
	

Jesús Martín Talavera Portocarrero
	

	

	

	

	

RAMSES: REFERENCE ARCHITECTURE
OF A SELF-ADAPTIVE MIDDLEWARE FOR

WIRELESS SENSOR NETWORKS

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Rio	de	Janeiro	
2016	

TESE DE DOUTORADO

	
	

UNIVERSIDADE	FEDERAL	DO	RIO	DE	JANEIRO	
INSTITUTO	DE	MATEMÁTICA	

INSTITUTO	TÉRCIO	PACITTI	DE	APLICAÇÕES	E	PESQUISAS	COMPUTACIONAIS	
PROGRAMA	DE	PÓS-GRADUAÇÃO	EM	INFORMÁTICA	

	

	

	

	

	

	

Jesús Martín Talavera Portocarrero
	

	

	

	

	

	

	

RAMSES:	REFERENCE	ARCHITECTURE	OF	A	SELF-ADAPTIVE	

MIDDLEWARE	FOR	WIRELESS	SENSOR	NETWORKS	
	

	

Tese	de	Doutorado	apresentada	ao	Programa	de	
Pós-Graduação	 em	 Informática,	 Instituto	 de	
Matemática	 e	 Instituto	 Tércio	 Pacciti,	
Universidade	 Federal	 do	 Rio	 de	 Janeiro,	 como	
requisito	parcial	à	obtenção	do	título	de	Doutor	
em	Informática.	
	

	

	

	

	

Orientador:	Prof.	Flávia	Coimbra	Delicato,	DSc	

Co-orientador:	Prof.	Paulo	de	Figueiredo	Pires,	DSc	
	

	

	

	

	

	

	

	

	

	

Rio	de	Janeiro	
2016	 	

	
	

Jesús Martín Talavera Portocarrero
	

	

	

RAMSES:	REFERENCE	ARCHITECTURE	OF	A	SELF-

ADAPTIVE	MIDDLEWARE	FOR	WIRELESS	SENSOR	

NETWORKS	
	

	

Tese	de	Doutorado	apresentada	ao	Programa	de	
Pós-Graduação	 em	 Informática,	 Instituto	 de	
Matemática	 e	 Instituto	 Tércio	 Pacciti,	
Universidade	 Federal	 do	 Rio	 de	 Janeiro,	 como	
requisito	parcial	à	obtenção	do	título	de	Doutor	
em	Informática.	

	

	

Aprovada	em	30	de	março	de	2016.	

	

	

	

	

__	
Prof.	Flávia	Coimbra	Delicato,	Ph.	D,	UFRJ	

	
	
	

__	
Prof.	Paulo	de	Figueiredo	Pires,	Ph.	D,	UFRJ	

	
	
	

__	
Prof.	Luci	Pirmez,	Ph.	D,	UFRJ	

	
	
	

__	
Prof.	Markus	Endler,	Dr.	rer.	nat.,	PUC-Rio	

	
	
	

__	
Prof.	Elisa	Yumi	Nakagawa,	Ph.	D,	USP	

	
	

	
4	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

I	dedicate	it	to	my	parents	Lily	Portocarrero	and	Rufino	Talavera	

	
	

	
5	

Acknowledgment	

Firstly,	 I	 would	 like	 to	 express	my	 sincere	 gratitude	 to	my	 advisor	 Prof.	 Flávia	

Coimbra	Delicato	and	my	co-advisor	Prof.	Paulo	de	Figueiredo	Pires,	for	the	continuous	

support	 of	 my	 Ph.D.	 study	 and	 related	 research,	 for	 his	 patience,	 motivation,	 and	

immense	knowledge.	Their	guidance	helped	me	in	all	the	time	of	research	and	writing	

of	this	thesis.	I	could	not	have	imagined	having	better	mentors	for	my	Ph.D.	study.	

Besides	my	advisors,	I	would	like	to	thank	the	rest	of	my	thesis	committee:	Prof.	

Luci	 Primez,	 Prof.	Markus	 Endler,	 and	 Prof.	 Elisa	 Yumi	 Nakgawa,	 for	 their	 insightful	

comments	and	encouragement	to	improve	this	research.	

My	 sincere	 thanks	 also	 go	 to	 my	 friends	 and	 fellow	 UBICOMP	 labmates,	

Mohammadreza	 Iman,	 Bruno	 Costa,	 Thomaz	 Barros,	 Ricardo	 Caldeira,	 Jose	 Renato	

Silva,	 Wagner	 Lopez,	 Taniro	 Rodrigues,	 Marcelo	 Pitanga	 and	 Marcus	 Ravelo.	 Their	

support	helped	me	overcome	setbacks	on	my	Ph.D.	 research.	A	 special	 thanks	go	 to	

Jorge	Mauricio	Fernandes	and	his	family,	for	receiving	me	in	their	home	and	hearts,	I	

sincerely	appreciate	their	belief	in	me.	

This	 research	would	not	have	been	possible	without	 the	 financial	assistance	of	

CAPES	(Brazilian	Funding	Agency),	the	Federal	University	of	Rio	de	Janeiro	(UFRJ),	and	

the	 Department	 of	 PPGI	 at	 Federal	 University	 of	 Rio	 de	 Janeiro	 (Research	

Scholarships).	I	express	my	gratitude	to	those	agencies.	

Last	 but	 not	 the	 least,	 I	would	 like	 to	 thank	my	 family:	my	parents	 and	 to	my	

brothers	and	sister	for	supporting	me	spiritually	throughout	writing	this	thesis	and	my	

life	in	general.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

	
6	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 “The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from it”

- Mark Weiser	

	
	

	
7	

Abstract	
	

TALAVERA	PORTOCARRERO,	Jesús	Martín.	RAMSES:	Reference	Architecture	of	a	self-
adaptive	Middleware	for	Wireless	Sensor	Networks.	2016.	198.	Tese	(Doutorado	em	
Informática)	–	 Instituto	de	Matemática,	 Instituto	Tércio	Pacciti,	Universidade	Federal	
do	Rio	de	Janeiro,	Rio	de	Janeiro,	2016.	
	

Wireless	Sensor	Networks	 (WSN)	consist	of	networks	composed	of	tiny	devices	

equipped	with	sensing,	processing,	storage,	and	wireless	communication	capabilities.	

WSN	nodes	have	 limited	computing	 resources	and	are	usually	powered	by	batteries.	

Typically,	WSNs	were	designed	to	attend	requirements	of	a	unique	target	application	

usually	 of	 a	 single	 user,	who	was	 also	 the	 infrastructure	 owner.	 However,	 the	 rapid	

evolution	in	this	area	and	the	increasing	of	the	complexity	of	sensors	and	applications	

involved,	the	need	for	specific	middleware	platforms	for	these	networks	have	raised.	

Middleware	systems	developed	until	 today	 represent	useful	 instruments	 for	defining	

the	high-level	application	logic	and	dealing	with	heterogeneity	and	distribution	issues,	

but	 most	 of	 them	 do	 not	 provide	 an	 explicit	 way	 of	 describing	 the	 underlying	

autonomic	behavior.	In	this	perspective,	Autonomic	Computing	(AC)	is	presented	as	an	

attractive	 option	 to	 meet	 basic	 requirements	 in	 the	 WSN	 design.	 Autonomic	

computing	principles	can	be	applied	to	WSN	to	optimize	network	resources,	facilitate	

their	operations	in	the	vast	field	of	sensing	based	applications	and	providing	conditions	

for	 this	 type	 of	 network	 manage	 itself	 without	 involving	 human	 operators.	 The	

application	of	these	AC	principles	into	WSN	would	be	facilitated	by	the	development	of	

a	system	at	the	middleware	 level.	Thus,	 in	this	Ph.D.	thesis,	we	 introduce	RAMSES,	a	

reference	 architecture	 of	 a	 self-adaptive	middleware	 for	WSNs.	 RAMSES	 follows	 the	

autonomic	 computing	 model	 MAPE-K,	 for	 making	 decisions	 aiming	 to	 attend	 self-

adaptive	 WSN	 requirements.	 We	 present	 an	 implementation	 of	 this	 reference	

architecture	using	a	formal	Architecture	Description	Language	(pi-ADL).				

	

Keywords:	 Reference	Architecture,	Wireless	 Sensor	Network,	Autonomic	Computing,	
Middleware,	Pi-ADL	

	
	

	
8	

List	of	Figures	

Figure	1.	Components	of	sensor	nodes	..	24	

Figure	2.	Communication	architecture	of	Wireless	Sensor	Networks	24	

Figure	3.	Closed	feedback	control-loop	in	autonomic	systems	(IBM,	2005)	34	

Figure	4.	Role	of	stakeholder	and	contexts	for	RA	and	concrete	architectures.	Source:	

(Angelov	et	al.,	2008)	...	35	

Figure	5.	Relationship	between	reference	models,	architectural	patterns,	reference	

architectures,	and	concrete	architectures.	Source:	(Bass,	2012)	37	

Figure	6.	Main	elements	of	Pi-ADL.	Source:	(F.	Oquendo,	May,	2004)	43	

Figure	7.	Description	of	a	simple	pipeline	architecture	in	pi-ADL,	Source:	(F.	Oquendo,	

May,	2004)	..	45	

Figure	8.	Outline	Structure	of	ProSA-RA.	Source:	(Nakagawa	et	al.,	2014).	47	

Figure	9.	Self-healing	example.	Source:	(Fortino	et	al.,	Jan,	2012)	..	54	

Figure	10.	Policy	Structure.	Source:	(Qwasmi	&	Liscano,	Jan,	2012)	56	

Figure	11.	Self-adaptive	control	loop	distributed	in	three	levels	of	network	architecture

	...	57	

Figure	12.	Correlation	between	the	use	of	AC	properties	in	development	approaches61	

Figure	13.	Autonomic	Wireless	Sensor	Network	characteristics	...	65	

Figure	14.	Three	Layer	Architecture	Model	for	Self-Management	(Kramer	&	Magee,	

2007)	...	77	

Figure	15.	Broker	Pattern	(Avgeriou	&	Zdun,	2005)	...	78	

Figure	16.	Structure	of	service	components	(Puviani	et	al.,	2013)	..	79	

Figure	17.	Aspect	peer-to-peer	Architectural	Style	(Neti	&	Muller,	May,	2007)	79	

Figure	18.	Aggregator-escalator-peer	Architectural	Style	(Neti	&	Muller,	May,	

2007)	..	80	

Figure	19.	General	implementation	of	components	..	80	

Figure	20.	Top:	Hierarchical	control	pattern.	Bottom:	concrete	instance	of	the	pattern.	

Source:	(Lemos,	2013)	...	82	

Figure	21.	Top:	master/slave	pattern.	Bottom:	concrete	instance	of	the	pattern.	

Source:	(Lemos,	2013)	...	83	

Figure	22.	Mediator	pattern.	Source	(Amin	&	Hong,	2005)	...	84	

	
	

	
9	

Figure	23.	Data	Gathering	Pattern		(Cardei,	Fernandez,	Sahu,	&	Cardei,	2011)	85	

Figure	24.	RAModel:	Reference	model	for	reference	architectures	91	

Figure	25.	Conceptual	view	...	93	

Figure	26.	Layered	architecture	of	RAMSES	..	97	

Figure	27.	Module	View	of	RAMSES	..	102	

Figure	28.	MAPE-K	Decorator	Pattern	..	105	

Figure	29.	Network	Monitor	concerns	...	106	

Figure	30.	Network	Analyzer	concerns	..	107	

Figure	31.	Network	Planner	concerns	..	107	

Figure	32.	Network	Knowledge	Base	concerns	...	108	

Figure	33.	Sensor	Analyzer	concerns	..	109	

Figure	34.	Sensor	Planner	concerns	..	110	

Figure	35.	Sensor	Knowledge	Base	concerns	...	110	

Figure	36.	Pi-ADL	Specification	of	Sensor	Manager	...	114	

Figure	37.	RAMSES	Process	View	...	116	

Figure	38.	RAMSES	Deployment	View	..	120	

Figure	39.	Pi-ADL	Deployment	View	Specification	...	121	

Figure	40.	RAMSES	Instantiation	process	..	122	

Figure	41.	Abstraction	layers	of	SeNsIM	(Casola	et	al.,	July,	2009)	143	

Figure	42.	Sensor	Network	Reference	Architecture	(-.	ISO/IEC,	2014)	145	

Figure	43.	Reference	model	for	the	distributed	processing	middleware	of	e-SENSE	

(Gluhak	&	al.,	June,	2006)	...	146	

Figure	44.	ReMoSSA	reference	model.	Source:	(Cherif	et	al.,	2014)	148	

Figure	45.	Reference	model	for	DYNAMO.	Source:	(Cherif	et	al.,	2014)	149	

Figure	46.	Autonomic	computing	referece	architecture	(ACRA).	Source:	(IBM,	2005)151	

	
	

	
10	

List	of	Tables	

Table	1.	Selected	primary	studies	of	self-adaptive	WSN	..	52	

Table	2.	Summarization	of	primary	studies	relevant	data	...	59	

Table	3.	Selected	primary	studies	of	RA	for	WSN	..	67	

Table	4.	Decision	Technique	used	in	selected	primary	studies	of	RA/RM	for	WSN	68	

Table	5.	Architectural	design	decision	applied	in	primary	studies	of	RA/RM	for	WSN	..	70	

Table	6.	Selected	primary	studies	of	RA/RM	for	AS,	adapted	of	(F.	Affonso	et	al.,	2014)

	...	72	

Table	7.	Design	technique	vs.	knowledge	type	for	RA/RM	for	AS,	adapted	from	(F.	

Affonso	et	al.,	2014)	...	75	

Table	8.	Mapping	between	self-adaptive	system	concerns	for	WSN	and	RA	

requirements	..	87	

Table	9.	Conceptual	domain	...	94	

Table	10.	GML	Architectural	Requirements	..	98	

Table	11.	NML	Architectural	Requirements	..	99	

Table	12.	SML	Architectural	Requirements	...	99	

Table	13.	System	Services	View	..	100	

Table	14.	Correspondences	between	RAMSES	and	Contiki	..	130	

Table	15.	SAMSON	Evaluation	...	134	

Table	16.	SAMSON	Overhead	..	135	

Table	17.	Characteristics	of	self-adaptive	middleware	for	WSN	...	137	

Table	18.	Reference	Architectures	for	self-adaptive	WSNs	..	140	

Table	19.	RAModel	elements	defined	by	each	RA	...	142	

Table	20.	RAModel	group	of	elements	(E.	Nakagawa	et	al.,	2012)	173	

	

	

	
	

	
11	

List	of	Achronyms	

AC	 Autonomic	Computing	

ADL	 Architecture	Description	Language	

CBR	 Context-based	Reasoning	

DoS	 Denial	of	Service	

FCL	 Feedback	Control	Loop	

FERA	 Framework	for	Evaluation	of	Reference	Architectures	

FM	 Feature	Model	

GML	 Goal	Management	Layer	

ISO	 International	Organization	for	Standardization	

IT	 Information	Technology	

MA	 Mobile	agents	

MAPE-K	 Monitor,	Analyzer,	Planner,	Executing	and	Knowledge	Base	

MDD	 Model-Driven	Development	

MT/CG	 Model	transformation/Code	Generation	

NML	 Network	MAPE-K	Layer	

OMG	 Object	Management	Group	

PBR	 Policy-based	Reasoning	

QC	 Quality	Criteria	

QS	 Quality	of	Services	

RA	 Reference	Architecture	

RQ	 Research	Question	

SLR	 Systematic	Literature	Review	

SML	 Sensor	MAPE-K	Layer	

SNRA	 Sensor	Network	Reference	Architecture	

SPL	 Software	Product	Lines	

SysML	 Systems	Modeling	Language	

UML	 Unified	Modeling	Language	

WSN	 Wireless	Sensor	Network	

	

	
	

	
12	

Sumary	
CHAPTER	1:	 INTRODUCTION	...	14	

1.1	 CONTEXTUALIZATION	...	14	
1.2	 MOTIVATION	..	16	
1.3	 OBJECTIVES	..	18	
1.4	 CONTRIBUTIONS	...	20	
1.5	 ORGANIZATION	..	21	

CHAPTER	2:	 BACKGROUND	CONCEPTS	AND	TECHNOLOGIES	..	23	
2.1	 INITIAL	CONSIDERATIONS	..	23	
2.2	 WIRELESS	SENSOR	NETWORKS	...	23	

2.2.1	 Characteristics	of	Wireless	Sensor	Networks	...	25	
2.2.2	 Applications	of	Wireless	Sensor	Networks	..	26	
2.2.3	 Middleware	for	WSNs	..	27	

2.3	 AUTONOMIC	COMPUTING	..	31	
2.3.1	 Autonomic	Computing	Self-*	Properties	..	31	
2.3.2	 IBM	MAPE-K	Process	..	32	

2.4	 REFERENCE	ARCHITECTURES	...	35	
2.4.1	 Related	Concepts	...	36	
2.4.2	 Reference	Architecture	Classification	..	38	
2.4.3	 Reference	Architecture	Evaluation	...	39	
2.4.4	 Software	Architecture	Representation	..	40	

2.5	 FINAL	CONSIDERATIONS	..	46	

CHAPTER	3:	 RESEARCH	PROPOSAL	...	47	
3.1	 INITIAL	CONSIDERATIONS	..	47	
3.2	 PROSA-RA	...	47	
3.3	 STEP	RA-1:	INFORMATION	SOURCE	INVESTIGATION	..	49	

3.3.1	 Activity	A	–	Step	RA-1:	Self-adaptive	WSN	system	concerns	..	52	
3.3.2	 Activity	B	–	Step	RA-1:	Approaches	for	self-adaptation	in	WSN	55	
3.3.3	 Activity	C	–	Step	RA-1:	Reference	Architectures	for	WSN	and	AS	66	
3.3.4	 Activity	D	–	Step	RA-1:	Architectural	Styles/Patterns	...	75	

3.4	 STEP	RA-2:	ARCHITECTURAL	ANALYSIS	...	85	
3.4.1	 Activity	A	–	Step	RA-2:	Requirements	for	self-adaptation	in	WSN	85	
3.4.2	 Activity	B	–	Step	RA-2:	Self-Adaptive	WSN	System	Quality	Attributes	88	

	
	

	
13	

3.5	 STEP	RA-3:	ARCHITECTURAL	SYNTHESIS	...	90	
3.5.1	 Crosscutting	viewpoint:	...	92	
3.5.2	 Source	Code	Viewpoint	..	102	
3.5.3	 Runtime	Viewpoint	..	111	
3.5.4	 Deployment	Viewpoint	...	119	

3.6	 STEP	RA-4:	REFERENCE	ARCHITECTURE	EVALUATION	..	124	
3.7	 FINAL	CONSIDERATIONS	..	127	

CHAPTER	4:	 PROOF	OF	CONCEPT	–	SAMSON	...	128	
4.1	 INITIAL	CONSIDERATIONS	..	128	
4.2	 INSTANTIATION	PROCESS	..	129	
4.3	 EVALUATION	METHODOLOGY	...	131	

4.3.1	 Scenario	1:	Self-configuration:	..	132	
4.3.2	 Scenario	2:	Self-healing	(node	failure)	...	132	
4.3.3	 Scenario	3:	Self-healing	(cluster	head	failure).	...	133	
4.3.4	 Scenario	4:	Self-optimization:	..	133	

4.4	 ANALYSIS	..	133	
4.5	 RELATED	SELF-ADAPTIVE	MIDDLEWARE	INSTANCES	FOR	WSN	..	136	
4.6	 FINAL	CONSIDERATIONS	..	139	

CHAPTER	5:	 COMPARATIVE	ANALYSIS	..	140	
5.1	 INITIAL	CONSIDERATIONS	..	140	
5.2	 REQUIREMENTS	FOR	SELF-ADAPTATION	IN	WSN	..	141	
5.3	 ANALYSIS	OF	COMPLETENESS	..	142	
5.4	 FINAL	CONSIDERATIONS	..	152	

CHAPTER	6:	 CONCLUSION	...	153	
6.1	 REVISITING	THE	THESIS	CONTRIBUTION	..	153	
6.2	 LIMITATIONS	AND	FUTURE	WORK	..	156	
6.3	 LIST	OF	PUBLICATIONS	...	158	

REFERENCES	...	160	

APPENDIX	A:	RAMODEL	–	REFERENCE	MODEL	FOR	REFERENCE	ARCHITECTURES	173	

APPENDIX	B:	PI-ADL	SPECIFICATION	OF	RUNTIME	VIEW	...	175	

APPENDIX	C:	PI-ADL	SPECIFICATION	OF	DEPLOYMENT	VIEW	...	195	

	

	
	

	
14	

CHAPTER	1: Introduction	

1.1 Contextualization	

Wireless	 Sensor	 Networks	 (WSNs)	 consist	 of	 small	 devices	 connected	 through	

wireless	 links	 and	 equipped	 with	 sensing,	 processing,	 and	 storage	 capabilities.	 Each	

node	of	a	WSN	is	often	endowed	with	several	sensing	units,	which	are	able	to	perform	

measurements	 of	 physical	 variables,	 such	 as	 temperature,	 luminosity,	 humidity,	

vibration,	 among	 others	 (Potdar,	 Sharif,	 &	 Chang,	 2009).	 Sensor	 nodes	 have	 limited	

computing	resources	(such	as	RAM	and	processing	power)	and	are	usually	powered	by	

small	batteries;	thus,	energy	saving	is	a	key	issue	for	such	networks	in	order	to	provide	

a	 long	 operational	 lifetime	 and	 increase	 potential	 profits	 of	 the	 deployed	

infrastructure.	 WSN	 contain	 hundreds	 or	 thousands	 of	 sensor	 nodes.	 These	 sensor	

nodes	 operate	 collaboratively	 by	 extracting	 environmental	 data,	 performing	 same	

simple	 processing,	 and	 transmitting	 such	 data	 to	 one	 or	 more	 exit	 points	 of	 the	

network	(often	called	gateway)	to	be	analyzed	and	further	processed.	Gateways	act	as	

a	bridge	between	the	WSN	and	the	networks	and/or	external	systems.	

WSNs	are	typically	used	in	highly	dynamic,	sometimes	remote	and	even	hostile	

environments,	and	should	operate	with	minimal	human	intervention.	Therefore,	such	

networks	 should	 tolerate	 several	 types	of	 failures,	 such	as	 faulty	nodes	or	hardware	

physical	 malfunction	 (e.g.,	 failures	 in	 the	 sensor	 units	 or	 battery),	 lack	 of	 sensing	

coverage	 and	 radio	 connectivity,	 among	 others.	 Hence,	 WSNs	 should	 have	 self-

management	 capabilities	 to	 deal	with	 failures	 and	 unpredictable	 circumstances,	 and	

dynamically	 adapt	 to	 environment	 changes	 without	 human	 intervention	 and	 with	

minimum	disruption	of	the	provided	service	(Puccinelli	&	Haenggi,	2005).	

WSNs	 were	 usually	 designed	 to	 meet	 the	 requirements	 of	 a	 single	 target	

application.	 However,	 with	 the	 evolving	 of	 the	 field,	 there	 is	 a	 trend	 to	 share	 the	

sensing	data	produced	by	a	single	deployed	WSN	among	different	applications.	Such	

applications	 have	 different	 functional	 and	 non-functional	 (QoS)	 requirements	 that	

should	be	met	by	the	WSN.	Moreover,	the	applications	have	to	face	environments	in	

which	 operation	 conditions	 change	 very	 often,	 requiring	 that	 the	 system	 be	 able	 to	

	
	

	
15	

adapt	and	reconfigure	itself	according	to	these	dynamic	scenarios	while	satisfying	the	

application	requirements.		

Managing	the	dynamic	and	context-aware	adaptation	is	not	an	easy	task,	as	the	

nodes	in	a	WSN	can	be	heterogeneous,	having	different	manufacturers	and	operating	

systems,	 sensing	 devices,	 and	 communication	 constraints	 (Sohraby,	Minoli,	 &	 Znati,	

2007).	 In	 addition,	 most	 of	 current	 WSN	 applications	 use	 the	 same	 fixed	 software	

architecture	 for	each	node	 in	 the	network.	By	architecture	we	mean	a	set	of	 system	

components,	 the	 externally	 properties	 of	 those	 components	 and	 the	 relationship	

between	 them.	 For	 simple	 applications,	 the	 choice	 of	 a	 static	 software	 architecture	

might	not	be	a	problem.	However,	when	we	consider	more	complex	applications,	with	

dynamic	 requirements	 that	 may	 change	 at	 runtime,	 and	 assume	 the	 WSN	

infrastructure	 is	 shared	 by	 multiple	 applications,	 the	 need	 for	 a	 more	 advanced,	

dynamically	reconfigurable	architecture,	arises.	The	idea	behind	node	reconfigurability	

is	 that	 the	 network	 can	 adapt	 its	 functionality	 to	 the	 current	 situation	 (context),	 in	

order	to	reduce	the	use	of	 the	scarce	energy	and	memory	resources	of	nodes,	while	

maintaining	the	integrity	of	its	operation.		

All	 the	above-mentioned	characteristics	 require	 the	use	of	 specific	middleware	

systems	 to	WSN	 (Wang,	 Cao,	 Li,	 2008).	A	middleware	 is	 a	 layered	 software	 that	 lies	

between	 application	 code	 and	 the	 communication	 infrastructure	 providing,	 via	well-

defined	 interfaces,	 a	 set	 of	 services	 that	 may	 be	 configured	 to	 facilitate	 the	

development	 and	execution	of	 distributed	 applications	 in	 an	 efficient	way	 (Hadim	&	

Mohamed,	2006).	A	middleware	for	WSN	should	provide	generic	services	for	sensing-

based	applications.	Such	services	should	consider	the	application's	specific	needs,	the	

inherent	features	of	the	WSN	nodes	(such	as	the	limited	resources	of	energy,	memory	

and	 CPU)	 and	 the	 dynamic	 execution	 context.	 These	 services	 may	 also	 include	

mechanisms	to	formulate	complex	high-level	sensing	tasks,	communicate	these	tasks	

to	 the	WSN,	 coordinate	 the	nodes	 to	 collaboratively	perform	 the	 tasks,	merging	 the	

sensor	 readings	 of	 individual	 sensor	 nodes	 into	 a	 high-level	 result,	 and	 report	 the	

result	back	to	the	task	issuer	(in	a	timely	way	and	meeting	defined	QoS	requirements).	

	
	

	
16	

1.2 Motivation	

The	 authors	 in	 (Portocarrero	 et	 al.,	 2014)	 argued	 that	 middleware	 systems	

developed	 until	 today	 are	 valuable	 tools	 for	 aiding	 developers	 to	 build	 distributed	

applications	by	presenting	a	unified	interface,	and	for	dealing	with	heterogeneity	and	

distribution	 issues.	 However,	 the	majority	 of	WSN	middleware	 does	 not	 provide	 an	

explicit	way	for	defining	the	network	autonomic	behavior	from	an	architectural	point	

of	view.	Thus,	we	noticed	a	lack	of	well-defined	architecture	designs	that	fully	support	

the	 autonomy	 of	 sensor	 networking.	 In	 other	 words,	 although	WSNs	 are	 inherently	

dynamic	 and	 autonomous	 systems,	 there	 is	 still	 a	 lack	 of	 proposals	 for	 software	

architectures	and	middleware	platforms	 for	such	networks	 that	 recognize	autonomic	

behavior	as	a	first-class	citizen	and	provide	mechanisms	to	address	adaptation	as	basic	

building	blocks.	Such	identified	research	gap	may	come	from	the	fact	that	the	Software	

Engineering	 community	 perceives	 WSNs	 as	 too	 low-level	 (Picco,	 2010).	 However,	

WSNs	are	a	key	element	of	the	grand	vision	of	a	physical	world	augmented	by	a	myriad	

of	computing	devices	(such	as	envisaged	in	the	paradigms	of	Internet	of	Things,	Cyber-

Physical	 Systems,	 Ubiquitous	 computing,	 Ambient	 intelligence,	 etc.).	 As	 a	

consequence,	sooner	or	later,	as	one	of	the	enablers	of	this	vision,	WSNs	are	going	to	

become	mainstream	(Picco,	2010).		

According	 to	 (Salehie	 &	 Tahvildari,	 2009),	 Autonomic	 Computing	 (AC),	 also	

known	as	self-adaptive	computing,	is	a	capacity	of	an	infrastructure	for	adapting	itself	

according	 to	 policies	 and	 business	 goals.	 Autonomic	 computing	 tries	 to	 help	 IT	

professionals	 to	 focus	 in	 higher	 value	 tasks,	 turning	 technological	 work	 more	

intelligent,	with	rules	oriented	to	self-management.	These	rules,	also	known	as	self-*	

properties,	are	(IBM,	2005):	(i)	Self-Configuration,	denoting	the	ability	to	adapt	itself	to	

the	environment	changes	according	to	high-level	policies,	aligned	with	business	goals	

and	defined	by	system	administrators;	(ii)	Self-Healing,	the	ability	of	recovering	after	a	

system	 disturbance	 and	minimizing	 interruptions	 to	maintain	 the	 software	 available	

for	 the	 user,	 even	 in	 the	 presence	 of	 individual	 failure	 of	 components;	 (iii)	 Self-

Optimization,	 the	 system	 ability	 to	 improve	 its	 operation	 continuously	 and	 (iv)	 Self-

Protection,	the	ability	to	predict,	detect,	recognize	and	protect	from	malicious	attacks	

and	 unplanned	 cascade	 failures.	 Examples	 of	 self-adaptive	 systems	 are	 those	 that	

	
	

	
17	

optimize	 their	 performance	 under	 changing	 operating	 conditions,	 and	 systems	 that	

heal	themselves	when	certain	components	fail	(Lemos,	2013).	

A	 highlighted	 approach	 to	 develop	 autonomic	 systems	 is	 the	 autonomic	

computing	 architecture	 proposed	 by	 IBM	 (IBM,	 2005)	 that	 defines	 an	 abstract	

framework	for	self-managing	IT	systems.	In	this	framework,	an	autonomic	system	is	a	

collection	 of	 autonomic	 elements.	 Each	 element	 consists	 of	 an	 autonomic	manager	

and	 a	 managed	 resource.	 In	 the	 context	 of	WSN,	 an	 autonomic	 manager	 can	 be	 a	

middleware	 system	 and	 the	 sensor	 network	 represents	 the	managed	 resource.	 The	

autonomic	manager	 allows	adaptation	 through	 four	 activities:	monitoring,	 analyzing,	

planning	 and	 executing,	 with	 support	 from	 a	 knowledge	 base.	 In	 the	 monitoring	

activity,	elements	collect	 relevant	data	via	sensors	 to	 reflect	 the	current	state	of	 the	

system	 (the	 managed	 resource)	 and	 thus,	 grant	 it	 context	 awareness.	 In	 analyzing	

activity,	the	collected	data	are	analyzed	in	search	of	symptoms	relating	the	current	and	

desired	behaviors	 and	 a	diagnosis	 is	 performed	 to	decide	whether	 it	 is	 necessary	 to	

adapt	the	system	to	attend	the	previously	defined	goals.	In	planning	activity,	an	action	

plan	 with	 all	 the	 required	 adaptation	 actions	 is	 built	 in	 order	 to	 perform	 certain	

changes	in	the	target	system	and	to	reach	the	desired	state	of	the	managed	resource.	

