedness for

the most relevant classes of problems arising from

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(3.31)

with the parameters a, b, c, d as in (1.13). More speci�cally, the authors studied the

cases where conditions (C1) or (C2) are satis�ed. The well-posedenss for this type

of systems also was largely studied in FAWCETT (1992). Next, we present some

of the results from BONA; CHEN; SAUT (2004) that are most important for this

work.
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Theorem 4. (BONA; CHEN; SAUT, 2004, Theorems 3.12, 4.2 and 4.3) The sys-

tems in (3.31) with a, b, c, d satisfying (1.13) and (C1) or (C2) are all locally well

posed in the corresponding Sobolev classes Hs+m1 × Hs+m2, for suitable values of

s ≥ 0, where m1,m2 are taken as in Theorem 3. Moreover, if b = d > 0, a ≤ 0,

c < 0 and s ≥ 1 then for initial conditions satisfying

inf
x∈R
{1 + η0(x)} > 0, (3.32)∣∣∣∣∫ (cη2

0,x + au2
0,x − η2

0 − u2
0 − u2

0η0)dx

∣∣∣∣ < 2|c|1/2, (3.33)

the corresponding solutions are global (i.e. the local solutions can be extended for

any t ≥ 0).

In the following, we give the speci�c results known about well-posedness for

various range of parameters of the system (3.31).

(i) Purely BBM-type Boussinesq system: a = c = 0, b, d > 0.

Theorem 5. Let s ≥ 0 be given. For any (η0, u0) ∈ Hs(R)2, there is a T > 0 and a

unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R)2). Additionally,

when s > 1
2
, then (∂kt η, ∂

k
t u) ∈ C(0, T ;Hs+1(R)2) for k = 1, 2, . . .. Moreover, the

correspondence (η0, u0) 7→ (η, u) is locally Lipschitz.

(ii) Weakly dispersive systems: b > 0, d > 0.

• Case I: H has order 0, i.e., a < 0, b > 0, c < 0, d > 0 (the "generic"case) or

a = c > 0, b > 0, d > 0.

Theorem 6. Let s ≥ 0 and (η0, u0) ∈ Hs(R)2, there is a T > 0 and a unique

solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R)2). Additionally,

(ηt, ut) ∈ C(0, T ;Hs−1(R)2). Moreover, the correspondence (η0, u0) 7→ (η, u)

is locally Lipschitz continuous.
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• Case II: H has order −1, i.e., a = 0, b > 0, c < 0, d > 0.

Theorem 7. Let s ≥ 0 and (η0, u0) ∈ Hs+1 × Hs, there is a T > 0 and

a unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs+1(R)) ×
C(0, T ;Hs(R)). Additionally, (ηt, ut) ∈ C(0, T ;Hs+1(R)) × C(0, T ;Hs(R)).

Moreover, the correspondence (η0, u0) 7→ (η, u) is locally Lipschitz.

• Case III: H has order 1, i.e., a < 0, b > 0, c = 0, d > 0.

Theorem 8. Let s ≥ 0 and (η0, u0) ∈ Hs × Hs+1, there is a T > 0 and

a unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R)) ×
C(0, T ;Hs+1(R)). Additionally, (ηt, ut) ∈ C(0, T ;Hs(R))×C(0, T ;Hs+1(R)).

Moreover, the correspondence (η0, u0) 7→ (η, u) is locally Lipschitz.

(iii) Purely KdV-type Boussinesq systems: b = d = 0, a 6= 0, c 6= 0.

The only admissible case is when a = c > 0, which means θ2 = 2
3
, and

a = c = 1
6
.

Theorem 9. Let s > 3
4
. For any (η0, u0) ∈ Hs(R)2, there is a T > 0 and a

unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R)2). Additionally,

(ηt, ut) ∈ C(0, T ;Hs−3(R)2). Moreover, the correspondence (η0, u0) 7→ (η, u) is

analytic.

(iv) The Boussinesq system when H has order 2: a < 0, b = 0, c =

0, d > 0.

Theorem 10. Let s ≥ 1. For any (η0, u0) ∈ Hs(R) × Hs+2(R), there is a T >

0 and a unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R) ×
Hs+2(R)). Additionally, (ηt, ut) ∈ C(0, T ;Hs−1(R) × Hs+1(R)). The solution

depends continuously upon perturbations of the initial data in the relevant function

classes.
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(v) The Boussinesq system when H has order 1: a = c ≥ 0, b = 0, d >

0 and a < 0, b = 0, c < 0, d > 0.

Theorem 11. Let s ≥ 1. For any (η0, u0) ∈ Hs(R)×Hs+1(R), there is a T > 0 and

a unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R)×Hs+1(R)).

Additionally, (ηt, ut) ∈ C(0, T ;Hs−2(R) ×Hs−1(R)). The mapping of initial data

to its associated solution is continuous.

Theorem 12. Let s ≥ 1. For any (η0, u0) ∈ Hs(R) × Hs+1(R) such that

infx∈R {1 + η0(x)} > 0, there is a T > 0 and a unique solution (η, u) of (3.31) that sa-

tis�es (η, u) ∈ C(0, T ;Hs(R)×Hs+1(R)). Additionally, (ηt, ut) ∈ C(0, T ;Hs−2(R)×
Hs−1(R)). Moreover, given r > 0 the solution depends continuously upon the initial

data in the class

Hs
r =

{
(η0, u0) ∈ Hs(R)×Hs+1(R) : 1 + η0(x) > r ∀ x

}
Remark 3. The second theorem of this topic is related with the Classical Boussinesq

system. The parameters in this case are a = c = b = 0 and d = 1
3
.

(vi) The Boussinesq system when H has order 0: a < 0, b > 0, c =

d = 0 and a = b = 0, c < 0, d > 0.

Theorem 13. Let s ≥ 2. For any (η0, u0) ∈ Hs(R)2, there is a T > 0 and a

unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs(R)2). Additionally,

(ηt, ut) ∈ C(0, T ;Hs−1(R)2). The mapping of initial data to its associated solution

is continuous from the space Hs(R)×Hs(R) to C(0, T ;Hs(R)2).

(vii) The Boussinesq system when H has order -1: a = c ≥ 0, b >

0, d = 0.

Theorem 14. Let s ≥ 1. For any (η0, u0) ∈ Hs+1(R)×Hs(R), there is a T > 0 and

a unique solution (η, u) of (3.31) that satis�es (η, u) ∈ C(0, T ;Hs+1(R)×Hs(R)).
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Additionally, (ηt, ut) ∈ C(0, T ;Hs−1(R) ×Hs−2(R)). The mapping of initial data

to its associated solution is continuous.

Remark 4. It is worth noticing that all the results presented in this section are

equally valid in the case of periodic boundary conditions by considering the corres-

ponding periodic Sobolev spaces.



56

4 NUMERICAL ANALYSIS

In this chapter, we perform the stability and convergence analysis of the

numerical methods used to �nd the numerical solution of the Boussinesq systems

families given by (3.27) and (3.31), the linear and nonlinear case, respectively. The

discrete equations are obtained by applying a Fourier collocation method in space

and the explicit RK4 method in time. This analysis shall be used as a guidance

on the choice of the time step size for the numerical simulations. To simplify the

notations, we consider the case when the solution is 2π-periodic in space.

4.1 Fully discretized Boussinesq system

The Fourier collocation method can be formulated using the discrete Fourier

transform (DFT) as we introduced in chapter 2. We start by presenting the notation

and relevant de�nitions.

Let N > 0 be a �xed even integer and de�ne the grid points xj = 2πj/N ,

j = 0, . . . , N − 1. Given a 2π-periodic real function g, the vector of sampled values

at the grid points is given by

g = [g0, . . . , gN−1]t ∈ RN ,

with gj = g(xj) and its discrete Fourier transform is de�ned as

ĝ = [ĝ
−N

2

, . . . , ĝN
2
−1

]t ∈ CN ,

where

ĝk =
1

N

N−1∑
j=0

gje
−ikxj , for k = −N/2, . . . , N/2− 1. (4.1)
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One can recover the sampled vector using the inverse discrete Fourier transform

(IDFT)

gj =

N/2−1∑
k=−N/2

ĝke
ikxj , for j = 0, . . . , N − 1. (4.2)

Based on this equation, we can de�ne a trigonometric polynomial gN(x) = (PNg)(x)

that interpolates g(x) at the grid points xj, j = 0, . . . , N − 1.

The Fourier collocation method is obtained by requiring the di�erential equa-

tions to be satis�ed at the grid points when the involved functions are substituted

by their interpolators (see CANUTO et al. (2006) and TREFETHEN (2000) for de-

tails). The discretized equations corresponding to the nonlinear Boussinesq system

(3.31) are given by

ηNt + uNx + ((uη)N)x + auNxxx − bηNxxt

∣∣∣
x=xj

= 0,

uNt + ηNx +
1

2

(
(u2)N

)
x

+ cηNxxx − duNxxt

∣∣∣
x=xj

= 0.
(4.3)

Applying the DFT, we get the following system of ordinary di�erential equations

(ODEs)
η̂t = f(η̂, û),

ût = g(η̂, û),
(4.4)

where η(t) ≈ [η(t, x0), . . . , η(t, xN−1)]t, u(t) ≈ [u(t, x0), . . . , u(t, xN−1)]t,

(f(η̂, û))k =

{
0, if k = −N

2
,

−ikw1(k)ûk − ik
1+bk2

(̂η ◦ u)k, otherwise,

(g(η̂, û))k =

{
0, if k = −N

2
,

−ikw2(k)η̂k − ik
2(1+dk2)

(̂u ◦ u)k, otherwise.

We use the symbol "◦"to represent the Hadamard product of two vectors

(entry-wise multiplication). The especial treatment of the Fourier mode correspon-

ding to k = −N/2 is the result of the asymmetry in equation (4.2) regarding this

wavenumber, as we discussed in section 2.2.2.
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In order to develop the fully discrete scheme to obtain approximate solutions

of the system of 2N ODEs (4.4) in a time interval [0, T ], we use the RK4 method

introduced in chapter 2. From the corresponding initial conditions we obtain the

approximations η̂n ≈ η̂(tn), ûn ≈ û(tn) where tn, n = 0, . . . ,M represents a dis-

cretization of the time interval [0, T ]. Furthermore, applying the IDFT we arrive at

the approximations

ηnj ≈ η(tn, xj), u
n
j ≈ u(tn, xj), n = 1 . . . ,M, j = 0, . . . , N − 1.

It is worth noticing that PN denote the L2−orthogonal projection onto SN .

This projection has the following approximation properties, whose proofs is standard

(see CANUTO et al. (1987) and MERCIER (1983)).

Proposition 4. Given integers 0 ≤ s ≤ r, there exists a constant C independent of

N such that, for any f ∈ Hr,

‖f − PNf‖s ≤ CN s−r‖f‖r. (4.5)

Moreover, as a consequence of Sobolev lemma given in chapter 2 and the last

inequality, it holds that for any f ∈ Hr, r ≥ 1

‖f − PNf‖∞ ≤ CN
1
2
−r‖f‖r. (4.6)

There also are the inverse inequalities on SN : given 0 ≤ s ≤ r, there is a

constant C0 independent of N , such that for all ψ in SN ,

‖ψ‖r ≤ C0N
r−s‖ψ‖s, ‖ψ‖∞ ≤ C0N

1/2‖ψ‖. (4.7)
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4.2 Stability Analysis of the Linear Family Systems

In this section, we carry out the von Neumann analysis of the fully discretized

scheme associated with the linear system (3.27), which gives rise to a similar system

to (4.4), in the absence of the terms containing Hadamard products.

The semi discretized equations corresponding to Boussinesq system (3.27) are

similar to equations in (4.3), in the absence of the terms ((uη)N)x and 1
2

((u2)N)x.

Then, following ALFARO VIGO et al. (2014), we can represent the time discretiza-

tion by RK4 method in Taylor expansion form as

η̂n+1
k =

{
1− k2w1(k)w2(k)

∆t2

2!
+ k4w2

1(k)w2
2(k)

∆t4

4!

}
η̂nk

+

{
−ikw1(k)∆t+ ik3w2

1(k)w2(k)
∆t3

3!

}
ûnk ,

(4.8)

ûn+1
k =

{
1− k2w1(k)w2(k)

∆t2

2!
+ k4w2

1(k)w2
2(k)

∆t4

4!

}
ûnk

+

{
−ikw2(k)∆t+ ik3w1(k)w2

2(k)
∆t3

3!

}
η̂nk ,

(4.9)

where the superscripts indicate the functions η̂k(t) and ûk(t) evaluated at the res-

pective point of the time mesh.

The equations (4.8)-(4.9) can be represented in matrix form by
[
η̂n+1
k ûn+1

k

]T
=

Gk [η̂nk û
n
k ]T , where

Gk =

[
A(k) B(k)
C(k) A(k)

]
, (4.10)

is the ampli�cation matrix corresponding to the mode with Fourier number k and

A(k) = 1− k2w1(k)w2(k)∆t2

2!
+ k4w2

1(k)w2
2(k)∆t4

4!
,

B(k) = −ikw1(k)∆t+ ik3w2
1(k)w2(k)∆t3

3!
,

C(k) = −ikw2(k)∆t+ ik3w1(k)w2
2(k)∆t3

3!
.
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We start the von Neumann analysis searching for solutions of the form [η̂nk û
n
k ]T =

gnk [ak bk]
T , with [ak bk]

T 6= 0. Therefore, we obtain

gn+1
k

[
ak
bk

]
= Gk g

n
k

[
ak
bk

]
, (4.11)

which implies that, dividing both sides of the (4.11) by gnk , det (Gk − Igk) = 0, since

[ak bk]
T 6= 0 by hypothesis.

Using the de�nition of Gk given by (4.10) and the fact that Gk − Igk is a

singular matrix, we obtain that

(A(k)− gk)2 = α(k), (4.12)

for each k = {−N/2 + 1, . . . , N/2}, where

α(k) = −k2w1(k)w2(k)∆t2 +
k4

3
w2

1(k)w2
2(k)∆t4 − k6

36
w3

1(k)w3
2(k)∆t6.

The equation (4.12) implies that the ampli�cation factors are given by

g±k = A(k)±
√
α(k). (4.13)

The stability of the solution for the fully discrete equation (4.9), according

to von Neumann analysis, is su�ciently guaranteed if |gk| ≤ 1 for all k. Then, using

(4.13), it has to be satis�ed that

|A(k)±
√
α(k)| ≤ 1, for all k.

Observe that,

α(k) =− k2w1(k)w2(k)∆t2 +
k4

3
w2

1(k)w2
2(k)∆t4 − k6

36
w3

1(k)w3
2(k)∆t6

=− 1

36
k2∆t2w1(k)w2(k)

(
k2w1(k)w2(k)∆t2 − 6

)2

,
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which implies that√
α(k) = i

|k|∆t
6

∣∣∣k2w1(k)w2(k)∆t2 − 6
∣∣∣√w1(k)w2(k).

Then,

|g±k |
2 =

∣∣∣A(k)± i |k|∆t
6
|k2w1(k)w2(k)∆t2 − 6|

√
w1(k)w2(k)

∣∣∣2
= A2(k) +

k2∆t2

36

(
k2w1(k)w2(k)∆t2 − 6

)2
w1(k)w2(k)

= 1− k6

72
w3

1(k)w3
2(k)∆t6 +

k8

576
w4

1(k)w4
2(k)∆t8.

If we take y = k2w1(k)w2(k)∆t2, we get

|g±k |
2 − 1 = p(y),

where p(y) = y3

576
(y − 8). To ensure stability, as it was mentioned, we seek for a

relation between ∆t and N such that |g±k | ≤ 1, or equivalently, determine y such

that p(y) ≤ 0. Then,

y3

576
(y − 8) ≤ 0 ⇔ 0 ≤ y ≤ 8.

Note that if k = 0 there is no restriction for ∆t. Therefore, for k = {−N/2 +

1, . . . , N/2}, with k 6= 0, it has to be satis�ed that

0 ≤ k2w1(k)w2(k)∆t2 ≤ 8 ⇔ 0 ≤ ∆t ≤
√

8 (|ω(k)|)−1 , (4.14)

with ω(k) = kσ(k) = k
√
w1(k)w2(k).

To relate ∆t with N , we have to analyze the function |ω(k)|. It is worth to

observe that since |ω(k)| is an even function, we will only analyze this function for

k ≥ 1.
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Thus, for k ≥ 1, we are considering ω(k) as a function which depends on the

parameters a, b, c, d given by (1.13), such that

ω(k) = k

√
(1− ak2)(1− ck2)

(1 + bk2)(1 + dk2)
, (4.15)

and we will be interested in analyzing the behavior of this function as k approaches

in�nity.