In	execution	activity,	actuators	or	effectors	instrument	the	desired	adaptation	acts.		

Considering	 its	 goals,	 AC	 appears	 as	 an	 interesting	 option	 to	 meet	 basic	

requirements	in	WSN	design.	Autonomic	computing	principles	can	be	applied	to	WSN	

in	order	to	optimize	network	resources,	facilitate	the	network	operations	and	achieve	

the	 desired	 functionality	 in	 the	 wide	 field	 of	 sensing-based	 applications,	 providing	

conditions	 for	 this	 type	of	network	manage	 itself	without	 involving	human	operators	

(Portocarrero	 et	 al.,	 2014).	 In	 this	 context,	 we	 claim	 that	 the	 applying	 of	 these	 AC	

principles	 into	 WSN	 would	 be	 facilitated	 by	 the	 development	 of	 a	 system	 at	 the	

middleware	level.	So,	with	the	support	of	a	middleware	system	that	leverages	the	AC	

principles,	a	WSN	becomes	an	autonomous	WSN	by	design.		

In	 order	 to	 implement	 the	 AC	 principles	 thus	 allowing	 self-adaptation	 of	

software,	 feedback	 loops	 are	 required,	 with	 explicit	 functional	 elements	 and	

interactions	between	them	for	managing	the	dynamic	adaptation.	These	elements	are	

known	 as	 MAPE-K	 model	 (Monitor,	 Analyze,	 Plan,	 Execute	 and	 Knowledge	 Base).	

	
	

	
18	

Feedback	 control	 loops	 are	 considered	 a	 key	 issue	 in	 pursuing	 self-adaption	 for	 any	

system,	 because	 they	 support	 the	 four	 above-mentioned	 activities.	 They	 play	 an	

integral	role	in	adaptation	decisions.	Thus,	key	decisions	about	a	self-adaptive	system’s	

control	depend	on	the	structure	of	 the	system	and	the	complexity	of	 the	adaptation	

goals.	 The	 MAPE-K	 model	 provides	 conceptual	 guidelines	 about	 the	 autonomic	

systems	 conception;	 in	 practice,	 this	 reference	 model	 needs	 to	 be	 mapped	 to	 an	

implementable	 reference	 architecture	 for	 managing	 and	 controlling	 of	 autonomic	

systems,	such	as	WSNs.	While	a	reference	model	consists	 in	a	set	of	minimal	unified	

concepts,	axioms	and	relationship	of	a	particular	domain,	independently	illustrated	of	

specific	 patterns,	 technologies	 and	 other	 concrete	 concepts	 (MacKenzie,	 2006),	

reference	 architectures	 are	 defined	 as	 mapping	 of	 reference	 models	 into	 software	

elements	 that	 cooperatively	 implement	 functionalities	 defined	 by	 this	 model	 (Bass,	

2012).	 Thus,	 a	 reference	 architecture	 consists	 of	 software	 components	 and	 the	

relationship	between	them,	that	implements	functionalities	related	to	parts	defined	in	

the	respective	reference	model.	

PROBLEM:	Most	of	middleware	systems	for	WSN	does	not	provide	an	explicit	way	for	

defining	 the	 underlying	 autonomic	 behavior	 of	 WSNs.	 There	 is	 a	 lack	 of	 reference	

methods	for	modeling	the	dynamic	adaptation	in	WSNs.	

1.3 Objectives	

The	main	objective	of	this	work	is	to	propose	RAMSES,	a	Reference	Architecture	

(RA)	for	contributing	with	the	development	of	self-adaptive	WSN	middleware	systems.	

The	main	purpose	of	a	RA	is	to	facilitate	and	guide	(E.	Y.	Nakagawa,	F.	Oquendo,	&	M.	

Becker,	 2012)	 (i)	 the	 design	 of	 concrete	 architectures	 for	 new	 systems;	 (ii)	 the	

extensions	of	systems	of	neighbor	domains	of	a	RA	(iii)	the	evolution	of	systems	that	

were	 derived	 from	 the	 RA	 and	 (iv)	 the	 improvement	 in	 the	 standardization	 and	

interoperability	 of	 different	 systems.	 RAs	 play	 a	 dual	 role	 in	 relation	 to	 specific	

software	architectures,	 the	 first	 role	generalizes	and	extracts	 common	 functions	and	

configurations,	and	the	second	role	provides	a	base	for	instantiating	target	systems.	In	

other	words,	RAs	can	be	seen	as	a	repository	of	a	given	knowledge	area,	contributing	

towards	 software	 development,	 since	 the	 reuse	 of	 knowledge	 and	 improvements	 of	

	
	

	
19	

productivity	 are	 promoted.	 Thus,	 the	 proposed	 RA	 for	 a	 WSN	 middleware	 aims	 to	

satisfy	this	dual	role	in	the	WSN	domain.	

	

In	order	to	create	such	reference	architecture,	the	ProSA-RA	(Nakagawa,	Guessi,	

Maldonado,	Feitosa,	&	Oquendo,	2014)	process	was	used.	ProSA-RA	is	a	process	that	

systematizes	the	design,	representation,	and	evaluation	of	reference	architectures.	In	

short,	 four	 steps	 compose	 the	 ProSA-RA	 process.	 Firstly,	 information	 sources	 are	

selected	 and	 investigated	 (Step	 RA-1).	 Secondly,	 architectural	 requirements	 of	 the	

reference	 architecture	 are	 identified	 (Step	 RA-2),	 describing	 the	 common	

functionalities	 and	 configurations	 presented	 in	 systems	 of	 the	 target	 domain.	

Following,	the	architectural	description	of	the	architecture	is	built	(Step	RA-3)	and	its	

evaluation	is	conducted	(Step	RA-4).	

RAMSES	 is	 based	 on	 autonomic	 computing	 principles	 and	 describes	 the	

mechanisms	capable	of	managing	 the	autonomic	behavior	of	WSNs.	RAMSES	 follows	

the	autonomic	computing	model	(MAPE-K	(IBM,	2005))	proposed	by	IBM	and	maps	its	

elements	to	a	set	of	software	components	to	be	implemented	and	deployed	in	WSNs.	

We	used	a	formal	description	language	(pi-ADL	(F	Oquendo,	2004))	for	describing	the	

RAMSES	architecture.	Pi-ADL	describes	the	dynamic	software	architecture	of	RAMSES	

under	 structural	 and	 behavioral	 perspectives.	 A	 Pi-ADL	 specification	 enables	 to	

explicitly	 define	 the	 dynamic	 behavior	 of	WSN	 networks,	 a	 key	 issue	 in	 this	 type	 of	

systems.	

The	 main	 idea	 behind	 RAMSES	 design	 is	 to	 provide	 a	 common	 structure	 and	

guidelines	 for	 dealing	 with	 core	 aspects	 of	 developing	 and	 using	 self-adaptive	WSN	

middleware	 systems.	 One	 of	 the	 main	 benefits	 to	 be	 achieved	 is	 the	 use	 of	 the	

proposed	 RA	 for	 generating	 compliant	 architectures	 for	 specific,	 concrete	 WSN	

middleware.	In	order	to	support	such	generation,	as	part	of	this	work	we	also	propose	

the	 definition	 of	 a	 model-based	 instantiation	 process	 of	 RAMSES,	 responsible	 for	

translating	 the	 RA	 elements	 (specified	 using	 pi-ADL)	 into	 a	 concrete	 middleware	

instance	and	implementation.		

Designing	 WSN	 systems	 using	 a	 reference	 architecture	 is	 a	 task	 typically	

	
	

	
20	

performed	 by	 a	 software	 architect.	 Since	 such	 specialist	 often	 does	 not	 have	 the	

knowledge	on	computer	networks,	specifically	on	the	details	for	code	implementation	

in	WSN	platforms,	it	is	necessary	to	close	the	gap	between	the	reference	architecture	

specification	and	the	implementation	code.	In	this	context,	model-driven	development	

approaches	(MDA)	have	become	an	increasingly	important	solution	due	to	their	power	

of	mapping	 information	from	a	higher	abstraction	 level	 into	source	code	for	a	 target	

platform.	 Therefore,	 to	 enable	 the	 software	 architect	 to	 remain	 focused	 on	 his/her	

expertise	 field,	 we	 propose	 a	 model-driven	 architecture	 (MDA)	 solution,	 which	 is	 a	

particular	vision	of	MDD	proposed	by	OMG	(Object	Management	Group),	 to	support	

our	instantiation	process	by	automatically	generating	the	implementation	code	of	the	

middleware	instance	derived	from	RAMSES	specification.		

In	order	to	achieve	the	general	goal,	the	specific	objectives	of	this	PhD	thesis	are:	

• First.	 To	 establish	 a	 set	 of	 information	 sources	 that	 allows	 identifying	 processes,	

activities,	and	tasks	that	must	be	supported	by	self-adaptive	middleware	systems	

for	WSN.	

• Second.	To	establish	a	set	of	architectural	requirements	and	quality	attributes	for	

self-adaptive	middleware	systems	for	WSN.	

• Third.	 To	 design	 RAMSES	 for	 guiding	 future	 development	 of	 self-adaptive	

middleware	 systems	 for	 WSN,	 based	 on	 the	 identified	 user	 requirements	 and	

information	sources,	and	on	a	set	of	established	quality	attributes.	

• Fourth.	 To	 evaluate	 RAMSES,	 by	 conducting	 a	 proof	 of	 concept	 aiming	 to	

instantiate	 RAMSES	 into	 a	 concrete	 middleware	 for	 WSN,	 and	 by	 conducting	 a	

survey	with	 researchers	 and	 specialists	 in	 the	 fields	of	 software	architecture	and	

WSN,	in	order	to	know	about	the	viability	and	relevance	of	the	proposed	RA.	

1.4 Contributions	

The	main	contributions	of	this	work	are:		

• A	reference	architecture	(RA)	that	meets	the	efficiency	and	flexibility	requirements	

for	 self-adaptive	middleware	 systems	 for	WSNs,	 based	 on	 autonomic	 computing	

principles;	such	RA	was	designed	by	mapping	the	MAPE-K	model	proposed	by	IBM	

to	a	set	of	software	modules	encompassing	a	WSN	middleware.	

	
	

	
21	

• A	specification	of	the	reference	architecture	using	pi-ADL	Architecture	Description	

Language.	

• A	concrete	middleware	instance	built	from	the	reference	architecture.	

• The	 definition	 of	 the	 instantiation	 process	 of	 RAMSES	 to	 generate	 a	middleware	

instance	from	a	pi-ADL	architecture	specification.	

• A	 set	 of	model	 to	 text	 transformations	 (M2T)	 for	mapping	 RAMSES	 components	

(specified	 with	 pi-ADL)	 into	 C	 code	 for	 Contiki	 OS,	 a	 lightweight	 and	 flexible	

operating	system	for	tiny-networked	sensors,	with	support	for	dynamic	loading;		

• The	 complete	 implementation	 of	 the	 proposed	 adaptive	 mechanism,	 based	 on	

MAPE-K,	 for	 dynamically	 adapting	 the	 WSN	 behavior	 according	 to	 policies	 and	

application	 requirements,	 where	 components	 deployed	 on	 sensor	 nodes	 and	

gateways	 were	 defined	 to	 evaluate	 the	 middleware	 mechanisms	 for	 extending	

nodes	lifetime	and	for	reacting	to	contextual	changes.	

1.5 Organization	

This	PhD	thesis	is	organized	in	6	Chapters.		

Chapter	2	brings	an	overview	of	 the	background	 information	that	supports	 the	

topics	investigated	in	this	thesis.	Initially,	the	main	concepts	related	to	Wireless	Sensor	

Networks	are	discussed.	Then,	an	 introduction	to	autonomic	computing	and	 its	main	

properties	are	detailed.	The	Chapter	also	addresses	terminology	and	theory	associated	

with	 reference	 architectures,	 as	 well	 as	 methods	 for	 their	 evaluation	 and	

representation.	

Chapter	 3	 describes	 and	 conducts	 a	 methodology	 for	 building	 reference	

architectures	(ProSA-RA).	Four	steps	compose	ProSA-RA:	 in	the	first	step	we	describe	

related	 works	 and	 the	 main	 information	 sources	 to	 be	 used	 in	 the	 design	 of	 the	

proposed	 RA.	 In	 the	 second	 step,	 the	main	 requirements	 and	 quality	 attributes	 are	

identified.	 In	 the	 third	 step,	 we	 built	 our	 RA	 based	 on	 RAModel	 (Reference	

Architecture	Model),	and	the	outcome	of	the	architectural	description	comprises	a	set	

of	 architectural	 views.	 In	 the	 fourth	 step,	 we	 evaluate	 our	 RA	 by	 conducting	 FERA	

(Framework	for	Evaluation	of	Reference	Architecture).	

	
	

	
22	

Chapter	4	presents	 the	evaluation	of	an	 instance	of	 the	RA	 through	a	Proof	of	

Concept.	 We	 assess	 through	 a	 series	 of	 adaptation	 scenarios	 the	 execution	 of	 a	

RAMSES-based	middleware	 for	WSN,	named	SAMSON	 (Self-Adaptive	Middleware	 for	

wireless	SensOr	Networks).	

Chapter	 5	 presents	 a	 comparative	 analysis	 between	 RAMSES	 and	 related	

reference	architectures,	and	we	also	detail	an	evaluation	of	the	completeness	of	those	

RAs.	

Finally,	 Chapter	 6	 concludes	 this	 thesis,	 revisiting	 the	 achieved	 contributions,	

summarizing	 limitations,	 and	 presenting	 perspectives	 of	 future	 research.	 The	 list	 of	

publications	resulting	from	this	work	is	also	presented	in	this	Chapter.		 	

	
	

	
23	

CHAPTER	2: Background	Concepts	and	Technologies	

2.1 Initial	Considerations	

This	 chapter	 provides	 an	 overview	 of	 the	 subjects	 that	 underlie	 the	 research	

developed	 in	 this	 thesis.	 The	 organization	 of	 the	 chapter	 is	 as	 follows.	 Section	 2.2	

presents	 the	 Wireless	 Sensor	 Networks	 (WSNs),	 their	 characteristics	 and	 the	 main	

applications	and	middleware	systems.	Section	2.3	describes	the	Autonomic	Computing	

and	 the	MAPE-K	 process.	 Section	 2.4	 introduces	 to	 Reference	 Architecture	 concept,	

where	 its	 definition,	 classification,	 evaluation	 and	 representation	 methods	 are	

detailed.	

2.2 Wireless	Sensor	Networks	

Wireless	Sensor	Networks	(WSNs)	are	an	emerging	technology	that	promotes	an	

unprecedented	 functionality	 to	monitor,	orchestrate,	and	control	 the	physical	world.	

WSNs	consist	 in	a	huge	number	of	wireless	devices	 (sensor	nodes	or	simply	sensors)	

densely	distributed	 in	a	target	area.	Sensor	nodes	have	wireless	connectivity	and	are	

connected	to	a	network,	such	as	Internet.	They	are	typically	powered	by	batteries	and	

have	 limited	 communication	 and	 computing	 functions.	 Each	 node	may	 be	 equipped	

with	a	variety	of	sensory	modalities	such	as	temperature,	humidity,	acoustic,	seismic	

and	infrared.	

WSNs	can	operate	by	periods	of	time,	from	weeks	to	years,	in	an	autonomic	way.	

Basically,	 this	 depends	 on	 the	 amount	 of	 available	 energy	 for	 each	 node	 in	 the	

network.	 In	many	applications,	 the	sensor	nodes	cannot	be	easily	accessible	because	

of	 the	 location	 they	 are	 deployed	 on	 or	 due	 to	 the	 network	 scale.	 In	 both	 cases,	

network	maintenance	for	power	supply	becomes	impractical.	Frequently	replacing	the	

battery	of	sensors	would	waste	the	main	advantages	of	WSNs.	

WSNs	 are	 composed	 of	 sensor	 nodes	 and	 sink	 nodes	 (nodes	 to	 interface	with	

other	 networks).	 Sensor	 nodes	 are	 autonomic	 devices,	 equipped	with	 capabilities	 of	

sensing,	 computing	 and	 communication.	When	 they	 are	 deployed	 conforming	 an	 ad	

hoc	 network,	 they	 form	 the	 sensor	 networks.	 Nodes	 collect	 data	 via	 sensors;	 they	

	
	

	
24	

process	 it	 locally	 or	 coordinately	 among	 neighbors	 in	 order	 to	 send	 information	 to	

users	or,	in	general,	to	the	sink	nodes.	Essentially,	each	node	in	the	network	may	have	

different	 tasks:	 sensing	 of	 the	 environment,	 processing	 of	 information	 and	 tasks	

related	to	traffic	retransmission	in	a	multi-hop	way.	

The	 main	 components	 of	 a	 sensor	 node	 are:	 transceiver,	 memory,	 processor,	

sensor	and	battery.	The	downsizing	of	a	sensor	 implies	the	reduction	 in	capacity	and	

size	 of	 its	 components.	 Therefore,	 a	 sensor	 is	 a	 device	 that	 produces	 a	measurable	

response	 for	 a	 change	 in	 a	 physical	 condition.	 In	 addition,	 the	 node	 of	 the	 network	

presents	 resources	 of	 processing,	 storing	 of	 information,	 source	 of	 energy	 and	

communication	interface.	Figure	1	depicts	the	basic	hardware	of	a	sensor	node.	

	

Figure	1.	Components	of	sensor	nodes	

Network	 communication	 with	 other	 networks	 occurs	 through	 sinks	 nodes.	

Messages	 traverse	 the	network	 towards	a	gateway	 that	will	 route	 to	other	network,	

such	as	Internet.	Figure	2	depicts	the	communication	architecture	of	a	WSN.	

	

Figure	2.	Communication	architecture	of	Wireless	Sensor	Networks	

Transceiver	

Memory	

Sensor	

Processor	

Battery	

	
	

	
25	

2.2.1 Characteristics	of	Wireless	Sensor	Networks	

WSNs	have	special	characteristics	according	to	areas	 in	which	they	are	applied.	

This	 causes	 specific	 issues	 that	 have	 to	 be	 addressed	 by	 them.	 Some	 of	 these	

characteristics	 and	 issues	 discussed	 by	 (Loureiro,	 Gonzàlez,	 &	 Mini,	 2010)	 are	 as	

follows:	

• Addressing	 of	 Sensors	 or	 Nodes.	 Depending	 of	 application,	 each	 sensor	 can	 be	

uniquely	addressed	or	not.	For	instance,	sensors	embedded	on	an	assembly	line	or	

placed	on	the	human	body	must	be	uniquely	addressed,	if	it	is	necessary	to	know	

the	exact	local	where	data	is	collected,	but	sensors	monitoring	the	environment	in	

an	 external	 region	 may	 not	 need	 to	 be	 identified	 individually	 because	 the	

important	issue	is	to	know	the	value	of	a	given	variable	in	this	region.	

• Data	Aggregation.	This	 indicates	 the	ability	of	a	WSN	to	aggregate	or	summarize	

collected	data	by	sensors.	If	network	has	this	functionality,	it	is	possible	to	reduce	

the	amount	of	messages	transmitted	by	it.	

• Mobility	of	sensors.	This	indicates	if	sensors	are	able	to	move	according	to	a	given	

system.	For	 instance,	sensors	deployed	 in	a	 forest	aiming	to	collect	humidity	and	

temperature	 data	 are	 typically	 static.	 However,	 sensors	 deployed	 on	 the	 ocean	

surface	aiming	to	measure	the	level	of	water	pollution	are	mobile.	

• Restrictions	of	collected	data.	This	suggest	if	collected	data	by	sensors	have	some	

type	 of	 restriction,	 such	 as	 a	max	 time	 interval	 to	 disseminate	 their	 values	 to	 a	

given	supervision	entity.	

• Amount	 of	 sensors.	 WSNs	 composed	 of	 10	 to	 100	 thousand	 of	 sensors	 are	

indicated	for	environmental	applications	such	as	ocean/forest	monitoring.	

• Limitation	 of	 available	 energy.	 In	 many	 applications,	 sensors	 are	 deployed	 in	

remote	areas.	This	difficult	the	accessibility	to	these	elements	for	maintenance.	In	

this	scenario,	the	sensor	lifetime	depends	on	the	amount	of	available	energy.	

• Self-organization	of	network.	Due	to	physical	destruction	or	power	failure,	sensors	

in	 a	WSN	may	be	 lost.	 Also,	 due	 to	 trouble	 in	 communication	 channel	 or	 by	 the	

decision	 of	 a	 network	management	 algorithm,	 sensors	 can	 be	 isolated.	 This	 can	

happen	for	several	reasons,	for	instance,	to	save	energy	or	because	other	sensor	in	

the	same	region	is	already	collecting	the	desired	data.	

	
	

	
26	

• Collaborative	 task.	The	main	objective	of	WSNs	 is	 to	execute	some	collaborative	

task	where	it	is	important	to	detect	and	to	estimate	events	of	interest	and	not	only	

to	 provide	 communication	 mechanisms.	 Due	 to	 WSN	 restrictions,	 normally	 the	

data	is	fused	or	summarized	in	order	to	improve	the	performance	on	the	process	

of	event	detection.	

• Query	 response	 ability.	 Queries	 regarding	 to	 collecting	 information,	 in	 a	 given	

region,	can	be	submitted	to	an	 individual	node	or	group	of	nodes.	Depending	on	

aggregation	 mechanism,	 transmitting	 data	 through	 network	 towards	 sink	 node	

may	become	unviable.	Thus,	defining	more	sink	nodes	to	collect	data	from	a	given	

area	can	be	necessary.	That	would	bring	reply	queries	related	to	nodes	under	their	

competence.		

2.2.2 Applications	of	Wireless	Sensor	Networks	

Traditionally,	 sensor	 networks	 have	 been	 used	 in	 the	 context	 of	 high-end	

applications	such	as	biomedical	applications,	habitat	sensing,	and	seismic	monitoring.	

Existing	and	potential	applications	of	sensor	networks	include,	among	others,	military	

sensing,	 physical	 security,	 air	 traffic	 control,	 traffic	 surveillance,	 video	 surveillance,	

industrial	 and	 manufacturing	 automation,	 process	 control,	 inventory	 management,	

distributed	 robotics,	 weather	 sensing,	 environment	 monitoring,	 national	 border	

monitoring,	and	building	and	structures	monitoring	(Chong	&	Kumar,	Aug,	2003).	Some	

applications	for	WSN	are	listed	below:		

• Military	 applications.	 Monitoring	 inimical	 forces,	 monitoring	 friendly	 forces	 and	

equipment,	 military-theater	 or	 battlefield	 surveillance,	 targeting,	 battle	 damage	

assessment,	nuclear,	biological,	and	chemical	attack	detection.	

• Environmental	applications.		Microclimates,	forest	fire	detection,	flood	detection,	

precision	agriculture.	

• Health	 applications.	 Remote	 monitoring	 of	 physiological	 data,	 tracking	 and	

monitoring	 doctors	 and	 patients	 inside	 a	 hospital,	 drug	 administration,	 elderly	

assistance.	

• Home	 applications.	 Home	 automation,	 instrumented	 environment,	 automated	

meter	reading.	

	
	

	
27	

• Commercial	applications.	Environmental	control	 in	 industrial	and	office	buildings,	

inventory	control,	vehicle	tracking	and	detection,	traffic	flow	surveillance.	

Basically,	wherever	one	wants	 to	 instrument,	observe,	and	react	 to	events	and	

phenomena	 in	a	 specified	environment,	one	can	use	WSNs;	 the	environment	can	be	

the	physical	world,	a	biological	system,	or	an	IT	framework.	Also,	Wireless	sensors	can	

be	 used	 where	 wire	 line	 systems	 cannot	 be	 deployed,	 for	 instance,	 a	 dangerous	

location	 or	 an	 area	 that	 might	 be	 contaminated	 with	 toxins	 or	 be	 subject	 to	 high	

temperatures,	in	these	places	the	sensor	nodes	may	also	be	damaged.	

2.2.3 Middleware	for	WSNs	

According	to	(Blair,	2004),	middleware	is	a	software	artifact	residing	between	an	

application	and	operating	system,	providing	the	reuse	of	services	 through	 interfaces,	

by	easing	the	development	of	more	efficient	applications	for	distributed	environments	

such	 as	WSNs.	 The	main	 goal	 of	 a	middleware	 is	 enabling	 communication	 between	

distributed	 components,	 by	 hiding	 from	 applications	 the	 complexity	 of	 underlying	

network	 environment,	 releasing	 them	 for	 explicit	 manipulation	 of	 protocols	 and	

services	of	infrastructure.	

In	 (Macolo,	 Capra,	&	 Emmerich,	 2002)	 the	 authors	 present	 a	 reference	model	

classifying	middleware	systems	among	fixed	and	ad	hoc.	This	classification	takes	 into	

account	 three	 aspects:	 the	 type	 of	 computational	 load,	 paradigm	of	 communication	

and	the	context	representation.	

Middleware	 for	 traditional	 distributed	 systems	 are	 a	 category	 of	 fixed	

middleware,	 and	 they	 have	 some	 limitations	 that	 prevent	 their	 use	 in	WSNs.	 Those	

systems	 demand	 computational	 resources	 (computational	 overload),	 hide	 context	

information	 from	 applications	 as	 much	 as	 possible	 (transparency),	 and	 support	

synchronous	 communication	 between	 components.	 Synchronous	 communication	 is	

unsuitable	 for	 environments	with	many	disconnections.	WSN	have	 limited	 resources	

and	the	computational	 load	of	traditional	middleware	platforms	becomes	a	problem.	

Transparency	presented	in	traditional	middleware	platforms	is	not	always	appropriate	

for	WSN	applications;	they	need	some	information	about	executing	context	for	better	

adaptability	 (Macolo	et	al.,	2002).	 In	 this	context,	 it	 is	necessary	 the	conception	of	a	

	
	

	
28	

middleware	platform	specific	for	WSN.	

Middleware	 for	WSNs	are	a	 category	of	ad	hoc	middleware,	and	 they	must	be	

designed	for	attending	some	middleware	requirements	for	ad	hoc	networks.	The	main	

requirements	 include	 computational	 light	 load	 for	 supporting	 tiny	 devices,	 provide	

asynchronous	communication	for	controlling	troubles	caused	by	usual	disconnections	

and	 become	 context-aware	 applications.	 Thus,	 new	 type	 of	 middleware	 have	 been	

designed	and	developed	in	order	to	attend	several	types	of	WSN	applications	(Macolo	

et	al.,	2002).	

The	 main	 purpose	 of	 middleware	 for	 WSN	 is	 to	 support	 the	 development,	

maintenance,	 distribution	 and	 execution	 of	 sensing	 applications.	 This	 include	 some	

mechanisms	 for	 sensing,	 communication	 and	 coordination	 among	 sensor	 nodes	 for	

distributing	tasks,	aggregation/fusion	of	data	in	order	to	join	sensor	readings	in	a	high	

level	result	and	to	report	these	results	of	tasks	back	to	emitter	(Kay,	Kaste,	&	Mattern,	

2008).	

In	(Wang	et	al.,	May,	2008)	three	ways	for	supporting	application	developers	in	

order	 to	 build	 middleware	 systems	 specific	 for	 WSN	 are	 described.	 First,	 the	

middleware	may	provide	appropriate	abstractions	of	systems,	so	that	the	application	

programmer	 can	 focus	 on	 logic	 of	 application	 without	 worrying	 about	 low-level	

implementation	details.	 Second,	 the	middleware	may	provide	 the	 reuse	of	 code	and	

services,	so	application	programmers	can	distribute	and	execute	applications	without	

worrying	about	complex	and	tiresome	functions.	Third,	 the	middleware	may	support	

programmers	 on	 the	 management	 and	 adaption	 of	 the	 network	 infrastructure,	 by	

providing	 efficient	 resources	 of	 services,	 such	 as	 energy	 management,	 and	 support	

integration	of	systems,	monitoring	and	security.	

In	(Yu,	Krishnamachari,	&	Prasanna,	2004)	the	authors	propose	principles	to	be	

adopted	by	a	middleware	design	for	WSN:	

- The	middleware	must	provide	mechanism	based	on	data	for	the	processing	and	

consulting	of	data	inside	the	network;	

- Local	algorithms	must	be	used	to	achieve	a	desired	goal	while	providing	good	

scalability	and	robustness	to	system;	

	
	

	
29	

- Whereas	 traditional	 middleware	 platforms	 are	 designed	 to	 support	 a	 wide	

range	of	applications	on	network,	middleware	for	WSNs	cannot	be	generalized	

that	way,	due	to	available	limited	resources	

- Considering	that	the	availability	of	node	resources	is	low,	the	middleware	must	

be	light	in	terms	of	communication	and	processing	requirements;	

- Due	 to	 available	 limited	 resources	 (in	 terms	 of	 memory,	 communication,	

processing	 and	 energy),	 it	 is	 probable	 that	 resources	 of	 performance	 of	 all	

executing	 applications	 cannot	 be	 simultaneously	 satisfied.	 Therefore,	 it	 is	

necessary	 that	 the	middleware	 negotiates	 the	 quality	 of	 services	 (QoS)	 in	 an	

intelligent	way	among	several	applications.	

The	 design	 and	 development	 of	 middleware	 impose	 many	 challenges	 due	 to	

characteristics	of	WSNs,	for	instance,	resource	constraints,	availability	and	diversity	of	

sensor	 hardware.	 In	 (Molla	 &	 Ahamed,	 2006)	 a	 description	 of	 several	 challenges	

associated	to	middleware	for	WSNs	was	elaborated	as	follows:	

• Abstraction	 support.	WSNs	 consist	 in	 a	 huge	number	 of	 heterogeneous	 sensors.	

Sensors	 are	 developed	 with	 different	 hardware	 platforms.	 One	 of	 the	 main	

challenges	of	middleware	platforms	 for	WSNs	 is	 to	hide	the	underlying	hardware	

platform	in	order	to	offer	an	overview	of	network.	

• Fusion/Aggregation	of	 data.	Sensors	are	used	 to	 collect	data	 from	environment.	

Data	collection	from	several	sensors,	joining	data,	aggregating	data	and	presenting	

them	at	a	high	level	is	another	important	challenge.	

• Resource	 Constraints.	 A	 middleware	 for	 WSNs	 must	 be	 light	 for	 working	 over	

limited-resource	hardware.	

• Dynamic	 topology.	Due	 to	mobility,	 failure	 of	 nodes,	 and	 communication	 failure	

among	nodes.	

• Application	knowledge.	Network	optimizations	may	be	achieved	with	knowledge	

at	 the	 level	 of	 applications.	 For	 instance,	 characteristics	 of	 applications	 must	

influence	 both	 in	 network	 infrastructure	 and	 in	 used	 protocols.	 The	 application	

knowledge	may	 be	 availed	 by	 network	 in	 order	 to	 achieve	 a	 better	 efficiency	 in	

terms	of	energy	consumption.	Thus,	the	network	lifetime	is	extended.	

	
	

	
30	

• Adaptability.	 A	 middleware	 for	 WSNs	 must	 support	 algorithms	 with	 adaptive	

performance	to	deal	with	unexpected	events.	