As mentioned in the section 3.3, the linear Boussinesq system (3.27) is well

posed if its parameters lay in the in three di�erent regions that were de�ned in

Proposition 3. We have the following possibilities:

C1: In this case b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0, which implies the following asymptotic

behaviors for ω(k)

ω(k) at ∞ ω(k) at ∞
c < 0, d > 0 c1k

1 c < 0, d > 0 c9k
2

a < 0 c = 0, d > 0 c2k
0 a < 0 c = 0, d > 0 c10k

1

b > 0 c < 0, d = 0 c3k
2 b = 0 c < 0, d = 0 c11k

3

c = 0, d = 0 c4k
1 c = 0, d = 0 c12k

2

c < 0, d > 0 c5k
0 c < 0, d > 0 c13k

1

a = 0 c = 0, d > 0 c6k
−1 a = 0 c = 0, d > 0 c14k

0

b > 0 c < 0, d = 0 c7k
1 b = 0 c < 0, d = 0 c15k

2

c = 0, d = 0 c8k
0 c = 0, d = 0 c16k

1

C2: In this case b ≥ 0, d ≥ 0, a = c > 0, which implies the following asymptotic

behaviors for ω(k)

ω(k) at ∞

a = c > 0

b > 0, d > 0 c17k
1

b = 0, d > 0 c18k
2

b > 0, d = 0 c19k
2

b = 0, d = 0 c20k
3
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C3: In this case b = d < 0, a = c > 0, which implies the following asymptotic

behavior for ω(k)

ω(k) at ∞
a = c > 0 b = d < 0 c21k

1

Then, we conclude that for each of the 21 cases described above, there exist

a positive constant ci, i = 1, . . . , 21, and pi ∈ {−1, 0, 1, 2, 3} such that

ω(k) ∼ cik
pi as k →∞. (4.16)

Using (4.16), we can guarantee that for each of these cases, given ε > 0 there

exists K0 = K0(ε, a, b, c, d) such that

|ω(k)| ≤ ci(1 + ε)kpi for all k ≥ K0. (4.17)

On the other hand, if we consider c̃i = max
{
|ω(k)|
kpi

: 1 ≤ k ≤ K0

}
, taking

C = max {c̃i, (1 + ε)ci} we have by (4.17) that

|ω(k)| ≤ Ckpi for all k ≥ 1, (4.18)

where pi = {−1, 0, 1, 2, 3} varies according to the choices of a, b, c, d.

However, since the cases when pi = −1 turns the right side of (4.18) decrea-

sing with k, we set ` = max {0, pi} and therefore, it holds that

|ω(k)| ≤ Ck` for all k ≥ 1, (4.19)

with ` ∈ {0, 1, 2, 3} depending on the choice of a, b, c, d.



64

Using (4.19), we �nally obtain that

max
k∈[1,N

2
]

(
|ω(k)|

)
≤ max

k∈[1,N
2

]
Ck` ≤ C̃N `. (4.20)

Hence, the equation (4.20) implies that
√

8

|ω(k)|
≥

√
8

max
k∈[1,N

2
]

(
|ω(k)|

) ≥ CN−` (4.21)

Since we want to satisfy the equation (4.14), from (4.21) we conclude that

it is su�cient to satisfy the stability condition that ∆t ≤ CN−` for some positive

constant C and ` ∈ {0, 1, 2, 3} depending on the parameters a, b, c, d that have been

considered. The corresponding values of ` can be observed in Table 4.1.

` = 0 ` = 1
a < 0, b > 0, c = 0, d > 0 a < 0, b > 0, c < 0, d > 0
a = 0, b > 0, c < 0, d > 0 a < 0, b > 0, c = 0, d = 0
a = 0, b > 0, c = 0, d = 0 a = 0, b > 0, c < 0, d = 0
a = 0, b > 0, c = 0, d > 0 a < 0, b = 0, c = 0, d > 0
a = 0, b = 0, c = 0, d > 0 a = 0, b = 0, c < 0, d > 0

a = 0, b = 0, c = 0, d = 0
a = c > 0, b > 0, d > 0
a = c > 0, b = d < 0

` = 2 ` = 3
a < 0, b > 0, c < 0, d = 0 a < 0, b = 0, c < 0, d = 0
a < 0, b = 0, c < 0, d > 0 a = c > 0, b = 0, d = 0
a < 0, b = 0, c = 0, d = 0
a = 0, b = 0, c < 0, d = 0
a = c > 0, b = 0, d > 0
a = c > 0, b > 0, d = 0

Table 4.1: Values of ` corresponding to the parameters a, b, c, d.

Observe that the cases where ` = 0 or ` = 1 are the most interesting cases
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since the stability requirements are not too restrictive. By not too restrictive we

mean that the dependence between the spacial and time steps sizes does not generate

sti� problems. Therefore, the corresponding fully-discrete schemes can achieve a

high accuracy at a low cost in regard to the computational time.

4.3 Convergence Analysis of the Nonlinear Family Systems

In this section, we perform the convergence analysis for the nonlinear family

of Boussinesq systems (3.31). We start considering aB and aD two elliptic projection

onto SN de�ned through PN by

aB(PNv, ξ) = aB(v, ξ), aD(PNw, ξ) = aD(w, ξ), (4.22)

for all ξ ∈ SN , where aB, aD : H1 ×H1 → R are two bilinear forms de�ned by

aB(u, v) := (u, v) + b(ux, vx),
aD(u, v) := (u, v) + d(ux, vx).

(4.23)

Proposition 5. For b, d ≥ 0, aB and aD are coercives in their domains of de�nition.

Proof. For b > 0, using the de�nition of aB we have

aB(v, v) =

∫
Ω

v2 dS +

∫
Ω

v2
x dS ≥ min {1, b}

∫
Ω

(v2 + v2
x) dS,

which implies that aB(v, v) ≥ C‖v‖2
1. The proof is analogous for aD with d > 0.

The convergence analysis is divided in cases which the results about well

posedness for the nonlinear problem are known, as we established in section 3.3.2.
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4.3.1 Semidiscrete Problem

In this section, considering the time variable continuous, we prove optimal

order L2, H1, H2 error bounds of spectral accuracy in Ω = [−L,L] for the nonlinear

family of Boussinesq systems (3.31).

4.3.1.1 Purely BBM-type Boussinesq System

For this case, we assume that b, d > 0 and a = c = 0. Then, the Boussinesq

system becomes:
ηt + ux + (ηu)x − bηxxt = 0,
ut + ηx + uux − duxxt = 0,

(4.24)

for x ∈ Ω and t ≥ 0, supplemented with initial conditions η(x, 0) = η0(x) and

u(x, 0) = u0(x).

In order to obtain error bounds for the semi discrete problem obtained from

(4.24) using the Fourier collocation method, we consider weight functions, namely

ϕ, ψ, as functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ)− b(ηNxxt , ϕ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ)− d(uNxxt , ψ) = 0,

(4.25)

in Ω and for t ≥ 0. The system (4.25) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the so-

lution in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
Hs(Ω)), for s ≥ 0 and T > 0.

We initiate this analysis giving an estimate between the exact solution (η, u)

of (4.24) and (V, S), solution of a linearized version of (4.24) that it is de�ned in the
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following. After that, we are able to estimate the error between (η, u) and (ηN , uN),

solution of (4.25).

For the �rst part, we linearize (4.25) as follows: given (η, u) ∈ C(0, T ;Hs(Ω)×
Hs(Ω)) solution of (4.24) corresponding to initial data (η0, u0) ∈ Hs(Ω) × Hs(Ω),

we seek for functions V, S ∈ SN , which for all ϕ, ψ ∈ SN and for all t ≥ 0, satisfy

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ)− b(Vxxt, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ)− d(Sxxt, ψ) = 0,

(4.26)

with initial conditions given by V (x, 0) = PNη0(x) and S(x, 0) = PNu0(x) for x ∈ Ω.

We have the following result:

Lemma 3. Let (η, u) ∈ C(0, T ;Hs(Ω)×Hs(Ω)) be the solution of (4.24) correspon-

ding to initial condition (η0, u0) ∈ Hs(Ω) ×Hs(Ω), s ≥ 2. Then, there is a unique

solution (V, S) ∈ SN of (4.26) for all �nite time T ≥ 0. Moreover, given 0 ≤ t ≤ T ,

there is a constant C = C(T, b, d) > 0 independent of N , such that

max
0≤t≤T

{‖η(t)− V (t)‖1 + ‖u(t)− S(t)‖1} ≤ CN1−s. (4.27)

Proof. Let ρ = PNη − V and θ = PNu− S. Then, it holds that

η − V = η − PNη + PNη − V = η − PNη + ρ,
u− S = u− PNu+ PNu− S = u− PNu+ θ.

(4.28)

To obtain (4.27) using (4.28), we only have to estimate the terms ρ and θ,

since the estimates for the terms η − PNη and u− PNu can be obtained by (4.5).

Then, to obtain these estimates, we consider the following formulation for

this case
(ηt, ϕ) + (ux, ϕ) + ((ηu)x, ϕ)− b(ηxxt, ϕ) = 0,
(ut, ψ) + (ηx, ψ) + (uux, ψ)− d(uxxt, ψ) = 0,
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such that, subtracting it from (4.26), implies

((η − V )t, ϕ) + ((u− S)x, ϕ) + ((ηu)x − uVx − ηSx, ϕ)− b((η − V )xxt, ϕ) = 0,
((u− S)t, ψ) + ((η − V )x, ψ) + (uux − uSx, ψ)− d((u− S)xxt, ψ) = 0.

(4.29)

If we note that,

(ηu)x − uVx − ηSx = ηxu+ ηux − uVx − ηSx
= u(ηx − Vx) + η(ux − Sx)
= u(η − PNη)x + uρx + η(u− PNu)x + ηθx,

(4.30)

and
uux − uSx = u(ux − Sx)

= u(u− PNu)x + uθx,
(4.31)

we can use the property of the L2-orthogonal projection PN and the de�nitions of

aB, aD in (4.23), to rewrite (4.29) as

aB(ρt, ϕ) + (θx, ϕ) + (u(η − PNη)x + uρx + η(u− PNu)x + ηθx, ϕ) = 0,
aD(θt, ψ) + (ρx, ψ) + (u(u− PNu)x + uθx, ψ) = 0,

(4.32)

supplemented with initial conditions ρ(0) = θ(0) = 0.

Taking ϕ = ρ and ψ = θ in (4.32), we have from the �rst equation that

aB(ρt, ρ) = −(θx, ρ)−(u(η−PNη)x, ρ)−(uρx, ρ)−(η(u−PNu)x, ρ)−(ηθx, ρ), (4.33)

and from the second equation that,

aD(θt, θ) = −(ρx, θ)− (u(u− PNu)x, θ)− (uθx, θ), (4.34)

Observing that aB(ρt, ρ) = 1
2
d
dt
aB(ρ, ρ) (also valid for aD evaluated at (θt, θ)),

we can add (4.33) and (4.34) and use the coercivity of aB and aD along with the

Cauchy Schwarz and Young inequalities presented in chapter 2, to obtain that

d

dt

(
‖ρ‖2

1 + ‖θ‖2
1

)
≤ k1 + k2

(
‖ρ‖2

1 + ‖θ‖2
1

)
, (4.35)
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where k1 = ‖u‖2
∞‖(η − PNη)x‖2 + ‖η‖2

∞‖(u − PNu)x‖2 + ‖u‖2
∞‖(u − PNu)x‖2 and

k2 = max {4 + ‖ux‖∞, 1, 2 + ‖ux‖∞, 1 + ‖η‖2
∞}.

On the other hand, since (η, u) ∈ C(0, T ;Hs(Ω)×Hs(Ω)) for s ≥ 0, from the

Sobolev lemma, it holds that

‖η(t)‖∞ ≤ Cs‖η‖1 ≤ C‖η‖s ≤ C,

‖u(t)‖∞ ≤ Cs‖u‖1 ≤ C‖u‖s ≤ C,

‖ηx(t)‖∞ ≤ Cs‖ηx‖1 ≤ C‖η‖2 ≤ C‖η‖s ≤ C,

‖ux(t)‖∞ ≤ Cs‖ux‖1 ≤ C‖u‖2 ≤ C‖u‖s ≤ C,

(4.36)

if we consider s ≥ 2. The constant Cs represents the Sobolev constant, and the

other embedding constants are all represented by C to simplify the notation.

The estimates given in (4.36) and (4.5), lead us to conclude that k1 ≤
CN2(1−s) and that k2 is bounded. Then, integrating (4.35) over [0, t] and applying

the Gronwall's lemma, we get

‖ρ(t)‖1 + ‖θ(t)‖1 ≤ C(T, b, d)N1−s. (4.37)

The estimate (4.37) along with the decomposition given by (4.28) �nish the

proof.

Remark 5. Observe that to obtain (4.27), we supposed that (4.26) had a unique

solution for all t ∈ [0, T ]. The existence and uniqueness of a local solution can be

proved through the theory of ODE systems. Indeed, if we take ϕ = ψ = eikx for k =

−N, . . . , N in (4.26), and observe that, since (V, S) ∈ SN , each component can be

represented by a combination of its Fourier coe�cients V̂ and Ŝ, we obtain a linear

ODE system given by

V̂t(k, t) = −ik
1+bk2

(
Ŝ + uV̂ + ηŜ

)
,

Ŝt(k, t) = −ik
1+dk2

(
V̂ + uŜ

)
,

(4.38)
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with V̂ (k, 0) = η̂0(k) and Ŝ(k, 0) = û0(k).

The right hand side of (4.38) is locally Lipschitz continuous, with respect to `2

norm (Euclidean norm). Therefore, the existence of a maximal time th, 0 < th < T

such that, for all t < th there exists a unique pair of solutions (V, S) of (4.26) is a

classical result of the theory of ODEs systems.

Thus, to �nish this proof, we just need to show that this solution does not blow

up if we extend it over [0, T ]. With this aim in mind, we resort to a stability result

in L2-norm. Taking ϕ = V and ψ = S in (4.26) we have from the �rst equation

that

aB(Vt, V ) = −2(Sx, V ) + (ux, V
2)− 2(ηSx, V ), (4.39)

and, from the second equation, that

aD(St, S) = −2(Vx, S) + (ux, S
2). (4.40)

Adding (4.39) and (4.40) and proceeding as before, we get that

d
dt

(‖V ‖2
1 + ‖S‖2

1) ≤ K (‖V ‖2
1 + ‖S‖2

1) , (4.41)

where K = max {2 + ‖ux‖∞, 1, 1 + ‖ux‖∞, ‖η‖2
∞ + 1} is bounded, as a consequence

of (4.36).

Then, applying the Gronwall's lemma in (4.41) we conclude that

max
0≤t≤T

(‖V (t)‖1 + ‖S(t)‖1) ≤ C(T, b, d, ‖V0‖1, ‖S0‖1). (4.42)

This fact ensures that the solution cannot blow-up, so we can extend the local

solution to a solution on every bounded interval [0, T ].
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Finally, we are ready to prove the following theorem, corresponding to the

second part of this analysis.

Theorem 15. Let (η, u) ∈ C(0, T ;Hs(Ω)×Hs(Ω)) be the solution of (4.24) corres-

ponding to initial data (η0, u0) ∈ Hs(Ω)×Hs(Ω), s ≥ 2. Then, there exists a unique

solution (ηN , uN) ∈ SN × SN of (4.25) for all �nite time T > 0. Moreover, given

0 ≤ t ≤ T , there exists a constant C = C(T, b, d) > 0 independent of N such that,

max
0≤t≤T

(‖η(t)− ηN(t)‖1 + ‖u(t)− uN(t)‖1) ≤ CN1−s. (4.43)

Proof. The existence and uniqueness can be proved through the theory of ODE

systems, similarly to what was done in remark 5.

Let e1 = V − ηN and e2 = S − uN . Then, we can write

η − ηN = η − (V − e1) = (η − V ) + e1,
u− uN = u− (S − e2) = (u− S) + e2.

(4.44)

As a consequence of (4.27), to obtain (4.43), we only have to estimate e1 and

e2. With this aim in mind, we subtract (4.26) and (4.25) and we get

(e1t , ϕ) + (e2x , ϕ) + ((uVx + ηSx − (ηNuN)x), ϕ)− b(e1xxt , ϕ) = 0,
(e2t , ψ) + (e1x , ψ) + (uSx − uNuNx , ψ)− d(e2xxt , ψ) = 0.

(4.45)

If we note that

uVx + ηSx− (ηNuN)x = Vx(u− S) + Sx(η− V ) + (Se1)x + (V e2)x− (e1e2)x, (4.46)

and

uSx − uNuNx = (u− S)Sx + (Se2)x − e2e2x , (4.47)

we can use the de�nition of e1 and e2, and proceeding similarly to the demonstration

of Lemma 3, taking ϕ = e1 and ψ = e2 in (4.45), we obtain the following system

aB(e1t , e1) + (e2x + Vx(u− S) + Sx(η − V ) + (Se1)x + (V e2)x − (e1e2)x, e1) = 0,
aD(e2t , e2) + (e1x , e2) + ((u− S)Sx + (Se2)x − e2e2x , e2) = 0,

(4.48)
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with e1(0) = e2(0) = 0.

Let th ∈ (0, T ] be the maximal temporal instance for which (4.48) has a

unique solution such that

‖e1(t)‖∞ ≤ 1, for 0 ≤ t ≤ th. (4.49)

Proceeding as before, using (4.49), the proposition 5, the Cauchy-Schwarz

and Young inequalities in (4.48), and adding both resulting equations, we obtain

that for 0 ≤ t ≤ th it holds

d

dt

(
‖e1‖2

1 + ‖e2‖2
1

)
≤ c1 + c2

(
‖e1‖2

1 + ‖e2‖2
1

)
, (4.50)

where c1 = ‖Vx‖2
∞‖u− S‖2 + ‖Sx‖2

∞‖η − V ‖2 + ‖Sx‖2
∞‖u− S‖2 and c2 = max {5+

3‖Sx‖∞, 1, 3 + 3‖Sx‖∞ + ‖Vx‖2
∞, 3 + ‖V ‖2

∞}.