• Scalability.	 In	terms	of	number	of	nodes	and	number	of	users	in	order	to	operate	

for	long	periods	of	time.	

• Security.	 Sensor	 nodes	 have	 to	 address	 security	 issues	 in	 data	 processing	 and	

communication.	Due	 to	 limited	 resources	and	computational	 low	power,	most	of	

existing	algorithms	and	security	models	are	not	suitable	for	WSNs.	

• QoS	support.	A	middleware	for	WSNs	must	tackle	many	QoS	 issues,	 for	 instance,	

response	time,	availability	and	bandwidth.	

Middleware	systems,	such	as	the	studies	presented	by	(Costa	et	al.,	2007;	F.	C.	

Delicato,	Pirmez,	Rust,	&	Pires,	2003;	Khedo	&	Subramanian,	2009;	T.	Liu	&	Martonosi,	

2003;	 Rahman,	 April,	 2009),	 represent	 good	 software	 instruments	 for	 defining	 the	

high-level	application	logic	and	to	deal	with	heterogeneity	and	distribution	issues,	but	

most	of	them	does	not	provide	an	explicit	way	for	defining	the	underlying	autonomic	

behavior	 of	 WSNs.	 Therefore,	 novel	 studies	 are	 presented	 in	 section	 3.3.1.	 These	

studies	 propose	 approaches	 aiming	 to	 provide	 adaptive	 mechanisms	 to	 the	

middleware	system.	

Existing	middleware	 platforms	 for	WSNs	 can	 be	 classified	 into	 four	 categories	

(Aslam,	2009)	i.e.	Traditional	or	Classic,	Data	Centric,	Virtual	Machines,	and	Adaptive.	

Classic	 middleware	 aims	 to	 encapsulate	 the	 complexity	 of	 the	 underlying	

communication	 and	 sensing	 system	 by	 providing	 interfaces	 to	 ease	 application	

development	for	WSNs.	However,	distributed	processing	across	multiple	nodes	is	not	

an	 inherent	 feature	 of	 this	 middleware	 category	 but	 needs	 to	 be	 included	 in	

applications.	Data	Centric	middleware	technology	enforces	the	concept	of	dealing	with	

sensor	as	data	sources	where	data	can	be	extracted	using	SQL	like	queries.	However,	

this	technology	only	allows	query-based	applications	and	therefore	limits	the	scope	of	

the	sensor	network.	Furthermore,	dynamic	retasking	of	the	WSNs	is	not	possible	with	

data	centric	middleware.	Virtual	machine	(VM)	based	middleware	abstracts	the	node	

or	 network	 into	 an	 execution	 layer	 that	 executes	 multiple	 instances	 of	 application	

programs	or	scripts.	VM	based	middleware	offers	great	flexibility	in	terms	of	the	range	

of	applications	 it	 supports	and	 the	ability	 to	 retask	 the	sensor	network	 in	a	dynamic	

	
	

	
31	

fashion.	However,	current	VMs	have	limited	memory	and	code	execution	performance	

for	 instruction	 sets.	 Finally,	 adaptive	middleware	 approaches	 use	 fidelity	 algorithms	

focusing	on	the	adaptability.	This	classification	of	middleware	provides	an	approach	for	

the	 reconfiguration	 of	 system	 running	 on	 sensor	 devices.	 This	 type	 of	 middleware	

platforms	has	specific	deficits	as	scalability,	QoS	 limitations,	resource	constraints	and	

lack	of	domain	knowledge.		

2.3 Autonomic	Computing	

Autonomic	Computing	refers	 to	the	self-managing	characteristics	of	distributed	

computing	 resources,	 adapting	 to	 unpredictable	 changes	 while	 hiding	 intrinsic	

complexity	to	operators	and	users.	 It	 is	 inspired	by	the	autonomic	nervous	system	of	

the	 human	 body.	 This	 nervous	 system	 controls	 important	 bodily	 functions	 (For	

instance,	 respiration,	 heart	 rate,	 and	 blood	 pressure)	 without	 any	 conscious	

intervention.	

In	a	self-managing	autonomic	system,	the	human	operator	takes	on	a	new	role:	

instead	of	controlling	 the	system	directly,	a	general	policies	and	 rules	 that	guide	 the	

self-management	process	are	defined.	For	this	process,	IBM	defined	the	following	four	

types	 of	 property	 referred	 to	 as	 self-*	 properties	 (IBM,	 2005).	 These	 properties	 are	

detailed	in	Section	2.3.1	and	Section	2.3.2	describes	the	adaptation	mechanism	based	

on	MAPE-K	model,	also	proposed	by	(IBM,	2005).	

2.3.1 Autonomic	Computing	Self-*	Properties	

• Self-Configuration.	 The	 ability	 to	 adapt	 itself	 to	 the	 environment	 changing	

according	to	high-level	policies	aligned	with	business	goals	and	defined	by	system	

administrators.	 Self-Configuration	 is	 not	 limited	 to	 the	 ability	 of	 a	 system	 for	

configuring	 each	 device	 singly,	 it	 is	 related	 to	 provide	 the	 ability	 to	 adjust	 the	

device	configuration	dynamically	(on-the-fly)	 in	a	global	way	for	the	well	being	of	

the	environment	as	a	whole.	

• Self-Healing.	 The	 ability	 to	 recover	 after	 a	 system	 disturbance	 and	 minimize	

interruptions	to	maintain	the	software	available	for	the	user,	even	in	the	presence	

of	 individual	 failure	of	 components.	 For	 that,	 the	 system	must	be	able	 to	 isolate	

	
	

	
32	

devices	or	malfunction	components	in	order	to	minimize	the	impact	in	services,	by	

continuously	 maximizing	 the	 availability	 and	 reliability	 of	 the	 managed	

environment.	 	

• Self-Optimization.	 The	 system	 ability	 to	 improve	 its	 operation	 continuously,	 by	

identifying	 new	 opportunities	 for	 performing	 same	 operations	 with	 better	

performance	or	minor	cost,	using	the	same	resources.	For	 that,	 it	 is	necessary	to	

identify,	 verify	 and	 perform	 changes	 in	 configuration	 to	 maximize	 the	 resource	

usage	without	human	intervention.		

• Self-Protection.	 The	 ability	 to	 predict,	 detect,	 recognize	 and	 protect	 itself	 from	

malicious	 attacks	 and	 unplanned	 cascade	 failures.	 For	 such,	 it	 is	 necessary	 to	

anticipate	 problems	 based	 on	 data	 correction	 and	 the	 study	 of	 previous	 states.	

Usually,	this	requirement	is	related	to	unauthorized	access,	denial-of-services	(DoS)	

or	failures	in	general.	

2.3.2 IBM	MAPE-K	Process	

Components	of	Autonomic	Computing	systems	are	derived	 from	the	original	 IBM	

MAPE-K	proposal	(Castañeda,	2012).	They	are	in	charge	of	the	adaptation	process.	This	

set	 of	 components	 process	 data	 information	 about	 the	 context	 into	 adaptation	

decisions	and	therefore	is	the	heart	of	this	reference	architecture.		

• Sensor.	 This	 component	 is	 the	 starting	 point	 of	 the	 MAPE-K	 loop	 and	 it	 is	

configured	to	make	measurements	about	the	context	with	the	purpose	of	sensing	

a	 specific	 variable	 of	 interest	 during	 runtime.	 A	 sensor	 acts	 as	 a	 watcher	 and	

interacts	with	the	monitor	component.	The	sensor	provides	a	representation	of	the	

target	 system’s	 state	 in	a	 specific	variable	of	 interest	and	other	external	 systems	

information,	in	the	form	of	context	entities	needed	for	the	adaptation	mechanism.		

• Monitor.	As	described	by	 IBM,	this	element	 is	 responsible	to	monitor	the	sensed	

context.	The	data	required	to	perform	this	monitoring	is	called	context	data	and	is	

provided	 by	 the	 Sensor	 component	 (IBM,	 2005).	 However,	 this	 context	 data	 is	

every	information	about	the	context	that	the	Sensor	Component	can	sense,	either	

because	 something	 happened	 in	 the	 context	 or	 because	 the	Monitor	 asked	 it	 to	

gather	information	in	a	specific	time.	Despite	this,	not	all	the	context	data	that	the	

	
	

	
33	

Sensor	 Component	 is	 providing	 are	 required	 to	 be	 monitored.	 	 The	 Monitor	 is	

responsible	for	filtering	all	that	context	data,	keeping	only	the	one	that	is	relevant.		

• Analyzer.	According	 to	 IBM	proposal	 (IBM,	2005),	 this	element	 is	 responsible	 for	

studying	the	Context	Event	Information	given	by	the	Monitor	in	order	to	evaluate	if	

the	 system	 objectives	 are	 being	 fulfilled.	 Moreover,	 the	 Analyzer	 has	 to	 decide	

whether	an	adaptation	is	required.	As	an	income,	context	events	are	received	from	

the	 monitor	 and	 then	 the	 Analyzer	 must	 evaluate	 them	 against	 the	 adaptation	

policies	configured	in	the	system.		

• Planner.	As	 described	 in	 the	 IBM	MAPE-K	 loop	 proposal,	 the	 Planner	 element	 is	

responsible	for	building	a	plan	with	all	 the	adaptation	actions	needed	to	perform	

certain	 changes	 in	 the	 target	 system,	 reaching	 the	 desired	 state	 of	 the	 context	

entity	provided	by	the	Analyzer	in	the	diagnosis	(IBM,	2005).	To	build	this	plan,	the	

Planner	 must	 follow	 some	 Adaptation	 Policies	 provided	 by	 the	 Knowledge	 Base	

Component.		

• Executer.	This	is	the	last	element	in	the	IBM	intelligent	Loop	and	is	responsible	for	

executing	 the	adaptation	plan	 (IBM,	2005).	This	component	 translates	every	step	

of	 the	 plan	 to	 commands	 and	 guarantees	 the	 correct	 execution	 over	 the	 target	

system.	 This	 component	 is	 connected	 to	 the	 Effector,	which	directly	 instruments	

the	target	system.		

• Effector.	 This	 element	 is	 the	 finishing	 point	 of	 the	MAPE-K	 loop	 interfacing	 the	

adaptation	 mechanism	 and	 the	 target	 system.	 The	 Effector	 component	 is	

configured	 to	 effect	 the	 changes	 needed	 to	 alter	 the	 target	 system’s	 behavior	

according	 to	 the	adaptation	needs.	The	Effector	can	either	modify	parameters	of	

system	 operations	 or	 execute	 operations.	 This	 component	 is	 connected	 to	 the	

Executor	 component	 and	 receives	 the	 commands	 to	 execute	 over	 the	 target	

system	from	it.		

• Knowledge	Base.	 In	 the	 IBM’s	proposal,	 the	Knowledge	element	 is	 connected	 to	

each	of	 the	 four	 components	 in	 the	MAPE-K	 loop	 (IBM,	2005).	This	 component’s	

main	 purpose	 is	 the	 provisioning	 of	 adaptation	 policies	 for	 other	 components	 in	

the	 MAPE-K	 loop.	 The	 knowledge	 base	 can	 be	 used	 to	 manage	 the	 historical	

behavior	of	this	adaptation	mechanism	during	time.		

	
	

	
34	

In	order	to	implement	MAPE-K	components	allowing	self-adaptation	of	software,	

feedback	 loops	 are	 required	 with	 explicit	 functional	 elements	 and	 interactions	

between	 them	 for	 managing	 the	 dynamic	 adaptation.	 The	 Feedback	 control	 loop	

approach	 is	considered	essential	 for	understanding	not	only	the	model	of	adaptation	

and	 collaboration,	 but	 also	 the	 types	 of	 adaptive	 systems.	 It	 can	 be	 considered	 the	

most	dynamic	adaptive	approach	(Castañeda,	2012).		

The	MAPE-K	model	described	 in	Figure	3	provides	 conceptual	guidelines	about	

the	 autonomic	 systems	 conception;	 in	 practice,	 this	 information	model	 needs	 to	 be	

mapped	 to	 an	 implementable	 architecture	 for	 managing	 and	 controlling	 autonomic	

WSNs.		

	

Figure	3.	Closed	feedback	control-loop	in	autonomic	systems	(IBM,	2005)	

	

Feedback	control	 loops	are	considered	a	key	 issue	 in	pursuing	self-adaption	for	

any	system,	because	they	support	the	MAPE-K	activities.	They	play	an	integral	role	in	

adaptation	 decisions.	 Thus,	 key	 decisions	 about	 a	 self-adaptive	 system’s	 control	

depend	on	the	structure	of	the	system	and	the	complexity	of	the	adaptation	goals.		 	

	
	

	
35	

2.4 Reference	Architectures	

Reference	 architecture	 (RA)	 has	 emerged	 as	 an	 important	 area	 of	 research	 in	

software	 architecture.	 It	 is	 considered	 a	 blueprint	 of	 software	 development,	 since	 it	

guides	the	design	of	concrete	architectures	of	systems	for	a	given	application	domain	

(Angelov,	Trienekens,	&	Grefen,	2008;	G.	Muller,	2008;	E.	Nakagawa,	F.	Oquendo,	&	M.	

Becker,	2012).	 	Reference	architectures	can	directly	 impact	on	the	quality	and	design	

of	 a	 range	 of	 concrete	 architectures	 and	 software	 systems	 developed	 from	 them	

(Angelov,	Grefen,	&	Greefhorst,	2009).	Therefore,	 they	must	consider	business	 rules,	

architectural	 styles,	 best	 practices	 of	 software	 development,	 and	 software	 elements	

that	support	the	design	of	systems	of	the	application	domain.	

According	 to	 (G.	 Muller,	 2008),	 a	 RA	 can	 be	 used	 to	 facilitate	 the	 design	 of	

concrete	 architecture	 or	 as	 a	 standardization	 asset	 that	 supports	 interoperability	

among	systems	or	components	of	systems.	Figure	4	shows	how	the	same	RA	can	result	

in	 different	 concrete	 architectures,	 depending	 on	 the	 context	 and	 involved	

stakeholders.		

	

Figure	4.	Role	of	stakeholder	and	contexts	for	RA	and	concrete	architectures.	Source:	(Angelov	
et	al.,	2008)	

	
	
	
	

	
	

	
36	

2.4.1 Related	Concepts	

Sometimes	 the	 term	 reference	 architecture	 has	 been	 used	 interchanged	 with	

other	terms,	such	as	software	architecture,	reference	model,	product	line	architecture	

and	domain	specific	software	architecture.	Moreover,	other	concepts	as	architectural	

patterns,	 architectural	 styles,	 concrete	 architecture,	 and	 ontologies	 are	 somehow	

related	to	reference	architecture.		

• Software	 Architecture:	 it	 is	 defined	 as	 the	 structure	 or	 structures	 of	 the	 system	

which	 comprise	 software	 elements	 (e.g.,	 services,	 components,	 modules),	 the	

externally	visible	properties	of	those	elements	(i.e.,	behavior	of	each	element),	and	

the	relationships	among	them	(Bass,	2012).	In	this	context,	reference	architectures	

are	 a	 special	 type	 of	 software	 architecture	 that	 captures	 the	 essence	 of	 the	

architectures	of	a	set	of	software	systems	 in	a	given	domain	 (E.	Nakagawa	et	al.,	

2012).	

• Reference	model	(RM):	it	is	an	abstract	representation	of	the	elements	in	a	given	

domain	 of	 interest,	 the	 behavior	 of	 such	 elements,	 and	 the	 relationships	 among	

them	 (Bass,	 2012).	 The	 RM	mapped	 onto	 software	 elements	 (that	 cooperatively	

implement	the	functionality	defined	in	the	RM)	and	the	data	flow	between	them	is	

considered	 as	 a	 reference	 architecture.	 The	 mapping	 does	 not	 need	 to	 be	

performed	one	to	one.	

• Product	 Line	 Architecture	 (PLA):	 it	 is	 an	 abstract	 software	 architecture	 for	

describing	 elements	 of	 a	 family	 of	 similar	 products	 developed	 by	 the	 Software	

Product	Line	(SPL)	approach	(P.	Clements	&	Northrop,	2002).	RAs	are	generally	on	

a	higher	level	of	abstraction	compared	to	PLAs	(Nakagawa	et	al.,	2014).	

• Architectural	 patterns:	 it	 expresses	 fundamental	 structural	 organization	 schema	

for	 software	 systems.	 An	 architectural	 pattern	 describes	 a	 set	 of	 predefined	

subsystems,	 specifies	 their	 responsibilities,	 and	 includes	 rules	 and	 guidelines	 for	

the	 organization	 of	 relationships	 among	 them	 (Buschmann,	 Henney,	 &	 Schimdt,	

2007).	An	architectural	pattern	not	only	provides	the	structure	of	a	solution	for	a	

usual	problem	 in	software	design,	but	also	describes	 the	context	 in	which	such	a	

problem	may	occur	and	the	consequences	associated	with	the	pattern	adoption.	

• Architectural	 styles:	 it	 is	 a	 type	 of	 architectural	 pattern	 that	 defines	 a	 family	 of	

	
	

	
37	

systems	in	terms	of	a	pattern	of	structural	organization,	establishes	vocabulary	of	

components	 and	 connector	 types,	 and	 a	 set	 of	 constraints	 on	 how	 they	 can	 be	

combined	 (Eeles,	2008).	A	 style	 reduces	 the	 set	of	possible	 forms	and	 imposes	a	

certain	degree	of	uniformity	on	the	architecture.	

• Concrete	 architecture:	 it	 is	 the	 software	architecture	of	 a	 given	 software	 system	

tailored	for	a	particular	set	of	stakeholders	and	concerns.	Stakeholders	refer	to	any	

individual,	team	or	organization	that	is	interested	in	a	software	system	and	plays	a	

relevant	 role	 during	 its	 development	 process	 (ISO/IEC/IEEE,	 2011).	 Concern	 is	 an	

interest	 or	 need	 of	 one	 or	 more	 stakeholders	 on	 the	 software	 system	 under	

development	(ISO/IEC/IEEE,	2011).		

• Ontologies:	specifically	domain	ontologies	are	an	explicit	formal	representation	of	

knowledge	about	a	domain	of	application.	This	includes	types	of	entities	that	exist	

in	the	domain,	properties	of	those	entities,	relationships	among	entities,	processes	

and	events	that	happen	with	those	entities.		

Reference	 architectures	 (RAs)	 are	 created	 based	 on	 reference	 models	 (RMs),	

architectural	 patterns	 (Angelov,	 Grefen,	 &	 Greefhorst,	 April,	 2012).	 Architectural	

patterns	 can	 be	 used	 in	 the	 design	 of	 reference	 architectures	 for	 achieving	 desired	

architectural	qualities.	Figure	5	represents	the	relationship	between	reference	models,	

architectural	patterns	and	reference	architectures.		

	

Figure	5.	Relationship	between	reference	models,	architectural	patterns,	reference	

architectures,	and	concrete	architectures.	Source:	(Bass,	2012)	

	

Reference	 Architectures	 (RAs)	 are	 a	 special	 type	 of	 software	 architecture	 that	

has	 become	 an	 important	 element	 for	 the	 systematic	 reuse	 of	 architectural	

	
	

	
38	

knowledge.	 The	main	 purpose	 of	 RAs	 is	 to	 facilitate	 and	 guide	 (E.	 Nakagawa	 et	 al.,	

2012):		

(i) The	design	of	concrete	architectures	for	new	systems;		

(ii) The	systems	extensions	of	neighboring	domains	of	an	RA;		

(iii) The	systems	evolution	derived	from	an	RA;	and		

(iv) The	improvement	in	the	standardization	and	interoperability	of	different	

systems.		

A	reference	architecture	plays	a	dual	role	with	regard	to	specific	target	software	

architectures:	it	generalizes	and	extracts	common	functions	and	configurations;	and	it	

provides	a	base	for	instantiating	target	systems.	In	other	words,	they	can	be	seen	as	a	

knowledge	 repository	of	 a	 given	domain,	 contributing	 to	 the	 software	development,	

since	reuse	of	knowledge	and	improvement	in	the	productivity	are	promoted.	

2.4.2 Reference	Architecture	Classification	

Due	to	the	diversity	of	application	domains	and	 interests,	RAs	can	be	classified	

according	to	three	dimensions,	described	as	follows	(Angelov	et	al.,	2009,	April,	2012).	

• Context	Dimension:	RAs	can	be	designed	in	the	context	of	a	single	organization	or	

multiple	 organizations	 that	 share	 a	 common	 characteristic,	 such	 as	 geographical	

location	and	market	domain.	Different	type	of	organizations	are	usually	involved	in	

the	 establishment	 of	 these	 architectures.	 Besides,	 such	 architectures	 can	 be	

designed	 before	 any	 existing	 system	 (preliminary)	 or	 after	 accumulating	 the	

experience	from	the	development	of	several	systems	(i.e.,	classical);	

• Goal	 Dimension:	 as	 stated	 by	 (G.	Muller,	 2008),	 RAs	 can	 be	 designed	 with	 two	

main	 goals:	 standardization	 and	 facilitation.	 RAs	 for	 standardization	 aim	 at	

improving	 interoperability	among	systems	by	promoting	unified	understanding	of	

the	 domain	 at	 the	 architectural	 level.	 RAs	 for	 facilitation	 aim	 at	 providing	

guidelines	for	development	of	concrete	architectures;	

• Design	 Dimension:	 RAs	 are	 represented	 by	 several	 types	 of	 elements,	 including	

components,	 interfaces,	 protocols,	 algorithms,	 policies,	 and	 guidelines.	 These	

elements	can	be	described	in	different	levels	of	detail,	formalism,	and	abstraction.	

	
	

	
39	

2.4.3 Reference	Architecture	Evaluation	

An	architecture	evaluation	helps	identifying	the	strong	and	weak	aspects	of	the	

architecture	 and	 gives	 an	 indication	 for	 the	 success	 of	 the	 system	development	 and	

implementation	processes.	A	reference	architecture	serves	as	a	guiding	tool	for	many	

projects	 taking	place	 in	diverse	contexts.	Thus,	 its	evaluation	prior	to	 its	adoption	by	

the	 stakeholders	 is	 of	 even	 greater	 importance.	 Furthermore,	 a	 strong	 positive	

evaluation	of	a	reference	architecture	is	an	incentive	for	its	wider	adoption.	

The	cost	 to	 fix	an	error	 found	during	 requirements	on	early	design	phases	 in	a	

system	development	 is	orders	of	magnitudes	 smaller	 to	 correct	 than	 the	 same	error	

found	during	 testing.	Software	architecture	 is	 the	product	of	 the	early	design	phase,	

and	 its	effect	on	 the	system	and	 the	project	 is	profound	 (P.	C.	Clements,	Kazman,	&	

Klein,	2002).	There	are	a	number	of	differences	between	reference	architectures	and	

concrete	architectures,	and	reference	architectures	are	considered	by	some	authors	as	

very	 distant	 from	 concrete	 architectures:	 "reference	 architectures	 are	 not	

architectures;	 they	 are	 useful	 concepts	 that	 capture	 elements	 of	 an	 architecture"	

(Angelov	 et	 al.,	 2008).	 The	 main	 difference	 between	 a	 concrete	 architecture	 and	 a	

reference	 architecture	 are:	 (i)	 Reference	 architectures	 are	 of	 a	 generic	 nature,	 (ii)	

There	is	not	a	clear	group	of	stakeholders	of	a	reference	architecture	(iii)	Due	to	their	

generic	nature,	reference	architectures	are	defined	on	a	high	level	of	abstraction,	and	

(iv)	 A	 reference	 architecture	 has	 to	 address	 more	 architectural	 qualities	 than	 a	

concrete	architecture	(Angelov	et	al.,	2008).	

The	 concrete	 architecture	 evaluation	 occurs	 when	 the	 architecture	 has	 been	

specified	but	before	implementation	has	begun.	Users	of	iterative	or	incremental	life-

cycle	models	 can	 evaluate	 the	 architectural	 decisions	made	 during	 the	most	 recent	

cycle.	However,	one	of	the	appealing	aspects	of	architecture	evaluation	 is	that	 it	can	

be	applied	at	 any	 stage	of	 an	architecture’s	 lifetime,	 there	 are	 two	useful	 variations	

from	the	concrete	architectures:	early	and	late	(P.	C.	Clements	et	al.,	2002).		

Early.	Evaluation	needs	not	to	wait	until	an	architecture	is	fully	specified.	It	can	

be	 used	 at	 any	 stage	 in	 the	 architecture	 creation	 process	 to	 examine	 those	

architectural	decisions	already	made	and	choose	among	architectural	options	that	are	

pending.	That	is,	it	is	equally	proficient	at	evaluating	architectural	decisions	that	have	

	
	

	
40	

already	been	made	and	those	that	are	being	considered.		

Late.	The	second	variation	takes	place	when	not	only	the	architecture	 is	nailed	

down	 but	 the	 implementation	 is	 complete	 as	 well.	 This	 case	 occurs	 when	 an	

organization	 inherits	 some	 sort	 of	 legacy	 system.	 The	 techniques	 for	 evaluating	 a	

legacy	architecture	are	the	same	as	those	for	one	that	is	newborn.		

An	 evaluation	 is	 a	 useful	 thing	 to	 do	 because	 it	 will	 help	 the	 new	 owners	

understand	the	legacy	system,	and	let	them	know	whether	the	system	can	be	counted	

on	 to	meet	 its	quality	 and	behavioral	 requirements.	 The	evaluation	will	 first	 identify	

what	the	areas	of	interest	are	and	then	highlight	the	strengths	and	weaknesses	of	each	

architecture	in	those	areas.		

Most	of	quality	attributes	lie	squarely	in	the	realm	of	architecture.	For	instance,	

the	ATAM	(Kazman,	Klein,	&	Clements,	2000),	a	type	of	Early	Evaluation,	concentrates	

on	 evaluating	 an	 architecture	 for	 suitability	 in	 terms	 of	 imbuing	 a	 system	 with	 the	

quality	attributes.	

As	 mentioned	 before,	 concrete	 and	 reference	 architectures	 have	 certain	

differences.	 These	 differences	 lead	 to	 a	 number	 of	 problems	 that	 do	 not	 allow	 the	

direct	application	of	methods	for	the	evaluation	of	concrete	architectures	in	the	case	

of	 reference	 architectures.	 For	 Samuil	 Angelov	 at	 el	 (Angelov	 et	 al.,	 2008),	 existing	

methods	 fall	 short	 in	 providing	 techniques	 for	 the	 evaluation	 of	 the	 architecture	

qualities	 of	 Reference	 Architectures.	 They	 show	 that	 existing	 methods	 on	 the	

evaluation	 of	 concrete	 architectures	 are	 not	 directly	 applicable	 for	 an	 evaluation	 of	

reference	architectures	and	present	an	adaptation	and	extension	of	ATAM	approach	to	

the	 Evaluation	 of	 Reference	 Architecture.	 These	 types	 of	 approaches	 are	 important	

initiatives	 in	 reference	 architecture	 evaluation	 once	 methods	 commonly	 used	 on	

concrete	 architecture	 evaluations	 cannot	 be	 directly	 applied	 in	 reference	

architectures;	mainly	they	have	differences	in	the	level	of	abstraction.	

2.4.4 Software	Architecture	Representation	

Most	software	architects	use	 informal	box	and	arrow	diagrams	 to	describe	 the	

interrelationship	between	the	various	components	abstracted	from	the	analysis	phase.	

But	unfortunately	 these	 line	 and	box	diagrams	are	highly	 ambiguous.	Also,	 software	

	
	

	
41	

architectures	 can	 be	 described	 according	 to	 the	 structural	 and	 the	 behavioral	

viewpoints.	 The	 structural	 viewpoint	 specifies	 components,	 connectors	 and	 the	

configurations	 of	 both.	 The	 behavioral	 viewpoint	 specifies	 the	 dynamism	 of	 the	

architecture,	 in	 other	 words,	 how	 its	 components	 and	 connectors	 can	 change	 at	

runtime.	 This	 dynamism	may	 be	 specified	 in	 terms	 of	 actions	 a	 system	 executes	 or	

participates	in,	relations	among	actions	and	behavior	of	components	and	connectors.	

Normally,	WSNs	are	deployed	in	dynamic	environments,	with	unexpected	changes	of	

the	 execution	 context,	 where	 a	 reconfiguration	 of	 nodes’	 behavior	 is	 needed,	

therefore,	the	choice	of	a	modeling	approach	that	supports	this	dynamism	can	aid	to	

implement	WSNs	systems.	

2.4.4.1 Software	modeling	approaches	

Over	the	last	decades,	different	proposals	emerged	for	software	modeling,	from	

which	 we	 can	 highlight	 two	 well-known	 approaches:	 (i)	 Architecture	 Description	

Languages	 (ADLs);	 (ii)	 OMG	 (Object	 Management	 Group)	 standard	 modeling	

languages,	 such	 as	UML	 (Unified	Modeling	 Language)	 and	 SysML	 (Systems	Modeling	

Language).	ADL	is	a	language	for	formally	representing	the	architecture	of	a	software	

system.	ADLs	provide	notations	 for	 representing	 and	analyzing	 architectural	 designs.	

According	 to	 (P.	 C.	 Clements,	March,	 1996)	 ADLs	must	 support	 creation,	 refinement	

and	 validation	 of	 architectures,	 must	 represent	 most	 of	 the	 common	 architectural	

styles,	must	 provide	 views	 of	 architectural	 information	 (such	 as	 Pipe	 and	 filters	 and	

Layered	 Systems),	 must	 express	 architectural	 information	 while	 being	 platform	

independent.	Different	ADLs	have	been	developed	in	the	academia	and	industry,	and	

they	 can	 be	 Semi-formal	 ADLs	 and	 Formal	 ADLs.	 Semi-Formal	 ADLs	 aim	 to	 support	

communication	 among	 stakeholders	 and	 provide	 visual	 notations.	 ACME	 (Garlan,	

Monroe,	&	Wile,	Nov,	1997),	xADL	(Dashofy,	van	der	Hoek,	&	Taylor,	August,	2001)	and	

Aesop	 (Garlan,	 Allen,	&	Ockerbloom,	December,	 1994)	 are	 examples	 of	 Semi-formal	

ADLs.	 In	 practice,	 UML	 2	 is	 a	 Semi-Formal	 ADL.	 This	 language	 provides	 a	 graphical	

representation	 of	 architectures,	 it	 is	 a	 general	 purpose	 modeling	 language	 and	

supports	 the	 description	 of	 components.	 UML	 2	 can	 describe	 ports	 and	 interfaces,	

component	 behavior	 as	 state	 machines;	 by	 using	 OCL	 to	 support	 component	

constraints	 and	 can	 describe	 classifiers	 and	 instances.	 	 Most	 of	 Semi-Formal	 ADLs	

	
	

	
42	

cannot	describe	architecture	behavior	and	does	not	 support	automated	analysis	and	

validation.	Formal	ADLs	aim	to	support	automatized	verification	of	properties	and	to	

provide	textual	notations	based	on	mathematical	principles.		

Most	 formal	ADLs	provide	 limited	 support	 for	dynamism.	Pi-ADL	 	 (F.	Oquendo,	

May,	 2004),	 detailed	 in	 Section	 2.4.4.2,	 supports	 full	 specification	 of	 dynamic	

architectures.	Other	examples	of	prominent	 formal	ADLs	 are	Dynamic	Wright	 (Allen,	

Douence,	&	Garlan,	1998)	and	LEDA	(Canal,	Pimentel,	&	Troya,	1999).	

Dynamic	 Wright	 is	 a	 formal	 ADL	 that	 allows	 describing	 the	 behavior	 and	

reconfiguration	 of	 a	 system	 by	 using	 a	 variant	 of	 the	 Communicating	 Sequential	

Processes	 (CSP).	 However,	 CSP	 is	 able	 to	 specify	 only	 static	 configurations,	 dynamic	

reconfigurations	 are	 not	 supported	 and	 have	 to	 be	 simulated.	 By	 adopting	 an	

exogenous	 approach,	 Dynamic	 Wright	 provides	 a	 special	 component	 in	 the	

architecture	responsible	for	centralizing	all	reconfiguration	operations	since	only	it	can	

modify	the	architecture.		

LEDA	is	a	formal	ADL	based	on	π-calculus.	It	is	structured	upon:	(i)	components,	

which	represent	system	modules	and	can	be	either	functional	elements	or	connectors;	

(ii)	 roles,	 which	 describe	 the	 observable	 behavior	 of	 components;	 and	 (iii)	

attachments,	 which	 define	 connections	 among	 component	 instances.	 The	 approach	

adopted	 in	 LEDA	 for	 dynamism	 is	 endogenous,	 decentralized,	 so	 that	 the	

reconfiguration	 operations	 are	 described	 along	 with	 the	 behavior	 specification	 of	

components.	However,	the	behavior	of	architectural	elements	 is	specified	by	directly	

using	 the	 operators	 defined	 in	 π-calculus.	 LEDA	 does	 not	 provide	 architectural	

abstractions	 over	 these	 constructs,	 thus	 making	 architecture	 descriptions	 more	

difficult.		

2.4.4.2 Pi-ADL	

Pi-ADL	(π-ADL)	was	designed	by	the	ArchWare	European	Project	(F.	Oquendo	et	

al.,	May,	2004).	This	language	enables	the	specification	of	static,	dynamic	and	mobile	

architectures.	Pi-ADL	(F.	Oquendo,	May,	2004)	is	a	well-founded	formal	language	also	

based	 on	 π-calculus.	 Pi-ADL	 focuses	 on	 the	 formal	 description	 of	 architectures	 from	

the	 runtime	 viewpoint:	 the	 structure,	 the	 behavior	 and	 how	 they	 may	 evolve	 over	

	
	

	
43	

time.	The	language	follows	the	principle	of	executability,	i.e.,	a	virtual	machine	can	run	

the	 specifications	 of	 the	 architecture.	 Pi-ADL	 allows	 description	 of	 software	

architecture	 in	 terms	 of	 components,	 architectures	 and	 their	 composition.	 Figure	 6	

shows	the	main	elements	of	the	pi-ADL	architecture.	

	

Figure	6.	Main	elements	of	Pi-ADL.	Source:	(F.	Oquendo,	May,	2004)	

A	description	of	the	elements	is	shown	below:	

• Components	 are	 described	 in	 terms	 of	 external	 ports	 and	 internal	 behavior,	

and	they	specify	the	computational	elements	of	a	software;	

• Ports	 are	 described	 in	 terms	 of	 connections	 between	 components	 and	 their	

environment.	They	put	together	connections	providing	an	interface	within	the	

component	and	its	environment;	

• Connections	 are	 interaction	 points.	 They	 provide	 communication	 channels	

between	the	architectural	elements.	A	component	can	send	or	receive	values	

via	connections.	They	can	be	declared	as	output	connections	(values	can	only	

be	 sent),	 input	 connections	 (values	 can	 only	 be	 received),	 or	 input-output	

connections	(values	can	be	sent	or	received).		

• Connectors	 are	 special-purpose	 components.	 They	 are	 described	 as	

components	in	terms	of	external	ports	and	an	internal	behavior.	However,	their	

architectural	role	is	to	connect	together	components.	They	specify	interactions	

among	components.	Therefore,	components	provide	the	locus	of	computation,	

while	 connectors	 manage	 interaction	 among	 components.	 A	 component	

	
	

	
44	

cannot	be	directly	connected	to	another	component.	 In	order	to	have	actual	

communication	 between	 two	 components,	 there	 must	 be	 a	 connector	

between	them.		

Figure	 7	 illustrates	 an	 example	 of	 Pi-ADL	 description	 for	 a	 simple	 pipeline	

architecture	 composed	 of	 two	 components	 (filters)	 linked	 through	 one	 connector	

(pipe)	(F.	Oquendo	et	al.,	May,	2004).	Filter	components	transform	data	received	from	

their	 input	 and	 send	 the	 transformed	 data	 to	 their	 output,	 while	 pipe	 connectors	

transmit	the	output	of	one	filter	to	the	input	of	another	filter.		

The	Filter	component	depicted	in	Figure	7-a	is	declared	with	two	connections:		

(i)	inFilter,	an	input	connection	for	receiving	data	to	be	processed,	and;		

(ii)	outFilter,	an	output	connection	for	sending	processed	data.		

The	 behavior	 of	 the	 Filter	 component	 encompasses	 the	 transform	 function,	

which	receives	data	from	the	inFilter	connection	and	returns	data	to	be	sent	through	

the	outFilter	connection.	In	such	an	architecture	description,	the	transform	function	is	

unobservable,	i.e.,	internal.		

Similarly,	 the	 Pipe	 connector	 depicted	 in	 Figure	 7-b	 is	 declared	 with	 two	

connections:		

(i)	an	input	connection	(inPipe)	that	receives	data	as	output	of	a	filter,	and;		

(ii)	an	output	connection	(outPipe)	that	sends	data	to	the	input	of	another	filter.		

Finally,	 the	 PipeFilter	 architecture	 depicted	 in	 Figure	 7-c	 is	 specified	 as	 a	

composition	in	which	two	filter	components	(F1	and	F2)	and	one	pipe	connector	(P1)	

are	 instantiated.	The	attachments	of	these	architectural	elements	take	place	through	

the	unification	of	the	output	connection	of	the	filter	F1	with	the	 input	connection	of	

the	pipe	P1,	and	the	unification	of	the	output	connection	of	the	pipe	P1	with	the	input	

connection	 of	 the	 filter	 F2.	 Therefore,	 data	 can	 be	 sent	 from	 filter	 F1	 to	 filter	 F2	

through	the	pipe	P1	via	the	declared	connections.		

	
	

	
45	

	

Figure	7.	Description	of	a	simple	pipeline	architecture	in	pi-ADL,	Source:	(F.	Oquendo,	May,	

2004)	

	
The	following	general	principles	guided	the	design	of	Pi-ADL:		

I. Formality:	Pi-ADL	is	a	formal	language:	it	provides	a	formal	system,	in	the	

mathematical	sense,	for	describing	dynamic	architectures	and	reasoning	

about	them;		

II. Runtime	 perspective:	 Pi-ADL	 focuses	 on	 the	 formal	 description	 of	

architectures	 from	 the	 runtime	 viewpoint:	 the	 (runtime)	 structure,	 the	

(runtime)	behavior,	and	how	these	may	evolve	over	time;		

III. Executability:	 Pi-ADL	 is	 an	 executable	 language	 (a	 virtual	machine	 runs	

specifications	of	software	architectures).		

	
	

	
46	

2.5 Final	Considerations	

In	this	chapter	we	introduced	the	basic	concept	of	WSNs,	Autonomic	Computing,	

and	Reference	Architectures.		

Regarded	 to	 WSNs,	 we	 noticed	 a	 gap	 of	 middleware	 system	 to	 satisfy	 the	

requirements	of	special	features	of	wireless	sensor	networks	such	as	the	management	

of	limited	constraints	and	solutions	for	self-adaptation	(Portocarrero	et	al.,	2014).	The	

adaptation	 functions	 should	 facilitate	 provision	 of	 quality	 of	 service	 to	 applications	

while	using	the	limited	resources	of	WSNs	and	extending	their	lifetime.	Middleware	is	

an	approach	to	satisfy	adaptation.	Middleware	for	supporting	such	applications	would	

comprise	more	 functions,	 such	as	 fusion,	 the	ability	 to	dynamically	 change	 the	node	

behavior	 and	 operation	 mode,	 and	 effective	 adaptation	 between	 applications	 and	

sensor	nodes.	The	quality	of	middleware	for	WSN	not	only	depends	on	how	well	it	has	

been	designed	and	 implemented	 in	network	nodes	but	 also	on	how	well	 it	 can	deal	

with	problems	and	events	at	runtime	(F.	C.	Delicato	et	al.,	2003).	

Autonomic	 Computing	 is	 presented	 as	 an	 interesting	 option	 to	 meet	 basic	

requirements	 in	 WSNs	 design.	 Autonomic	 computing	 principles	 can	 be	 applied	 to	

WSNs	 in	order	to	optimize	network	resources,	 facilitate	their	operations	and	achieve	

desired	 functionality	 in	 the	 wide	 field	 of	 sensing-based	 applications,	 by	 providing	

conditions	 for	 this	 type	of	network	manage	 itself	without	 involving	human	operators	

(Portocarrero	et	al.,	2014).		 	

References	 architectures	 can	 be	 used	 to	 facilitate	 the	 design	 of	 concrete	

architecture	 for	 self-adaptive	 WSNs	 or	 as	 a	 standardization	 asset	 that	 supports	

interoperability	 among	 components	 of	WSNs	 applications.	 Hence,	 Pi-ADL	 provides	 a	

formal	 and	 theoretically	 well-founded	 language	 for	 describing	 dynamic	 software	

architectures	under	structural	and	behavioral	perspectives.	In	this	perspective,	our	RA,	

described	 in	 next	 Chapter,	was	 specified	 using	 Pi-ADL	 since	 this	 formal	 ADL	 has	 the	

ability	 for	 representing	 the	 dynamism	 of	 behavior	 of	 components.	 The	 highly	

changeable	environment	of	WSNs	has	Pi-ADL	as	a	suitable	candidate	for	representing	

the	Reference	Architecture	of	a	self-adaptive	WSNs.	

	

	
	

	
47	

CHAPTER	3: Research	Proposal	

3.1 Initial	Considerations	

In	 general,	RAs	have	been	built	using	an	ad-hoc	approach,	without	 following	a	

systematic	 process.	 However,	 systematizing	 their	 building	 will	 allow	 achieving	more	

effective	RAs	that	could	more	completely	attempt	their	purpose.	 In	this	context,	 it	 is	

possible	 to	 find	 several	 initiatives	 (Angelov	 et	 al.,	 April,	 2012;	 Bayer	 et	 al.,	 2004;	

Cloutier	et	al.,	2010)	oriented	to	provide	general	high-level	guidelines,	principles	and	

recommendations	to	build	RAs.	However,	(Nakagawa	et	al.,	2014)	proposes	ProSA-RA,	

a	process	for	the	building	of	RAs,	focusing	on	how	to	design,	represent,	and	evaluate	

such	architectures.		

In	this	perspective,	Section	3.2	details	the	ProSA-RA	process	and	the	remainder	

of	this	Chapter	aims	to	apply	ProSA-RA	for	building	the	proposed	RA.	

3.2 ProSA-RA	

The	conception	and	evaluation	of	RAMSES	were	based	on	ProSA-RA.	ProSA-RA	is	

a	 process	 that	 systematizes	 the	 design,	 representation,	 and	 evaluation	 of	 RAs.	 The	

outline	structure	of	ProSA-RA	is	illustrated	in	Figure	8.		

	

Figure	8.	Outline	Structure	of	ProSA-RA.	Source:	(Nakagawa	et	al.,	2014).	

	

	
	

	
48	

In	short,	four	steps	compose	this	process:	

• Step	 RA-1	 -	 Information	 Source	 Investigation.	 In	 this	 step,	 the	 main	

information	 sources	 to	 be	 used	 in	 the	 design	 of	 the	 RA	 are	 selected.	 These	

sources	must	provide	information	about	processes	and	activities	that	could	be	

supported	by	software	systems	of	the	target	domain.	Since	RAs	should	be	the	

basis	 for	 various	 software	 systems	 of	 a	 given	 domain,	 these	 sources	 must	

involve	a	more	comprehensive	knowledge	about	the	domain	if	compared	with	

information	sources	when	developing	the	architecture	of	a	specific	system.	The	

output	of	 this	 step	 is	 a	 set	 of	 information	 sources,	which	will	 be	used	 to	 get	

requirements	of	the	intended	RA	in	the	next	step.	

	

• Step	RA-2	 -	Architectural	 Analysis.	 Based	on	 the	 selected	 sources,	 the	 set	of	

requirements	of	software	systems	of	the	target	domain	is	identified	and,	based	

on	 these	 requirements,	 the	 set	 of	 requirements	 of	 the	 RA	 is	 then	 identified.	

After	that,	the	set	of	concepts	that	must	be	considered	in	the	RA	is	established.	

Domain	concepts	identified	in	this	task	will	be	further	used	as	an	input	to	build	

the	architectural	description	of	the	RA.	In	summary,	outputs	of	this	step	are	the	

requirements	of	the	RA.	

	

• Step	RA-3	-	Architectural	Synthesis.	In	this	step,	the	architectural	description	of	

the	RA	is	built	using	RAModel	(Reference	Architecture	Model)	as	a	framework	

(E.	 Nakagawa	 et	 al.,	 2012).	 RAModel	 provides	 information	 on	 possibly	 all	

elements	 (and	 their	 relationships)	 that	 could	 be	 contained	 in	 RAs,	

independently	 on	 application	 domains	 or	 purpose	 of	 such	 architectures.	 The	

outcome	 of	 this	 step	 is	 an	 architectural	 description	 composed	 of	 a	 set	 of	

architectural	views	and	additional	artifacts	of	the	RA.		

	

• Step	RA-4	-	Reference	Architecture	Evaluation.	RA	evaluation	refers	to	the	task	

of	checking	the	architectural	description	of	such	architecture	along	with	diverse	

stakeholders	intending	to	detect	defects	in	this	description.	For	this,	ProSA-RA	

uses	 a	 checklist-based	 inspection	 approach,	 named	 FERA	 (Framework	 for	

	
	

	
49	

Evaluation	 of	 Reference	Architectures)	 (J.	 	 Santos,	 Guessi,	 Galster,	 Feitosa,	&	

Nakagawa,	2013).		

Following,	we	describe	the	activities	and	methods	conducted	within	each	phase.	

In	 this	 perspective,	 Section	 3.3	 describes	 a	 set	 of	 activities	 of	 Step	 RA-1.	 The	

requirements	of	our	RA	and	quality	attributes	are	identified	in	Section	3.4	(Step	RA-2).	

In	 Section	 3.5,	 the	 activities	 of	 Step	 RA-3	 were	 conducted	 and	 Section	 3.6	 details	

activities	of	Step	RA-4.	

3.3 Step	RA-1:	Information	Source	Investigation	

In	order	to	attend	the	Step	RA-1	of	ProSA-RA,	a	set	of	 information	sources	was	

selected	that	allows	identifying	processes,	activities,	and	tasks	that	must	be	supported	

by	 self-adaptive	 middleware	 systems	 for	 WSNs.	 Thus,	 the	 following	 activities	 were	

conducted:	

A. Find	 out	 which	 interactions	 and	 behavior	 can	 be	 automated	 in	 WSN	

components,	 taking	 into	 account	 the	 hardware	 and	 software	 limitations	 of	

these	networks.		

B. Identify	 which	 development	 approaches	 of	 AC	 are	 used	 for	 designing	 WSN	

middleware	 system	 architectures	 that	 allow	 the	 self-management	 of	 the	

network.	

C. Identity	the	most	important	RAs	and	reference	models	in	WSN	and	autonomic	

computing	domains	that	could	serve	as	a	starting	point	for	our	RA.	

D. Identify	architectural	styles/patterns	that	are	commonly	found	in	the	software	

architectures	 of	 autonomic	 computing	 systems	 and	 wireless	 sensor	 network	

applications.	

In	 order	 to	 attend	 activities	 A	 and	 B	 of	 Step	 RA-1	 of	 ProSA-RA,	 we	 have	

conducted	 a	 systematic	 literature	 review	 (SLR)	 (Kitchenham	 &	 Charters,	 2007)	 to	

accomplish	a	methodological,	fair	analysis	about	the	researched	subject.	Thus,	Activity	

A	is	presented	in	Section	3.3.1	and	Activity	B	is	presented	in	Section	3.3.2.	In	order	to	

attend	activity	C,	in	Section	3.3.3	we	conduct	two	other	SLRs	that	allow	us	to	present	

related	works	that	describe	RAs	for	WSNs	and	for	autonomic	systems	(AS).	Finally,	 in	

	
	

	
50	

Section	3.3.4	architectural	styles/patterns	commonly	used	in	self-adaptive	systems	and	

WSN	applications	are	identified.	

In	recent	years,	SLRs	have	been	used	for	presenting	the	state	of	the	art	regarding	

a	subject	topic	in	a	comprehensive,	non-biased	way,	and	for	identifying	interesting	and	

important	 research	 opportunities	 for	 further	 investigations.	 Activities	 A	 and	 B	 have	

been	 carefully	 planned	 as	 a	 Systematic	 Literature	 Review	 based	 on	 a	 rigorous	

methodological	 framework	 previously	 introduced	by	 (Kitchenham	&	Charters,	 2007),	

which	provides	a	set	of	well-defined	steps	carried	out	in	accordance	with	a	predefined	

protocol.	 This	 rigorous	 methodology	 can	 be	 viewed	 as	 the	 main	 point	 that	

differentiates	a	systematic	procedure	from	a	simple,	traditional	literature	review	as	it	

seeks	to	avoid	the	maximum	of	bias	throughout	the	process,	thus	providing	scientific	

value	for	the	obtained	findings.		

SLRs	 are	 means	 of	 evaluating	 and	 interpreting	 available	 relevant	 research	 to	

particular	 research	 questions,	 topic	 area	 or	 phenomenon	of	 interest,	 thus	 aiming	 to	

present	a	 fair	evaluation	of	a	 research	 topic.	A	SLR	 is	 typically	divided	 in	 three	basic	

steps	(Kitchenham	&	Charters,	2007):		

(i)	Planning,	which	defines	the	research	questions	to	be	answered,	the	search	

strategy	 to	 be	 adopted,	 the	 selection	 criteria,	 and	 the	 data	 extraction	 and	

synthesis	 methods	 to	 be	 used,	 thus	 yielding	 a	 protocol	 that	 will	 guide	 the	

conduction	of	the	whole	process;		

(2)	 Conduction,	 in	 which	 the	 primary	 studies	 are	 identified,	 selected,	 and	

evaluated	according	to	the	previously	established	protocol,	and;		

(3)	Reporting	 (or	 Analysis),	which	 aggregates	 extracted	 information	 from	 the	

relevant	 primary	 studies	 considering	 the	 research	 questions	 and	 outlines	

conclusions	from	them.	

SLRs	 have	 been	 recently	 regarded	 as	 a	 useful	 way	 for	 dealing	 with	 research	

evidences,	 thus	 making	 it	 possible	 to	 systematically	 identify,	 select,	 analyze,	 and	

aggregate	 them	 for	providing	knowledge	about	a	given	 research	 topic.	 Furthermore,	

they	have	been	commonly	used	for	synthesizing	existing	work	from	the	literature	in	a	

comprehensive	 and	 non-biased	 way	 and	 for	 identifying	 research	 challenges	 and	

	
	

	
51	

opportunities	in	the	state	of	the	art	regarding	the	research	subject.	In	our	work,	a	SLR	

was	conducted	to	attend	activities	A	and	B	of	Step	RA-1	of	ProSA-RA	with	the	goals	of	

(i)	finding	out	which	interactions	and	behavior	can	be	automated	in	WSN	components	

and	(ii)	 identifying	which	development	approaches	of	AC	are	used	for	designing	WSN	

middleware	 system	architectures.	 Therefore,	 the	Planning	and	Conduction	phases	of	

the	performed	SLR	are	presented	in	(Portocarrero	et	al.,	2014).	We	defined	one	search	

string	to	seek	for	studies	related	to	activities	A	and	B.	The	general	form	of	the	search	

string	is	shown	below:	

Query	strings:	

TITLE-ABS-KEY	

(

(autonomic	OR	self-adaptive	OR	self-adapt	OR	self-adaptation	OR	self-adapted	OR	self-management	OR	

autonomous)	AND	

("wireless	sensor	network"	OR	"sensor	network"	OR	WSN	OR	WSAN	OR	"wireless	sensor	and	actuator	

network"	OR	"wireless	ad-hoc	network"	OR	"wireless	actuator	network")	AND	

("design	 project"	 OR	 "design	 model"	 OR	 "architecture"	 OR	 "architecture-based"	 OR	 framework	 OR	

middleware	OR	routing	OR	clustering	OR	"data	aggregation"	OR	"data	dissemination")	

)	

As	 the	 first	 and	 most	 critical	 step	 of	 the	 tasks	 performed	 in	 our	 systematic	

literature	 review,	 we	 translate	 the	 goals	 of	 activities	 A	 and	 B	 into	 two	 research	

questions	(RQ1	and	RQ2).	The	results	obtained	from	the	performed	SLR	are	presented	

in	the	reporting	phase	according	to	the	defined	research	questions.	They	were	used	to	

find	primary	studies	to	understand	and	summarize	evidences	about	the	application	of	

AC	 principles	 to	 WSN	 in	 order	 to	 optimize	 network	 resources.	 In	 this	 context,	 the	

following	research	questions	(RQ)	were	defined:	

	

RQ1	(Activity	A):	Which	interactions	and	behavior	should	be	automated	in	the	

components	of	WSNs?		

RQ2	(Activity	B):	Which	model/programming/design/developing	approach	can	

be	applied	to	provide	autonomic	behavior	to	middleware	systems	for	Wireless	

Sensor	Networks?		

	
	

	
52	

3.3.1 Activity	A	–	Step	RA-1:	Self-adaptive	WSN	system	concerns	

This	activity	is	related	to	what	can	be	automated	in	Wireless	Sensor	Networks	

(RQ1).	We	noticed	 that	most	 of	 the	 selected	 studies	 are	 interested	 in	 a	 lightweight,	

autonomic	behavior	for	WSNs	in	order	to:		

(i) Adapt	the	network	to	dynamic	environments	(for	instance,	node	energy	

depletion	and	arrival	of	new	applications)	and	unpredictable	events	(for	

instance,	node	and	link	failures);		

(ii) Save	energy,	extending	the	network	lifetime;	

(iii) Provide	network	scalability;	

(iv) Provide	reliability	of	sensing	data	and;		

(v) Provide	 independence	 between	 the	 management	 functions	 of	

applications	and	network	configuration.		

Selected	studies,	detailed	in		

Table	 1,	 addresses	 the	 aforementioned	 concerns	 by	 leveraging	 the	 self-*	

properties	of	AC	(self-configuration,	self-healing,	self-optimization	and	self-protection).	

Table	1.	Selected	primary	studies	of	self-adaptive	WSN	

ID	 Title	 Year	 Ref	

S1	 Design	of	 a	 generic	management	 system	 for	wireless	 sensor	
networks	

2014	 (Cao,	 Bellata,	 &	
Oliver,	Sep,	2014)	

S2	 Smart	 Policy	 Generating	 Mechanism	 for	 Policy	 Driven	 Self-
Management	in	Wireless	Sensor	Networks		

2013	 (S.,	Zeng,	&	Liu,	2013)	

S3	 A	QoS-Driven	Self-Adaptive	Architecture	For	Wireless	Sensor	
Networks	

2013	 (Jemal	 &	 Halima,	
June,	2013)	

S4	 Using	 Dynamic	 Software	 Variability	 to	 Manage	 Wireless	
Sensor	and	Actuator	Networks		

2013	 (Mouronte,	 Ortiz,	
Garcia,	 &	 Capilla,	
May,	2013)	

S5	 DISON:	 A	 Self-organizing	 Network	 Management	 Framework	
for	Wireless	Sensor	Networks		

2013	 (Minh,	 Bellalta,	 &	
Oliver,	2013)	

S6	 Autonomous	Configuration	of	Spatially	Aware	Sensor	Services	
in	Service	Oriented	WSNs		

2013	 (Shah	 &	 Szymanski,	
Mar,	2013)	

S7	 A	Novel	Wireless	 Sensor	 and	 Actor	 Network	 Framework	 for	
Autonomous	 Monitoring	 and	 Maintenance	 of	 Lifeline	
Infrastructures		

2012	 (Imran,	 Alnuem,	
Alsalih,	&	Younis,	Jun,	
2012)	

S8	 Constraint-based	 Self-adaptation	 of	 Wireless	 Sensor	
Networks		

2012	 (Gamez,	 Romero,	
Fuentes,	 Ruovoy,	 &	
Duchien,	2012)	

	
	

	
53	

	

Selected	 studies	 S1,	 S2,	 S4,	 S5,	 S12,	 S13,	 S16	 and	 S22,	 focus	 on	 proposing	

solutions	 to	 address	 the	 self-configuration	 property.	 Sensor	 nodes	 reconfigure	 and	

adapt	 their	 behaviors	 of	 communication	 and	 sensing	 by	 dynamically	 altering	

parameter	 values	 according	 to	 the	 changing	 conditions	 and	 states	 of	 the	 network.	

Some	 examples	 of	 network	 configuration	 adopted	 in	 S22	 are	 decreasing	 the	 node	

S9	 Framework	 for	 a	 Self-managed	 Wireless	 Sensor	 Cloud	 for	
Critical	Event	Management		

2012	 (Nair,	 Morrow,	 &	
Parr,	2012)	

S10	 Autonomous	Sensor	Network	Architecture	Model	 2012	 (Tóth	&	Vajda,	2012)	

S11	 Developing	Wireless	Sensor	Network	Applications	Based	on	a	
Function	Block	Programming	Abstraction	

2012	 (Kerasiotis,	
Koulamas,	 &	
Papadopoulos,	2012)	

S12	 Autonomous	 Sensor	 Networks	 for	 Process	 Monitoring	 and	
Automation		

2012	 (Balakrishnan	 &	
Hiremath,	Jan,	2012)	

S13	 An	Autonomic	Plane	for	Wireless	Body	Sensor	Networks		 2012	 (Fortino,	 Galzarano,	
&	Liotta,	Jan,	2012)	

S14	 Framework	 for	 distributed	 policy-based	 management	 in	
wireless	sensor	networks	to	support	autonomic	behavior		

2012	 (Qwasmi	 &	 Liscano,	
Jan,	2012)	

S15	 Autonomic	 Role	 and	 Mission	 Allocation	 Framework	 for	
Wireless	Sensor	Networks		

2011	 (Bourdenas,	 Tei,	
Honiden,	 &	 Sloman,	
Oct,	2011)	

S16	 Towards	 Aware,	 Adaptive	 and	 Autonomic	 Sensor-Actuator	
Networks		

2011	 (ElGammal	 &	
Eltoweissy,	 Oct,	
2011)	

S17	 Autonomic	 computing	 driven	 by	 feature	 models	 and	
architecture	in	FamiWare	

2011	 (Gamez,	 Fuentes,	 &	
Araguez,	2011)	

S18	 Autonomous	 Decentralized	 Mechanism	 of	 Structure	
Formation	Adapting	to	Network	Conditions		

2011	 (Takano,	 Aida,	
Murata,	&	Imase,	Jul,	
2011)	

S19	 Swarm	behavior	control	of	mobile	multi-robots	with	wireless	
sensor	networks		

2011	 (W.	 Li	 &	 Shen,	 Jul,	
2011)	

S20	 Middleware	 Support	 for	 a	 Self-Configurable	Wireless	 Sensor	
Network		

2011	 (Gotz,	 Rettberg,	 &	
Podolski,	Mar,	2011)	

S21	 Starfish:	 Policy	 Driven	 Self-Management	 in	 Wireless	 Sensor	
Networks		

2010	 (Bourdenas	 &	
Sloman,	2010)	

S22	 Autonomic	networking	in	wireless	sensor	networks	 2009	 (Garlan,	 Schmerl,	 &	
Cheng,	2009)	

S23	 Secure	Self-Adaptive	Framework	for	Distributed	Smart	Home	
Sensor	Network		

2009	 (Muraleedharan	 &	
Osadciw,	2009)	

S24	 Agilla:	 A	mobile	 agent	middleware	 for	 self-adaptive	wireless	
sensor	networks	

2009	 (Fok,	 Roman,	 &	 Lu,	
2009)	

S25	 A	 Survey	 on	 the	Applicability	 of	 Trust	Management	 Systems	
for	Wireless	Sensor	Networks		

2007	 (Fernandez-Gago,	
2007)	

	
	

	
54	

sensing	duty	cycle	 if	 the	monitored	phenomenon	has	no	significant	changes	during	a	

certain	 period	 of	 time;	 and	 reducing	 radio	 transmission	 power	 to	 shorten	 the	

communication	 range	 if	 the	 residual	 node	 energy	 has	 dropped	 to	 a	 critical	 level.	 S1	

adopted	 a	 context	model	where	 a	 context	 indicates	which	 information	 can	 result	 in	

reconfiguration	 actions.	 For	 instance,	 a	 reconfiguration	 action	 can	 be	 changing	 the	

transmit	 radio	power	or	 refusing	 to	perform	a	 requested	application	 task	 (for	 saving	

energy).	One	example	of	a	context	is	“The	remaining	battery	of	the	node	is	low”.	

S13,	S21,	S22,	S23,	S24	and	S25	address	the	self-healing	property.	This	property	

may	 be	 considered	 an	 essential	 characteristic	 that	 all	 sensor	 networks	 should	

incorporate	for	assuring	their	reliability	and	correctness.	Fault	tolerance	is	a	common	

feature	addressed	in	this	context.	For	example,	as	noted	by	S22,	to	lessen	the	impact	

of	 faulty	 nodes,	 sensor	 nodes	 surrounding	 the	 phenomenon	 area	 generally	 regroup	

among	 themselves	 in	 order	 to	 maintain	 the	 reliability	 and	 consistence	 of	 network	

connectivity	and	 sensing	coverage.	After	 the	 faulty	neighbor	 is	detected,	a	node	will	

choose	a	new	neighbor	to	route	its	sensing	data	to.		In	S13,	a	filtering	task	(Figure	9)	is	

interposed	between	the	sensing	and	the	processing	in	order	to	guarantee	the	quality	

of	 raw	 data	 and	 to	 avoid	 that	 a	 data	 corruption	 affects	 the	 entire	 application	

correctness.	

	
Figure	9.	Self-healing	example.	Source:	(Fortino	et	al.,	Jan,	2012)	

	

Regarding	 the	 self-optimization	 property,	 in	 order	 to	 extend	 the	 WSN	

operating	 lifetime,	data	 transmission	should	be	minimized	and	sensing	data	must	be	

processed	inside	the	nodes	as	much	as	possible	aiming	to	minimize	data	transmission,	

as	it	is	done	in	S2,	S3,	S4	S5,	S10,	S12,	S13.	For	example,	the	authors	in	S10	propose	a	

basic	 filtering	 process	 to	 recognize	 that	 there	 is	 unnecessary	 information	 in	 the	 raw	

sensor	data	able	to	attend	application	requirements.	Thus,	it	is	possible	to	reduce	the	

	
	

	
55	

number	 of	 transmitted	 data	 packets	 and	 consequently	 to	 reduce	 the	 total	 energy	

usage	at	sensor	nodes.		