Note that, using Sobolev's lemma, (4.5), (4.6), the inverse estimates for ele-

ments of SN given by (4.7), and (4.37), we have

‖Vx‖∞ ≤ ‖ηx‖∞ + ‖(η − PNη)x‖∞ + ‖(PNη − V )x‖∞
≤ C + CN2−s + CN

3
2
−s,

(4.51)

‖Sx‖∞ ≤ ‖ux‖∞ + ‖(u− PNu)x‖∞ + ‖(PNu− S)x‖∞
≤ C + CN2−s + CN

3
2
−s,

(4.52)

‖V ‖∞ ≤ ‖η‖∞ + ‖η − PNη‖∞ + ‖PNη − V ‖∞
≤ C + CN1−s + CN1−s,

(4.53)

which are all bounded by a constant C, since s ≥ 2.

The estimates given by (4.51), (4.52) and (4.53) along Lemma 3, lead us to

conclude that c1 ≤ CN2(1−s) and that c2 is bounded. Then, integrating (4.50) over

[0, t] and using the Gronwall's lemma, we conclude that

‖e1(t)‖1 + ‖e2(t)‖1 ≤ C(T, b, d)N1−s, (4.54)
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that holds for all t ∈ [0, th]. To extend this result to [0, T ], observe that by the

Sobolev lemma we have

‖e1(t)‖∞ ≤ C‖e1(t)‖1 ≤ CN1−s,

for 0 ≤ t ≤ th, if we consider the limitation given by (4.54).

However, since s ≥ 2, N1−s goes to zero when N approaches to in�nity for

all t. Therefore, ‖e1(t)‖∞ ≤ 1 for all t. Therefore, we can take th = T in (4.49).

The estimate (4.43) follows by (4.54) and Lemma 3.

4.3.1.2 Weakly Dispersive Systems Case I - H has order 0

For this case, we assume that b, d > 0 and a = c > 0 or a, c < 0. Then, the

Boussinesq system becomes:

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(4.55)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x), for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.55) using the Fourier collocation method, we consider weight functions as functi-

ons from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ)− b(ηNxxt , ϕ) = 0,

(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) + c(ηNxxx , ψ)− d(uNxxt , ψ) = 0,
(4.56)

in Ω and for t ≥ 0, where ϕ, ψ ∈ SN are the weight functions. The system (4.56)

is supplemented with the initial conditions ηN(x, 0) = PNη0(x) and uN(x, 0) =

PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the so-

lution in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
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Hs(Ω)), for s ≥ 0 and T > 0.

We proceed similarly to what was done in Section 4.3.1.1. For the �rst part,

we seek for functions V, S ∈ SN such that, given (η, u) ∈ C(0, T ;Hs(Ω)2) solution

of (4.55) corresponding to initial data (η0, u0) ∈ (Hs(Ω))2, satisfy for all ϕ, ψ ∈ SN ,
the following system:

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ) + a(Sxxx, ϕ)− b(Vxxt, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ) + c(Vxxx, ψ)− d(Sxxt, ψ) = 0,

(4.57)

with initial conditions given by V (x, 0) = PNη0(x) and S(x, 0) = PNu0(x) for x ∈ Ω.

We have the following result:

Lemma 4. Let s ≥ 2 and (η, u) ∈ C(0, T ;Hs(Ω) × Hs(Ω)) the solution of (4.55)

corresponding to initial data (η0, u0) ∈ Hs(Ω) × Hs(Ω), s ≥ 2. Then, there is a

unique solution (V, S) ∈ SN × SN of (4.57) for all �nite time T ≥ 0. Moreover,

given 0 ≤ t ≤ T , there is a constant C = C(T, a, b, c, d) > 0 independent of N , such

that

max
0≤t≤T

{‖η(t)− V ‖1 + ‖u(t)− S‖1} ≤ CN1−s. (4.58)

Proof. We consider ρ = PNη − V and θ = PNu− S, so that (4.28) and (4.5) hold.

As it was done in Lemma 3, we use (4.28), (4.30) and (4.31) on the di�erence

between

(ηt, ϕ) + (ux, ϕ) + ((ηu)x, ϕ) + a(uxxx, ϕ)− b(ηxxt, ϕ) = 0,
(ut, ψ) + (ηx, ψ) + (uux, ψ) + c(ηxxx, ψ)− d(uxxt, ψ) = 0,

and (4.57), to obtain the following ODE system

aB(ρt, ϕ) + (θx + u(η − PNη)x + uρx + η(u− PNu)x + ηθx, ϕ) + a(θxxx, ϕ) = 0,
aD(θt, ψ) + (ρx, ψ) + (u(u− PNu)x + uθx, ψ) + c(ρxxx, ψ = 0,

(4.59)
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with initial conditions ρ(0) = θ(0) = 0.

If we take ϕ = ρ and ψ = θ in (4.59), then

aB(ρt, ρ) =− (θx, ρ)− (u(η − PNη)x, ρ)− (uρx, ρ)− (η(u− PNu)x, ρ)

− (ηθx, ρ) + a(θxx, ρx),
(4.60)

and

aD(θt, θ) = −(ρx, θ)− (u(u− PNu)x, θ)− (uθx, θ)− c(ρx, θxx). (4.61)

Multiplying (4.60) by |c| and (4.61) by |a|, adding both equation and using

the Cauchy-Schwarz and Young inequalities and the characteristics of aB, aD, we get

that
d

dt

(
‖ρ‖2

1 + ‖θ‖2
1

)
≤ c3 + c4

(
‖ρ‖2

1 + ‖θ‖2
1

)
, (4.62)

where

c3 =(min {|c|, |a|})−1|c|
(
‖u‖2

∞‖(η − PNη)x‖2 + ‖η‖2
∞‖(u− PNu)x‖2

)
+

|a|‖u‖2
∞‖(u− PNu)x‖2,

and c4 = (min {|c|, |a|})−1max {4|c|+ |c|‖ux‖∞, |a|, 2|a|+ |a|‖ux‖∞, |c|+ |c|‖η‖2
∞}.

Remark 6. To obtain (4.62) we just observe that, when a and c are equal or have the

same signal, i.e., both are positives or negative, we have |c|a(θxx, ρx) = |a|c(ρx, θxx).

The Sobolev lemma along the result about the exact solution and Proposition

4, lead us to conclude that c3 ≤ CN2(1−s) and c4 is bounded for s ≥ 2.

Thus, integrating (4.62) over [0, t] and applying the Gronwall's lemma we get

‖ρ(t)‖1 + ‖θ(t)‖1 ≤ C(T, a, b, c, d)N1−s. (4.63)
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The estimates (4.63) and (4.5) imply (4.58).

As in Lemma 3, to �nish this proof, we have to demonstrate that (4.57) has

a unique solution for all t ≥ 0. The existence and uniqueness of a local solution

can be proved through the theory of ODE systems, like was done in remark 5. Its

extension for all [0, T ] is possible because if we take ϕ = V and ψ = S in (4.57), it

is possible to prove that

max
0≤t≤T

(‖V (t)‖1 + ‖S(t)‖1) ≤ C(T, a, b, c, d, ‖V0‖1, ‖S0‖1), (4.64)

which ensures that the solution cannot blow up.

The next step is to prove a estimative between the solution (η, u) of (4.55)

and (ηN , uN) of (4.56). This result can be found in the following Theorem.

Theorem 16. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs(Ω)) be solution of (4.55) corres-

ponding to the initial data (η0, u0) ∈ Hs(Ω)×Hs(Ω), for s ≥ 2. Then, there exists

a time T > 0 and a constant C = C(T, a, b, c, d) > 0, independent of N , such that,

max
0≤t≤T

(‖η(t)− ηN‖1 + ‖u(t)− uN‖1) ≤ CN1−s. (4.65)

Proof. The existence and uniqueness of solution of (4.56) is guaranteed for the theory

of ODE systems, like in Theorem 15.

Let e1 = V −ηN and e2 = S−uN , as in Theorem 15. Once again, to conclude

(4.65), we only need to estimate e1 and e2. With this aim in mind, we subtract (4.57)

and (4.56), use the decomposition given in (4.44), (4.46) and (4.47) and take ϕ = e1

and ψ = e2, to obtain the following system

aB(e1t , e1) + (e2x + Vx(u− S) + Sx(η − V ) + (Se1)x + (V e2)x − (e1e2)x, e1)

+a(e2xxx , e1) = 0,

aD(e2t , e2) + (e1x , e2) + ((u− S)Sx + (Se2)x − e2e2x , e2) + c(e1xxx , e2) = 0,

(4.66)
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with e1(0) = e2(0) = 0.

Let th ∈ (0, T ] be the maximal temporal instance for which (4.66) has a

unique solution such that (4.49) holds.

Similarly to the demonstration of the Lemma 4, considering the Remark 6,

using the Cauchy-Schwarz and Young inequalities, we get that

d

dt

(
‖e1‖2

1 + ‖e2‖2
1

)
≤ c7 + c8

(
‖e1‖2

1 + ‖e2‖2
1

)
, (4.67)

where

c7 = (min {|c|, |a|})−1
(
|c|‖Vx‖2

∞‖u− S‖2 + |c|‖Sx‖2
∞‖η − V ‖2 + |a|‖Sx‖2

∞‖u− S‖2
)

and

c8 =(min {|c|, |a|})−1 max
{

5|c|+ 3|c|‖Sx‖∞, |a|, |c|+ 2|a|+ 3|a|‖Sx‖∞ + |c|‖Vx‖2
∞,

3|c|+ |c|‖V ‖2
∞
}
.

The estimates (4.51), (4.52), (4.53) and Lemma 4 lead us to conclude that

c8 is bounded and that c7 ≤ C(a, b, c, d)N2(1−s). Then, integrating (4.67) over [0, t]

and using the Gronwall's lemma, we conclude that

‖e1(t)‖1 + ‖e2(t)‖1 ≤ C(T, a, b, c, d)N1−s, (4.68)

that holds for all t ∈ [0, th].

To extend this result to [0, T ], we proceed as in Theorem 15. Therefore, the

Theorem follows by (4.68) and the result obtained in Lemma 4.
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4.3.1.3 Weakly Dispersive Systems Case II - H has order −1

For this case, we assume that b, d > 0, a = 0 and c < 0. Then, the Boussinesq

system becomes:
ηt + ux + (ηu)x − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,
(4.69)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x), for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.69) using the Fourier collocation method, we consider weight functions ϕ, ψ as

functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ)− b(ηNxxt , ϕ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) + c(ηNxxx , ψ)− d(uNxxt , ψ) = 0,

(4.70)

in Ω and for t ≥ 0. The system (4.70) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the solu-

tion in this case satisfy that (η0, u0) ∈ Hs+1(Ω)×Hs(Ω) and (η, u) ∈ C(0, T ;Hs+1(Ω)×
Hs(Ω)) for s ≥ 0 and T > 0.

The analysis is done in two parts, like in the previous sections. For the �rst

part, given (η, u) ∈ C(0, T ;Hs+1(Ω) × Hs(Ω)) solution of (4.69) corresponding to

initial data (η0, u0) ∈ Hs+1(Ω)×Hs(Ω), we seek for functions V, S ∈ SN satisfying

the following linearized system for all ϕ, ψ ∈ SN

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ)− b(Vxxt, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ) + c(Vxxx, ψ)− d(Sxxt, ψ) = 0,

(4.71)

with initial conditions given by V (x, 0) = PNη0(x) and S(x, 0) = PNu0(x) for x ∈ Ω.

We have the following result:
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Lemma 5. Let (η, u) ∈ C(0, T ;Hs+1(Ω) × Hs(Ω)) be the solution of (4.69) cor-

responding to initial data (η0, u0) ∈ Hs+1(Ω) × Hs(Ω) for s ≥ 2. Then, there is a

unique solution (V, S) ∈ SN of (4.71) for all �nite time T ≥ 0. Moreover, given

0 ≤ t ≤ T , there is a constant C = C(T, b, c, d) > 0 independent of N , such that

max
0≤t≤T

{‖η(t)− V ‖2 + ‖u(t)− S‖1} ≤ CN2−s. (4.72)

Proof. First of all, we observe that the L2-orthogonal projection onto SN represented

by PN is stable in H2
per

(Ω). Indeed,

‖PNv‖H2
per

= ‖PNv − v + v‖2 ≤ ‖PNv − v‖2 + ‖v‖2 ≤ CN2−2‖v‖2 + ‖v‖2,

for all v ∈ Hs(Ω) and s ≥ 2. Then, it holds that

‖PNv‖2 ≤ C‖v‖2. (4.73)

Second of all, we have that

‖f‖2 =

∫ π

−π
(Υ− bΥxx)

2 dx =

∫ π

−π
Υ2dx+ 2b

∫ π

−π
(Υx)

2dx+ b2

∫ π

−π
(Υxx)

2dx

≥ min
{

1, 2b, b2
}
‖Υ‖2

2.

(4.74)

Let ρ = PNη − V and θ = PNu − S, so that (4.28) and (4.5) hold. As in

the previous sections, if we use the decomposition given in (4.28) on the di�erence

between

(ηt, ϕ) + (ux, ϕ) + ((ηu)x, ϕ)− b(ηxxt, ϕ) = 0,
(ut, ψ) + (ηx, ψ) + (uux, ψ) + c(ηxxx, ψ)− d(uxxt, ψ) = 0,

and (4.71), we get

(ρt, ϕ) + (θx, ϕ) + (u(η − PNη)x + uρx + η(u− PNu)x + ηθx, ϕ)− b(ρxxt, ϕ) = 0,
(θt, ψ) + (ρx, ψ) + (u(u− PNu)x + uθx, ψ) + c(ρxxx, ψ)− d(θxxt, ψ) = 0.

(4.75)
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The �rst equation of (4.75) can be written as (ρt−bρtxx , ϕ) = (g(x), ϕ), where

g(x) = −(θx + u(η − PNη)x + uρx + η(u − PNu)x + ηθx). If we consider ρt = PNξ,

where ξ is solution of the problem ξ − bξxx = g(x) in Ω with periodic boundary

conditions, using (4.73) and (4.74), we can show that

‖ρt‖2
2 = ‖PNξ‖2

2 ≤ C‖ξ‖2
2 ≤ C‖g‖2.

Therefore, the fact that H2(Ω) ⊂ H1(Ω) and the estimate given by Lemma

4, lead us to conclude that

‖ρt‖2
2 ≤ k3‖ρx‖2 + k4‖θx‖2 + CN2(2−s), (4.76)

where k3 = 1+2‖u‖2
∞+2‖ηu‖2

∞ and k4 = 2+2‖u‖2
∞+3‖η‖2

∞+‖ηu‖2
∞ are bounded

as a consequence of (4.36).

On the other hand, if we choose ψ = θ in the second equation of (4.75) and

use again Proposition 4, we get that

‖θt‖2
1 ≤ C‖ρ‖2 + C‖θ‖2 + C‖ρxx‖2 + C‖θx‖2 + CN2(2−s). (4.77)

Adding (4.76) and (4.77), we have

‖ρt‖2
2 + ‖θt‖2

1 ≤ CN2(2−s) + C
(
‖ρ‖2

2 + ‖θ‖2
1

)
,

and after integrating it over [0, t], the Gronwall's lemma lead us to conclude that

‖ρ(t)‖2 + ‖θ(t)‖1 ≤ C(T, b, c, d)N2−s. (4.78)

To �nish this proof, we observe that the existence and uniqueness of solution

at least local for the problem (4.71) is guaranteed by the systems of ODE theory.
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Its extension to the entire [0, T ] can be seen as follows: the �rst equation of (4.71)

can be written as:

(Vt − bVtxx , ϕ) = −(Sx + uVx + ηSx, ϕ) (4.79)

Similarly to before, considering Vt = PNΥ where Υ is the solution of the

problem Υ − bΥxx = f(x) in Ω with periodic boundary conditions and f(x) =

−(Sx + uVx + ηSx), using (4.73) and (4.74), we can show that

‖Vt‖2
2 ≤ C‖f‖2 ≤ k1‖Sx‖2 + k2‖Vx‖2, (4.80)

where k1 = 1 + 2‖η‖∞ + ‖u‖2
∞ + ‖η‖2

∞ + ‖ηu‖2
∞ and k2 = 2 + ‖u‖2

∞ are bounded as

a consequence of (4.36).

On the other hand, if we take ψ = S in the second equation of (4.71) we have

that

‖St‖2
1 ≤ −2(Vx, S) + 2(ux, S

2) + 2c(Vxx, Sx). (4.81)

Using the Cauchy Schwarz and Young inequalities in (4.81) and adding it

with (4.80) we obtain that

‖Vt‖2
2 + ‖St‖2

1 ≤ C(b, c, d)
(
‖V ‖2

2 + ‖S‖2
1

)
. (4.82)

After integrating (4.82) over [0, t], we apply the Gronwall's lemma to conclude

that

‖V (t)‖2 + ‖S(t)‖1 ≤ C(T, b, c, d, ‖V0‖2, ‖S0‖1).

This fact ensures that the solution of (4.71) cannot blow-up and can be extend

over the entire interval [0, T ].
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As in the previous sections, we are ready to prove the following result.

Theorem 17. Let (η, u) ∈ C(0, T ;Hs+1(Ω) × Hs(Ω)) be the solution of (4.69)

corresponding to the initial data (η0, u0) ∈ Hs+1(Ω)×Hs(Ω) for s ≥ 2. Then, there

exists a �nite time T > 0 and a constant C = C(T, a, b, c, d) > 0 independent of N ,

such that

max
0≤t≤T

(‖η(t)− ηN‖2 + ‖u(t)− uN‖1) ≤ CN2−s. (4.83)

Proof. The existence and uniqueness of solution of (4.70) is guaranteed for the theory

of ODE systems, like in Theorems 15 and 16 .

Once again, let e1 = V − ηN and e2 = S − uN . Using the same arguments of

Theorems 15 and 16, we obtain the following system:

aB(e1t , e1) + (e2x + Vx(u− S) + Sx(η − V ) + (Se1)x + (V e2)x − (e1e2)x, e1) = 0,
aD(e2t , e2) + (e1x , e2) + ((u− S)Sx + (Se2)x − e2e2x , e2) + c(e1xxx , e2) = 0,

(4.84)

with e1(0) = e2(0) = 0.

Observe that the �rst equation of (4.84) imply that

(e1t − be1xxt , e1) = −(e2x + Vx(u− S) + Sx(η − V ) + (Se1)x + (V e2)x − (e1e2)x, e1).

Taking e1t = PNΘ, where Θ is solution of Θ−bΘxx = h(x) in Ω with periodic

boundary conditions and h(x) = −(e2x +Vx(u−S) +Sx(η−V ) + (Se1)x + (V e2)x−
(e1e2)x), we can use the de�nition of e1t and (4.73) and (4.74) to show that

‖e1t‖2
2 = ‖PNΘ‖2

2 ≤ C‖Θ‖2
2 ≤ C‖h‖2.

Let th ∈ (0, T ] be the maximal temporal instance for which (4.84) has a

unique solution such that (4.49) holds.
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The arguments used to estimate ‖f‖2 and ‖g‖2 in Lemma 5 also provide an

estimate for ‖h‖2, and lead us to conclude that

‖e1t‖2 ≤ C (‖e1‖1 + ‖e2‖1) + CN2−s. (4.85)

On the other hand, applying the Cauchy Schwarz and Young inequalities on

the second equation of (4.84), we have that

‖e2t‖1 ≤ C‖Sx‖∞‖u− S‖+ C‖Sx‖∞‖e2‖+ c‖e1xx‖+ c‖e2x‖. (4.86)

Adding (4.85) and (4.86), and using the Lemma 5 along with (4.51), (4.52)

and (4.53), we have that

‖e1t‖2 + ‖e2t‖1 ≤ CN2−s + C (‖e1‖2 + ‖e2‖1) .

Integrating this inequality over [0, t] and using the Gronwall's lemma, we

obtain that

‖e1(t)‖2 + ‖e2(t)‖1 ≤ C(T, b, c, d)N2−s, (4.87)

which holds for all t ∈ [0, th].

To extend this result to [0, T ], we resort to the similar argument used in

Theorem 15. The estimate (4.83) follows by (4.87) and Lemma 5.

4.3.1.4 Weakly Dispersive Systems Case III - H has order 1

For this case, we assume that b, d > 0, c = 0 and a < 0. Then, the Boussinesq

system becomes:
ηt + ux + (ηu)x + auxxx − bηxxt = 0,

ut + ηx + uux − duxxt = 0,
(4.88)
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with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x), for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.69) using the Fourier collocation method, we consider weight functions ϕ, ψ as

functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ)− b(ηNxxt , ϕ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ)− d(uNxxt , ψ) = 0,

(4.89)

in Ω and for t ≥ 0. The system (4.89) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the solu-

tion in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs+1(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
Hs+1(Ω)) for s ≥ 0 and T > 0.

Following the idea of dividing the analysis in two parts, we have the following

results

Lemma 6. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs+1(Ω)) be the solution of (4.88) cor-

responding to initial data (η0, u0) ∈ Hs(Ω) × Hs+1(Ω) for s ≥ 2. Then, there is a

unique solution (V, S) ∈ SN × SN of

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ) + a(Sxxx, ϕ)− b(Vxxt, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ)− d(Sxxt, ψ) = 0,

for all time T ≥ 0. Moreover, given 0 ≤ t ≤ T , there is a constant C = C(T, a, b, d) >

0, independent of N such that,

max
0≤t≤T

{‖η(t)− V ‖1 + ‖u(t)− S‖2} ≤ CN2−s. (4.90)

Theorem 18. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs+1(Ω)) be the solution of (4.88)

corresponding to the initial data (η0, u0) ∈ Hs(Ω)×Hs+1(Ω) for s ≥ 2. Then, there

exists a time T > 0 and a constant C = C(T, a, b, c, d) > 0 independent of N , such

that

max
0≤t≤T

(‖η(t)− ηN‖1 + ‖u(t)− uN‖2) ≤ CN2−s. (4.91)



85

The idea to prove these results is analogous to the one used on sub section

4.3.1.3, with respect to Case II. The roles of V and S and ρ and θ are reversed,

during the demonstration of the Lemma 6, as well as, the roles of e1 and e2, during

the demonstration of Theorem 18.

4.3.1.5 Purely KdV-type Boussinesq System

For this case, we assume that b, d = 0 and a = c = 1
6
. Then, the Boussinesq

system becomes:
ηt + ux + (ηu)x + 1

6
uxxx = 0,

ut + ηx + uux + 1
6
ηxxx = 0,

(4.92)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x) for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.92) using the Fourier collocation method, we consider weight functions ϕ, ψ as

functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + 1
6
(uNxxx , ϕ) = 0,

(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) + 1
6
(ηNxxx , ψ) = 0,

(4.93)

in Ω and for t ≥ 0. The system (4.93) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the so-

lution in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
Hs(Ω)) for s > 3

4
and T > 0.

Following the idea of dividing the analysis in two parts as in the previous

sections, we have the following results

Lemma 7. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs(Ω)) be the solution of (4.92) corres-

ponding to initial data (η0, u0) ∈ Hs(Ω)×Hs(Ω) for s ≥ 2. Then, there is a unique
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solution (V, S) ∈ SN × SN of

(Vt, ϕ) + (Sx, ϕ) + ((ηxS + uxV ), ϕ) + 1
6
(Sxxx, ϕ) = 0,

(St, ψ) + (Vx, ψ) + (uxS, ψ) + 1
6
(Vxxx, ψ) = 0,

(4.94)

for all �nite time T ≥ 0. Moreover, given 0 ≤ t ≤ T , there is a constant C =

C(T ) > 0 independent of N , such that

max
0≤t≤T

{‖η(t)− V ‖+ ‖u(t)− S‖} ≤ CN−s. (4.95)

Proof. The ODE system theory implies that (4.94) has a unique local solution in

[0, th], th < T . To extend this solution to [0, T ], we take ϕ = V and ψ = S in (4.94)

to obtain from the �rst equation that

1

2

d

dt
‖V ‖2 = −(Sx, V )− (ηxS + uxV, V )− 1

6
(Sxxx, V ), (4.96)

and from the second equation that

1

2

d

dt
‖S‖2 = −(Vx, S)− (uxS, S)− 1

6
(Vxxx, S). (4.97)

Adding (4.96) and (4.97) and observing that the �rst and the third terms on

the right side of these equations are equal if we integrate by parts, we get that

d

dt

(
‖V ‖2 + ‖S‖2

)
≤ c1

(
‖V ‖2 + ‖S‖2

)
, (4.98)

where c1 = max {1 + 2‖ux‖∞, ‖ηx‖2
∞ + 2‖ux‖∞} is a bounded constant, as a conse-

quence of (4.36).

Integrating (4.98) over [0, t] and using the Gronwall's lemma, we conclude

that

max
0≤t≤T

‖V ‖+ ‖S‖ ≤ C(T, ‖V0‖, ‖S0‖),

which implies that the solution of (4.94) cannot blow up and we can extend the

solution over [0, T ].
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Let ρ = PNη − V and θ = PNu− S. Proceeding as in the other sections, we

obtain the following system

(ρt, ϕ) + (θx, ϕ) + (ηx(u− PNu) + ηxθ + ux(η − PNη) + uxρ, ϕ) + 1
6
(θxxx, ϕ) = 0,

(θt, ψ) + (ρx, ψ) + (ux(u− PNu) + uxθ, ψ) + 1
6
(ρxxx, ψ) = 0.

(4.99)

Taking ϕ = ρ and ψ = θ in (4.99) and using the Schwarz and Young's inequalities,

we obtain
d

dt

(
‖ρ‖2 + ‖θ‖2

)
≤ c2

(
‖ρ‖2 + ‖θ‖2

)
+ c3, (4.100)

where c2 = max {3 + 2‖ux‖∞, ‖ηx‖2
∞ + 2‖ux‖∞} and c3 = ‖ηx‖2

∞‖u−PNu‖2+‖ux‖2
∞

‖η − PNη‖2 + ‖ux‖2
∞‖u − PNu‖2 are constants such that, c2 ≤ CN−2s and c3 is

bounded, as consequences of Proposition 4 and (4.36).

Then, integrating (4.100) over [0, t] and using the Gronwall's lemma, we

obtain that

max
0≤t≤T

(‖ρ‖+ ‖θ‖) ≤ C(T )N−s. (4.101)

The Lemma follows by Proposition 4 and (4.101).

Theorem 19. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs(Ω)) be the solution of (4.92)

corresponding to the initial data (η0, u0) ∈ Hs(Ω) × Hs(Ω) for s ≥ 2. Then, there

exists a �nite time T > 0 and a constant C = C(T ) > 0 independent of N , such

that

max
0≤t≤T

(‖η(t)− ηN‖+ ‖u(t)− uN‖) ≤ CN−s. (4.102)

Proof. As in the previous sections, we de�ne e1 = V − ηN and e2 = S − uN . Using
these de�nitions and taking into account that

ηxS + uxV − (ηNuN)x =− ηx(u− S) + (ηu)x − ux(η − V )− (Vx − e1x)(S − e2)

− (Sx − e2x)(V − e1),
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and

uxS − uNuNx = −ux(u− S) + uux − (Sx − e2x)(S − e2),

we can write the following system

(e1t , ϕ) + (e2x , ϕ) + (−ηx(u− S) + (ηu)x − ux(η − V )− (Vx − e1x)(S − e2), ϕ)
−((Sx − e2x)(V − e1), ϕ) + 1

6
(e2xxx , ϕ) = 0,

(e2t , ψ) + (e1x , ψ) + (−ux(u− S) + uux − (Sx − e2x)(S − e2), ψ) + 1
6
(e1xxx , ψ) = 0,

(4.103)

supplemented with the initial conditions e1(0) = e2(0) = 0.

Let th ∈ (0, T ] be the maximal temporal instance for which (4.103) has a

unique solution such that

‖e2x(t)‖∞ ≤ 1, for 0 ≤ t ≤ th. (4.104)

Then, if we take ϕ = e1 and ψ = e2 in (4.103) and use the Schwarz and

Young's inequalities, we obtain that

d

dt
(‖e1‖2 + ‖e2‖2) ≤ c4(‖e1‖2 + ‖e2‖2) + c5, (4.105)

where c4 is a bounded constant and c5 ≤ CN−2s. These limitation are consequences

of Lemma 7, (4.36), (4.51), (4.52) and (4.53).

Once again, integrating (4.105) over [0, t] and using the Gronwall's lemma,

we conclude

max
0≤t≤T

(‖e1(t)‖+ ‖e2(t)‖) ≤ C(T )N−s. (4.106)

which is valid for all t ∈ [0, th].

To �nish this demonstration, we observe that the Sobolev's lemma, the in-

verse estimates for elements of SN given by (4.7), along with (4.106) give us that

‖e2x(t)‖∞ ≤ Cs‖e2(t)‖1/2
1 ‖e2(t)‖1/2

2 ≤ CN
3
2‖e2(t)‖ ≤ CN

3
2
−s, (4.107)
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for all t ∈ [0, th].

However, since we are considering s ≥ 2, the term N
3
2
−s goes to 0 as N

approaches to in�nity independently of t, which implies that (4.107) holds for all

t. Therefore, we can take th = T in (4.104). The (4.102) follows by Lemma 7 and

(4.106).

4.3.1.6 H has order 2

For this case, we assume that b = 0, d > 0, a < 0 and c = 0. Then, the

Boussinesq system becomes:

ηt + ux + (ηu)x + auxxx = 0,
ut + ηx + uux − duxxt = 0,

(4.108)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x) for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.108) using the Fourier collocation method, we consider weight functions ϕ, ψ as

functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ)− d(uNxxt , ψ) = 0,

(4.109)

in Ω and for t ≥ 0. The system (4.109) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Omega.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the solu-

tion in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs+2(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
Hs+2(Ω)) for s ≥ 1 and T > 0.

We proceed similarly to the previous sections. For the �rst part, given (η, u) ∈
C(0, T ;Hs(Ω)×Hs+2(Ω)) solution of (4.108) corresponding to initial data (η0, u0) ∈
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Hs(Ω) ×Hs+2(Ω), we seek for functions V, S ∈ SN satisfying for all ϕ, ψ ∈ SN the

following system

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ) + a(Sxxx, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ)− d(Sxxt, ψ) = 0,

(4.110)

supplemented with initial conditions given by V (x, 0) = PNη0(x) and S(x, 0) =

PNu0(x).

We have the following result.

Lemma 8. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs+2(Ω)) be the solution of (4.108) cor-

responding to initial data (η0, u0) ∈ Hs(Ω) ×Hs+2(Ω), for s ≥ 4. Then, there is a

unique solution (V, S) ∈ SN × SN of (4.110) for all �nite time T ≥ 0. Moreover,

given 0 ≤ t ≤ T , there is a constant C = C(T, a, d) > 0 independent of N , such that

max
0≤t≤T

{‖η(t)− V ‖+ ‖u(t)− S‖1} ≤ CN1−s. (4.111)

Proof. We consider ρ = PNη − V and θ = PNu − S, so that (4.28) and (4.5) hold.

As in the others cases, we can use the decomposition given by (4.28), (4.30) and

(4.31), and we can obtain the following system

(ρt, ϕ) + (θx, ϕ) + (u(η − PNη)x + uρx + η(u− PNu)x + ηθx, ϕ) + a(θxxx, ϕ) = 0,
(θt, ψ) + (ρx, ψ) + (u(u− PNu)x + uθx, ψ)− d(θxxt, ψ) = 0,

(4.112)

where ρ(0) = θ(0) = 0.

Let th ∈ (0, T ] be the maximal temporal instance for which (4.112) has a

unique solution such that

‖ρxx(t)‖∞ ≤ 1, for 0 ≤ t ≤ th. (4.113)

Proceeding similar to the previous sections, if we take ϕ = ρ and ψ = θ in

(4.112) and use (4.5), (4.36) along with Gronwall's inequality, we can conclude that

‖ρ(t)‖+ ‖θ(t)‖1 ≤ C(T, a, d)N1−s, (4.114)
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for all t ∈ [0, th].

Observe that, by the Sobolev's lemma and the inverse estimates, we get

‖ρxx(t)‖∞ ≤ C‖ρ(t)‖1/2
2 ‖ρ(t)‖1/2

3 ≤ CN
5
2‖ρ(t)‖ ≤ CN

7
2
−s, (4.115)

for all t ∈ [0, th], as a consequence of (4.114).

However, since we are considering s ≥ 4, the term N
7
2
−s goes to 0 when N

approaches to in�nity independently of t. Therefore, we can take th = T in (4.113),

and (4.114) is valid for all t ∈ [0, T ].

The estimate given in (4.114) along with (4.5) implies (4.111).

To conclude this proof, we only have to show that the solution of (4.110) can

not blow up, since the existence of an unique local solution is guaranteed by the

ODE systems theory. With this aim in mind, we proceed as before taking ϕ = V

and ψ = S in (4.110), and observing that since (4.115) holds for all t ∈ [0, T ], we

can show that ‖Vxx‖∞ < C, for s ≥ 4. This fact ensures that

max
0≤t≤T

(‖V (t)‖+ ‖S(t)‖1) ≤ C(T, a, d, ‖V0‖, ‖S0‖1), (4.116)

and therefore, the solution of (4.110) can be extend over [0, T ].

For the second part, we prove the following Theorem.

Theorem 20. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs+2(Ω)) be the solution of (4.55)

corresponding to the initial data (η0, u0) ∈ Hs(Ω)×Hs+2(Ω), for s ≥ 4. Then, there

exists a �nite time T > 0 and a constant C = C(T, a, d) > 0 independent of N , such

that

max
0≤t≤T

(‖η(t)− ηN‖+ ‖u(t)− uN‖1) ≤ CN1−s. (4.117)
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Proof. This proof is similar to the proof of Theorem 15. The only di�erence is that

we take th ∈ (0, T ] be the maximal temporal instance for which the system

(e1t , e1) + (e2x , e1) + (Vx(u− S) + Sx(η − V ) + (Se1)x + (V e2)x − (e1e2)x, e1)
+a(e2xxx , e1) = 0,

(e2t , e2) + (e1x , e2) + ((u− S)Sx + (Se2)x − e2e2x , e2)− d(e2xxt , e2) = 0,
(4.118)

with e1(0) = e2(0) = 0, has a unique solution such that,

‖e1(t)‖∞ ≤ 1, ‖e1x(t)‖∞ ≤ 1, ‖e1xx(t)‖∞ ≤ 1, (4.119)

for all 0 ≤ t ≤ th.