Finally,	regarding	the	self-protection	property,	an	encryption	process	could	be	

conceived	 in	order	 to	encrypt	data	coming	 from	sensor	nodes,	 if	necessary.	For	S13,	

the	privacy	of	information	transmitted	in	a	sensor	network	is	one	of	the	most	priority	

goals	 regarding	 this	 AC	 property.	 In	 order	 to	 provide	 self-protection	 in	 WSN	

applications,	 the	authors	 in	S23	propose	a	secure	communication	method	applied	 to	

Smart	Homes.	This	method	 is	a	nature	 inspired	framework	based	on	mimicking	ant’s	

behavior.	The	protection	mechanism	depends	on	detecting	the	abnormal	behavior	 in	

the	network.	This	proposal	adopts	a	clustered	topology	and	the	protection	mechanism	

is	 located	 in	a	base	station.	All	 the	cluster	heads	send	their	data	directly	 to	the	base	

station.	The	operation	of	the	mechanism	is	similar	to	the	work	of	the	human	brain;	the	

brain	receives	data	from	the	whole	body	and	detects	abnormal	behavior.	

3.3.2 Activity	B	–	Step	RA-1:	Approaches	for	self-adaptation	in	WSN	

This	 activity	 is	 related	 to	 which	 development	 approaches	 can	 be	 applied	 to	

provide	autonomic	behavior	to	Wireless	Sensor	Networks	applications	(RQ2).	From	the	

analyzed	 studies,	 we	 have	 identified	 that	 selected	 studies	 use	 the	 following	

approaches:	 (i)	 policy-based	 reasoning	 approach;	 (ii)	 context-based	 reasoning	

approach;	(iii)	feedback	control	loops;	(iv)	mobile	agents	and;	(v)	model	transformation	

and	code	generation.	The	analysis	of	each	approach	is	shown	below.	

Studies	 S1,	 S2,	 S5,	 S6,	 S10,	 S14	 and	 S21	 rely	 on	policy-based	 reasoning	 (PBR)	

approaches.	As	 stated	 in	S14,	a	general	way	of	 implementing	autonomic	behavior	 in	

distributed	systems	is	through	the	use	of	policies.	A	policy	is	a	constraint	on	the	system	

behavior	that	can	be	expressed	by	using	natural	languages	or	mathematical	notations.	

Policy-based	 systems	 use	many	 existing	 expressive	 languages	 for	 specifying	 policies,	

but	due	to	resource	constraints,	they	are	not	appropriate	for	wireless	sensor	networks.	

Figure	10	depicts	a	policy	structure	specific	for	WSN	(S14).	Typically,	a	policy	in	WSN	is	

specified	 in	 terms	 of	 tasks	 to	 monitor	 events,	 verify	 conditions	 and	 trigger	 actions	

whenever	predefined	events	are	detected	by	the	monitoring	task.	

	
	

	
56	

	

Figure	10.	Policy	Structure.	Source:	(Qwasmi	&	Liscano,	Jan,	2012)	

In	Figure	10,	(i)	[ID]	Policy	ID	is	used	throughout	the	WSN	to	locate	any	particular	

policy.	 A	 policy	 identification	 consists	 of	 only	 two	 parts	 which	 are	 Event	 ID	 and	

Sequence	Number	of	policy	(SeqNo).	EventID	 is	2	byte	 long.	The	first	byte	represents	

the	event	category	such	as	(T,Temperature=1),	and	the	second	byte	is	an	hexadecimal	

number	representing	the	sequence	number	of	possible	events	in	the	sensor.	SeqNo	is	

1	byte	long	representing	the	policy	sequence	within	the	chain	of	applicable	policies	to	

the	respective	EventID.	EventID	and	SeqNo	are	sensor	dependent	information	and	can	

be	locally	accessed	from	the	sensor.	Thus	the	sensor	can	identify	the	policy	ID	locally	

without	the	need	to	reach	out	to	any	other	sensor;	(ii)	[If]	Policy	Condition	is	a	Boolean	

expression	 based	 upon	 the	 data	 provided	 by	 the	 local	 sensor	 system	 and	 static	 or	

dynamic	data	provided	by	the	triggered	policy;	whenever	an	event	occurs,	one	or	more	

conditions	are	checked	as	true,	and	if	all	of	them	pass,	a	corresponding	action	must	be	

executed;	 (iii)	 [Then]	 Policy	 Action	 describes	 the	 desired	 action	 number	 (ID)	 to	 be	

executed	whenever	 the	 IF	condition	 is	 true;	 (iv)	 [End]	End	policy	Execution	 indicates	

the	end	of	the	policy	execution	if	the	condition	is	False,	otherwise	the	policy	execution	

will	move	to	the	next	policy	in	the	chain;	(v)	[Next]	Next	Policy	ID	contains	the	key	for	

the	next	policy	in	the	chain	of	applicable	polices.	

Following	the	context-based	reasoning	 (CBR)	approach,	studies	S4,	S5,	S9,	S13,	

S16,	 S18,	 S23	 consider	 as	 meaningful	 context	 any	 information	 that	 affects	 node’s	

operation.	 Context	 information	 constitutes	 an	 important	 source	 of	 data	 for	 systems	

that	 have	 to	 react	 dynamically	 to	 changes	 in	 the	 environment	 or	 to	 new	 context	

conditions.	For	instance,	S5	predefines	the	following	context	formats	and	stores	them	

in	a	context	database:		

[CONTEXT	ID]	[INFORMATION	TYPE]	[INFORMATION	ID]	[INFORMATION	VALUE]	

CONTEXT	ID	is	the	unique	identifier	of	the	context,	INFORMATION	TYPE	describes	the	

source	of	the	sensing	data;	INFORMATION	ID	represents	the	identifier	of	each	specific	

	
	

	
57	

information	 such	 as	 the	 sensing	 capabilities,	 the	 residual	 energy,	 etc;	 and	

INFORMATION	VALUE	 is	 the	value	of	 that	specific	 information	 in	bits.	Once	obtained	

the	 context,	 it	 is	 possible	 to	 apply	 a	 reasoning	process	 in	 order	 to	 react	 to	 dynamic	

changes	of	network	conditions.	On	the	other	hand,	S16	uses	fuzzy	 logic	and	machine	

learning	 techniques	as	a	 reasoning	process	 for	 this	 stage.	Finally,	S1	applies	a	hybrid	

approach	relying	on	policy-based	and	context-based	approach.	

The	 feedback	 control	 loop	 (FCL)	 approach	 (S1,	 S3,	 S5,	 S7,	 S15,	 S20)	 is	

commonly	presented	in	AC	systems	and	most	of	them	use	a	four-step	loop	(monitoring,	

analysis,	planning	and	execution).	Generally,	WSN	middleware	systems	that	apply	this	

approach	use	hierarchical	networks	 (Figure	11)	 typically	defined	with	 three	 (or	more)	

levels,	namely:	sensor	nodes	level,	cluster	head	level	and	a	base	station	(or	sink	node)	

level.	 This	 makes	 the	 system	 able	 to	 provide	 quick	 adaptation	 to	 multiple	 context	

parameter	changes.	

	
Figure	11.	Self-adaptive	control	loop	distributed	in	three	levels	of	network	architecture	

Mobile	agents	(MA)	approach	(S11,	S19,	S24)	provides	a	programming	model	in	which	

applications	consist	of	evolving	communities	of	agents	that	share	a	WSN.	Agents	can	

dynamically	 enter	 and	 exit	 a	 network	 and	 can	 autonomously	 clone	 and	 migrate	

themselves	in	response	to	changes	in	the	environment.	Users	inject	mobile	agents	that	

spread	across	nodes	performing	application-specific	tasks.	Each	agent	is	autonomous,	

allowing	multiple	applications	to	share	a	network.	For	instance,	Agilla	(S24)	provides	a	

programming	model	 in	which	applications	consist	of	evolving	communities	of	agents	

that	 share	 a	 WSN,	 where	 coordination	 among	 the	 agents	 and	 access	 to	 physical	

resources	 are	 supported	 by	 a	 tuple	 space	 abstraction.	 Agents	 can	 dynamically	 enter	

	
	

	
58	

and	exit	a	network	and	can	autonomously	clone	and	migrate	themselves	 in	response	

to	environmental	changes.		

Model	 transformation/Code	 Generation	 (MT/CG)	 approaches	 define	 an	 automatic	

process	to	derive	different	middleware	configurations	depending	on	the	hardware	and	

software	 of	 the	 deployed	WSN.	 This	 process	 uses	 techniques	 such	 as	 model-driven	

development	 (MDD)	 (MDA)	and	Software	Product	Line	 (SPL)	 (Pohl,	Bockle,	&	Linden,	

2005).	Model	 transformation	 and	 automatic	 code	 generation	 (S8,	 S12,	 S17	 and	 S20)	

are	 used	 to	 create	 the	 concrete	 system	 from	 the	model.	 This	 approach	 allows	 non-

experts	to	develop	WSN	systems	and	to	provide	the	needed	mechanisms	to	adapt	the	

network	 to	 dynamic	 environments	 and	 unpredictable	 events.	 In	 studies	 S8	 and	 S17,	

authors	 achieve	 self-adaptation	 in	 WSN	 by	 proposing	 a	 family	 of	 middleware	 for	

Ambient	Intelligence	systems,	deployed	in	sensors	devices	and	smartphones.	They	use	

feature	 models	 and	 Dynamic	 Software	 Product	 Lines	 (DSPLs)	 to	 drive	 the	 self-

adaptation	 process.	 The	 reconfiguration	 consists	 in	 replacing	 the	 current	 feature	

model	 configuration	 by	 a	 new	 configuration	 more	 suitable	 to	 the	 new	 contextual	

situation.	Issues	highlighted	of	each	primary	study	are	summarized	in	Table	2.		

The	 first	 column	 (Development	 Approach)	 shows	 the	 approach	 followed	 for	

every	study.	The	Management	Approach	column	shows	techniques	used	to	implement	

the	before-mentioned	development	approaches.	These	techniques	can	be	centralized,	

distributed	or	hybrid.	In	a	centralized	approach,	the	control	of	the	WSN	management	

is	 centrally	 located	 in	 the	 sink	 node.	 Therefore,	 this	 approach	 allows	 controlling	 the	

network	as	a	whole,	in	a	high	level	of	abstraction.	However,	in	order	to	found	out	if	an	

adaptation	 is	 required,	 all	 nodes	 need	 to	 communicate	with	 the	 single	 sink	 node.	 A	

drawback	 of	 this	 approach	 appears	 when	 the	WSN	 has	 a	 large	 scale,	 with	 a	 sheer	

number	of	spatially	dispersed	nodes;	thus	the	number	of	communications	towards	the	

sink	node	increases	and	the	network	is	more	prone	to	connectivity	failures	(caused	by	

bottlenecks	in	the	nodes	near	to	sink	node).	In	a	distributed	approach,	the	control	of	

management	 is	 fully	distributed	among	 the	WSN	nodes,	 thus,	 the	before-mentioned	

centralized	 approach	 drawback	 is	 mitigated.	 The	 sensor	 nodes	 apply	 coordination	

functions	to	manage	themselves.		

	

	
	

	
59	

Table	2.	Summarization	of	primary	studies	relevant	data	
Ref	 Develop.	

Approach	
Management	
Approach	

Type	 of	
Solution	

Addressed	
Self-properties	

Adaptation	
Time	

Topology	
of	WSN	

Evaluation	

S1	 PBR	 and	
FCL	

Hybrid	 Framework	 self-configuration	 runtime	 Flat/	
Hierarchic	

TinyOS/	
TelosB		

S2	 PBR	 Hybrid	 Framework	 self-configuration	
self-optimization	

Design/	
runtime	

Hierarchic	 Simulated	
in	
Contiki	OS	

S3	 FCL	 Hybrid	 Middleware	 self-optimization	 runtime	 Flat/	
Hierarchic	

Simulated	
in	Avrora	

S4	 CBR	 Hybrid	 Middleware	 self-configuration	
self-optimization	

Design	 Flat/	
Hierarchic	

No	

S5	 PBR	 and		
FCL	

Hybrid	 Framework	 self-configuration	
self-optimization	

runtime	 Hierarchic	 No	

S6	 PBR	 Centralized,	
Distributed	

Middleware	
Framework	

self-configuration	 runtime	 Flat	 Simulated	
in	 CORE	
and	EMAN	

S7	 FCL	 Hybrid	 Framework	 self-configuration	
self-optimization	
self-healing	

runtime	 Hierarchic	 No	

S8	 MT/CG	 Hybrid	 Middleware	 self-configuration	 Design	 Hierarchic	 Simulated	
on	
RecosQos	

S9	 CBR	 Distributed	 Framework	 self-configuration	 runtime	 Hierarchic	 Libelium	
Wapmotes	

S10	 PBR	 Distributed	 Middleware	 self-optimization	 Design	 Hierarchic	 No	
S11	 MA	 Distributed	 Middleware	 self-configuration	 runtime	 Flat/	

Hierarchic	
-	

S12	 MT/CG	 Hybrid	 Middleware	 self-configuration	
self-optimization	

Design	
runtime	

Hierarchic	 ContikiOS/	
Atmel	AVR	

S13	 CBR	 Distributed	 Framework	 self-configuration	
self-healing	
self-optimization	
self-protection	

Design/	
runtime	

Hierarchic	 TinyOS	

S14	 PBR	 Hybrid	 Framework	 self-configuration	 Design/	
runtime	

Flat/	
Hierarchic	

Finger/Fing
er2	

S15	 FCL	 Distributed	 Framework	 self-configuration	 runtime	 Flat/	
Hierarchic	

TinyOS	 2.x,	
Finger2	

S16	 CBR	 Distributed	 Framework	 self-configuration	 Design/	
runtime	

Hierarchic	 Simulated	

S17	 MT/CG	 Hybrid	 Middleware	 self-configuration	 Design/	
runtime	

Flat/	
Hierarchic	

TinyOS	
2.1.1,	
TOSSIM	

S18	 CBR	 Distributed	 Framework	 self-configuration	 Design	 Flat/	
Hierarchic	

Simulations	

S19	 MA	 Distributed	 Framework	 self-configuration	 runtime	 Not	
specific	

Simulations	

S20	 MT/CG	 Distributed	 Middleware	 self-configuration	 Design/	
runtime	

Flat/	
Hierarchic	

No	

S21	 PBR	 Distributed	 Middleware
,	
Framework	

self-configuration	
self-healing	

runtime	 Flat/	
Hierarchic	

TinyOS	

S22	 -	 Centralized,	
Distributed	

-	 self-configuration	
self-healing	

runtime	 Flat	 /	
Hierarchic	

TinyOS	

S23	 CBR	 Distributed	 Framework	 self-healing	
self-protection	

runtime	 Flat/	
Hierarchic	

Simulated	
in	Matlab	

S24	 MA	 Distributed	 Middleware	 self-configuration	
self-healing	

Design/	
runtime	

Not	
specific	

TinyOS	
Mica2,	
Telosb	

S25	 -	 Centralized,	
Distributed	

.	 self-healing	 runtime	 Flat	
Hierarchic	

-	

	
	

	
60	

Most	 of	 the	 selected	 studies	 use	 a	 hybrid	 approach,	 where	 parts	 of	 the	

management	 functions	 are	 performed	 in	 the	 sink	 nodes	 and	 parts	 are	 distributed	

among	 the	 sensor	 nodes.	 Therefore,	 the	 hybrid	 approach	 is	 able	 to	 accomplish	

management	 functions	by	both	considering	the	network	as	a	whole,	and	distributing	

adaptation	 responsibilities	 throughout	 the	 network	 in	 order	 to	 mitigate	 scalability	

issues.	 We	 also	 noticed	 that	 selected	 studies	 implement	 their	 proposals	 at	 the	

middleware	 level	 (see	Type	of	Solution	column).	Middleware	 frameworks	 reduce	the	

time	and	effort	in	developing	WSN	applications,	by	providing	an	easy	way	to	integrate	

complex	and	distributed	autonomic	services,	common	programming	abstractions,	and	

hiding	 low-level	programming	details	of	different	 sensor	platforms.	Thus,	developers	

can	devote	more	time	in	developing	the	WSN	application	requirements,	and	to	(re)use	

the	 autonomic	management	 components	 of	 the	middleware	 to	 configure/tailor	 the	

WSN	self-adaptive	behavior.	In	the	column	named	Addressed	Self-properties	we	noted	

that	 self-configuration,	 in	autonomic	WSN	middleware	 systems,	 is	a	general-purpose	

property.	 However,	 implementations	 of	 self-healing	 and	 self-protection	 are	 more	

common	in	specific	WSN	applications.		

The	 Adaptation	 Time	 column	 specifies	 when	 the	 adaptation	 process	 occurs.	

Most	 of	 the	 selected	 studies	 execute	 an	 adaptation	 plan	 at	 runtime.	 The	 MT/CG	

approach	 defines	 the	 adaptation	 plan	 at	 design	 time,	 before	 the	 creation	 of	 the	

concrete	 system.	Regarding	 the	WSN	 topology	used	 in	 selected	 studies	 (Topology	of	

WSN	 column),	 we	 noticed	 that	 hierarchic	 topologies	 are	 most	 used	 in	

hybrid/distributed	approaches.	Normally,	hierarchical	topologies	favor	scalability.	They	

organize	the	nodes	into	clusters	where	some	nodes	work	as	cluster	heads	and	collect	

the	data	from	other	(ordinary)	nodes	in	the	clusters.	Then,	the	heads	can	consolidate	

the	 data	 and	 send	 it	 to	 the	 sink	 node/base	 station	 as	 a	 single	 packet,	 reducing	 the	

overhead	from	data	packet	headers	and	sometimes	performing	some	data	aggregation	

procedure	 (that	 can	 also	 improve	 data	 accuracy).	 According	 to	 Ding	 et	 al.	 (Ding,	

Holliday,	 &	 Celik,	 Jun/Jul,	 2005),	 clustering	 reduces	 useful	 energy	 consumption	 by	

improving	 bandwidth	 utilization,	 reducing	 collisions	 caused	 by	 contention	 for	 the	

channel;	 and	 reduces	 wasteful	 energy	 consumption	 by	 reducing	 communication	

overhead.		

	
	

	
61	

Finally,	 the	 last	 column	 of	 Table	 2	 shows	 the	 Evaluation	 process	 used	 for	

validating	 the	proposals	of	 selected	 studies.	Most	of	 the	 selected	 studies	 implement	

their	tests	using	TinyOS-based	programs.	

After	performing	the	SLR,	we	noticed	that	most	works	are	still	in	an	initial	stage	

of	 integration	 of	 AC	 principles	 into	 WSN	 systems.	 The	 goal	 of	 optimizing	 network	

resources	by	using	these	principles	is	a	relatively	new	research	topic	in	the	WSN	field.	

(Picco,	2010)	 considers	 that	 the	 lack	of	mature	methodologies,	 software	engineering	

techniques,	 and	 abstractions	 that	 improve	 the	 development	 process	 of	 software	 for	

WSNs	may	 come	 from	 the	 fact	 that	 the	 Software	 Engineering	 community	 perceives	

WSNs	 as	 too	 “low-level”.	 Or,	 the	 fact	 that	WSN	 software	 spans	 the	 entire	 network	

stack	 and	 reaches	 into	 the	 physical	 layer	may	 constitute	 a	 steep	 learning	 curve	 for	

software	engineering	researchers.	(Picco,	2010)	also	mentions	that,	unfortunately,	the	

WSN	and	software	engineering	research	communities	have	been	mostly	impermeable	

to	each	other.	However,	they	believe	that	the	contribution	of	SE	concepts	to	the	WSN	

field	is	inevitable	(Picco,	2010),	since	WSNs	are	a	key	element	of	the	grand	vision	of	a	

physical	 world	 augmented	 by	 a	 myriad	 of	 computing	 devices	 (such	 as,	 Internet	 of	

Things,	Cyber-Physical	Systems	and	autonomic	computing).	

	Dealing	 with	 AC	 in	 middleware	 systems	 for	 WSN	 is	 more	 complex	 when	

compared	 to	 their	counterparts	 in	 traditional	middleware	systems	mainly	due	 to	 the	

need	of	handling	 limited	computing	resources	of	sensor	nodes.	However,	we	believe	

that	the	selected	studies	are	useful	means	for	addressing	autonomic	behavior	in	WSN	

applications.	In	the	following,	we	present	some	challenges	and	research	opportunities	

that	 we	 have	 identified	 from	 the	 analyzed	 studies.	 Figure	 12	 shows	 which	

development	approaches	are	used	to	achieve	each	AC	property.	

	
Figure	12.	Correlation	between	the	use	of	AC	properties	in	development	approaches	

	
	

	
62	

As	we	have	mentioned,	one	of	the	investigated	development	approaches	of	AC	

used	 to	 provide	 autonomic	 behavior	 in	 WSN	 is	 Context-based	 reasoning.	 In	 this	

approach,	 the	WSN	 adaptation	 is	 limited	 once	 it	 is	 a	 simple	 reaction	 to	 the	 current	

context	of	the	network.	The	middleware	system	receives	the	network	context	as	input	

and	responds	to	it	following	a	logic	that	selects	the	most	appropriate	action.	The	most	

important	activity	of	this	approach	 is	to	sense	what	 is	happening	 in	the	network	and	

whenever	 the	 WSN	 receives	 a	 stimulus,	 it	 must	 react	 accordingly.	 The	 reactivity	

feature	of	context-based	middleware	systems	derives	from	the	fact	that	they	just	are	

able	to	perceive	the	environment.	So,	these	systems	can	react	to	events	that	occur	in	

the	environment	in	order	to	satisfy	their	design	objectives.		

The	 Policy-based	 reasoning	 approach	 is	 widely	 used	 in	 goal-oriented	 WSN	

applications.	In	this	approach,	the	choice	of	a	specific	action	depends	not	only	on	the	

context	of	 the	network	but	 also	on	how	close	 to	 the	 goal	 each	action	will	 bring	 the	

system.	Systems	applying	this	approach	do	everything	possible	in	order	to	achieve	the	

goal	of	the	WSN	application.	The	conventional	policy-based	systems	are	generally	too	

heavy	 to	 execute	 in	 a	 sensor	 node.	 Due	 to	 these	 limitations	 (memory	 and	 CPU	

constraints),	 devices	 in	 WSN	 can	 only	 store	 a	 limited	 number	 of	 policies	 in	 their	

memory	 and	 must	 recycle	 them	 when	 required.	 This	 process	 of	 loading/unloading	

policies	 might	 create	 a	 communication	 overhead	 that	 needs	 to	 be	 handled.	 Policy-

based	 middleware	 systems	 are	 able	 to	 take	 initiatives	 towards	 the	 satisfaction	 of	

specific	internal	design	objectives.		

In	 the	 Mobile	 Agents	 approach,	 a	 WSN	 is	 seen	 as	 a	 platform	 that	 software	

agents	can	use	in	order	to	perform	sensing	and/or	computing	tasks.	Agents	are	highly	

autonomous	and	can	make	adaptation	decisions	 locally	based	on	 the	changes	of	 the	

environment.	 Such	 decisions	 take	 form	when	 the	 agent	 decides	 to	migrate	 or	 clone	

itself	 to	 neighbor	 nodes.	 This	 approach	 enables	 the	 creation	 of	 self-adaptive,	 self-

organized	and	autonomous	applications.	As	network	nodes	are	directly	exposed	to	the	

environment,	 agents	 can	 quickly	 detect	 changes	 and	 determine	 when	 adaptation	 is	

necessary.	Therefore,	autonomous	and	localized	agents	react	faster	and	transmit	less	

data	 than	 centralized	 adaptation	 approaches.	 This	 makes	 them	 suitable	 for	

applications	in	which	local	decisions	significantly	reduce	the	amount	of	data	wirelessly	

	
	

	
63	

transmitted.	The	paramount	example	is	tracking	of	an	object	(person,	fire,	wildlife)	as	

it	passes	through	an	area	monitored	by	a	WSN.	The	agents	responsible	for	tracking	can	

migrate	 along	 the	 WSN	 nodes	 as	 the	 object	 passes	 through	 them,	 thus	 avoiding	

wasting	 resources	 on	 nodes	 that	 are	 far	 from	 the	 object.	 On	 the	 other	 hand,	 the	

Mobile	 Agents	 approach	 is	 not	 meant	 for	 data	 collection	 applications	 that	 require	

deployment	 across	 the	 entire	 WSN.	 On	 such	 cases,	 this	 approach	 introduces	 an	

unnecessary	overhead	of	agents	switching,	which	requires	wireless	data	transmission	

and	 dynamic-runtime	 memory	 allocation.	 One	 interesting	 and	 rather	 unexplored	

application	of	Mobile	Agents	 in	WSN	is	modeling	the	behaviors	of	swarm	individuals.	

Such	 can	 be	 accomplished	 by	 rewarding	 or	 penalizing	 the	 agent’s	 approaches	 and	

movements.	The	effect	can	then	be	observed	as	a	whole	across	the	WSN	and	can	turn	

into	a	powerful	way	to	study	the	emergence	of	swarm	behavior.	

Model	Transformation	and	Code	Generation	approaches	are	traditionally	used	

in	Software	Product	Lines	(SPL)	in	order	to	create	static	software	systems	from	a	set	of	

software	assets.	However,	these	techniques	can	also	be	employed	to	create	dynamic	

software	able	to	perform	self-configuration	at	runtime,	such	as	described	in	(Gamez	et	

al.,	2011).	These	models	can	also	be	used	at	runtime	to	drive	the	reconfiguration	of	the	

middleware	 for	 failure	 recovery	 and/or	 self-configuration,	 this	 is	 known	 as	 a	

models@runtime	approach.	

Using	models@runtime	has	the	advantage	of	keeping	the	application	within	a	

known	state	described	by	a	model,	even	when	it	mutates	to	cope	with	changes	in	the	

environment.	This	eases	the	burden	of	keeping	track	of	architectural	configurations	in	

applications	 that	are	 scattered	across	 several	nodes.	Furthermore,	by	doing	 the	self-

configuration	 in	 a	 middleware	 layer	 common	 to	 all	 nodes,	 this	 approach	 allows	 a	

higher	 degree	 of	 adaptability	 than	 others	 like	 the	 Mobile	 Agents	 approach.	 For	

instance,	 it	 is	 possible	 to	 change	 the	 routing	 protocol	 in	 runtime.	 In	 S8,	 authors	

configure	 the	 network	 with	 some	 energy	 efficient	 protocols	 (TYMO,	 TinyHop	 and	

AODV)	 and,	 when	 the	 use	 of	 the	 road	 is	 drastically	 reduced	 and	 the	 information	

collected	by	its	sensors	is	not	as	critical	as	before,	they	select	the	most	energy	efficient	

routing	protocol	(previously	determined).	Additionally,	if	they	choose	a	protocol	which	

is	 not	preinstalled	 in	 several	 nodes,	 they	produce	additional	 reconfiguration	 costs	 in	

	
	

	
64	

terms	 of	 energy	 expense	 by	 sending	 large	 size	 messages	 that	 contain	 the	 protocol	

functionality.	  However,	 architectural	 configurations	 that	 must	 take	 place	 in	 every	

node	 to	 ensure	 compatibility,	 like	 changing	 the	 routing	 protocol,	 require	 sinks	 or	

cluster	 heads	 to	 coordinate	 adaptation	 across	 the	multiple	 nodes.	 This	 reduces	 the	

locality	of	the	adaptation	and	incurs	in	high	communication	overheads.	Also,	changing	

the	model	on	a	node	is	a	rare	but	computing	intensive	task.	The	node	has	to	forge	a	

plan	detailing	the	configuration	steps	to	take	and	then	must	use	a	domain	modeler	to	

check	the	correctness	of	the	plan,	i.e.	check	if	it	arrives	at	a	valid	state	defined	in	the	

FM.	

In	the	before-mentioned	approaches,	adaptation	is	performed	with	the	explicit	

or	implicit	presence	of	feedback	loops.	WSN	applications	with	explicit	feedback	loops	

define	a	part	of	the	system	that	deals	with	feedback.	This	part	of	the	system	is	able	to	

interacting,	 communicating	 and	 coordinating	 among	 middleware	 components.	 The	

majority	of	the	selected	studies	that	applies	a	feedback	control	loop	approach	uses	the	

MAPE-K	model	proposed	by	IBM	(IBM,	2005).		

Figure	13	depicts	a	summary	of	the	main	features	of	autonomic	wireless	sensor	

networks,	 gathered	 from	 selected	 studies	 retrieved	 in	 the	 performed	 SRL.	 These	

features	 are	 organized	 in	 terms	 of:	 (i)	 development	 approaches	 used	 to	 provide	

autonomic	 behavior	 in	 WSN,	 (ii)	 requirements	 of	 autonomic	 WSN,	 (iii)	 self-

adaptable/self-manageable	 features	 of	 WSN,	 according	 to	 AC	 principles,	 and	 (iv)	

techniques	used	to	manage	and	implement	the	development	approaches.	

Besides	 the	 development	 approaches	 described	 in	 this	 Chapter	 to	 tackle	

autonomy	in	WSN	(Context-based	reasoning,	Policy-based	reasoning,	Feedback	control	

loops,	Mobiles	 Agents	 and	Model	 transformation/code	 generation),	we	 noticed	 that	

self-*	 properties	 were	 applied	 as	 follows.	 Regarding	 self-configuration,	 selected	

studies	 proposed	 solutions	 that	 are	 able	 for	 autonomously	 managing	 the	 network	

state,	application	requirements,	node	resources,	communication	protocols	and	quality	

of	 service;	 for	 self-healing,	 solutions	 for	 failure	 node	 detection	 and	 filtering	 sensing	

data	 are	 proposed;	 reduction	 of	 a	 number	 of	 data	 transmission,	 and	 processing	 of	

sensing	data	are	 some	of	methods	used	 to	address	 self-optimization.	 Self-protection	

was	 a	 self-*	 property	 poorly	 explored	by	 the	 selected	 studies:	 only	 two	 (2)	 selected	

	
	

	
65	

studies	refer	to	this	property,	where	cryptography	was	presented	as	a	solution	for	this	

issue.	

In	 order	 to	 extend	 and	 implement	 the	 aforementioned	 development	

approaches,	 system	 architectures,	 sitting	 between	 the	 sensing	 applications	 and	 the	

node	operating	system,	are	expected	to	provide	a	set	of	integrated	functions	for	nodes	

to	 be	 self-manageable	 and	 self-configurable.	 Nevertheless,	 there	 is	 still	 no	

comprehensive	system	architecture	design	that	supports	these	expectations.	

Summarizing,	most	of	the	works	that	we	have	found	in	the	literature	that	aim	

to	provide	autonomic	behavior	 in	WSNs	are	 just	 in	preliminary	stages	and	they	have	

still	 some	 open	 challenges.	 However,	 their	 proposals	 seem	 very	 adequate	 to	 tackle	

some	aspects	of	the	autonomic	WSNs.			

Figure	13.	Autonomic	Wireless	Sensor	Network	characteristics	

	 	

	
	

	
66	

3.3.3 Activity	C	–	Step	RA-1:	Reference	Architectures	for	WSN	and	AS	

In	order	 to	perform	activity	C	of	Step	RA-1	of	ProSA-RA,	 this	 section	presents	

some	RAs	specific	for	WSNs	and	for	Autonomic	Systems	(AS).	 In	this	activity	we	have	

conducted	 two	 SLRs	 focusing	 specifically	 in	 RAs	 for	 WSNs	 and	 RAs	 for	 autonomic	

systems.	Section	3.3.3.1	presents	a	SLR	conducted	 to	 find	out	 the	main	RA	 for	WSN.	

Section	 3.3.3.2	 presents	 a	 SLR	 conducted	 to	 find	 out	 the	 main	 RA	 for	 autonomic	

systems.	

3.3.3.1 Reference	Architectures	for	Wireless	Sensor	Networks	

This	 activity	 aims	 to	 find	 out	 which	 are	 the	 main	 important	 RAs	 for	 WSN.	 In	 this	

perspective	a	SLR	was	conducted	to	retrieve	all	 the	 literature	relevant	to	answer	the	

following	research	questions.		

	

RQ1:	Are	there	Reference	Architectures	(RA)	or	Reference	Models	(RM)	specific	

for	WSN?		

RQ2:	How	such	RA/RM	for	WSN	have	been	represented?	

	

These	 questions	 are	 motivated	 by	 the	 need	 for	 insights	 about	 the	 research	

trends	 in	 RA	 for	WSN.	 The	 research	 strategy	 adopted	 in	 this	 SLR	was	 the	 automatic	

search	 in	 research	 databases,	 as	 we	 performed	 in	 (Portocarrero	 et	 al.,	 2014).	 The	

general	form	of	the	search	string	is	shown	below:	

	

Query	strings:	

TITLE-ABS-KEY		
(("reference	architecture"		OR		"reference	architectures"		OR	"reference	model"	OR	"reference	models")	

AND	("wireless	sensor	network"		OR		"sensor	network"		OR		wsn		OR		wsan		OR		"wireless	sensor	and	

actuator	network"		OR		"wireless	ad-hoc	network"		OR		"wireless	actuator	network"))	

	

	

	

	
	

	
67	

The	primary	studies	were	searched	in	all	publication	databases	and	101	studies	

were	 obtained.	 After	 the	 reading	 of	 titles,	 abstracts,	 and,	 when	 necessary,	 the	

introduction	of	each	study,	16	primary	studies	were	selected	to	be	read	 in	 full.	After	

application	of	the	 inclusion	and	exclusion	criteria,	9	primary	studies	were	selected	as	

included.	The	inclusion	criteria	used	in	this	SLR	was	corroborating	if	the	primary	study	

provides	 evidence	 on	 RAs	 for	 WSN.	 The	 exclusion	 criteria	 were	 discarding	 primary	

studies	with	no	evidence	on	RAs	or	RMs	 for	WSN,	primary	 study	does	not	provide	a	

reasonable	amount	of	information,	it	is	written	in	a	language	other	than	English	and	it	

is	a	previous	work	developed	by	the	same	author.	Besides,	one	study	suggested	by	a	

specialist	was	also	evaluated	(SNRA)	(-.	ISO/IEC,	2014).	As	a	result,	10	primary	studies	

were	 selected	 as	 the	 most	 relevant	 ones	 to	 our	 SLR.	 Table	 3	 shows	 the	 complete	

reference	of	the	10	primary	studies	of	this	SLR.		

Table	3.	Selected	primary	studies	of	RA	for	WSN	

	

In	 order	 to	 answer	 how	 the	 proposed	 RAs	 were	 designed/represented,	 we	

associate	 each	 of	 them	 with	 four	 design	 techniques,	 adapted	 from	 (F.	 Affonso,	

Scannavino,	Oliveira,	&	Nakagawa,	2014):	

ID	 Title	 Name	 of	
RA/RM	

Year	 Ref	

S1	 A	 Reference	 Architecture	 for	 Sensor	 Networks	
Integration	and	Management		

SeNsIM	 2009	 (Casola,	 Gaglione,	 &	
Mazzeo,	July,	2009)	

S2	 Technical	 Document	 of	 ISO/IEC	 JTC	 1	 Study	
Group	on	Sensor	Networks	(SGSN)		
Study	on	Sensor	Networks	(Version	3)		

SNRA	 2009	 (-.	ISO/IEC,	2014)	

S3	 Reference	 Model	 for	 Sensor	 Networks	 in	 B3G	
Mobile	Communication	Systems	

e-SENSE	 2006	 (Gluhak	 &	 al.,	 June,	
2006)	

S4	 A	 survey	 on	 developing	 publish/subscribe	
middleware	 over	 wireless	 sensor/actuator	
networks	

Pub/Sub	
Mw	

2015	 (Sheltami,	 Al-
Roubaiey,	 &	
Mahmoud,	2015)	

S5	 Knowledge-based	 environmental	 research	
infrastructure:	moving	beyond	data	

ENVRI-RM	 2015	 (Stocker,	 Rönkkö,	 &	
Kolehmainen,	2015)	

S6	 Integrated	 Technical	 Reference	 Model	 and	
Sensor	Network	Architecture		

I-TRM	 2008	 (Joshi	 &	 Michel,	
2008)	

S7	 Reference	 Architectures	 and	 Management	
Model	for	Ad	hoc	Sensor	Networks		

BSNF	 2004	 (Serri,	2004)	

S8	 On	 Complex	 Event	 Processing	 for	 Sensor	
Networks	

EDA		 2009	 (Dunkel,	2009)	

S9	 Towards	 a	 Multiagent-based	 Software	
Architecture	for	Sensor	Networks	

iEPA	 2011	 (Dunkel,	2011)	

S10	 The	ANGEL	WSN	Architecture		 ANGEL	 2007	 (Willig,	 Hauer,	
Karowski,	 Baldus,	 &	
Huebner,	2007)	

	
	

	
68	

-	Block	Diagram:	a	system	diagram	whose	main	parts	or	functions	are	represented	by	

blocks	connected	by	lines	that	show	the	relationships	among	them;		

-	Informal	Notation:	a	type	of	notation	that	follows	no	formal	or	semi-formal	method	

or	methodology;	 	

-	Layer	Diagrams:	a	high-level	representation	for	 the	organization	of	physical	artifacts.	

These	 diagrams	 describe	 the	 major	 tasks	 that	 can	 be	 performed	 by	 artifacts	 or	

components.	

-	UML	Diagrams:	a	graphical	language	for	visualization,	specification,	construction,	and	

documentation	of	object-oriented	software-intensive	system’s	artifacts.	 	

The	relationship	between	the	design	techniques	and	the	studies	are	shown	in	

Table	4.		

Table	4.	Decision	Technique	used	in	selected	primary	studies	of	RA/RM	for	WSN	

Design	Technique	 RA/RM	 Primary	Studies	
Block	Diagram	 Reference	Architecture	

Reference	Model	
S1,	S2,	S7,	S8,	S9	
S3,	S4,	S6	

Informal	Notation	 Reference	Architecture	
Reference	Model	

S10	
S5	

Layer	Diagrams	 Reference	Architecture	
Reference	Model	

S1,	S2,	S7,	S8,	S9	
S3,	S6	

UML	Diagrams	 Reference	Architecture	 S1,	S8	
	

These	 relations	aim	at	guiding	 the	choice	of	 techniques	used	 in	 the	design	of	

RAMSES.	Most	 of	 RA/RMs	 reviewed	 in	 this	 Section	 has	 been	 designed	 using	 ad	 hoc	

approaches	 and	 represented	 using	 informal	 techniques.	 These	 RA/RMs	 for	WSN	 are	

predominantly	described	using	block	definition	diagrams	and	they	have	a	shortage	of	

well-defined	 interfaces.	 In	addition,	most	of	RA/RMs	applies	a	combination	of	design	

techniques	in	order	to	facilitate	the	modeling	activity.	For	instance,	the	combination	of	

block	diagrams	and	layer	diagrams	are	used	by	the	70%	of	the	primary	studies,	it	must	

be	 highlighted	 because	 they	 enable	 the	 creation	 of	 modular	 relations	 among	 the	

components.	 However,	 we	 note	 a	 lack	 of	 formal	 methods	 of	 architectural	

representation.	 Moreover,	 there	 is	 a	 lack	 of	 an	 explicit	 definition	 of	 self-adaptive	

management	 of	 the	 network	 and	 an	 architectural	 representation	 of	 the	 dynamic	

behavior	of	components,	a	key	issue	in	WSN	applications.		

	
	

	
69	

Another	 finding	 of	 this	 SLR	 is	 related	 to	 the	 architectural	 design	 decisions	

(architectural	 patterns/styles)	 applied	 to	 build	 the	 proposed	 RA/RM.	 As	 showed	 in	

Table	5,	the	following	architectural	design	decisions	have	been	used	in	primary	studies.	

-	 Layered	 based	 architecture:	 reflect	 a	 division	 of	 the	 software	 into	 layers	 that	

represent	a	grouping	of	modules	that	offers	a	cohesive	set	of	services.	

-	 Event-based	 architecture:	 allows	 asynchronous	 communication	 among	 software	

components	 by	 generating	 and	 receiving	 notification	 of	 events	 occurred.	 Events	 are	

managed	 by	 an	 event	 service	 that	 implements	 a	 multicasting	 mechanism	 that	

decouples	event	generators	from	event	receivers.	

-	 Agent-based	 architecture:	 consist	 of	 three	 major	 components:	 (i)	 a	 platform	

manager,	 responsible	 for	managing	 the	 agents;	 (ii)	 an	 advertisement	 registry,	which	

contains	 descriptions	 of	 the	 agents	 in	 the	 system	 and	 facilitates	 discovery	 of	 those	

agents;	 (iii)	 and	 a	 set	 of	 agents	 that	 can	 communicate	 with	 each	 other,	 with	 the	

platform	manager	and	with	the	advertisement	registry.	

-	Publish/subscribe	pattern:	is	a	messaging	pattern	where	senders	of	messages,	called	

publishers,	 do	 not	 program	 the	 messages	 to	 be	 sent	 directly	 to	 specific	 receivers,	

called	 subscribers,	 but	 instead	 characterize	 published	messages	 into	 classes	without	

knowledge	 of	which	 subscribers,	 if	 any,	 there	may	 be.	 Similarly,	 subscribers	 express	

interest	in	one	or	more	classes	and	only	receive	messages	that	are	of	interest,	without	

knowledge	of	which	publishers,	if	any,	there	are.	

-	Mediator	Pattern:	defines	an	object	that	encapsulates	how	a	set	of	objects	interacts.	

Mediator	 promotes	 loose	 coupling	 by	 keeping	 objects	 from	 referring	 to	 each	 other	

explicitly,	and	it	lets	you	vary	their	interaction	independently.	

-	 Broker	 pattern:	 separates	 the	 communication	 functionality	of	 a	distributed	 system	

from	 its	 application	 functionality.	 It	 hides	 and	mediates	 all	 communication	 between	

the	objects	or	components	of	a	system.		

	

	

	
	

	
70	

Table	5.	Architectural	design	decision	applied	in	primary	studies	of	RA/RM	for	WSN	

Architectural	design	decision	 Primary	Studies	
Layered	based	architecture	 S1,	S2,	S3,	S4,	S6,	S7,	S8,	S9	
Event-based	architecture	 S8,	S9	
Agent-based	architecture	 S9	
Publish/Subscribe	pattern	 S4	
Mediator	Pattern	 S1	
Broker	Pattern	 S1,	S3	
No	Reference	 S5,	S10	

	

Based	on	results	showed	on	Table	5,	we	noticed	that	80%	of	studies	(S1,	S2,	S3,	

S4,	 S6,	 S7,	 S8,	 S9)	 reported	 the	 applying	 of	 a	 layer-based	 architecture.	 	 The	 main	

benefits	 of	 this	 architectural	 decision	 are	 providing	 abstraction,	 isolation,	

manageability,	 performance,	 reusability	 and	 testability.	 Nevertheless,	 we	 noticed	 a	

lack	 of	 well-defined	 architecture	 design	 that	 supports	 the	 autonomy	 of	 sensor	

networking.	We	believe	 the	 study	of	 RAs	 specific	 for	 autonomic	 systems	may	 aid	 to	

support	 this	 gap.	 Thus,	 in	 next	 section	 we	 present	 a	 SLR	 to	 retrieve	 studies	 that	

investigate	this	subject.	

3.3.3.2 Reference	Architectures	for	Autonomic	Systems	

This	 activity	 aims	 to	 found	 out	 which	 are	 the	 most	 important	 RAs	 for	 autonomic	

systems	 (AS).	 In	 this	 perspective,	 a	 SLR	 was	 conducted	 to	 retrieve	 all	 the	 literature	

relevant	to	answer	the	following	research	questions.		

RQ1:	Are	there	Reference	Architectures	(RA)	or	Reference	Models	(RM)	for	AS?		

RQ2:	How	such	RA/RM	for	AS	have	been	represented?	

	

These	 questions	were	motivated	 by	 the	 need	 for	 insights	 about	 the	 research	

trends	 in	 RA	 for	 AS.	 The	 research	 strategy	 adopted	 in	 this	 SLR	 was	 the	 automatic	

search	in	research	databases,	as	we	describe	in	(Portocarrero	et	al.,	2014).	The	general	

form	of	the	defined	search	string	is	shown	below:	

	

	

	

	

	
	

	
71	

Query	strings:	

TITLE-ABS-KEY		

(("reference	architecture"		OR		"reference	architectures"		OR		"reference	model"		OR		"reference	

models")	AND	(autonomic		OR		autonomous		OR		"self-adaptive"		OR		"self-management"		OR"	self-

managed"	OR		"self-adapt"		OR		"self-adapted"		OR		"self-adaptation"))	

	

	

Before	 starting	 this	 SLR,	 one	 study	 suggested	 by	 an	 expert	 in	 reference	

architectures	 was	 evaluated	 (F.	 Affonso	 et	 al.,	 2014).	 Such	 study	 was	 entitled	

“Reference	Architectures	for	Self-Managed	Software	Systems:	a	Systematic	Literature	

Review”	 and	 it	 presents	 a	 detailed	 state-of-art	 on	 reference	 architectures	 for	 self-

adaptive	systems	obtained	from	a	systematic	literature	review.	The	authors	retrieved	

22	primary	studies	that	represent	the	most	relevant	RA/RMs	for	AS	until	2014.	Thus,	

we	 complement	 this	 SLR	 by	 using	 our	 query	 string	 to	 search	 in	 all	 publication	

databases	 the	most	 important	 RA/RMs	 for	 AS	 published	 since	 2014.	 As	 a	 result,	 33	

studies	were	 obtained.	 As	 a	 result	 of	 the	 conduction	 phase,	 3	 primary	 studies	were	

selected	as	the	most	relevant	ones	to	our	SLR	since	2014.	Table	6	shows	the	complete	

reference	of	the	22	primary	studies	retrieved	by	(F.	Affonso	et	al.,	2014)	and	the	three	

studies	retrieved	by	us.	In	the	ID	column,	this	symbol	(*)	indicates	that	we	added	the	

study.	

	

	
	
	
	
	
	
	 	

	
	

	
72	

Table	6.	Selected	primary	studies	of	RA/RM	for	AS,	adapted	of	(F.	Affonso	et	al.,	2014)	

ID	 Title	 Year	 Ref	

S1	 Reflecting	on	self-adaptive	software	systems		 2009	 (Andersson,	de	Lemos,	
Malek,	&	Weyns,	2009)	

S2	 Mobile	agent	based	elastic	executor	service:	Reference	
architecture	of	an	executor	service	using	a	mobile	agent	
platform	to	control	the	elasticity	of	the	system		

2012	 (Bhattacharya,	2012)	

S3	 A	scalable	approach	to	qos-aware	self-adaption	in	service-
oriented	architectures		

2009	 (Cardellini,	2009)	

S4	 Towards	a	dynamic	cloud-enabled	service	eco-system	 2011	 (Castejon,	2011)	

S5	 Domain-specific	software	architecture	for	adaptive	
intelligent	systems		

1995	 (Hayes-Roth,	1995)	

S6	 An	architectural	blueprint	for	autonomic	computing	 2005	 (IBM,	2005)	

S7	 Automated	adaptations	to	dynamic	software	
architectures	by	using	autonomous	 agents	

2004	 (Jiao	&	Mei,	2004)	

S8	 Self-managed	systems:	an	architectural	challenge	 	 2007	 (Kramer	&	Magee,	2007)	

S9	 Soadapt:	A	process	reference	model	for	developing	
adaptable	service-based	 applications	

2012	 (Lane,	2012)	

S10	 Dynamic	software	architectures:	formal	specification	and	
verification	with	CSP	

2012	 (C.	e.	a.	Li,	2012)	

S11	 A	reference	architecture	for	self-organizing	service-
oriented	computing	

2008	 (L.	Liu	&	et,	2008)	

S12	 Autonomic	computing	now	you	see	it,	now	you	don’t:	
Design	and	evolution	of	autonomic	software	systems	 	

2009	 (H.	Muller	&	et,	2009)	

S13	 A	reference	architecture	for	integrated	development	and	
run-time	 environment	

2012	 (Tajalii	 &	 Medvidovic,	

2012)	

S14	 Observation	and	control	of	organic	systems	 	 2011	 (Tomforde	&	al.,	2011)	

S15	 A	self-organizing	architecture	for	pervasive	ecosystems	 	 2010	 (Villalba,	2010)	

S16	 Nature-inspired	spatial	metaphors	for	pervasive	service	
ecosystems 	

2008	 (Villalba,	2008)	

S17	 DYNAMICO:	A	Reference	Model	for	Governing	Control	
Objectives	and	Context	Relevance	in	Self-Adaptive	
Software	Systems	 	

2013	 (Villegas,	Tamura,	
Mu	̈ller,	Duchien,	&	
Casallas,	2012)	

S18	 Architectural	design	of	a	distributed	application	with	
autonomic	quality	requirements	 	

2005	 (D.	e.	a.	Weyns,	2005)	

S19	 Forms:	a	formal	reference	model	for	self-adaptation		 2010	 (D.	 Weyns,	 Malek,	 &	

Andersson,	2010a)	

S20	 On	decentralized	self-adaptation:	lessons	from	the	
trenches	and	challenges	for	the	future	 	

2010	 (D.	 Weyns,	 Malek,	 &	

Andersson,	2010b)	

S21	 Timing	driven	architectural	adaptation	 	 2006	 (Wils,	Berbers,	Holvoet,	&	

De	Vlaminck,	2006)	

S22	 Adaptive	component	paradigm	for	highly	configurable	
business	components	 	

2006	 (Zewdie	&	Carlson,	2006)	

	
	

	
73	

	

In	 order	 to	 answer	 how	 the	 proposed	 RA/RMs	 for	 AS	 were	

designed/represented,	 (F.	 Affonso	 et	 al.,	 2014)	 associate	 each	 RA	 with	 six	 existing	

design	 techniques:	 block	 diagram,	 informal	 notation,	 layer	 diagrams,	UML	diagrams,	

formal	methods	(such	as	Z	notation)	and	formal	notation	for	business	process	(such	as	

BPMN-	 Business	 Process	 Modeling	 Notation,	 BPEL-	 Business	 Process	 Execution	

Language).	In	addition,	in	order	to	find	out	how	the	dynamic	behavior	of	AS	has	been	

designed,	(F.	Affonso	et	al.,	2014)	identify	ten	knowledge	types:	

-	 Action	 plane:	 represents	 an	 information	 item	 that	 shows	 a	 systematic	 course	 of	

action	for	the	achievement	of	a	declared	purpose.	

-	Agents:	encompass	the	software	agents,	intelligent	agents,	and	autonomous	agents.		

-	 Autonomous	 subsystems:	 implement	 the	 generic	 loop	 (Monitor	 -	 Analyze	 -	 Plan	 -	

Executor)	defined	by	the	architecture	model	of	autonomic	computing.	

-	 Computational	 Reflection:	 represents	 the	 ability	 of	 a	 program	 to	 modify	 itself	 at	

runtime	and	is	very	similar	to	human	reflection.	

-	 Nature-inspired	 pervasive	 service	 ecosystems:	 should	 obtain	 inspiration	 from	

natural	 systems	 by	 enabling	 modeling	 and	 deployment	 of	 services	 as	 autonomous	

individuals	spatially-situated	in	a	system	of	other	services,	data	sources,	and	pervasive	

devices.	

-	Process	flow:	represents	a	sequence	of	steps	for	performing	of	an	activity.	Decisions	

can	be	made	in	order	to	characterize	the	changes	in	the	dynamic	behavior	of	software.	

-	 Rule	 base:	 represents	 a	 rule	 set	 that	 can	 be	 used	 to	 define	 the	 changes	 to	 be	

performed	at	runtime.		

S23*	 A	Reference	Model	as	Automated	Process	for	Software	
Adaptation	at	Runtime		

2015	 (F.	 J.	 Affonso,	 Vecchiato	

Saenz,	 Rodrigues,	 Luis,	 &	

Nakagawa,	2015)	

S24*	 Engineering	Pervasive	Service	Ecosystems:	The	SAPERE	
Approach		

2015	 (Castelli,	 Mamei,	 Rosi,	 &	

Zambonelli,	2015)	

S25*	 ReMoSSA:	Reference	Model	for	Specification	of	Self-
adaptive	Service-Oriented-Architecture		

2014	 (Cherif,	 Djemaa,	 &	

Amous,	2014)	

	
	

	
74	

-	 Service	 composition:	 represents	 functionalities	 that	 can	 be	 coupled	 at	 runtime	 so	

that	the	new	requirements	are	met.	

-	Subsystems	in	layers:	represents	a	subsystem	set	organized	in	layers	so	that	one	or	

more	 activities	 are	 performed.	 They	 are	 autonomous	 units	 that	 enable	 the	 dynamic	

behavior	of	AS;	and		

-	Supervisor	systems:	represents	systems	responsible	for	monitoring	the	operation	of	

another	system.	

Based	 on	 their	 conducted	 SLR,	 (F.	 Affonso	 et	 al.,	 2014)	 point	 out	 that	 the	

surveyed		RA/RM	can	be	instantiated	to	operate	in	other	domains	of	software	systems,	

which	can	be	considered	a	well-inclined	aspect	for	the	reuse,	and	most	of	the	RA/RM	

are	 designed	 by	 one	 or	more	 design	 techniques	 and	 one	 or	more	 knowledge	 types,	

where	 the	 relationship	between	 the	 knowledge	 type	 “autonomous	 subsystems”	 and	

the	design	technique	“block	diagram”	must	be	highlighted	for	facilitating	the	modeling	

activity	of	RA/RM.	

The	 relationship	 between	design	 techniques	 and	 knowledge	 types,	 as	well	 as	

the	studies	addressed	to	each	relation	are	shown	in	Table	7	(this	symbol	(*)	indicates	

that	we	added	the	study).		

The	 RA/RM	 for	 autonomic	 system	 reviewed	 in	 this	 Section	 serve	 as	 a	

framework	for	our	RA.	These	RA/RM	were	analyzed	to	acquire	relevant	knowledge	in	

order	 to	 understand	 how	 autonomic	 computing	 principles	 are	 applied	 in	 order	 to	

manage	a	system.	Therefore,	these	RA	were	used	as	an	“inspiration”	to	 introduce	an	

autonomic	module	based	on	MAPE	framework	in	our	RA.	

	 	

	
	

	
75	

Table	7.	Design	technique	vs.	knowledge	type	for	RA/RM	for	AS,	adapted	from	(F.	Affonso	et	

al.,	2014)	

Design	technique	 Knowledge	Type	 Primary	Studies	

Block	Diagrams	

Agents 	
Autonomous	subsystems	
Computational	reflection 	
Nature-inspired	pervasive	service	ecosystems		
Rule	base	
Service	composition 	
Subsystems	in	layers	
Supervisor	systems 	

S2,	S7	
S11,	S12,	S14,	S17,	S18,	S25*	
S1,	S23*	
S16,	S24*	
S4,	S7,	S12,	S13 	
S3,	S17	
S16	
S17,	S22	

Formal	Methods	

Agents 	
Autonomous	subsystems	
Computational	reflection 	
Rule	base	
Process	Flow	 	

S7,	S19	
S19	
S19	
S7,	S10,	S19	
S9	

Formal	 Methods	 for	
Business	Process	

Process	Flow	 S6,	S9	

Informal	Notation	
Autonomous	subsystems	
Nature-inspired	pervasive	service	ecosystems		
Subsystems	in	layers 	

S18 	
S16,	S24*	
S16,	S15	

Layer	Diagram	

Action	Plan	
Agents 	
Autonomous	subsystems	
Computational	reflection 	
Subsystems	in	layers	
Supervisor	systems 	

S5,	S8	
S20	
S18,	S20	
S1,	S4,	S5,	S8,	S13	
S1,	S15	
S22	

UML	Diagram	

Agents 	
Autonomous	subsystems	
Computational	reflection 	
Process	Flow	
Rule	base	
Supervisor	systems 	

S19,	S20	
S11,	S20,	S25*	
S19,	S20,	S23*	
S9 	
S21	
S22		

	

3.3.4 Activity	D	–	Step	RA-1:	Architectural	Styles/Patterns	

Patterns	 are	 increasingly	 popular	 techniques	 for	 addressing	 key	 aspects	 of	

software	architecture	design.	Patterns	codify	 reusable	design	expertise	 that	provides	

time-proven	 solutions	 to	 commonly	 occurring	 software	 problems	 that	 arise	 in	

particular	contexts	and	domains.	A	pattern	describes	a	generic	solution	for	a	recurring	

design	problem.		

Design	 patterns	 provide	 a	 scheme	 for	 refining	 the	 elements	 of	 a	 software	

system	 and	 the	 relationships	 between	 them,	 and	 describe	 a	 common	 structure	 of	

communicating	 elements	 that	 solves	 a	 general	 design	 problem	 within	 a	 particular	

context.	 	Architectural	styles	express	the	fundamental,	overall	 structural	organization	

	
	

	
76	

of	 software	 systems	 and	 provide	 a	 set	 of	 predefined	 subsystems,	 specify	 their	

responsibilities,	and	include	guidelines	for	organizing	the	relationships	between	them.		

Patterns	help	enhancing	reuse	by	capturing	and	reusing	the	static	and	dynamic	

structure	 and	 collaboration	 of	 key	 participants	 in	 software	 designs.	 They	 are	

particularly	 useful	 for	 documenting	 recurring	 micro-architectures,	 which	 are	

abstractions	 of	 software	 components	 that	 experienced	 developers	 apply	 to	 resolve	

common	 design	 and	 implementation	 problems.	 Patterns	 also	 raise	 the	 level	 of	

discourse	 in	 project	 design	 and	programming	 activities,	which	helps	 improving	 team	

productivity	and	software	quality.		

Software	architectures	are	almost	never	 limited	to	a	single	architectural	style;	

instead	they	are	often	a	combination	of	architectural	styles	that	make	up	the	complete	

system.	Aiming	to	build	our	RA	we	have	conducted	an	informal	review	to	complement	

the	 architectural	 patterns/styles	 found	 on	 the	 two	 SLR	 presented	 in	 Section	 3.3.3.	

Therefore,	we	listed	the	following	architectural	patterns/styles	commonly	used	in	self-

adaptive	 systems,	 such	 as	 Layered	 architectural	 style,	 broker	 pattern,	 service	

component	for	self-adaptive	systems,	aspect	peer-to-peer	style,	aggregator-escalator-

peer	style,	decorator	pattern,	decentralized	patterns	(hierarchical	control	pattern	and	

master/slave	 pattern),	 and	patterns	 commonly	 used	 in	WSNs,	 such	 as	mediator	 and	

data	gathering:	

3.3.4.1 Layered	Architectural	Style	

This	 style	 focuses	on	grouping	 related	 functionality	within	an	application	 into	

distinct	layers	that	are	stacked	vertically	on	top	of	each	other.	Each	layer	provides	a	set	

of	services	to	the	layer	above	and	uses	the	services	of	the	layer	below.	Between	two	

adjacent	 layers	 a	 clearly	 defined	 interface	 is	 provided.	 Commonly,	 Self-adaptive	

systems	 implement	 their	 architectures	 based	 on	 a	 three-layer	 architecture	 style.	

Examples	of	self-adaptive	systems	using	this	approach	are	(Menasce,	Gomaa,	Malek,	&	

Sousa,	Nov/Dec,	2011)	and	(Kramer	&	Magee,	2007).		

Figure	 14	 summarizes	 the	 Kramer	 and	 Magee	 proposal	 (Kramer	 &	 Magee,	

2007)	of	the	three	layer	model	for	a	self-managed	system.	The	main	criteria	for	placing	

function	in	different	layers	in	this	architecture	style	is	one	of	time	scale	and	this	would	

	
	

	
77	

seem	 to	 apply	 equally	 well	 to	 self-managed	 systems	 (Kramer	 &	 Magee,	 2007).	

Immediate	feedback	actions	are	at	the	 lowest	 level	and	the	 longest	actions	requiring	

deliberation	 are	 at	 the	 uppermost	 level.	 Kramer	 and	 Magee	 emphasize	 that	 they	

consider	 this	 a	 conceptual	 architecture	 or	 RA	 which	 identifies	 the	 necessary	

functionality	 for	 self-management.	We	will	use	 it	 in	 the	next	 section	 to	organize	 the	

research	challenges	presented	by	self-management	in	WSN	middleware	systems,	and	

to	define	the	basic	structure	of	our	RA.		

	

Figure	14.	Three	Layer	Architecture	Model	for	Self-Management	(Kramer	&	Magee,	2007)	

	

3.3.4.2 Broker	Pattern	

One	 major	 challenge	 in	 distributed	 software	 systems	 is	 communication	 and	

integration	 of	 heterogeneous	 components	 into	 coherent	 applications,	 as	well	 as	 the	

efficient	 use	 of	 networking	 resources.	 A	 Broker	 (see	 Figure	 15)	 separates	 the	

communication	functionality	of	a	distributed	system	from	its	application	functionality.	

The	Broker	hides	and	mediates	all	communication	between	the	objects	or	components	

of	a	system.		

	
	

	
78	

	

Figure	15.	Broker	Pattern	(Avgeriou	&	Zdun,	2005)	

3.3.4.3 Service	Components	for	self-adaptive	systems	

Component-based	 systems	 and	 Service-oriented	 systems	 are	 architectural	

styles	commonly	applied	together	by	self-adaptive	systems.	Component	architectural	

style	 focuses	on	 the	decomposition	of	 the	design	 into	 individual	 functional	or	 logical	

components	that	expose	well-defined	communication	 interfaces	containing	methods,	

events,	and	properties.	The	main	benefits	of	 this	approach	are:	ease	of	deployment,	

reduced	 cost,	 component	 reusability	 and	mitigation	of	 technical	 complexity.	 Service-

oriented	architectural	style,	in	turn,	enables	application	functionality	to	be	provided	as	

a	 set	of	 services.	 Thus,	 in	 (Puviani,	Cabri,	&	Zambonelli,	 2013)	a	pattern	 is	proposed	

that	describes	the	structure	of	service	components	for	using	in	self-adaptive	systems.	