Using similar ideas to the previous theorems, the estimates given in (4.119)

lead us to conclude that

‖e1(t)‖+ ‖e2(t)‖1 ≤ C(T, a, d)N1−s, (4.120)

which holds for all t ∈ [0, th].

To extend this result to [0, T ], we proceed as before, using the Sobolev and

inverse inequalities. Then, (4.117) follows by (4.120) and the result obtained in

Lemma 8.

4.3.1.7 H has order 1

For this case, we assume that b = 0, d > 0, a = c ≥ 0 or a, c < 0. Then, the

Boussinesq system becomes:

ηt + ux + (ηu)x + auxxx = 0,
ut + ηx + uux + cηxxx − duxxt = 0,

(4.121)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x) for x ∈ Ω and t ≥ 0.
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In order to obtain error bounds for the semi discrete problem obtained from

(4.121) using the Fourier collocation method, we consider weight functions ϕ, ψ as

functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) + c(ηNxxx , ψ)− d(uNxxt , ψ) = 0,

(4.122)

in Ω and for t ≥ 0. The system (4.122) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the solu-

tion in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs+1(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
Hs+1(Ω)) for s ≥ 1 and T > 0.

Once again, following the idea of dividing the analysis in two parts, we have

the following results.

Lemma 9. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs+1(Ω)) be the solution of (4.88) cor-

responding to initial data (η0, u0) ∈ Hs(Ω) × Hs+1(Ω) for s ≥ 2. Then, there is a

unique solution (V, S) ∈ SN × SN of

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ) + a(Sxxx, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ)+c(Vxxx, ψ)− d(Sxxt, ψ) = 0,

for all �nite time T ≥ 0. Moreover, given 0 ≤ t ≤ T , there is a constant C =

C(T, a, c, d) > 0 independent of N , such that

max
0≤t≤T

{‖η(t)− V ‖+ ‖u(t)− S‖1} ≤ CN1−s. (4.123)

Theorem 21. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs+1(Ω)) be the solution of (4.121)

corresponding to the initial data (η0, u0) ∈ Hs(Ω)×Hs+1(Ω), for s ≥ 2. Then, there

exists a �nite time T > 0 and a constant C = C(T, a, c, d) > 0 independent of N ,

such that

max
0≤t≤T

(‖η(t)− ηN‖+ ‖u(t)− uN‖1) ≤ CN1−s. (4.124)
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The proofs of these results are analogous to the ones presented on Sections

4.3.1.1 and 4.3.1.2. In this case, we have to notice that Remark 6 still holds if

a = c ≥ 0 or a, c < 0.

4.3.1.8 H has order 0

For this case, we assume that b > 0, d = 0 or b = 0, d > 0 and a < 0, c = 0 or

a = 0, c < 0. Suppose without loss of generality that b > 0, d = 0 and a < 0, c = 0.

Then, the Boussinesq system in this case becomes

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux = 0,

(4.125)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x) for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.125) using the Fourier collocation method, we consider weight functions ϕ, ψ as

functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ)− b(ηNxxt , ϕ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) = 0,

(4.126)

in Ω and for t ≥ 0. The system (4.126) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the so-

lution in this case satisfy that (η0, u0) ∈ Hs(Ω)×Hs(Ω) and (η, u) ∈ C(0, T ;Hs(Ω)×
Hs(Ω)) for s ≥ 2 and T > 0.

Therefore, we have the following results

Lemma 10. Let (η, u) ∈ C(0, T ;Hs(Ω)×Hs(Ω)) be the solution of (4.125) corres-

ponding to initial data (η0, u0) ∈ Hs(Ω)×Hs(Ω) for s ≥ 4. Then, there is a unique
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solution (V, S) ∈ SN × SN of the system

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ) + a(Sxxx, ϕ)− b(Vxxt, ϕ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ) = 0,

(4.127)

with initial conditions V (x, 0) = PNη0(x) and S(x, 0) = PNu0(x), for all �nite

time T ≥ 0. Moreover, given 0 ≤ t ≤ T , there is a constant C = C(T, a, b) > 0

independent of N , such that

max
0≤t≤T

{‖η(t)− V ‖1 + ‖u(t)− S‖} ≤ CN1−s. (4.128)

Theorem 22. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs(Ω)) be the solution of (4.125)

corresponding to the initial data (η0, u0) ∈ Hs(Ω) × Hs(Ω) for s ≥ 4. Then, there

exists a �nite time T > 0 and a constant C = C(T, a, b) > 0 independent of N , such

that

max
0≤t≤T

(‖η(t)− ηN‖1 + ‖u(t)− uN‖) ≤ CN1−s. (4.129)

The proofs of Lemma 10 and Theorem 22 are analogous to the proofs of

Lemma 8 and Theorem 20 on Section 4.3.1.6, respectively. Assumptions were made

about ‖θxx(t)‖∞, ‖e2(t)‖∞, ‖e2x(t)‖∞ and ‖e2xx(t)‖∞ rather than the norms of ‖ρ(t)‖
and ‖e1(t)‖.

4.3.1.9 H has order −1

For this case, we assume that b > 0, d = 0 and a = c ≥ 0. Then, the

Boussinesq system becomes:

ηt + ux + (ηu)x + auxxx − bηxxt = 0,
ut + ηx + uux + cηxxx = 0,

(4.130)

with initial conditions η(x, 0) = η0(x) and u(x, 0) = u0(x) for x ∈ Ω and t ≥ 0.

In order to obtain error bounds for the semi discrete problem obtained from

(4.130) using the Fourier collocation method, we consider weight functions ϕ, ψ as
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functions from SN as well, and require that the following system is satis�ed

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ)− b(ηNxxt , ψ) = 0,
(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) + c(ηNxxx , ψ) = 0,

(4.131)

in Ω and for t ≥ 0. The system (4.131) is supplemented with the initial conditions

ηN(x, 0) = PNη0(x) and uN(x, 0) = PNu0(x), for x ∈ Ω.

Moreover, as it was seen on the Section 3.3.2, the inital condition and the solu-

tion in this case satisfy that (η0, u0) ∈ Hs+1(Ω)×Hs(Ω) and (η, u) ∈ C(0, T ;Hs+1(Ω)×
Hs(Ω)) for s ≥ 1 and T > 0.

Following the idea of dividing the analysis in two parts, we have the following

results.

Lemma 11. Let (η, u) ∈ C(0, T ;Hs+1(Ω) ×Hs(Ω)) be the solution of (4.130) cor-

responding to initial data (η0, u0) ∈ Hs+1(Ω) × Hs(Ω) for s ≥ 2. Then, there is a

unique solution (V, S) ∈ SN × SN of

(Vt, ϕ) + (Sx, ϕ) + ((uVx + ηSx), ϕ) + a(Sxxx, ϕ)− b(Vxxt, ψ) = 0,
(St, ψ) + (Vx, ψ) + (uSx, ψ)+c(Vxxx, ψ) = 0,

for all �nite time T ≥ 0. Moreover, given 0 ≤ t ≤ T , there is a constant C =

C(T, a, b, c) > 0 independent of N , such that

max
0≤t≤T

{‖η(t)− V ‖1 + ‖u(t)− S‖} ≤ CN1−s. (4.132)

Theorem 23. Let (η, u) ∈ C(0, T ;Hs+1(Ω) × Hs(Ω)) be the solution of (4.130)

corresponding to the initial data (η0, u0) ∈ Hs+1(Ω)×Hs(Ω) for s ≥ 2. Then, there

exists a �nite time T > 0 and a constant C = C(T, a, b, c) > 0 independent of N ,

such that

max
0≤t≤T

(‖η(t)− ηN‖1 + ‖u(t)− uN‖) ≤ CN1−s. (4.133)

The proofs of these results are analogous to the Section 4.3.1.7. In this case,

once again, we observe that Remark 6 still holds if a = c ≥ 0. The roles of V and
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S and ρ and θ are reversed, during the demonstration of the Lemma 11, as well as,

the roles of e1 and e2, during the demonstration of Theorem 23.

4.3.2 Fully Discrete Problem

In this section, considering the time and space variables discretized, we prove

optimal order L2, H1 error bounds of spectral accuracy in Ω = [−L,L] and fourth

order accuracy in time for the nonlinear family of Boussinesq systems (3.31).

As it was mentioned in the beginning of this chapter, the nonlinear systems

are discretized in space by the standard Fourier collocation spectral method and in

time by the explicit RK4 method. The algorithm for the RK4 method is detailed in

chapter 2.

In general, the semi discrete problem for the Boussinesq system is represented

by

(ηNt , ϕ) + (uNx , ϕ) + ((ηNuN)x, ϕ) + a(uNxxx , ϕ)− b(ηNxxt , ϕ) = 0,

(uNt , ψ) + (ηNx , ψ) + (uNuNx , ψ) + c(ηNxxx , ψ)− d(uNxxt , ψ) = 0,
(4.134)

valid for all t ∈ [0, T ], where the functions ϕ, ψ are the weight function of the Fourier

collocation method and the parameters a, b, c, d are given by (1.13). The form of

(4.134) changes depending on the region of parameters considered.

We start proving the following result, which will be necessary to obtain the

mentioned estimates.

Lemma 12. For N su�ciently large, let (ηN , uN) be the solution of the semi discrete

problem given by (4.134) for t ∈ [0, T ]. Therefore, for j = 0, 1, 2, 3, 4, there exist

constants Cj independent of N , such that
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(i) Purely BBM-type: if s ≥ 2 is such that (η, u) ∈ C(0, T ;Hs(Ω))2 and (∂kt η, ∂
k
t u) ∈

C(0, T ;Hs+1(Ω))2 for k ≥ 1, then

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖1

)
≤ Cj.

(ii.1) Weakly Dispersive case I: if s ≥ 3 is such that (η, u) ∈ C(0, T ;Hs(Ω))2 and

(∂tη, ∂tu) ∈ C(0, T ;Hs−1(Ω))2, then

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖1

)
≤ Cj.

(ii.2) Weakly Dispersive case II: if s ≥ 3 is such that (η, u) ∈ C(0, T ;Hs+1(Ω) ×
Hs(Ω)) and (∂tη, ∂tu) ∈ C(0, T ;Hs+1(Ω)×Hs(Ω)), then

max
0≤t≤T

(
‖∂jt ηN‖2 + ‖∂jtuN‖1

)
≤ Cj.

(ii.3) Weakly Dispersive case III: if s ≥ 3 is such that (η, u) ∈ C(0, T ;Hs(Ω) ×
Hs+1(Ω)) and (∂tη, ∂tu) ∈ C(0, T ;Hs(Ω)×Hs+1(Ω)), then

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖2

)
≤ Cj.

(iii) Purely KdV-type: if s ≥ 5 is such that (η, u) ∈ C(0, T ;Hs(Ω))2 and (∂tη, ∂tu) ∈
C(0, T ;Hs−3(Ω))2, then

max
0≤t≤T

(
‖∂jt ηN‖+ ‖∂jtuN‖

)
≤ Cj.

(iv) H of order 2: if s ≥ 4 is such that (η, u) ∈ C(0, T ;Hs(Ω) × Hs+2(Ω)) and

(∂tη, ∂tu) ∈ C(0, T ;Hs−1(Ω)×Hs+1(Ω)), then

max
0≤t≤T

(
‖∂jt ηN‖+ ‖∂jtuN‖1

)
≤ Cj.

(v) H of order 1: if s ≥ 4 is such that (η, u) ∈ C(0, T ;Hs(Ω) × Hs+1(Ω)) and

(∂tη, ∂tu) ∈ C(0, T ;Hs−2(Ω)×Hs−1(Ω)), then

max
0≤t≤T

(
‖∂jt ηN‖+ ‖∂jtuN‖1

)
≤ Cj.
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(vi) H of order 0: if s ≥ 3 is such that (η, u) ∈ C(0, T ;Hs(Ω))2 and (∂tη, ∂tu) ∈
C(0, T ;Hs−1(Ω))2, then

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖

)
≤ Cj.

(vii) H of order −1: if s ≥ 3 is such that (η, u) ∈ C(0, T ;Hs+1(Ω) ×Hs(Ω))2 and

(∂tη, ∂tu) ∈ C(0, T ;Hs−1(Ω)×Hs−2(Ω)), then

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖

)
≤ Cj.

Proof. (i) Observe that, using the de�nition of ρ, θ, e1 e e2 given on section 4.3.1,

we can write

ηN = PNη − ρ− e1, uN = PNu− θ − e2. (4.135)

Therefore, using the estimates for the semi discrete problem in this case, the

properties of PN and the inverse estimates for elements of SN , we get

‖ηN‖1 = ‖PNη − ρ− e1 + η − η‖1 ≤ ‖PNη − η‖1 + ‖η‖1 + ‖ρ‖1 + ‖e1‖1

≤ C (N1−s‖η‖s + ‖η‖s +N1−s) ,

‖uN‖1 = ‖PNu− θ − e2 + u− u‖1 ≤ ‖PNu− u‖1 + ‖u‖1 + ‖θ‖1 + ‖e2‖1

≤ C (N1−s‖u‖s + ‖u‖s +N1−s) ,

which are both bounded independently of N , for N su�ciently large, t ∈ [0, T ] and

s ≥ 2.

Then, we can conclude that

max
0≤t≤T

(‖ηN‖1 + ‖uN‖1) ≤ C0, (4.136)

with C0 independent of N .

Now, taking ϕ = ηN and ψ = uN in (4.25), we have that

aB(ηNt , ηNt) = −2(uNx , ηN)− 2((ηNuN)x, ηN),
aD(uNt , uNt) = −2(ηNx , uN)− 2(uNuNx , uN),
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which implies, using the fact that both bilinear forms are coercive, that

‖ηNt‖2
1 + ‖uNt‖2

1 ≤ 2‖uNx‖‖ηN‖+ 3‖uNx‖∞‖ηN‖2 + 2‖ηNx‖‖uN‖+ 2‖uNx‖∞‖uN‖2

≤ max {1, 2 + ‖uNx‖∞, 1 + 3‖uNx‖∞}
(
‖ηN‖2

1 + ‖uN‖2
1

)
≤ C1,

valid for all t ∈ [0, T ], s ≥ 2 and N su�ciently large. Indeed, using (4.135) and

inverse estimates for elements of SN , we obtain

‖uNx‖∞ ≤ ‖(u− PNu)x‖∞ + ‖ux‖∞ + ‖θx‖∞ + ‖e2x‖∞
≤ C (‖u− PNu‖2 + ‖u‖2 + ‖θ‖2 + ‖e2‖2)

≤ C (N2−s‖u‖s + ‖u‖2 +N‖θ‖1 +N‖e2‖1)

≤ C (N2−s‖u‖s + ‖u‖2 +N2−s) ,

(4.137)

which is bounded independently of N , since we are considering s ≥ 2. These esti-

mates along with (4.136), lead us to conclude that

max
0≤t≤T

(‖ηNt‖1 + ‖uNt‖1) ≤ C1, (4.138)

with C1 independent of N .

Taking the �rst time derivative of (4.25) and ϕ = ηNt and ψ = uNt we have

(ηNtt , ηNt) + (uNxt , ηNt) + ((ηNuN)xt, ηNt)− b(ηNxxtt , ηNt) = 0,
(uNtt , uNt) + (ηNxt , uNt) + ((uNuNx)t, uNt)− d(uNxxtt , uNt) = 0.

(4.139)

Proceeding similar to the last estimate, we conclude that

‖ηNtt‖2
1 + ‖uNtt‖2

1 ≤ m
(
‖ηNt‖2

1 + ‖uNt‖2
1

)
,

where m = max {3 + 3‖uNx‖∞, 1, 1 + ‖ηNx‖∞, 1 + 3‖uNx‖∞ + ‖ηN‖∞}.

Using (4.135) and similar arguments used in (4.137), we can show that ‖ηN‖∞,
‖uN‖∞ and ‖ηNx‖∞ are all bounded independently of N , since s ≥ 2. Then, we

conclude that m is bounded and it holds that

max
0≤t≤T

(‖ηNtt‖1 + ‖uNtt‖1) ≤ C2, (4.140)
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with C2 independent of N .

Taking the second time derivative of (4.25) and ϕ = ηNtt , ψ = uNtt , we have

(ηNttt , ηNtt) + (uNxtt , ηNtt) + ((ηNuN)xtt, ηNtt)− b(ηNxxttt , ηNtt) = 0,
(uNttt , uNtt) + (ηNxtt , uNtt) + ((uNuNx)tt, uNtt)− d(uNxxttt , uNtt) = 0.

(4.141)

Once again, similarly to the last estimate, we obtain that

‖ηNttt‖2
1 + ‖uNttt‖2

1 ≤ c1

(
‖ηNtt‖2

1 + ‖uNtt‖2
1

)
+ c2

(
‖ηNt‖2

1 + ‖uNt‖2
1

)
,

with c1 = max {5 + 2‖uNx‖∞ + ‖uN‖∞, 1, 2 + 3‖uNx‖∞ + ‖ηNx‖∞, 1 + ‖ηN‖∞} and
c2 = max {4 + ‖uNxt‖∞, 4‖ηNxt‖∞ + 4‖uNxt‖∞}.