This	pattern	proposes	the	use	of	a	component	with	well-defined	interfaces	specific	for	

self-adaptive	systems.			

The	interfaces	are	(see	Figure	16):	 Input,	used	to	receive	information;	Output,	

used	 to	 send	 information;	 Sensor,	 that	 makes	 the	 component	 able	 for	 achieving	

information	 from	 the	 external;	 Effector	 that	 makes	 the	 component	 be	 able	 for	

managing	 the	 external;	 Emitter,	 used	 to	 emit	 status	 information	 to	 an	 external	

manager.	Thus,	the	structure	of	service	components	provides	a	base	for	instantiating	a	

concrete	system	from	our	RA.	

	
	

	
79	

	

Figure	16.	Structure	of	service	components	(Puviani	et	al.,	2013)	

3.3.4.4 Aspect	peer-to-peer	Architectural	Style:		

In	 this	 architectural	 style,	 a	monitor	 component	 observes	 each	 aspect	 of	 the	

system	 or	 its	 environment	 and	 a	 peer	 configurator	 component	 to	 reconfigure	 the	

system.	This	style	(Figure	17)	(Neti	&	Muller,	May,	2007)	can	also	be	viewed	as	a	set	of	

autonomic	elements	with	one	autonomic	element	for	each	component	of	the	system.	

Each	autonomic	element	in	the	set	is	independent	and	complete	on	its	own.		

	

Figure	17.	Aspect	peer-to-peer	Architectural	Style	(Neti	&	Muller,	May,	2007)	

	

3.3.4.5 Aggregator-escalator-peer	Architectural	Style:		

This	architectural	 style	 (Neti	&	Muller,	May,	2007)	allows	 to	monitors	 to	pass	

their	outputs	to	higher-level	aggregator	monitors.	A	higher-level	configurator	can	then	

make	better	configuration	decisions.	This	style	(Figure	18)	can	also	be	viewed	as	a	set	

of	autonomic	elements	where	one	autonomic	element	exists	 for	each	component	of	

	
	

	
80	

the	 system.	 In	 this	 architectural	 style,	 higher-level	 elements	 need	 information	 from	

lower	level	elements	to	function	properly.				

	

Figure	18.	Aggregator-escalator-peer	Architectural	Style	(Neti	&	Muller,	May,	
2007)	

3.3.4.6 Decorator	Pattern.	

The	 design	 pattern	 Decorator	 allows	 behavior	 to	 be	 added	 to	 an	 individual	

object,	either	statically	or	dynamically,	without	affecting	the	behavior	of	other	objects	

from	 the	 same	 class.	 This	 pattern,	 depicted	 in	 Figure	 19,	 is	 based	on	 three	 types	 of	

entities:	(i)	Interfaces	that	define	services	provided	by	components,	(ii)	Abstract	classes	

with	 the	 definition	 of	 basic	methods,	 services	 and	 references	 to	 other	 components,	

and	(iii)	Implementation	classes	that	define	the	specific	required	behavior.			

	

Figure	19.	General	implementation	of	components	

	
	

	
81	

3.3.4.7 Decentralized	Patterns	for	Self-Adaptation	in	WSN	

In	 many	 cases,	 centralizing	 control	 for	 self-adaptation	 is	 simply	 not	 feasible.	

Among	 the	 possible	 reasons	 for	 this	we	 can	mention	 (Lemos,	 2013):	 (i)	 an	 inherent	

distribution	 of	 information	 in	 the	 system	 makes	 it	 too	 costly	 or	 even	 infeasible	 to	

collect	all	the	data	required	for	adaptation	actions;	(ii)	due	to	the	scale	of	the	system	

the	 cost	 to	 process	 all	 the	 information	 at	 one	 place	 may	 be	 too	 high;	 and	 (iii)	 the	

system	 spans	multiple	 ownership	 domains	 with	 no	 trustworthy	 authority	 to	 control	

adaptations.	Thus,	when	systems	are	large,	complex,	and	heterogeneous	as	it	is	typical	

in	 WSN	 applications,	 a	 simple	 MAPE	 loop	 may	 not	 be	 sufficient	 for	 managing	 all	

adaptations	in	a	system,	so	multiple	MAPE	loops	may	be	introduced.	However,	there	is	

a	 dearth	 of	 practical	 and	 effective	 techniques	 to	 build	 systems	 using	 decentralized	

control	of	self-adaptive	software	(Lemos,	2013).		

Decentralization	 of	 control	may	 be	 the	 only	 option	 in	 cases	 where	 no	 single	

entity	 has	 the	 knowledge	 or	 authority	 to	 coordinate	 adaptation	 across	 a	 set	 of	

managed	 subsystems.	 Therefore,	 we	 now	 present	 two	 MAPE	 patterns	 that	 model	

different	types	of	interacting	MAPE	loops	with	different	degrees	of	decentralization:	

a)	Hierarchical	control	pattern.	This	pattern	provides	a	layered	separation	of	concerns	

to	 manage	 the	 complexity	 of	 self-adaptation.	 It	 organizes	 the	 adaptation	 logic	 as	 a	

hierarchy	 of	 MAPE	 loops.	 Different	 layers	 typically	 focus	 on	 different	 concerns	 at	

different	levels	of	abstraction,	and	may	operate	at	different	time	scales.	Loops	at	lower	

layers	 operate	 at	 a	 short	 time	 scale,	 guaranteeing	 timely	 adaptation	 concerning	 the	

part	of	 the	 system	under	 their	direct	 control.	Higher	 level	operates	at	 a	 longer	 time	

scale	with	a	more	global	vision.		

The	architecture	of	the	managed	system	will	likely	influence	which	patterns	are	

applicable.	 A	 hierarchical	 pattern	 will	 be	 unlikely	 to	 work	 if	 there	 is	 no	 obvious	

hierarchy	of	authority	in	the	managed	system	(Lemos,	2013).	This	pattern,	depicted	in	

Figure	 20,	 is	 applied	when	 control	 loops	 need	 to	 interact	 and	 coordinate	 actions	 to	

avoid	conflicts	and	provide	certain	guarantees	about	adaptation.		

	
	

	
82	

	

Figure	20.	Top:	Hierarchical	control	pattern.	Bottom:	concrete	instance	of	the	pattern.	Source:	

(Lemos,	2013)	

The	 hierarchical	 control	 pattern	 enables	 adaptation	 logic	 to	 be	 structured	 so	

that	 the	 complexity	 of	 self-adaptation	 can	 be	managed.	 In	 the	 context	 of	WSN,	 the	

adoption	of	a	hierarchical	structure	allows	bottom	layer	control	loops,	deployed	inside	

the	 network,	 focus	 on	 concrete	 adaptation	 objectives	 (sensor	 nodes	 and	 clusters),	

while	 higher	 level	 control	 loops,	 deployed	 outside	 the	 network,	 take	 increasingly	

broader	 perspectives	 by	 considering	 an	 adaptation	plan	 for	 the	 entire	 network.	 This	

corresponds	 to	 the	 layered	 organization	 of	 self-adaptation	 as	 proposed	 in	 Section	

3.3.4.1.	

b)	 Master/Slave	 pattern.	 This	 pattern	 organizes	 the	 adaptation	 logic	 by	 creating	 a	

hierarchical	 relationship	 between	 one	 (centralized)	 master	 component,	 that	 is	

responsible	 for	 the	 analysis	 and	 planning	 of	 adaptations,	 and	 multiple	 slave	

components	 which	 are	 responsible	 for	 monitoring	 and	 execution.	 This	 pattern	 is	

applied	 when	 there	 is	 a	 need	 to	 adapt	 a	 distributed	 software	 system.	 This	 pattern	

consists	of	two	abstract	groups	of	MAPE	components.	There	is	a	single	instance	of	the	

group	with	a	Planer	(P)	and	an	Analyzer	(A)	component,	and	there	can	be	an	arbitrary	

number	of	instances	of	the	group	with	a	Monitor	(M)	and	an	Executor	(E)	component.	

As	 such,	 the	pattern	 supports	 the	 typical	 flow	of	 component	 interactions	of	a	MAPE	

loop,	but	with	multiple	instances	of	M	and	E	component	as	depicted	in	Figure	21.	

	
	

	
83	

	

Figure	21.	Top:	master/slave	pattern.	Bottom:	concrete	instance	of	the	pattern.	Source:	

(Lemos,	2013)	

The	master/slave	pattern	is	a	suitable	solution	for	WSN	scenarios	hierarchically	

organized	 in	 clusters	 in	 which	 slave	 control	 components,	 implemented	 by	 ordinary	

nodes,	 need	 to	 process	monitored	 information	 to	 derive	 the	 required	 data	 allowing	

centralized	 decision	making	 on	 cluster	 heads,	 and	 execute	 local	 adaptation	 on	 each	

cluster.	Centralizing	the	A	and	P	components	facilitates	the	implementation	of	efficient	

algorithms	 for	 analysis	 and	 planning	 aimed	 at	 achieving	 global	 objectives	 of	 each	

cluster.		

3.3.4.8 Mediator	Pattern	

This	pattern	defines	that	an	object	shall	encapsulate	the	interaction	mechanism	

of	other	objects.	Mediator	promotes	loose	coupling	by	keeping	objects	from	referring	

to	each	other	explicitly,	and	 it	 lets	you	vary	 their	 interaction	 independently	 (Amin	&	

Hong,	2005).	This	pattern	designs	an	intercessor	to	decouple	many	peers.		

An	architecture	with	numerous	 inter-connections	make	 it	more	difficult	 for	 a	

component	 to	 work	 without	 the	 support	 of	 others.	 In	 addition	 to	 that,	 making	

significant	 changes	 to	 the	 overall	 behavior	 of	 the	 system	 becomes	 unnecessarily	

difficult,	 since	behavior	 is	 distributed	among	many	modules.	 These	problems	 can	be	

avoided	by	encapsulating	collective	behavior	in	a	separate	mediator	module.		

Mediator	pattern,	depicted	in	Figure	20,	contains	two	participants:	(i)	Mediator,	

an	 intermediary	 node/component	 or	 module	 which	 provides	 an	 interface	 for	

	
	

	
84	

communicating	 with	 other	 nodes/components	 or	 modules;	 and	 (ii)	 Colleagues,	 that	

communicates	 with	 its	 mediator	 whenever	 it	 would	 have	 otherwise	 communicated	

with	another	colleague.		

	

Figure	22.	Mediator	pattern.	Source	(Amin	&	Hong,	2005)	

This	pattern	may	be	applicable	in	the	following	sensor	network	scenario:	

-		When	a	set	of	modules	communicate	in	well-defined	but	complex	ways.		

-		When	it	is	difficult	to	reuse	a	module	because	it	refers	to	and	communicates	

	 with	many	other	modules.		

Mediator	 pattern	 allows	 system	 managers	 to	 vary	 and	 reuse	 Colleague	 and	

Mediator	independently.	It	also	simplifies	the	maintenance	of	the	system	and	any	new	

functionality	 can	 be	 added	 at	 mediator	 without	 affecting	 colleagues.	 Moreover,	

mediator	pattern	can	simplify	the	communication	protocol	by	replacing	many-to-many	

relationship	 to	 one-to-many	 relationship	 as	 it	 is	 easy	 to	 inspect	 one-to-many	

relationship.	 A	 drawback	 of	 the	mediator	 pattern	 is	 that	without	 proper	 design	 the	

mediator	itself	can	become	overly	complex.	

3.3.4.9 Data	Gathering	Pattern	

This	pattern	is	applicable	when	sensor	nodes	store	routing	tables	and	execute	

routing	 protocols	 in	 order	 to	 route	 data	 from	 one	 node	 to	 another.	 In	 (Cardei,	

Fernandez,	 Sahu,	 &	 Cardei,	 2011)	 this	 pattern	 is	 detailed	 considering	 a	 hierarchical	

WSN	composed	by	sensor	nodes,	cluster	head,	super	nodes	and	sink.		

In	this	topology,	all	sensor	nodes	in	a	cluster	are	within	direct	communication	

range	with	 the	 cluster	 head.	 Sensor	 nodes	 collect	 data	 and	 forward	 the	 data	 to	 the	

nearest	 cluster	 head.	 Cluster	 heads	 aggregate	 the	 data	 received	 from	 sensor	 nodes	

and	forward	them	to	the	nearest	super	node	and	super	nodes	forward	the	data	to	the	

	
	

	
85	

sink.	Finally,	sink	nodes	forwards	the	data	to	the	user	or	the	user	requests	data	from	

the	sink.	Data	gathering	is	depicted	in	Figure	21.	

	

Figure	23.	Data	Gathering	Pattern		(Cardei,	Fernandez,	Sahu,	&	Cardei,	2011)	

3.4 Step	RA-2:	Architectural	Analysis	

Based	on	the	resulting	information	of	the	previous	phase,	this	step	of	ProSA-RA	

aims	 to	 establish	 the	 requirements	 of	 the	 RA.	 For	 this,	 the	 following	 activities	 are	

undertaken:	

A. Establishment	of	architectural	requirements	for	the	RA	

B. Establishment	of	quality	attributes	for	the	RA.	

To	 conduct	 activities	 A	 and	 B,	 we	 consider	 the	 outcome	 of	 the	 performed	

systematic	literature	reviews,	presented	in	Sections	3.3.1	and	3.3.2.	Regarding	activity	

A,	Section	3.4.1	presents	the	requirements	for	self-adaptation	in	WSN	identified	in	the	

SLR.	Regarding	activity	B,	Section	3.4.2	presents	the	quality	attributes	identified	for	the	

RA.		

3.4.1 Activity	A	–	Step	RA-2:	Requirements	for	self-adaptation	in	WSN	

Considering	the	information	detailed	in	the	Activity	A	of	previous	step	of	ProSA-

RA,	 the	 following	 self-adaptive	 WSN	 system	 concerns	 were	 identified	 (see	 section	

3.3.1):		

	
	

	
86	

I. Adapt	the	network	to	dynamic	environments	(for	instance,	node	energy	

depletion	and	arrival	of	new	applications)	and	unpredictable	events	(for	

instance,	node	and	link	failures);		

II. Save	energy,	extending	the	network	lifetime;	

III. Provide	network	scalability;	

IV. Provide	reliability	of	sensing	data	and;		

V. Provide	 independence	 between	 the	 management	 functions	 of	

applications	and	network	configuration.		

Knowing	 that	 the	 addressing	 of	 these	 concerns	 allows	 self-adaptation	 in	 WSN	

systems	 and	 based	 on	 the	 taxonomy	 presented	 in	 Figure	 3,	 where	 the	 main	

characteristics	 of	 autonomic	 WSN	 were	 identified	 and	 their	 most	 important	

requirements	 were	 highlighted,	 we	 established	 a	 set	 of	 requirements	 for	 self-

adaptation	in	WSN	addressed	by	our	RA.	These	requirements	are	described	below.		

• Req-A:	A	WSN	should	contain	one	or	more	sink	nodes	or	base	stations,	which	

must	be	endowed	with	a	wireless	communication	 interface	and	one	 interface	

with	a	Gateway,	in	order	to	integrate	the	WSN	with	external	systems	and	other	

networks.	 In	 this	 perspective,	 the	 sensor	 network	 consists	 of	 the	 managed	

resource	 according	 to	 the	 autonomic	 computing	 vision.	 The	 composition	 of	

these	 elements	 (Sink	nodes	 and	Gateway)	 in	 the	RA	 contributes	 to	deal	with	

balancing	the	network	traffic;		

• Req-B:	 The	 RA	 must	 enable	 the	 definition	 of	 a	 set	 of	 sensing-based	

applications,	responsible	for	defining	sensing	tasks	and	quality	attributes	to	be	

attended	 by	 the	 system.	 The	 specification	 of	 concrete	 and	 independent	

components	to	handle	WSN	applications	and	the	MAPE	process	contribute	to	

guarantee	 independence	 between	 the	management	 functions	 of	 applications	

and	network	configuration;	

• Req-C:	 The	 RA	 must	 enable	 the	 definition	 of	 a	 set	 of	 high-level	 goals.	 For	

instance,	a	goal	can	specify	that	the	response	time	of	a	simple	environmental	

monitoring		WSN	application	should	be	under	20	seconds,	while	that	of	a	real-

time	 WSN	 application	 needs	 to	 be	 less	 than	 5	 second.	 These	 goals	 are	

composed	 of	 execution/adaptation	 policies	 that	 will	 guide	 decisions	 and	

	
	

	
87	

strategies	to	be	used	for	configuring	and	adapting	action	plans	in	the	network.		

These	high-level	 goals	 include	both	point	of	 views:	 the	applications’	 	 and	 the	

network,	and	they	aim	to	optimize	the	use	of	resources	by	keeping	the	system	

performance	and	the	separation	of	system	concerns;	

• Req-D:	The	RA	must	enable	the	self-management	of	the	network	by	defining	a	

set	 of	 software	 components	 (middleware	platform)	 responsible	 for	managing	

the	 WSN.	 Such	 components	 must	 be	 responsible	 for	 implementing	 the	

feedback	 loops	 (MAPE-K)	and,	 therefore,	 they	must	 include	 functionalities	 for	

context	management	 (for	 enabling	 the	MAPE	process),	 goal	management	 (to	

guarantee	 WSN	 application	 requirements)	 and	 adaptation	 management	 (to	

adapt	 the	 network	 behavior	 whenever	 it	 is	 needed,	 mainly	 in	 order	 to	

extending	the	network	lifetime);	

• Req-E:	The	RA	must	consider	a	hierarchical	topology	for	the	WSN	organization.	

Hierarchical	WSNs	organize	the	nodes	into	clusters.	In	a	clustered	network,	the	

communication	 is	 divided	 into	 intra	 and	 inter	 cluster.	 The	 intra-cluster	

communication	 is	 from	 cluster	 nodes	 to	 their	 respective	 cluster	 head.	 The	

inter-cluster	 communication	 is	 from	 the	 cluster	 heads	 to	 the	 sink	nodes.	 The	

composition	of	clusters	in	the	RA	contributes	to	deal	with	scalability.	Scalability	

in	this	context	implies	the	need	for	load	balancing,	efficient	resource	utilization,	

and	data	aggregation.	

Table	8	shows	the	mapping	between	the	aforementioned	self-adaptive	system	

concerns	and	the	RAMSES	requirements.	

Table	8.	Mapping	between	self-adaptive	system	concerns	for	WSN	and	RA	requirements	

Concern	 Req-A	 Req-B	 Req-C	 Req-D	 Req-E	
I	 	 	 	 X	 	
II	 	 	 	 X	 	
III	 X	 	 	 	 X	
IV	 	 	 	 X	 	
V	 	 X	 X	 	 	

	

	 	

	
	

	
88	

3.4.2 Activity	B	–	Step	RA-2:	Self-Adaptive	WSN	System	Quality	Attributes	

This	section	aims	to	attend	the	goals	of	activity	B	of	Step	RA-2	recommended	

by	 ProSA-RA.	 This	 activity	 intends	 to	 establish	 a	 set	 of	 quality	 attributes	 for	 the	 RA.	

Quality	Attributes	are	non-functional	requirements	used	to	evaluate	the	performance	

of	a	system.	Since	quality	attributes	are	system-wide,	their	implementation	must	also	

be	system-wide;	satisfaction	of	a	quality	attribute	requirement	cannot	be	constrained	

to	a	single	module	or	subsystem.	Thus,	a	system-level	vision	of	the	system	is	required	

in	order	to	ensure	that	the	system	can	properly	satisfy	its	quality	attributes.	One	of	the	

primary	purposes	of	the	system	architecture	is	to	create	a	system	design	to	satisfy	the	

quality	 attributes.	Wrong	 or	 bad	 architectural	 choices	 can	 cost	 significant	 time	 and	

effort	 in	 later	 development,	 or	 may	 cause	 the	 system	 to	 fail	 to	 meet	 its	 quality	

attribute	goals.	The	most	 important	quality	models	used	 in	 software	development	 is	

the	 ISO/IEC	 25010:2011	 standard	 (ISO/IEC,	 2011),	 which	 replaced	 its	 predecessor	

ISO/IEC	9126-1:2001.	The	ISO/IEC	25010:2011	standard	defines	quality	characteristics	

relevant	 to	 all	 software	 systems.	 These	 characteristics	 are	 further	 subdivided	 into	

subcharacteristics,	 which	 can	 be	 measured	 by	 one	 or	 more	 quality	 properties.	 The	

ISO/IEC	 25010:2011	 presents	 five	 characteristics	 associated	 with	 quality	 in	 use	 and	

eight	about	product	quality.	

Quality	in	use	characteristics	focus	on	the	interactions	of	users	and	the	product	

in	 a	 particular	 context	 of	 use.	 These	 characteristics	 are:	 Effectiveness,	 efficiency,	

satisfaction,	freedom	from	risk,	and	context	coverage.		

Product	quality	characteristics	are	related	to	static	properties	of	software	and	

dynamic	 properties	 of	 a	 computer	 system.	 These	 characteristics	 are:	 Functional	

suitability,	 performance	 efficiency,	 compatibility,	 usability,	 reliability,	 security,	

maintainability	and	portability.	

Besides	 ISO/IEC	 25010:2011,	 it	 is	 also	 possible	 to	 identify	 studies	 in	 the	

literature	focusing	on	proposing	quality	models	and	sets	of	quality	characteristics	 for	

particular	system	domains,	such	as	self-adaptive	systems	(Yang,	Li,	Jin,	&	Chen,	2014)	

and	wireless	 sensor	networks	 (Ravula,	 Kim,	Petrus,	&	Stoermer,	 2005)	 These	 studies	

add	 quality	 characteristics	 relevant	 to	 a	 particular	 domain	 and	 adapt	 definitions	 of	

existing	characteristics	to	better	describe	quality	in	this	domain.		For	instance,	(Yang	et	

	
	

	
89	

al.,	2014)	adds	adaptability	as	a	relevant	quality	characteristic	of	self-adaptive	systems.	

Adaptability	 is	 the	 ability	 of	 the	 system	 to	 identify	 the	 root	 of	 a	 failure	 within	 the	

software	and	to	change	to	new	specification	or	operating	environments.	Other	studies,	

(Ravula	et	al.,	2005)	include	fault-tolerance,	scalability	and	security	as	relevant	quality	

characteristics	of	wireless	sensor	network.		

Fault-tolerance	 is	 the	 ability	 of	 software	 to	 withstand	 (and	 recover)	 from	

component	 or	 environmental,	 failure.	 WSNs	 require	 high	 availability	 guaranteeing	

reliable	 services.	 The	 consistency	 of	 the	 data	 states	 and	 the	 redundancy	 of	 the	

persistent	 data	 in	 the	 distributed	 wireless	 networks	 is	 one	 of	 the	 critical	 software	

qualities	 necessary	 to	 achieve	 reliable	 services	 even	 when	 faults	 are	 found	 in	 the	

system.	For	instance,	how	does	the	software	system	meet	the	deadline	of	high	priority	

messages	when	some	of	the	system’s	sub-networks	are	disconnected	from	the	entire	

network?	 How	 does	 the	 system	 provide	 correct	 and	 consistent	 states	 when	 faults	

occur	over	 the	network?	Middleware	technologies	also	need	to	enable	the	modeling	

and	 analysis	 of	 fault	 states	 and	modes,	 and	 design	 the	 strategies	 to	 support	 a	 fault	

tolerant	system.		

Scalability	is	another	important	quality	attribute	for	WSN,	as	WSNs	grow	from	

small	residential	applications	to	commercial/industrial	applications	with	thousands	of	

nodes,	their	processing	capacity	must	be	able	to	grow,	to	both	expand	the	complexity	

of	 the	 states	 and	 the	 amount	 of	 sensing	 data	 the	 system	 manages,	 and	 maintain	

acceptable	 performance	 levels	 for	 the	 real	 time	 services.	 The	 middleware	 system	

needs	 to	 resolve	 these	 scalability	 design	 issues	 by	 decoupling	 all	 the	 networking,	

messaging	 and	 operating	 system	 related	 development	 from	 the	 application	 level	

development.		

Finally,	 security	 relates	 to	 unauthorized	 access	 to	 the	 software	 functions.	

Sensor	networks	must	ensure	network	security	and	user	privacy.	Security	and	privacy	

are	 of	 extreme	 importance	 for	 many	 WSN	 applications.	 Standardization	 of	 security	

should	provide	different	security	levels	according	to	each	application	need.	Moreover,	

the	 privacy	 of	 users	 and	 information	 should	 be	 protected.	 In	 (Yang	 et	 al.,	 2014),	

authors	noted	a	gap	in	research	on	security	requirements	engineering	related	to	self-

adaptive	systems.	

	
	

	
90	

Quality	 characteristics	 for	 self-adaptive	 systems	 and	 WSN	 have	 a	 profound	

effect	on	the	proposed	RA	by	providing	a	sound	basic	 for	making	objective	decisions	

about	 design	 trade-offs.	 They	 represent	 areas	 of	 concern	 for	 self-adaptive	 WSN	

middleware	systems	that	directly	impacted	design	decisions	for	the	conception	of	our	

RA.		

3.5 Step	RA-3:	Architectural	Synthesis	

In	this	section	RAMSES	is	described	using	RAModel	(Reference	Architecture	Model)	

as	a	framework	(E.	Nakagawa	et	al.,	2012).	The	outcome	of	this	step	of	ProSa-RA	is	an	

architectural	 description	 composed	 of	 a	 set	 of	 architectural	 views	 and	 additional	

artifacts	 of	 the	 RA.	 RAModel,	 depicted	 in	 Figure	 22,	 provides	 information	 on	 all	

elements	 (and	 their	 relationships)	 that	 could	be	 contained	 in	RAs,	 independently	 on	

application	domains	or	purpose	of	 such	architectures.	RAModel	 is	 composed	of	 four	

groups	of	elements	(detailed	in	Appendix	A).	

• Domain:	It	contains	elements	related	to	self-contained,	specific	information	of	the	

space	of	 human	 action	 in	 the	 real	world,	 such	 as	 domain	 legislations,	 standards,	

and	certification	processes,	which	impact	systems	and	related	RAs	of	that	domain.		

• Application:	It	contains	elements	that	provide	a	good	understanding	about	the	RA,	

its	 capabilities	 and	 limitations	 (such	 as	 goals	 and	 needs	 of	 the	 RA,	 scope	 and	

functional	requirements).	It	also	contains	elements	related	to	the	business	rules	(or	

functionalities)	that	could	be	present	in	software	systems	built	from	the	RA.	

• Infrastructure:	 it	 refers	 to	 elements	 that	 could	 be	 used	 to	 build	 the	 software	

systems	based	on	the	RA.	These	elements	are	responsible	to	enable	these	systems	

to	automate,	for	instance,	processes,	activities,	and	tasks	of	a	given	domain;	and	

• Crosscutting	 Elements:	 this	 group	 aggregates	 a	 set	 of	 elements	 that	 are	 usually	

spread	 across	 and/or	 tangled	with	 elements	 of	 the	 other	 three	 groups	 (domain,	

application	 and	 infrastructure).	 Examples	 of	 crosscutting	 elements	 are	

communication	(internal	and	external)	 in	the	software	systems	built	from	the	RA,	

as	well	as	the	domain	terminology	(set	of	terms	of	the	domain	that	are	used	in	the	

description	of	the	RA)	and	decisions	(such	as	alternatives,	rationale	and	tradeoffs	

reported	during	the	development	of	the	RA).	

	
	

	
91	

	
Figure	24.	RAModel:	Reference	model	for	reference	architectures	

Considering	the	effectiveness	of	using	architectural	views	to	represent	software	

architectures	 (see	 Section	 2.4.4),	 they	 can	 be	 also	 adopted	 to	 describe	 reference	

architectures	 (Guessi,	 de	 Oliveira,	 &	 Nakagawa,	 2011).	 Thereby,	 (Nakagawa	 et	 al.,	

2014)	 have	 observed	 that	 different	 sets	 of	 views	 can	 be	 used	 to	 represent	most	 of	

RAModel	elements.	(Nakagawa	et	al.,	2014)	organize	architectural	views	in	four	groups	

of	architectural	 viewpoints.	 Each	group	has	one	or	more	 related	views.	Views	 in	 the	

same	group	usually	describe	similar	 types	of	 information	of	 the	RA	or	 information	 in	

different	 abstraction	 levels	of	 such	architecture.	 In	RAMSES,	 these	 viewpoints,	 listed	

below,	are	described	by	combining	UML	and	Pi-ADL.		

(i) Crosscutting	viewpoint,		

(ii) Source	Code	viewpoint,		

(iii) Runtime	viewpoint,	

(iv) Deployment	viewpoint.		

(Nakagawa	 et	 al.,	 2014)	 	 consider	 that	 these	 architectural	 viewpoints	 are	

sufficient	 to	 represent	 the	 most	 of	 reference	 architectures,	 independently	 of	 the	

application	domain.		

	
	

	
92	

During	the	development	of	these	architectural	views,	we	checked	RAModel	 in	

order	 to	 verify	 if	 all	 elements	 present	 in	 RAModel	 and	 required	 in	 the	 reference	

architecture	were	considered.		

3.5.1 Crosscutting	viewpoint:		

Crosscutting	 viewpoint	 shows	 for	 all	 stakeholders	 the	 general	 information	

about	RAMSES.	Three	views	compose	this	group:		

(i)	Conceptual	view,	that	presents	the	structure	of	information	managed	within	

the	RA,	where	a	 glossary	 can	be	used	 to	describe	each	 term	used,	optionally	

replaced	by	 a	 domain	 ontology,	 such	 the	 Semantic	 Sensor	Network	Ontology	

(SSN)	(Neuhaus	&	Compton,	2009);		

(ii)	 Functionality	 view,	 that	 identifies,	 at	 a	 higher-level	 abstraction,	 the	main	

functionalities	 of	 the	 RA	 components,	 their	 relationships,	 and	 possible	

consumers;	

(iii)	 System	 Services	 view,	 that	 identifies	 at	 a	 higher	 abstraction	 level	 the	

minimal	 set	 of	 services	 (functions)	 that	 need	 to	 be	 supported	 by	 all	

implementations	of	the	RA.	

3.5.1.1 Conceptual	View	

A	 conceptual	 view	 of	 RAMSES	 is	 represented	 through	 a	 UML	 Class	 Diagram	

notation	 (Figure	 25).	 The	 elements	 contained	 in	 this	 conceptual	 model	 are	 the	

elements	 that	 compose	 a	 Self-Adaptive	WSN	 application	 and	 they	 can	 be	 stored	 as	

meta-data	in	the	knowledge	base	of	RAMSES.		

	
	

	
93	

	

	
Figure	25.	Conceptual	view	

	
Table	9	details	the	conceptual	domain	of	RAMSES.	