Using previous estimates, we conclude that c1 is a bounded constant inde-

pendently of N , since s ≥ 2. For c2, we observe that, using the same idea as before,

‖ηNxt‖∞ ≤ ‖(ηt − PNηt)x‖∞ + ‖ηtx‖∞ + ‖ρtx‖∞ + ‖e1tx‖∞
≤ C (‖ηt − PNηt‖2 + ‖ηt‖2 + ‖ρt‖2 + ‖e1t‖2)

≤ C
(
N2−(s+1)‖ηt‖s+1 + ‖ηt‖2 +N‖ρt‖1 +N‖e1t‖1

)
≤ C (N1−s‖ηt‖s+1 + ‖ηt‖2 +N2−s) ,

which is bounded by a constant independent of N since s ≥ 2 and (ηt, ut) ∈
C(0, T ;Hs+1(Ω))2. We can use a similar argument to bound ‖uNxt‖∞, and con-

clude that c2 is, in fact, bounded independently of N .

Using (4.138) and (4.140) along the limitations of c1 and c2, we conclude that

max
0≤t≤T

(‖ηNttt‖1 + ‖uNttt‖1) ≤ C3, (4.142)

with C3 independent of N .

To �nish the proof in this case, we have to estimate the fourth time derivative

of (ηN , uN). We take the third time derivative of (4.25) and take ϕ = ηNttt and
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ψ = uNttt . Then, we obtain

aB(ηNtttt , ηNttt) + (uNxttt , ηNttt) + ((ηNuN)xttt, ηNttt) + a(uNxxxttt , ηNttt) = 0,
aD(uNtttt , uNttt) + (ηNxttt , uNttt) + ((uNuNx)ttt, uNttt) + c(ηNxxxttt , uNttt) = 0.

(4.143)

Through the Sobolev's lemma and the limitations of �rst three time deriva-

tives, we can show that ‖ηNt‖∞ and ‖uNt‖∞ are both bounded independently of N

for s ≥ 2. Then, we conclude that

max
0≤t≤T

(‖ηNtttt‖1 + ‖uNtttt‖1) ≤ C4, (4.144)

with C4 independent of N .

Therefore, from (4.136), (4.138), (4.140), (4.142) and (4.144) we can conclude

that for s ≥ 2 and j = 0, 1, 2, 3, 4, it holds

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖1

)
≤ Cj.

(ii.1) Since the case (i) is a particular case of this one with a = c = 0, and

if we multiply the �rst equation by |c| and the second by |a| we can use Remark 6

to cancel these extra terms, all the estimates for the �rst three times derivatives of

(ηN , uN) given in the previous proof hold in this case. It is also worth to observe

that in this case,

‖ηNxt‖∞ ≤ ‖(ηt − PNηt)x‖∞ + ‖ηtx‖∞ + ‖ρtx‖∞ + ‖e1tx‖∞
≤ C (‖ηt − PNηt‖2 + ‖ηt‖2 + ‖ρt‖2 + ‖e1t‖2)

≤ C
(
N2−(s−1)‖ηt‖s−1 + ‖ηt‖2 +N‖ρt‖1 +N‖e1t‖1

)
≤ C (N3−s‖ηt‖s−1 + ‖ηt‖2 +N2−s +N2−s) ,

(4.145)

is bounded by a constant independent ofN if s ≥ 3, since (ηt, ut) ∈ C(0, T ;Hs−1(Ω))2.

This implies that the estimate for the fourth time derivative holds for s ≥ 3.

Therefore, we can conclude that for s ≥ 3 and j = 0, 1, 2, 3, 4, it holds

max
0≤t≤T

(
‖∂jt ηN‖1 + ‖∂jtuN‖1

)
≤ Cj
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(ii.2) Using the decomposition given by (4.135) and using the results for the

semi discrete problem for this case, the properties of PN and the inverse estimates

of elements of SN , we get

‖ηN‖2 = ‖PNη − ρ− e1 + η − η‖2 ≤ ‖PNη − η‖2 + ‖η‖2 + ‖ρ‖2 + ‖e1‖2

≤ C (N1−s‖η‖s+1 + ‖η‖s+1 +N2−s) ,

‖uN‖1 = ‖PNu− θ − e2 + u− u‖1 ≤ ‖PNu− u‖1 + ‖u‖1 + ‖θ‖1 + ‖e2‖1

≤ C (N1−s‖u‖s + ‖u‖s +N1−s) ,

which are both bounded by a constant independently of N for all t ∈ [0, T ],

s ≥ 2 and N su�ciently large. Then,

max
0≤t≤T

(‖ηN‖2 + ‖uN‖1) ≤ C0, (4.146)

with C0 independent of N .

Proceeding similar to the proof of Lemma 5, we write the �rst equation of

(4.70) as

(ηNt − bηNxtt , ϕ) = −(uNx + (ηNuN)x, ϕ),

with ηNt = PNζ, such that ζ is solution of ζ − bζ
′′

= f(x), with f(x) = −uNx −
(ηNuN)x; by (4.73) and (4.74) we obtain

‖ηNt‖2 ≤ C (‖uNx‖+ ‖ηNx‖∞‖uN‖+ ‖uNx‖∞‖ηN‖) .

On the other hand, taking ψ = uN in the second equation of (4.70) and using

the coercivity of the bilinear form aD, we obtain that

‖uNt‖2
1 ≤ ‖ηNx‖2 + ‖uN‖2 + 2‖uNx‖∞‖uN‖2 + c2‖ηNxx‖2 + ‖uNx‖2.

Adding both inequalities, we conclude that

‖ηNt‖2 + ‖uNt‖1 ≤ k (‖ηN‖2 + ‖uN‖1) ,
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where k = max
{
C‖uNx‖∞, 1, c, C‖ηNx‖∞ + 1 + (2‖uNx‖∞)

1
2 , 1 + C

}
is a bounded

constant independently of N for s ≥ 3, as a consequence of similar arguments used

in (4.137). Therefore,

max
0≤t≤T

(‖ηNt‖2 + ‖uNt‖1) ≤ C1, (4.147)

with C1 independent of N .

To estimate the second time derivative, we take the �rst time derivative of

(4.25) and proceed as before. We get that

‖ηNtt‖2 + ‖uNtt‖1 ≤ k1 (‖ηNt‖2 + ‖uNt‖1) ,

where k1 = max
{
C‖uNx‖∞, C‖uN‖∞ + 1, 1, C‖ηNx‖∞ + 1 + (2‖uNx‖∞)

1
2 , 1+

‖ηN‖∞ + ‖uN‖∞ + |c|} is also a bounded constant independently of N for s ≥ 3, by

similar arguments used in (4.137). Therefore,

max
0≤t≤T

(‖ηNtt‖2 + ‖uNtt‖1) ≤ C2, (4.148)

with C2 independent of N .

To estimate the third and the fourth time derivatives of (ηN , uN), we have to

use along the estimates for ηN , uN , ηNx and uNx in L
∞(Ω), the estimates for ‖ηNt‖∞

and ‖uNt‖∞, as it was done previously. In this case, we have similar bounds for

these norms if s ≥ 3 as in (4.145), which imply that

max
0≤t≤T

(‖ηNttt‖2 + ‖uNttt‖1) ≤ C3, (4.149)

with C3 independent of N , and

max
0≤t≤T

(‖ηNtttt‖2 + ‖uNtttt‖1) ≤ C4, (4.150)

with C4 independent of N .

Therefore, we can conclude that for s ≥ 3 and j = 0, 1, 2, 3, 4, it holds

max
0≤t≤T

(
‖∂jt ηN‖2 + ‖∂jtuN‖1

)
≤ Cj.
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For the rest of the cases, the demonstration follows similarly to these last

ones. It is always necessary to estimate ‖ηN‖∞, ‖ηNx‖∞, ‖ηNxt‖∞, ‖uN‖∞, ‖uNx‖∞,
‖uNxt‖∞ using the appropriate Hs-norms for each case, in order to determine a

bound for the �rst four times time derivatives of η and u. This ends the proof.

Now we are ready to perform the convergence analysis for the fully discre-

tization of the nonlinear Boussinesq systems (3.31). Our analysis is concentrated

in the cases having the stability condition for the solution of the linear problem,

given by ∆t ≤ C∆x. These cases, along the ones with stability condition of type

∆t ≤ C, have the corresponding fully discretizations not sti�, which implies that we

can achieve a high accuracy at a low computational cost. These speci�c cases are

the ones with numerical simulations in the following chapter.

We recall that, to satisfy the linear stability condition ∆t ≤ C∆x (or equiva-

lently ∆t ≤ CN−1), the paramenters a, b, c, d must to belong in one of the following

regions:

(i) Weakly dispersive Boussinesq systems, case I: a < 0, b > 0, c < 0, d > 0

or a = c > 0, b > 0, d > 0;

(ii) H of order 0: a < 0, b > 0, c = 0, d = 0 or a = 0, b = 0, c < 0, d > 0;

(iii) H of order 1: a = 0, b = 0, c = 0, d > 0;

(iv) H of order 2: a < 0, b = 0, c = 0, d > 0.

We start analyzing the case (i). Considering the bilinear forms given by (4.23)

and the functions f̂ , ĝ : L2 → SN given, respectively, by aB(f̂(v), χ) = (v, χ
′
) and

aD(ĝ(w), χ) = (w, χ
′
) for all χ in SN , we obtain from (4.56) that

ηNt = f(ηN , uN),
uNt = g(ηN , uN),

(4.151)
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valid for all t ∈ [0, T ], where f : H1 × H2 → SN and g : H2 × H1 → SN are

given by f(v, w) = f̂(w) + f̂(vw) + af̂(w
′′
) and g(v, w) = ĝ(v) + 1

2
ĝ(w2) + cĝ(v

′′
).

The ′ and ′′ denote, respectively, the �rst and the second derivative with respect to

spatial variable in this specif functions.

In the following, we introduce the RK4 method that we use to solve the

system (4.151). The algorithm for this method is given by

1. Set η0
N = PNη0 and u0

N = PNu0;

2. For n = 0, 1, ...,M − 1 do

2.1 Set ηn,1N = ηnN and un,1N = unN ;

2.2 For i = 2, 3, 4 do

2.2.1 ηn,iN = ηnN + ∆tαif(ηn,i−1
N , un,i−1

N ); un,iN = un + ∆tαig(ηn,i−1
N , un,i−1

N );

2.3 ηn+1
N = ηnN + ∆t

4∑
j=1

βjf(ηn,jN , un,jN ); un+1
N = unN + ∆t

4∑
j=1

βjg(ηn,jN , un,jN ),

with α2 = α3 = 1
2
, α4 = 1, β1 = β4 = 1

6
and β2 = β3 = 1

3
.

Then, we have the following result.

Theorem 24. Let (η, u) ∈ C(0, T ;Hs(Ω) × Hs(Ω)) be solution of (4.55) corres-

ponding to the initial data (η0, u0) ∈ Hs(Ω)×Hs(Ω), for s ≥ 2 and some 0 < T <∞.

Suppose that there exists a constant M̂ , such that maxt∈[0,T ] (‖∂itη(t)‖1 + ‖∂itu(t)‖1) ≤
M̂ for i = 0, 1, ..., 5. Let (Hn, Un), 0 ≤ n ≤M , be the solution of the system (4.151)

obtained by the RK4 method. Then, for N su�ciently large and ∆t su�ciently small

such that ∆t ≤ CN−1, there exists a constant also denoted by C, independent of N

and ∆t, such that

max
0≤n≤M

(‖η(tn)−Hn‖1 + ‖u(tn)− Un‖1) ≤ C
(
∆t4 +N1−s) . (4.152)
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Proof. For the �rst part of this proof, we consider the local temporal errors of the

RK4 method, which are given by

δn1 := ηn+1
N − ηnN −∆t

4∑
j=1

βjf(ηn,jN , un,jN ),

δn2 := un+1
N − unN −∆t

4∑
j=1

βjg(ηn,jN , un,jN ).

(4.153)

In the following, we demonstrate that under our hypotheses,

max
0≤n≤M−1

(‖δn1 ‖1 + ‖δn2 ‖1) ≤ C∆t5. (4.154)

In fact, this can be done by explicitly computing the intermediate stages of

RK4 method (ηn,jN , un,jN ) and the values of f(ηn,jN , un,jN ) and g(ηn,jN , un,jN ) in terms of the

temporal derivatives of ηN(t) and uN(t) evaluated at t = tn. Using the de�nitions

of f and g we obtain that,

1. For i = 1 ⇒
ηn,1N = ηnN = ηN(tn), un,1N = unN = uN(tn);

f(ηn,1N , un,1N ) = ηnNt
, g(ηn,1N , un,1N ) = unNt

;

2. For i = 2 ⇒

ηn,2N = ηnN + ∆t
2
ηnNt

, un,2N = unN + ∆t
2
unNt

;

f(ηn,2N , un,2N ) = ηnNt
+ ∆t

2
ηnNtt

+ ∆t2

4
αn, αn = f̂(ηNtuNt);

g(ηn,2N , un,2N ) = unNt
+ ∆t

2
unNtt

+ ∆t2

2
βn, βn = ĝ(uNtuNt);

3. For i = 3⇒

ηn,3N = ηnN + ∆t
2
ηnNt

+ ∆t2

4
ηnNtt

+ ∆t3

8
αn;

un,3N = unN + ∆t
2
unNt

+ ∆t2

4
unNtt

+ ∆t3

16
βn;

f(ηn,3N , un,3N ) = ηnNt
+ ∆t

2
ηnNtt

+ ∆t2

4
ηnNttt

− ∆t2

4
αn + ∆t3

8

{
f̂ (αnunN)

+1
2
f(ηnN , β

n) + αnt )
}

+ ∆t4

16
γn1 ;

g(ηn,3N , un,3N ) = unNt
+ ∆t

2
unNtt

+ ∆t2

4
unNttt

− ∆t2

8
βn + ∆t3

8
{ĝ (αn) +

cĝ(αnxx) + 1
2
βnt + 1

2
ĝ(βnunN))

}
+ ∆t4

32
γn2 ,

where



108

γn1 = f̂
(
αn
[
unNt

+ ∆t
2
unNtt

+ ∆t2

8
βn
])

+ 1
2
f̂
(
βn
[
ηnNt

+ ∆t
2
ηnNtt

])
+ f̂(ηnNtt

unNtt
),

γn2 = ĝ(unNtt
unNtt

) + ĝ
(
βn
[
unNt

+ ∆t
2
unNtt

+ ∆t2

16
βn
])

;

4. For i = 4 ⇒

ηn,4N = ηnN + ∆tηnNt
+ ∆t2

2
ηnNtt

+ ∆t3

4
ηnNttt

− ∆t3

4
αn + ∆t4

8
γ̂n1 ,

with γ̂n1 = f̂(αnunN) + 1
2
f(ηnN , β

n) + αnt + ∆t
2
γn1 ;

un,4N = unN + ∆tunNt
+ ∆t2

2
unNtt

+ ∆t3

4
unNttt

− ∆t3

8
βn + ∆t4

8
γ̂n2 ,

with γ̂n2 = ĝ(αn) + cĝ(αnxx) + 1
2
βnt + 1

2
ĝ(βnunN) + ∆t

2
γn2 ;

f(ηn,4N , un,4N ) = ηnNt
+ ∆tηnNtt

+ ∆t2

2
ηnNttt

+ ∆t3

4
ηnNtttt

− ∆t3

4
{αnt +

1
2
f(ηnN , β

n) + f̂ (αnunN)
}

+ ∆t4

16
γn3 ;

g(ηn,4N , un,4N ) = unNt
+ ∆tunNtt

+ ∆t2

2
unNttt

+ ∆t3

4
unNtttt

− ∆t3

4

{
1
2
βnt

+ĝ (αn) + cĝ(αnxx) + 1
2
ĝ(unNβ

n)
}

+ ∆t4

32
γn2 ,

where

γn3 = f̂(γ̂n2 ) + af̂(γ̂n2xx) + f̂

(
γ̂n1

[
un,4N −

∆t4

8
γ̂n2

])
+ f̂

(
ηnNtt

[
2unNtt

+ ∆tunNttt

−∆t

2
βn
])

+ f̂
(
ηn,4N γ̂n2

)
+ f̂

(
ηnNt

[
2unNttt

− βn
])

+ f̂
([
ηnNttt

− αn
] [

2unNt

+∆tunNtt
+

∆t2

2
unNttt

− ∆t2

4
βn
])

,

γn4 = ĝ(γ̂n1 ) + cĝ(γ̂n1xx) + ĝ(unNtt
unNtt

) + +ĝ

(
γ̂n2

[
un,4N −

∆t4

16
γ̂n2

])
+ ĝ

([
unNttt

− 1

2
βn
] [

2unNt
+ ∆tunNtt

+
∆t2

4
unNttt

− ∆t2

8
βn
])

.

Using these formulas in (4.153), we get that

δn1 = ηn+1
N −

4∑
j=0

∆tj

j!
∂jt ηN + ∆t5Γn1 ,

δn2 = un+1
N −

4∑
j=0

∆tj

j!
∂jtuN + ∆t5Γn2 ,

(4.155)

where Γn1 = −1
48

(γn1 + γn3 ) and Γn2 = −1
48

(
1
2
γn2 + γn4

)
.
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Hence, to obtain (4.154), we have to show that ‖Γn1‖1 and ‖Γn2‖1 are bounded

by constants. With this aim in mind, we resort to the item (ii.1) of Lemma 12 and

use the following auxiliary result.

Lemma 13. There exists a constant C independent of N such that

(i) ‖f̂(v)‖1 ≤ C‖v‖, ‖ĝ(v)‖1 ≤ C‖v‖, v ∈ L2
per;

(ii) ‖f̂(v)‖2 ≤ C‖v‖1, ‖ĝ(v)‖2 ≤ C‖v‖1, v ∈ H1
per;

(iii) ‖f̂(v)‖3 ≤ C‖v‖1, ‖ĝ(v)‖3 ≤ C‖v‖1, v ∈ H1
per.

Proof of Lemma 13. To demonstrate (i) we use the de�nition of f̂ ; taking

χ = f̂(v) ∈ SN with v ∈ L2, we get

C‖f̂(v)‖2
1 ≤ aB(f̂(v), f̂(v)) = (v, f̂x(v)) ≤ ‖v‖‖f̂(v)‖1,

which implies that ‖f̂(v)‖1 ≤ C‖v‖ for all v ∈ L2. The proof is analogous for ĝ.

To demonstrate (ii), we consider the BVP w− bw′′ = −v′ for v ∈ H1
per, such

that w
′
(−L) = w

′
(L). Hence, multiplying this BVP by χ and integrating in Ω, we

obtain that (
w − bw′′ , χ

)
= −

(
v
′
, χ
)
,

(w, χ) + b
(
w
′
, χ
′)

=
(
v, χ

′)
,

aB(w, χ) = (v, χ
′
).

(4.156)

Observe that, using (4.22), we can rewrite (4.156) as aB(PNw, χ) = (v, χ
′
),

and use the de�nition of f̂ to conclude that PNw = f̂(v). Therefore, using (4.5), we

have that

‖f̂(v)‖2 = ‖PNw‖2 = ‖PNw − w + w‖2 ≤ C‖w‖2. (4.157)
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On the other hand, note that

‖v‖2
1 ≥

∫
Ω

(v
′
)2dx =

∫
Ω

(w − bw′′)2d ≥ min
{

1, 2b, b2
}
‖w‖2

2. (4.158)

Then, the equations (4.157) and (4.158) imply that ‖f̂(v)‖2 ≤ C‖v‖1 for all

v ∈ H1
per. This part of the proof is analogous to ĝ.

The proof for (iii) is similarly to was done in (ii). Consider the BVP

w
′ − bw

′′′
= −v′ for v ∈ H1

per, and w ∈ H4 such that w
′′
(−L) = w

′′
(L). Hence,

multiplying this BVP by χ ∈ SN and integrating in Ω, we obtain that(
w
′ − bw′′′ , χ

)
= −

(
v
′
, χ
)
,(

w
′
, χ
)

+ b
(
w
′′
, χ
′)

=
(
v, χ

′)
,

aB(w
′
, χ) = (v, χ

′
).

(4.159)

Using the de�nition of f̂ , we obtain that f̂(v) = w
′
. On the other hand, we

observe that

‖v‖2
1 ≥

∫
Ω

(v
′
)2dx =

∫
Ω

(w
′ − bw′′′)2dx

≥ ‖w′‖2 + 2b‖w′′‖2 + (b2 − εCp) ‖w
′′′‖2 + ε‖w′′′′‖2

≥ min {1, 2b, b2 − εCp, ε} ‖w
′‖2

3,

(4.160)

which is valid for constants ε > 0 and Cp such that b2 − εCp > 0; the constant Cp

arises from the Poincaré inequality applied in the term ‖w′′′′‖.

Therefore, we conclude that ‖f̂(v)‖3 = ‖w′‖3 ≤ C‖v‖1, with C = C(b, ε, Cp),

which �nishes the proof of the lemma.

Proof of Theorem 24 continuated: To demonstrate that ‖Γn1‖1 and ‖Γn2‖1 are boun-

ded by constants, observe that using the Lemmas 12 and 13, we can show that

‖αn‖1 + ‖βn‖1 ≤ ‖f̂(ηnNt
ηnNt

)‖1 + ‖ĝ(unNt
unNt

)‖1 ≤ C
(
‖ηnNt
‖2 + ‖unNt

‖2
)
,



111

which is bounded by a constant, as a consequence of (ii.1) of Lemma 12. Moreover,

‖γn1 ‖1 + ‖γn2 ‖1 ≤
{(
‖αn‖+ ‖βn‖+

3

2

)
‖unNt
‖+

(
1

2
+ ‖βn‖

)
‖ηnNt
‖
}

+
∆t

2

{
‖unNtt

‖

‖αn‖+ ‖ηnNtt
‖‖βn‖+ ‖unNtt

‖‖βn‖
}

+
∆t2

8

{
‖βn‖‖αn‖+ ‖βn‖2

}
,

‖γ̂n1 ‖1 + ‖γ̂n2 ‖1 ≤
{
‖αn‖ (1 + ‖unN‖) +

1

2
‖βn (1 + ‖unN‖+ ‖ηnN‖) + ‖unNt

‖‖unNtt
‖

+‖αnt ‖+
|a|
2
‖βn‖2 + |c|‖αn‖2

}
+

∆t

2
{‖γ̂n1 ‖1 + ‖γ̂n2 ‖1} ,

‖γn3 ‖1 + ‖γn4 ‖1 ≤
{(

1 + ‖un,4N ‖
)
‖γ̂n1 ‖+

(
1 + ‖ηn,4n ‖+ ‖un,4N ‖

)
‖γ̂n2 ‖+ |a|‖γ̂n1 ‖2+

|c|‖γ̂n2 ‖2 + 2‖αn‖‖unNt
‖+ ‖βn‖

(
‖unNt
‖+ ‖ηnNt

‖
)

+ 2‖unNttt
‖
(
‖ηnNt
‖+

‖unNt
‖
)

+ ‖unNtt
‖
(
2‖ηnNtt

‖+ ‖unNtt
‖
)

+ 2‖unNt
‖‖ηnNttt

‖
}

+ ∆t
{
‖unNtt

‖(
‖αn‖+ ‖ηnNttt

‖
)

+ ‖ηnNtt
‖‖unNttt

‖
}

+
∆t

2

{
‖βn‖

(
‖ηnNtt

‖+ ‖ηnNttt
‖
)}

+

∆t2

2

{
‖unNttt

‖
(
‖αn‖+ ‖ηnNttt

‖
)}

+
∆t2

16

(
‖βn‖2 + ∆t2‖γ̂2

n‖2 + 2∆t2

‖γ̂1
n‖‖γ̂2

n‖) +
∆t2

4

{
‖βn‖

(
‖αn‖+ ‖ηnNttt

‖+ ‖unNttt
‖
)

+
1

2
‖unNttt

‖2

}
,

which are all bounded by constants, namely C, as consequences of (ii.1)-part of

Lemma 12, Lemma 13 and estimates above.

These limitations are valid for ∆t su�ciently small, and the constant in all

the cases is of type C = C(a, c), where a, c are parameters of the Boussinesq family

system (4.56).

Remark 7. Note that to prove the last estimate, we have used that ‖ηn,4N ‖+‖un,4N ‖ ≤
C, which can be easily proved from the formulas to ηn,4N and un,4N given previously

along with Lemma 12.

Therefore, using the intermediate estimates given above, we can conclude that

‖Γn1‖1 +‖Γn2‖1 ≤ C. Therefore, using (4.155), we obtain that ‖δn1 ‖1 +‖δn2 ‖1 ≤ C∆t5.
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Indeed, expanding in Taylor series the functions ηN(t) and uN(t) around

t = tn and using Taylor theorem (see BURDEN; FAIRES (2010)), we get that

ηN(t) =
4∑
j=0

∂jt ηN(tn)

j!
(t−tn)j+C(t−tn)5, uN(t) =

4∑
j=0

∂jtuN(tn)

j!
(t−tn)j+C(t−tn)5.

Evaluating these formulas at t = tn+1, substituting in (4.155) and taking the

H1-norm, lead us to conclude (4.154), which ends the �rst part of the proof.

In sequence, we perform the stability part of the proof. Consider εn,j :=

ηn,jN −Hn,j and en,j := un,jN −Un,j the errors between the solution of (4.56) evaluated

at t = tn and the fully discrete approximations (Hn, Un) in SN × SN of η(., tn) and

u(., tn), solutions of (4.55), for 0 ≤ n ≤M − 1 and j = 1, 2, 3, 4.

Note that for j = 1 we have that εn := εn,1 = ηnN − Hn and en := en,1 =

unN − Un. For j = 2, 3, 4 we get

εn,j = εn + ∆tαif(εn,j−1, en,j−1),

= εn + ∆tαi

[
f(ηn,j−1

N , en,j−1) + f̂(εn,j−1un,j−1
N ) + f̂(εn,j−1en,j−1)

]
,

en,j = en + ∆tαig(εn,j−1, en,j−1),

= en + ∆tαi
[
g(εn,j−1, en,j−1)− ĝ(en,j−1en,j−1) + ĝ(en,j−1un,j−1

N )
]
.
(4.161)

By hypothesis, it holds that maxt∈[0,T ] (‖∂itη(t)‖1 + ‖∂itu(t)‖1) ≤ M̂ for i =

0, 1, ..., 5. Suppose that M̂ is su�ciently large so that, for i = 0, 1, ..., 5,

maxt∈[0,T ] (‖∂itηN(t)‖1 + ‖∂ituN(t)‖1) ≤ 2M̂ .

Let n∗ < M̂ be the largest integer for which ‖Hn‖1 + ‖Un‖1 ≤ 3M̂ for

0 ≤ n ≤ n∗. Hence, for 0 ≤ n ≤ n∗ we have that

‖εn‖1 + ‖en‖1 ≤ 5M̂,

‖εn,j‖1 + ‖en,j‖1 ≤ (‖εn‖1 + ‖en‖1) + C(M̂, |a|, |c|)∆t (‖εn,j−1‖1 + ‖en,j−1‖1) ,
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for j = 2, 3, 4

Furthermore, using the de�nition of ε and e and the RK4 method previously

described, we can write that

εn+1 = ηn+1
N −Hn+1,

= ηnN + ∆t
4∑
j=1

βjf(ηn,jN , un,jN ) + δn1 −Hn −∆t
4∑
j=1

βjf(Hn,j, Un,j),

= εn + ∆t
4∑
j=1

βj
[
f(ηn,jN , un,jN )− f(Hn,j, Un,j)

]
+ δn1 ,

(4.162)

and similarly,

en+1 = un+1
N − Un+1,

= en + ∆t
4∑
j=1

βj
[
g(ηn,jN , un,jN )− g(Hn,j, Un,j)

]
+ δn2 .

(4.163)

Then, de�ning An := ‖εn‖1 + ‖en‖1, An,j := ‖εn,j‖1 + ‖en,j‖1 and summing

the H1-norms of (4.162) and (4.163), we get that

An+1 ≤ An + ∆t
4∑
j=1

An,j + (‖δn1 ‖1 + ‖δn2 ‖1) .

Since for ∆t su�ciently small hold that ∆t
4∑
j=1

An,j ≤ C∆tAn and

(‖δn1 ‖1 + ‖δn2 ‖1) ≤ C∆t5, we conclude that

An+1 ≤ (1 + C∆t)An + C∆t5, A0 = 0.

Now, observe that

An+1 ≤
[

1− (1 + C∆t)n+1

−C∆t

]
C∆t5 =

[
(1 + C∆t)n+1 − 1

]
C∆t4, 0 ≤ n ≤ n∗,
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and since we considering ∆t su�ciently small, we can guarantee that An+1 ≤
C(n∗)∆t4.

Finally, observing that we can write from the de�nitions of ε and e that

Hn+1 = ηn+1
N − εn+1 and Un+1 = un+1

N − en+1, we get that

‖Hn+1‖1 + ‖Un+1‖1 ≤ ‖
(
ηn+1
N ‖1 + ‖un+1

N ‖1

)
+ (εn+1‖1 + ‖en+1‖1) ,

≤ 2M̂ + An+1,

≤ 2M̂ + C(n∗)∆t4 ≤ 3M̂,

independently of n∗ since ∆t is small, contradicting the maximal property of n∗.

Therefore, ‖Hn‖1 + ‖Un‖1 ≤ C for all 0 ≤ n ≤M and so,

max
0≤n≤M

(‖εn‖1 + ‖en‖1) = max
0≤n≤M

(‖ηnN −Hn‖1 + ‖unN − Un‖1) ≤ C∆t4.

Using this result along (4.65) lead us to conclude that, for the weakly disper-

sive Boussinesq system case I, it holds the estimate (4.152).

A similar idea can be applied to the others cases, with small modi�cations.

For example, to the case where H is of order 0, say a < 0, b > 0, c = 0, d = 0, we

obtain the ODE system given by

ηNt = f(ηN , uN),
uNt = g(ηN , uN),

(4.164)

for all t ∈ [0, T ]. The functions f̂ , ĝ : L2 → SN are given respectively by aB(f̂(v), χ) =

(v, χ
′
) and aD(ĝ(w), χ) = (w, χ

′
) for all χ in SN , with f : H1 × H2 → SN and

g : H1 × H1 → SN given respectively by f(v, w) = f̂(w) + f̂(vw) + af̂(w
′′
) and

g(v, w) = ĝ(v) + 1
2
ĝ(w2).

Observe that, since g is equal to g in the weakly case unless the term cĝ(v
′′
),

we can apply the same intermediate steps as before to the function g, disregarding
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the appropriate term. Moreover, Lemma 13 still can be applied, since ‖ĝ(v)‖ ≤
‖ĝ(v)‖1 ≤ C‖v‖, v ∈ L2.

Then, we conclude that for this case we have the following estimate

max
0≤n≤M

(‖η(tn)−Hn‖1 + ‖u(tn)− Un‖) ≤ C
(
∆t4 +N1−s) , (4.165)

for s ≥ 3.

Remark 8. There is another possibility in this case, which is a = 0, b = 0, c <

0, d > 0. In this case, we consider the same function g de�ned before, but we replace

the function f by the function f : H1×H1 → SN given by f(v, w) = f̂(w) + f̂(vw).

Then, we proceed in the same way that described before, and we get that

max
0≤n≤M

(‖η(tn)−Hn‖+ ‖u(tn)− Un‖1) ≤ C
(
∆t4 +N1−s) . (4.166)

In the case where H is of order 1, that is a = 0, b = 0, c = 0, d > 0, the idea

is similar to the idea for the case when H is of order 0, but we consider f and g

in the same time. After all the steps described, we obtain for this case an estimate

similar to (4.166).

When H is of order 2, that is a < 0, b = 0, c = 0, d > 0, we apply the same

ideas using f and g. For this case, we also obtain an estimate similar to (4.166).
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5 NUMERICAL EXPERIMENTS

In this chapter we present the results of several numerical experiments. First

of all, we do some runs in order to validate our code implemented in MATLAB,

and con�rm the stability prediction obtained in section 4.2. These experiments are

focused on the cases where the stability condition is given by ∆t ≤ C or ∆t ≤ CN−1,

because the corresponding fully discretizations are not sti� and we can achieve a

high accuracy at a low computational cost.

Second of all, we present numerical experiments showing two-way propagation

of waves, speci�cally the resolution into, and the interaction of, solitary waves. The

existence of such waves as solutions of nonlinear Boussinesq systems (3.31) should be

expected at least in the range where this system approximates the Euler equations.

5.1 Validation of the Code

In order to validate our code, we computed the cnoidal waves solutions of

the Bona-Smith system. A similar type of simulation was done in ANTONOPOU-

LOS; DOUGALIS; MITSOTAKIS (2010b) in order to test the accuracy of the fully

discrete Galerkin scheme developed there.

The existence of such solutions for the Boussinesq system (3.31) has been

studied in CHEN; CHEN; NGUYEN (2007). The general family of cnoidal wave
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solutions of (3.31) is η(ξ) = η0cn
2[λξ;m] and u(ξ) = Bη(ξ), where ξ = x− cst,

α = 8
3θ2−1

− 6, β = 4
3θ2−1

− 2, γ = 2θ2 − 4/3,

B2 = 2(b−c−2d)
b−a−2d

, cs = 2−B2

B
,

η0 = (3− 3B2 +
√

9 + 6(2A− 3)B2 + 9B4)/2B2,

κ =
√

9 + 6(2A− 3)B2 + 9B4/B2, λ = (βκ/6γ)1/2,

m = (η0/κ)1/2.

Applying a procedure similar to the one used in CHEN (1998), Antonopoulos

et al. derived in ANTONOPOULOS; DOUGALIS; MITSOTAKIS (2010b), exact

solitary waves solutions of Bona-Smith system, where the parameters a, b, c, d are

a = 0, c = (2− 3θ2)/3, b = d = (3θ2 − 1)/6, 2/3 ≤ θ2 ≤ 1.

They also carried out its computation through the Galerkin-�nite element

method with periodic splines and the RK4 method for discretizing in space and

time, respectively (see Fig. 2 of ANTONOPOULOS; DOUGALIS; MITSOTAKIS

(2010b)).

In Figure 5.1 we show the evolution of the η component of the numerical

solution for the nonlinear Bona-Smith system with θ2 = 9/11 using our fully discrete

numerical method, which is composed by the Fourier collocation and fourth order

RK methods. The Fourier collocation method was implemented in MATLAB using

the Fast Fourier Transform (FFT) routine. We consider the same input used in

ANTONOPOULOS; DOUGALIS; MITSOTAKIS (2010b) to run our simulation:

spatial mesh with 240 intervals and a timestep ∆t = 10−2, L = 1.82390 and A = 0.5.

In �gure 5.2 we show both the exact and the approximate solution generated

by our code. The approximation error in L2-norm at t = 100 is 9.3755× 10−5.
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Figure 5.1: Evolution of an η-cnoidal wave using ∆t = 10−2 and N = 240.
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Figure 5.2: Exact vs approximate η-cnoidal wave.

We also computed the traveling waves solutions of the Bona-Smith system. A

rigorous expression for this type of solution for this system and for several Boussinesq

systems was established by Chen in CHEN (1998). These waves are not solitary

waves, which for the Bona-Smith system were reported by Toland in TOLAND

(1981), but they can be used to test the accuracy of numerical computations. A
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similar type of simulation was done in PELONI; DOUGALIS (2001) in order to test

the accuracy of the fully discrete Fourier-Galerkin scheme developed there.

In order to show the accuracy of our numerical method, we used the traveling

wave solution for Bona-Smith given by

η(ξ) = A sinh2

(√
A

Cτ
ξ

)
, u(ξ) =

2

Cτ
(η(ξ) + 1) , (5.1)

where the velocity of the wave, Cτ , is such that |Cτ | ≥ 2, ξ = x − Cτ t and

A = 3(C2
τ − 4)/4.

The Table 5.1 show the computed temporal error between the exacts η and u

traveling wave solutions and the respective approximated solutions obtained by our

code for the nonlinear Bona-Smith system for successively smaller values of ∆t with

�xed N = 210 and A = 2.5 in (5.1) at the time t = 10. The period L was considered

large enough so that the initial wave could be considered practically periodic.

η u
∆t H1 error Conv. Rate L2 error Conv. Rate
5e-2 6.3305e-5 - 1.0675e-5 -
2.5e-2 3.5375e-6 4.17 5.9702e-7 4.16
1.25e-2 2.0755e-7 4.09 3.5063e-8 4.08
6.25e-3 1.2545e-8 4.04 2.1209e-9 4.04

Table 5.1: Bona-Smith system errors and temporal convergence rates.

We also show the computed errors between the exacts η and u traveling wave

solutions and the respective approximated solutions obtained by our code for the

nonlinear KdV-KdV system, i.e., system (3.31) with a = c = 1/6 and b = d = 0.
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In this case, we considered as initial conditions

η(ξ) =
1

10
sinh2

(
ξ√
10

)
− 16

30
,

u(ξ) =
1

5
√

2
sinh2

(
ξ√
10

)
,

(5.2)

where the velocity of the wave, Cτ =
16

15
√

2
, and ξ = x− Cτ t.

η u
∆t L2 error Conv. Rate L2 error Conv. Rate

2.5e-2 1.8339e-11 - 4.8930e-10 -
2e-2 7.5138e-12 3.99 2.0046e-10 3.99

1.25e-2 1.1554e-12 3.98 3.0786e-11 3.98
1e-2 4.9108e-12 3.83 1.3012e-12 3.85

Table 5.2: KdV-KdV system errors and temporal convergence rates.

Both tables 5.1 and 5.2 con�rm the theoretical temporal order of accuracy

expected for the RK4 method, as explained in section 4.3.2. Observe that the

space convergence is not veri�ed; the reason of this is that spectral methods are

exponentially accurate and we choose in both examples analytic initial conditions.

The numerical rate of convergence (fourth and �fth columns in tables 5.1 and

5.2) is determined by considering two di�erent computations for the same problem

at the same time t, with errors Ei and Ei+1 corresponding to time steps ∆ti and

∆ti+1, respectively. The rate corresponding to these data is calculated by

Rate =
log(Ei+1/Ei)

log(∆ti+1/∆ti)
, i = 1, . . . ,M − 1,

since N is considered large enough to ensure negligible spatial error.

It is also worth observe that the choice of norms for the error re�ects the

natural choices of pair of spaces in which the respective systems are linearly well-

posed.
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5.2 Numerical Stability of the Linear Problem

In this part, we show the numerical veri�cation of the stability condition for

the linear Boussinesq system with some particular choices of the parameters a, b, c, d,

more speci�cally the ones with ` = 0, 1, according to Table 4.1. All computations

were performed with L = 150, T = 70 and the number of elements of the spatial

mesh as a power of 2.

a = −7/30, b = 7/15,
a = b = c = d = 0

c = −2/5, d = 1/2
N ∆t Stability constant C ∆t Stability constant C
29 0.8060 1.37 0.5313 0.90
211 0.2102 1.43 0.1328 0.90
213 0.0523 1.42 0.0330 0.90
215 0.0130 1.41 0.0082 0.89

Table 5.3: Numerical stability constants.

a = −7/30, b = 7/15, a = 0, b = 0,
c = 0, d = 0 c = −2/5, d = 1/2

N ∆t Stability constant C ∆t Stability constant C
29 0.7273 1.24 0.5892 1.00
211 0.1879 1.28 0.1485 1.01
213 0.0468 1.27 0.0369 1.00
215 0.0116 1.26 0.0092 1.00

Table 5.4: Numerical stability constants.

In Tables 5.3 and 5.4, the second and fourth columns indicate the last ∆t

such the numerical solution was stable. The third and �fth columns indicates the

numerical stability constant C, which was calculated using that since ∆x = 2L/N ,

then C ' ∆t
∆x

for these four regions of parameters, according with Table 4.1. We use

as initial conditions for these simulations two Gaussian pulses, namely η0 = e−5x2

and u0 = −e−5x2 .
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In Table 5.5 we show the same veri�cation for two regions of parameters such

that the stability condition is of type ∆t ≤ C, according to Table 4.1. The input

values of the code in these cases are the same that the ones used for obtain the

Tables 5.3 and 5.4. In this case, the numerical stability constant C does not depend

on the variation of ∆x, as can be observed.

a = −7/30, b = 7/15, a = 0, b = 7/15,
c = 0, d = 1/2 c = 0, d = 0

N ∆t Stability constant C ∆t Stability constant C
29 2.8 2.8 2.0 2.0
211 2.8 2.8 1.9 1.9
213 2.8 2.8 1.9 1.9
215 2.8 2.8 1.9 1.9

Table 5.5: Numerical stability constants.

The criteria to determine the stability of the numerical approximation for

η is the following: we evaluate the L2-norm of the initial data, ‖η0‖L2(−L,L), and

compare with the same norm of the approximation at t = 70 obtained by the

numerical scheme, ‖η‖L2(−L,L). If

p =
‖η‖L2(−L,L)

‖η0‖L2(−L,L)

< C1,

where C1 is a constant slightly greater than 1, we consider the numerical solution

stable.

5.3 Numerical Stability of the Nonlinear Problem

In this section, we perform some stability tests for the nonlinear Boussinesq

system (3.31) assuming the system is weakly nonlinear. More speci�cally, we consi-

der the system
ηt + ux + α(uη)x + auxxx − bηxxt = 0,
ut + ηx + αuux + cηxxx − duxxt = 0,

(5.3)
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in which α is a small positive constant.

Figure 5.3 contains two η-waves, approximate solutions of the nonlinear sys-

tem (5.3) for di�erent choices of α. We run the code considering the parameters

a = −7/30, b = 7/15, c = −2/5, d = 1/2 and N = 213. The last ∆t such that

the numerical solution was stable in this case is ∆t = 0.052, as Table 5.3 suggests.

We can observe that the numerical solutions considering α = 10−1 and α = 0 are

slightly di�erent.

Observe that the later assumption leads to the linear system analyzed in

section 5.2. This results suggests that the stability of the numerical solution of the

weakly nonlinear system barely depends on α in this case.

x

-150 -100 -50 0 50 100 150

2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

, = 0

, = 10-1

Figure 5.3: Comparison of the nonlinear η solution in t = 70 for two values of α.

Figure 5.4 also contains two η-waves, approximate solutions of the nonlinear

system (5.3) for di�erent choices of α. But now, our aim is observe how the non

linearity a�ects the stability of the numerical solution for the regions of parameters

represented in Table 5.5. First of all, we run the code considering the parameters
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a = b = d = 0, b = 7/15 and N = 213. The last ∆t such that the numerical solution

was stable in this case is ∆t = 1.9, as Table 5.5 suggests, and we can observe that

the numerical solutions considering α = 10−3 and α = 0 are practically the same.
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Figure 5.4: Comparison of the nonlinear η solution in t = 70 for two values of α.

On the other hand, when we run the code considering the same input data

as before, i.e., the parameters a = b = d = 0, b = 7/15 and N = 213, but using

α = 10−1 in (5.3), there is a big change in the stability of the numerical solution.

This numerical fact can be observed in Table 5.6, by the variation of the parameter

p introduced in section 5.2, which is responsible to determine if a solution is stable

or not.

We observe in Table 5.6 that, if we consider ∆t = 1.7, the last ∆t producing a

stable solution for this case with N = 213, as we could expect by the right column of

Table 5.5, the value of p goes to in�nity. We tested smaller values for ∆t in this case,

in fact until ∆t = 10−2, but the solution remained unstable, with the parameter p
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N ∆t p
29 2.0 0.3756
211 1.7 0.3856
213 1.7 NaN (Not a Number)

Table 5.6: Numerical stability constants.

assuming large values.

Another interesting observation is that, when we run the code considering the

parameters a = −7/30, b = 7/15, c = 0 and d = 1/2, the stability of the numerical

solution when α = 1, which is equivalent to the nonlinear original system, does

not change. In other words, the left column of the Table 5.5 is maintained for the

nonlinear problem even with a slight change on their plots. This fact is illustrated

in Figure 5.5.
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Figure 5.5: Comparison of the nonlinear and linear η solution at t = 70.
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5.4 Solitary Waves

In this section, we present some numerical experiments showing two-way pro-

pagation of waves, more speci�cally, the resolution into, and interaction of, solitary

waves.

5.4.1 Two-way Propagation and Resolution property

By resolution into solitary waves we mean the following property: an arbi-

trary pro�le for the elevation η of large enough L2 norm, which means that the

norm of the initial wave must be at least equal to the norm of the solitary wave

of the same amplitude for the system considered, initially at rest, is resolved af-

ter some time, into one or more solitary waves, traveling without being subject to

further alterations, plus a dispersive tail. This property has been observed in one-

way propagation models, and it is also observed in our numerical experiments for

the nonlinear Boussinesq systems.

We illustrate this property performing two simulations. We take as initial

conditions a well localized wave form with zero initial velocity, i.e., u0 = 0. Figure

5.6 shows the two-way propagation generated by the classical Boussinesq system,

considering as initial condition the Gaussian pulse η0(x) = 0.5e−(x/3)2 , N = 256,

L = 50 and ∆t = 0.1. The result is plotted up to time t = 20.

We can observe in �gure 5.6 that the initial wave divides itself in two waves

with approximately half of the amplitude, traveling in opposite directions, plus two

dispersive tails each one of them.

We observe a similar behavior when we evolve a Gaussian pulse under the
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Figure 5.6: Two-way propagation of classical Boussinesq system.

action of the Bona-Smith system. Figure 5.7 shows the resulting propagating waves

in this case. We considered as initial condition η0(x) = 1.5e−(x/2)2 , N = 128, L = 150

and ∆t = 0.1.

Figure 5.7: Two-way propagation of Bona-Smith system.

Considering more closely the resolution property, we observe that the larger
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the norm of the initial pro�le η, the more solitary waves are resolved. However, the

relation between the initial norm and the number of solitary waves produced is not

known for Boussinesq systems in general. This question is partially settled for some

of the integrable one-way propagating models.

We give in the following, another example of resolution for the classical

Boussinesq system. Figure 5.8 shows the resolution of the Gaussian pulse η0(x) =

2e−(x/5)2 , considering u0 = 0, N = 512, L = 150 and ∆t = 0.025.
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Figure 5.8: Classical Boussinesq sytem, resolution of a Gaussian at t = 100.

All the numerical experiments performed in this section suggest that solitary

wave solutions of Boussinesq systems, in particular, the last considered systems,

although not known analytically, can be produced numerically. This is done in

BONA; CHEN (1998) for the particular BBM-BBM system. The proceeding deve-

loped there is the following: consider an initial pro�le resembling a solitary wave

with null initial velocity; let this pro�le evolve under the action of the considered

system; then, isolate numerically the leading pulse on one side by setting the re-

mainder of the solution equal to zero; the resulting wave is thus used as the new
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initial wave form.

Repeating this procedure, the authors were able to produce a clean pulse

which propagated with hardly any further change, which thus was taken as a good

approximation to an exact solitary wave solution.

In our case, the Fourier collocation method allows us to repeat this procedure

for other Boussinesq systems as well. In order to illustrate this process, we give an

example of the wave obtained by this procedure for the classical Boussinesq system.

In �gure 5.9, we show the generation of a solitary wave, numerically isolated

after the resolution experiment, using the procedure described before iterated twice.

We start with the Gaussian η0(x) = e−x
2
initially at rest, considering N = 1024,

L = 150, ∆t = 0.05 and t = 80. When two peaks, traveling to left and the right

side, respectively, separated from the remaining part of the solution, we choose the

left-traveling one and set the rest of the solution and of its velocity equal to zero.

This numerically isolated peak was thus used as the new initial wave η0, with u0

equal the velocity of the left-traveling pulse that we isolated, with sign reversed, so

that the wave propagates to the right.

Repeating this procedure one more time, the evolution that we obtained after

the second iteration did not produce a visibly appreciable oscillatory tail. Therefore,

we conclude that this pro�le is close to a solitary wave solution. Indeed, after

evolving up to t = 80, it had not changed its shape, and the oscillation produced is

roughly of the order of thickness of the line in the plot. The amplitude of the wave

evolved in this �gure is A0 = 0.2951 at t = 0, and A1 = 0.2950 at t = 80.
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Figure 5.9: Evolution of a numerical solitary wave solution for classical Boussinesq
system, from t = 0 to t = 80.

5.4.2 Interaction of Solitary Waves

In this section, we give an example of interaction of solitary waves. The

solitary waves we use are the ones produced numerically as explained in section

5.4.1. The interaction of two solitary waves traveling in oposite directions has been

studied in detail for the BBM-BBM system in BONA; CHEN (1998) as well.

We consider the interaction of two solitary waves of the classical Boussinesq

system with same amplitude and traveling in opposite directions.

In �gure 5.10, we show two classical Boussinesq solitary waves, numerically

isolated using the same initial data used in section 5.4.1. The two numerical solitary

waves are initially of amplitude A0 = 0.2950 and centered at x = ±92.5781.

In �gure 5.11, the waves are shown at t = 0, at the moment of interaction
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Figure 5.10: Two numerical solitary wave solutions for classical Boussinesq system
at t = 0, with amplitude A0 = 0.2950.

t = 80 and at t = 140 after they have interacted, and have recovered their original

shape. Figure 5.12 shows the initial and the �nal pro�le after the interaction; in this

�gure, we can observe the dispersive tail, as it is expected for this type of systems.

Finally, in Figure 5.13 we see a magni�cation of the same wave at t = 100.
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Figure 5.11: Solitary waves of Clasical Boussinesq system interating.
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Figure 5.12: Solitary waves of Clasical Boussinesq system interating.
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Figure 5.13: Magni�cation of the tail after the interaction at t = 100.
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6 CONCLUSIONS

We have studied the numerical stability of fully discrete scheme for a linear

Boussinesq systems. Section 4.2 provided the von Neumann analysis of the linear

model obtained from system (3.31).

This analysis allowed us to identify which regions of the parameters a, b, c, d

of the linear Boussinesq system were capable to generate numerical solutions more

e�ciently. E�ciency in the sense that even with a bigger time step ∆t, the stability

of the linear numerical solution was not lost.

In section 5.3 we have shown some nonlinear examples, concluding that the

region of stability expected for the linear problem was preserved if the system is

barely nonlinear, i.e., when the nonlinearity of the system is small and controllable.

The classi�cation of the type of stability condition given by Table 4.1 showed what

regions of parameters give rise to problems with smaller computational cost for the

numerical resolution. Moreover, the comments did in section 5.3 suggests that, even

the stability analysis was performed for the linear problem, we can expect something

similar under some conditions for the nonlinear problem.

The analysis and the examples provided in sections 5.2 and 5.3 suggest that

the previously knowledge of what regions of parameters gives rise to problems with

simpler numerical resolution can serve as guideline to study more complex problems

numerically.

In section 5.1 we checked the temporal order of convergence expected by the

application of the RK4 method. Moreover, we also performed the numerical study
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of solitary waves for these systems as an application of the numerical analysis. The

sections 5.4.1 and 5.4.2 suggest that we are capable to generate numerically solitary

waves for these systems and to study their interaction.
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