	
	 	

	
	

	
94	

Table	9.	Conceptual	domain	

Terminology	 Definition	
WSN	 Wireless	Sensor	Network,	which	comprises	a	set	of	Nodes	that	

cooperatively	monitor	environmental	conditions,	such	as	temperature,	
humidity,	motion,	and	so	forth	

Node	 A	device	responsable	for	collecting	information	from	its	surrounding	
environment	and	transmit	it	to	one	or	more	points	of	centralized	control.	A	
node	may	

Network	
Topology	

It	is	the	arrangement	of	the	Nodes	of	the	WSN.	RAMSES	considers	that	a	
WSN	may	have	a	Flat	or	Hierarchical	topology	

Flat	Topology	 This	is	actually	the	case	of	no	topology	or	the	absence	of	any	defined	
topology.	In	flat	topology,	each	sensor	plays	equal	role	in	network	
formation	

Hierarchical	
Topology	

RAMSES	considers	hierarchical	topologies	as	a	cluster-based	topology	

Sink_Node	 A	type	of	Node	that	connects	the	WSN	with	external	networks	and	
applications	

Cluster	Head	 A	type	of	Node	that	acts	as	autonomic	managers	of	nodes	belonging	to	the	
cluster	

Ordinary	Node	 A	type	of	Node	that	receives	adaptation	messages	from	cluster	heads	
WSN	Platform	 It	is	an	underlying	computer	system	on	which	application	program	for	WSN	

can	run.	
Measurement	 It	refers	to	sensing	data	collected	by	Sensors	
Sensor	 It	is	an	object	whose	purpose	is	to	detect	events	or	changes	in	its	

environment,	and	then	provide	a	corresponding	output	
Actuator	 It	is	a	type	of	motor	that	is	responsible	for	moving	or	controlling	a	

mechanism	or	system	
Processor	 It	is	the	logic	circuitry	that	responds	to	and	processes	the	basic	instructions	

that	drive	a	WSN	platform	
RAM	 Random	Access	Memory	
ROM	 Read	Only	Memory	
Energy		
Source	

It	is	a	system	that	provides	power	to	Node	

Transceiver	 It	is	a	transmitter/receiver	of	a	single	WSN	package	
WSN	
Administrator	

It	is	a	user	that	supervises	and	manages	the	WSN	operation	

End-User	 It	is	a	user	that	defines	and	interacts	with	WSN	application	
Application	 It	is	a	set	of	application	requirements	defined	by	an	End-User	
Requirement	 An	application	requirement	can	be	defined	as:	application	lifetime,	data	

collection	rate,	maximum	desired	delay,	physical	phenomena	to	be	
monitored,	geographical	area	when	the	data	collection	will	be	performed,	
among	others.			

DataType	 It	is	a	classification	that	identifies	the	type	of	data,	such	as:	Real,	Integer	or	
Boolean.	

MAPE-Process	 It	refers	to	autonomic	computing	process	(for	Monitoring,	Analyzing,	
Planning	and	Executing)	which	is	performed	for	managing	the	WSN	

	
	 	

	
	

	
95	

3.5.1.2 Functionality	view	

This	 view	 defines	 the	 main	 functionalities	 of	 RAMSES.	 It	 introduces	 for	 all	

stakeholders,	 in	 a	 higher	 abstraction	 level,	 the	 main	 elements	 that	 deliver	 the	 RA	

functionality,	 the	 key	 functional	 elements,	 their	 responsibilities,	 the	 interfaces	 they	

expose,	 and	 the	 interactions	 between	 them.	 This	 view	 demonstrates	 how	 RAMSES	

performs	the	functions	required	of	it.			

RAMSES	 aims	 to	 meet	 the	 efficiency	 and	 flexibility	 requirements	 for	 self-

adaptive	WSN	middleware	systems	and	it	builds	on	autonomic	computing	principles	by	

mapping	 the	 MAPE-K	 model,	 proposed	 by	 IBM	 (IBM,	 2005),	 to	 an	 implementable	

architecture	for	managing	and	control	autonomic	WSNs.		

RAMSES	assumes	a	hierarchical	topology	for	the	WSN	organization	by	grouping	

nodes	into	clusters,	where	some	nodes	work	as	cluster	heads	and	collect	the	data	from	

other	(ordinary)	nodes	in	the	clusters.	Then,	the	cluster	heads	can	process	the	data	(by	

performing	operations	such	as	data	aggregation,	data	fusion	and	simple	data	analysis)	

and	 send	 it	 to	 the	 sink	 node	 as	 a	 single	 packet,	 decreasing	 the	 overhead	 from	data	

packet	 headers	 and	 reducing	 the	 transmission	 of	 redundant	 data.	 Therefore,	 the	

hierarchical	 network	 is	 defined	with	 three	 types	 of	 nodes:	 sink	 nodes,	 cluster	 heads	

and	 sensor	 nodes.	 Sink	 nodes	 connect	 the	 WSN	 and	 the	 gateway,	 which	 in	 turn	

connects	 the	 WSN	 to	 external	 networks,	 and	 applications.	 Cluster	 heads	 act	 as	

autonomic	managers	of	nodes	belonging	to	their	respective	clusters.	Finally,	a	sensor	

node	 plays	 the	 role	 of	 a	managed	 node	 that	 receives	 adaptation	messages	 from	 its	

cluster	head.	The	overall	system	is	controlled	by	a	hierarchical	control	structure	where	

complete	MAPE-K	loops	are	present	at	all	architecture	layers	of	the	hierarchy.	MAPE-K	

loops	 at	 different	 levels	 interact	 with	 each	 other	 by	 exchanging	 sensing	 data	 and	

control	 information.	 The	MAPE-K	 loop	 at	 a	 given	 level	may	 pass	 to	 the	 level	 above	

information	 it	 has	 collected,	 possibly	 filtered	 or	 aggregated,	 along	 with	 information	

about	 locally	 planned	 actions,	 and	 may	 issue	 to	 the	 level	 below	 directives	 about	

adaptation	plans	that	should	be	refined	into	corresponding	actions.	

It	 is	 important	 to	note	 that	most	of	 the	 feedback	control	 loop	 (FCL)	 solutions	

use	context-based	reasoning	for	the	monitoring	process	and	a	policy-based	reasoning	

to	execute	action	plans.	Therefore,	since	we	are	proposing	a	MAPE-based	solution,	our	

	
	

	
96	

RA	fits	 in	this	type	of	approach	(FCL	approach),	also	following	the	context-based	and	

policy-based	reasoning	principles	to	monitor	WSN	network	context	and	execute	action	

plans,	respectively.	

Among	 the	 patterns	 and	 architectural	 styles	 described	 in	 section	 3.3.4,	 the	

following	 were	 adopted	 in	 the	 design	 of	 our	 RA:	 (i)	 Layered	 architectural	 style,	 (ii)	

broker	pattern,	(iii)	decorator	pattern,	(iv)	decentralized	patterns,	(v)	mediator	pattern	

and,	(vi)	data	gathered	pattern.	

RAMSES	 adopts	 the	 Layered	 architectural	 style	 (see	 Section	 3.3.4.1),	 by	

encompassing	 three	 architectural	 layers	 (Figure	 26):	 Sensor	 MAPE-K	 Layer	 (SML),	

Network	MAPE-K	Layer	(NML),	and	Goal	Management	Layer	(GML).	SML	concerns	the	

autonomic	 management	 inside	 sensor	 devices;	 NML	 concerns	 the	 autonomic	

management	in	the	whole	network	and	GML	aims	to	manage	WSN	applications	and	to	

set	adaptation	policies	used	by	the	underlying	layers	to	perform	network	adaptations.	

In	order	to	manage	the	autonomic	behavior	of	the	whole	network,	the	NML	requires	

the	 collection	 of	 information	 monitored	 by	 underlying	 levels	 (from	 sensor	 nodes).	

Thereby,	NML	acts	as	an	autonomic	manager	and	SML	acts	as	a	managed	resource.	On	

the	other	hand,	SML	concerns	 the	autonomic	management	 inside	each	cluster.	Each	

cluster,	 besides	 forwarding	 monitoring	 information	 to	 the	 NML,	 behaves	 as	 an	

independent	 autonomic	 system,	 where	 cluster	 heads	 are	 autonomic	 managers	 and	

ordinary	nodes	are	managed	resources.		

The	SML	allows	adapting	a	node	configuration	according	to	context	information	

of	nodes	and	following	sensor	adaptation	policies.		RAMSES	considers	as	node	context	

the	 following	 information:	 battery	 level,	 data	 delivery	model	 (event-based,	 periodic	

and	request-reply	models),	data	sending	rate,	operational	state	(active/inactive/idle),	

type	of	node	(node	manager/cluster	heads	and	managed	node/ordinary	nodes),	tasks	

that	the	nodes	are	currently	performing	(routing/sensing/storing),	signal	strength,	and	

localization.	 Node	 managers	 may	 create	 new	 configurations	 for	 managed	 nodes	

localized	 inside	 their	 respective	 cluster.	 Each	 node	 manager	 is	 responsible	 for	

managing	 its	 own	 cluster.	 In	 order	 to	 determine	 all	 adaptation	 actions	 needed	 to	

reconfigure	 managed	 nodes	 of	 a	 cluster,	 a	 node	 manager	 continuously	 receives	

context	 information	 from	 its	 managed	 nodes	 and	 a	MAPE-K	 process,	 at	 the	 cluster	

	
	

	
97	

level,	is	performed	to	verify	the	need	of	an	adaptation.	Whenever	an	adaptation	action	

is	required,	a	node	configuration	message	is	created	containing:		

(i)	 Information	 about	 changes	 in	 the	 topology	 of	 the	 cluster	 (activating	 and	

deactivating	managed	nodes);		

(ii)	Adjustments	of	the	data	delivery	model	in	use	by	cluster	members;	and		

(iii)	Tasks	of	nodes	(routing,	sensing,	storing).		

After	 the	 adaptation	 plan	 is	 performed,	 the	 node	manager	 disseminates	 the	

configuration	message	to	all	cluster	members.	 In	addition,	a	node	manager	is	able	to	

receive	 a	 cluster	 configuration	 message	 sent	 by	 the	 gateway	 (via	 the	 sink	 node)	

containing	 a	 set	 of	 tasks	 to	 be	 executed	by	 sensor	 nodes	 (for	 instance,	 to	 configure	

cluster	 nodes	 for	 performing	 a	 sensing	 task	 aiming	 at	 delivering	 to	 cluster	 heads	

temperature	measures	 at	 a	predefined	 interval)	 and	 the	adaptation	policies	used	by	

the	nodes	to	support	adaptation	decisions.		

	

Figure	26.	Layered	architecture	of	RAMSES	

	
	

	
98	

RAMSES	organizes	MAPE	loops	in	a	hierarchical	fashion,	where	each	level	of	the	

hierarchy	contains	instances	of	all	four	MAPE	components.	In	this	setting,	higher-level	

MAPE	loops	(at	the	NML	layer)	determine	the	configuration	values	for	the	subordinate	

MAPE	 loops	 (SML	 layer).	 Monitoring	 and	 execution	 are	 delegated	 to	 the	 different	

nodes	of	the	network,	whereas	analyzing	and	planning	are	centralized	in	cluster	heads	

and	 gateways.	 It	 is	 worth	 to	 highlight	 that	 the	 hierarchical	 control	 pattern	

implementation	is	used	to	allow	the	deployment	of	two	MAPE	processes,	where	NML	

is	 in	 a	 higher	 level	 and	 SML	 is	 in	 a	 lower	 level	 of	 operation.	 Moreover,	 the	

decentralized	 deployment	 of	 MAPE	 process	 inside	 clusters	 (SML)	 is	 enabled	 by	 the	

Master/Slave	 pattern	 implementation,	 where	 ordinary	 nodes	 monitor	 their	 context	

and	a	cluster	head	manages	them.		

3.5.1.3 System	Services	View	

The	 System	Services	View	 identifies	 at	 a	 higher	 abstraction	 level	 the	minimal	

set	of	 services	 that	need	 to	be	 supported	by	all	 implementations	of	RAMSES.	

This	 information	is	useful	to	ensure	interoperability	among	different	instances	

of	 the	 RA.	 Architectural	 services	 were	 defined	 based	 on	 architectural	

requirements	 specific	 for	 each	 architectural	 layer	 of	 RAMSES:	GML,	NML	and	

SML,	presented	in	Table	10,	Table	11	and	Table	12	respectively.	These	specific	

architectural	 requirements	 are	defined	based	on	 the	 general	 requirement	 for	

self-adaptation	identified	in	Section	3.4.1.	

Table	10.	GML	Architectural	Requirements	
	
Req.	ID	 GML	Requirements	 Ref.	
Req-GML-[1]	 The	RA	must	enable	to	end-users	to	configure	WSN	applications	in	the	system	 Req-B	
Req-GML-[2]	 The	RA	must	enable	to	end-users	to	monitor	sensing	data	regarded	to	WSN	

applications	created	by	them	
Req-B	

Req-GML-[3]	 The	RA	must	enable	to	WSN	administrators	to	configure	adaptation	policies	
for	managing	the	whole	network	

Req-C	

Req-GML-[4]	 The	RA	must	enable	to	WSN	administrators	to	configure	adaptation	policies	
for	managing	sensor	node	clusters	

Req-C	

Req-GML-[5]	 The	RA	must	enable	multiple	WSN	applications	running	at	same	time	 Req-B	
Req-GML-[6]	 The	RA	must	enable	to	end-users	to	perform	searches	and	queries	about	

WSN	applications	
Req-B	

Req-GML-[7]	 The	RA	must	enable	to	WSN	administrators	to	perform	searches	and	queries	
about	active	adaptation	policies	

Req-C	

Req-GML-[8]	 The	RA	must	enable	to	software	architects	to	know	the	current	state	of	
RAMSES	architecture.	

Req-B	
Req-C	

Req-GML-[9]	 The	RA	must	enable	to	WSN	administrators	to	know	about	autonomic	
computing	decisions	made	by	the	system.	

Req-B	
Req-C	

	
	

	
99	

	
Table	11.	NML	Architectural	Requirements	

	
Req.	ID	 NML	Requirements	 Ref.	
Req-NML-[1]	 The	RA	must	allow	to	store	sensing	data	 Req-B	
Req-NML-[2]	 The	RA	must	allow	to	store	application	data	 Req-B	
Req-NML-[3]	 The	RA	must	allow	to	store	adaptation	policies	 Req-B	
Req-NML-[4]	 The	RA	must	allow	to	store	context	information	data	 Req-D	
Req-NML-[5]	 The	RA	must	allow	to	store	users	data	 Req-B	
Req-NML-[6]	 The	RA	must	allow	to	store	control	data	 Req-C	
Req-NML-[7]	 The	RA	must	allow	store	network	services	 Req-B	
Req-NML-[8]	 The	RA	must	provide	mechanisms	to	monitor	context	information	data	 Req-D	
Req-NML-[9]	 The	RA	must	provide	mechanisms	to	monitor	application	data	 Req-D	
Req-NML-[10]	 The	RA	must	provide	mechanisms	to	monitor	sensing	data	 Req-D	
Req-NML-[11]	 The	RA	must	provide	mechanisms	to	monitor	network	services	 Req-D	
Req-NML-[12]	 The	RA	must	provide	mechanisms	to	analyze	coverage	of	network	 Req-D	
Req-NML-[13]	 The	RA	must	provide	mechanisms	to	analyze	connectivity	of	network	 Req-D	
Req-NML-[14]	 The	RA	must	provide	mechanisms	to	analyze	QoS	requirements	 Req-D	
Req-NML-[15]	 The	RA	must	provide	mechanisms	to	analyze	Application	requirements	 Req-D	
Req-NML-[16]	 The	RA	must	provide	mechanisms	to	analyze	the	residual	energy	of	network	 Req-D	
Req-NML-[17]	 The	RA	must	provide	mechanisms	to	plan	the	best	network	topology	 Req-D	
Req-NML-[18]	 The	RA	must	provide	mechanisms	to	plan	the	best	routing	protocol	 Req-D	
Req-NML-[19]	 The	RA	must	provide	mechanisms	to	plan	the	task	to	be	configured	on	nodes	 Req-D	
Req-NML-[20]	 The	RA	must	enable	to	adapt	the	network	behavior	 Req-D	
Req-NML-[21]	 The	RA	must	provide	mechanisms	to	recover	due	a	network	failure	 Req-D	
Req-NML-[22]	 The	RA	must	provide	mechanisms	to	configure	a	WSN	platform	 Req-D	
Req-NML-[23]	 The	RA	must	provide	mechanisms	to	communicate	with	WSNs	 Req-A	
Req-NML-[24]	 The	RA	must	provide	mechanisms	to	protect	the	communication	with	WSNs	 Req-A	
Req-NML-[25]	 The	RA	must	publish	sensing	data	to	user	applications	 Req-B	
Req-NML-[26]	 The	RA	must	publish	autonomic	decisions	to	network	administrators	 Req-C	

	
Table	12.	SML	Architectural	Requirements	

Req.	ID	 SML	Requirements	 Ref.	
Req-SML-[1]	 The	RA	must	enable	to	perform	physical	measurements	 Req-B	
Req-SML-[2]	 The	RA	must	enable	a	standard	sensor	nodes	communications		 Req-B	
Req-SML-[3]	 The	RA	must	provide	mechanisms	to	communicate	WSN	with	a	gateway	 Req-A	
Req-SML-[4]	 The	RA	must	provide	mechanisms	to	protect	the	communications	between	

nodes	
Req-A	

Req-SML-[5]	 The	RA	must	provide	mechanisms	to	nodes	publish	sensing	data	to	sink	node		 Req-A	
Req-SML-[6]	 The	RA	must	publish	context	information	to	cluster	heads	 Req-E	
Req-SML-[7]	 The	RA	must	analyze	the	residual	energy	of	nodes	 Req-D	
Req-SML-[8]	 The	RA	must	analyze	sensing	data	collected	within	a	cluster	 Req-D	
Req-SML-[9]	 The	RA	must	provide	mechanisms	to	analyze	the	HW	health	of	nodes	 Req-D	
Req-SML-[10]	 The	RA	must	provide	mechanisms	to	analyze	the	task	configuration	of	nodes	 Req-D	
Req-SML-[11]	 The	RA	must	provide	mechanisms	to	dynamically	plan	a	cluster	topology	 Req-D	
Req-SML-[12]	 The	RA	must	provide	mechanisms	to	dynamically	configure	a	node	 Req-D	
Req-SML-[13]	 The	RA	must	provide	mechanisms	to	recover	due	a	node	failure	 Req-D	
Req-SML-[14]	 The	RA	must	allow	to	store	sensor	adaptation	policies	 Req-C	
Req-SML-[15]	 The	RA	must	allow	to	store	sensor	node	tasks	 Req-B	
Req-SML-[16]	 The	RA	must	allow	to	store	preconfigured	alert	messages	 Req-D	
Req-SML-[17]	 The	RA	must	allow	to	store	contextual	data	of	clusters	 Req-D	
Req-SML-[18]	 The	RA	must	provide	mechanisms	to	include	new	nodes	on	the	network	 Req-E	

	

	
	

	
100	

Table	 13	 shows	 the	 relationship	 between	 services	 and	 architectural	

requirements.	 In	 this	 table	 are	 also	 identified	 the	 RAMSES	 component	 that	 provide	

these	service	interfaces.	

Table	13.	System	Services	View	
ID	Service	 Service	 Description	 Component	 Related	Req.	
RA-S	[1]	 publishWSNData	 To	collect	measurement	

data	gathered	by	the	WSN	
Application	
Manager	

Req-GML-[1],	
Req-NML-[9]	

RA-S	[2]	 setAppReq	 To	receive	application	
requirements	to	be	
monitored	by	the	MAPE	
process	

Network	
Monitor	

Req-GML-[1],	
Req-NML-[2]	
Req-GML-[5],	
Req-NML-[8],	
Req-NML-[9]	

RA-S	[3]	 publishContext	 To	publish	all	collected	
context	data	from	WSN	to	
be	monitored	by	the	MAPE	
process	

Network	
Monitor	

Req-GML-[2],	
Req-NML-[8],	
Req-NML-[10],	
Req-NML-[11],	
Req-NML-[25]	

RA-S	[4]	 getServices	 To	get	current	network	
services	from	the	
Knowledge	Base	

Network	
Knowledge	
Base	

Req-GML-[6]	

RA-S	[5]	 setAdaptationPolicies	 To	publish	adaptation	
policies		

Network	
Knowledge	
Base	

Req-GML-[3],	
Req-GML-[4]	
Req-GML-[7],	
Req-NML-[3]	

RA-S	[6]	 sendCurrState	 To	update	Knowledge	Base	
with	the	current	state	of	
network	(context	and	
sensing	data)	

Network	
Knowledge	
Base	

Req-NML-[1],	
Req-NML-[2],	
Req-NML-[4],	
Req-NML-[5],	
Req-NML-[6],	
Req-NML-[7]	

RA-S	[7]	 getCurrState	 To	get	the	current	state	of	
network	(current	
configuration,	context	and	
sensing	data)	

Network	
Knowledge	
Base	

Req-NML-[12],	
Req-NML-[13],	
Req-NML-[14],	
Req-NML-[15],	
Req-NML-[16],	
Req-NML-[17],	
Req-NML-[18],	
Req-NML-[19]	

RA-S	[8]	 analysingRequest	 To	request	an	analysis	of	
network	context	

Network	
Analyzer	

Req-NML-[12],	
Req-NML-[13],	
Req-NML-[14],	
Req-NML-[15],	
Req-NML-[16]	

RA-S	[9]	 getAdaptationInfo	 To	publish	adaptation	
network	information	

Inspection	
Manager	

Req-GML-[8],	
Req-GML-[9],	
Req-NML-[26]	

RA-S	[10]	 adaptationRequest	 To	request	a	network	
adaptation	

Network	
Planner	

Req-NML-[17],	
Req-NML-[18],	
Req-NML-[19]	

RA-S	[11]	 setAdaptationPlan	 To	publish	a	network	
adaptation	plan	

Network	
Configuration	
Manager	

Req-GML-[5],	
Req-NML-[20],	
Req-NML-[21],	
Req-SML-[18]	

	
	

	
101	

ID	Service	 Service	 Description	 Component	 Related	Req.	
RA-S	[12]	 WSNConfiguration	 To	send	a	configuration	

message	to	WSN	
Gateway	
Communicatio
n	

Req-NML-[22]	

RA-S	[13]	 marshallRequest	 To	marshall/unmarshall	
transmitted	information	by	
NML	components	

Security	
Marshaller	

Req-NML-[24]	

RA-S	[14]	 receiveMsg	 To	receive	a	transmitted	
information	from	WSN	

Gateway	
Communicatio
n	

Req-GML-[5],	
Req-NML-[23]	

RA-S	[15]	 sendGWMsg	 To	send	a	configuration	
message	to	WSN	

Request	
Handler	

Req-GML-[5],	
Req-NML-[23]	

RA-S	[16]	 sensorMarshallRequest	 To	marshall/unmarshall	
transmitted	information	by	
sensor	nodes	

Sensor	
Sercurity	
Marshaller	

Req-SML-[4]	

RA-S	[17]	 receiveGWMsg	 To	receive	transmitted	
information	from	Gateway	

Sensor	
Communicatio
n	

Req-SML-[3]	

RA-S	[18]	 sendMsg	 To	send	a	message	towards	
a	Gateway	

Sensor	
RequestHandl
er	

Req-SML-[3],	
Req-SML-[5]	

RA-S	[19]	 receiveMessage	 To	receive	a	message	from	
a	sensor	node		

Sensor	
Manager	

Req-SML-[2],	
Req-SML-[5],	
Req-SML-[6],	
Req-SML-[13]	

RA-S	[20]	 sendMessage	 To	send	a	message	towards	
a	sensor	node	

Sensor	
Communicatio
n	

Req-SML-[2],	
Req-SML-[5],	
Req-SML-[6],	
Req-SML-[13]	

RA-S	[21]	 publishData	 To	publish	sensing	data	 Sensor	
Manager	

Req-SML-[1]	

RA-S	[22]	 nodeAdaptationPlan	 To	publish	a	cluster	
adaptation	plan	

Sensor	
Manager	

Req-SML-[12],	
Req-SML-[18]	

RA-S	[23]	 setConfiguration	 To	configure	sensor	tasks	 Acquisition	
Manager	

Req-SML-[12],	
Req-SML-[13]	

RA-S	[24]	 analyseData	 To	request	an	analysis	of	a	
cluster	context	

Sensor	
Analyzer	

Req-SML-[7],	
Req-SML-[8],	
Req-SML-[9],	
Req-SML-[10]	

RA-S	[25]	 update	 To	update	Knowledge	Base	
with	the	current	state	of	
cluster	(context	and	
sensing	data)	

Sensor	
Knowledge	
Base	

Req-SML-[14],	
Req-SML-[15],	
Req-SML-[16],	
Req-SML-[17]	

RA-S	[26]	 select	 To	get	the	current	state	of	
cluster	(current	
configuration,	context	and	
sensing	data)	

Sensor	
Knowledge	
Base	

Req-SML-[9],	
Req-SML-[10],	
Req-SML-[12]	

RA-S	[27]	 sensorAdaptationRequest	 To	request	a	cluster	
adaptation	

Sensor	
Planner	

Req-SML-[11],	
Req-SML-[12]	

	

	 	

	
	

	
102	

3.5.2 Source	Code	Viewpoint	

This	viewpoint	shows	specific	details,	such	as	software	structures	and	modules,	

about	the	implementation	of	the	systems	resulting	from	the	reference	architecture.	A	

module	 view	 was	 used	 for	 presenting	 this	 viewpoint	 to	 architects	 and	 developers	

stakeholders.	 In	 Figure	27	 is	depicted	a	module	 view	of	RAMSES	 represented	with	a	

UML	component	diagram.	

	

Figure	27.	Module	View	of	RAMSES	

	
	

	
103	

GML	layer	encompasses	the	Application	Manager,	Adaptation	Policies	Manager	

and	 Inspection	 Manager.	 NML	 components	 consist	 of	 Gateway	 Communication,	

Network	Monitor,	Network	Analyzer,	Network	Planner,	Network	Knowledge	Base	and	

Network	 Configuration.	 Finally,	 SML	 is	 composed	 by	 the	 Sensor	 Manager,	 Sensor	

Analyzer,	 Sensor	 Planner,	 Sensor	 Knowledge	 Base,	 Sensor	 Communication,	 and	

Acquisition	Manager.	 GML	 and	 NML	 components	 are	 deployed	 in	 a	 Gateway	 node,	

while	the	SML	components	are	deployed	in	sensor	nodes.		

A. Goal	Management	Layer	(GML):	

RAMSES	 is	based	on	self-adaptation	principles	and	to	perform	this	autonomic	

behavior,	 a	minimal	 human	 intervention	 is	 required.	 Components	 that	 allow	 human	

interaction	 to	 define	 the	 policies	 and	 configurations	 of	 network	 adaptation	

mechanisms	are	in	the	GML	and	its	components	are	Application	Manager,	Adaptation	

Policies	Manager,	and	Inspection	Manager.		

a. Application	Manager:		

This	 component	 is	 used	by	 end-users	 to	 create	 applications	 by	 using	 services	

provided	 by	 network	 and	 to	 enable	 the	 monitoring	 of	 sensing	 data.	 The	

Application	Manager	 component	 is	 declared	with	 connections	 for	 setting	 the	

application	requirements;	for	requesting	services	provided	by	the	network	and;	

for	receiving	sensing	data.	 	A	WSN	Application	contains	a	set	of	requirements	

that	 can	 be	 defined	 as:	 application	 lifetime,	 data	 collection	 rate,	 maximum	

desired	delay,	 physical	 phenomena	 to	be	monitored,	 geographical	 area	when	

the	data	collection	will	be	performed,	among	others.	 	Network	 services	are	a	

set	 of	 attributes	 describing	 capabilities	 of	 sensor	 nodes	 (for	 instance,	

temperature,	 luminosity,	 and	 humidity).	 These	 capabilities	 are	 advertised	 to	

cluster	heads	that	in	turn	forwards	this	information	to	the	NML	to	be	managed	

and	 offered	 to	 applications.	 Sensing	 data	 are	 measurements	 of	 physical	

variables	performed	by	sensor	nodes.		

b. Adaptation	Policies	Manager:		

This	 component	 is	used	 to	define	adaptation	policies	 and	 is	declared	with	an	

	
	

	
104	

output	 connection	 for	 sending	 adaptation	 policies	 to	 underlying	 levels	 of	 the	

architecture	 (NML	 and	 SML).	 A	 policy	 is	 defined	 by	 humans,	 according	 to	

business	 goals,	 and	 specifies	 a	 set	 of	 actions	 to	 be	 performed	 whether	 the	

Network	Monitor	Component	detects	predefined	events.		

In	 RAMSES,	 a	 policy	 consists	 in	 a	 set	 of	 variables	 (Id,	 ContextInfo,	Operators,	

Value,	Actions,	Priority)	that	allows:		

(i) Identification	of	adaptation	policy	(Id);		

(ii) Type	 of	 adaptation	 policy	 (specific	 for	 NML	 or	 specific	 for	 SML),	 the	

current	context	information	(ContextInfo)	of	network;		

(iii) Operators	for	indicating	which	logic	operator	Is	used	(>,	<,	>=,	<=,	==);		

(iv) Value	representing	the	threshold	to	fire	a	management	decision;		

(v) Actions	to	be	applied;	and		

(vi) Priority	of	the	policy	to	prevent	conflicting	policies.		

	

c. Inspection	Manager:		

This	 component	 is	 used	 to	 inspect	 adaptation	 information	 handled	 by	 the	

middleware	 that	 is	 accessible	 to	 network	 administrators.	 Inspection	manager	

component	 is	 declared	 with	 an	 input	 connection	 for	 receiving	 adaptation	

information	of	the	network.		

B. Network	MAPE-K	Layer	(NML):	

NML	 is	 responsible	 for	 performing	 adaptation	 actions	 to	 (re)configure	 the	

network.	 The	 contextual	 information	 used	 for	 this	 activity	 is	 provided	 by	 the	whole	

network.	 For	 the	 general	 implementation	 of	 MAPE-K	 components	 of	 the	 NML,	 we	

adopted	 the	 design	 pattern	 Decorator	 (see	 Section	 3.3.4.4).	 This	 approach	 allows	

clarifying	 the	 component	 relationships	 of	 the	 RA	 and	 defining	 the	 behavior	 of	

components.	 Thus,	 the	 adoption	 of	 this	 pattern	 promotes	 a	 clear	 and	 complete	

separation	 among	 mechanisms	 that	 handle	 adaptation	 issues	 of	 the	 RA	 and	 the	

specificity	 of	 the	 instantiated	 middleware.	 Figure	 28	 represents	 the	 applying	 of	

Decorator	 pattern	 considering	 the	 classes’	 implementation	 of	 MAPE-K	 component	

used	in	RAMSES.		

	
	

	
105	

	

	

Figure	28.	MAPE-K	Decorator	Pattern	

	
a. Gateway	Communication:		

This	 component	 provides	 to	 the	 Network	 Monitor	 component,	 contextual	

information	collected	through	the	SML.	This	component	was	established	based	

on	a	broker	pattern	and	it	has	a	connection	to	Security	Marshaller	component	

for	marshaling	the	transmitted	information	in	a	safety	way.		

Our	 RA	 adopts	 the	 broker	 pattern	 aiming	 to	 enable	 the	 communication	

between	 Network	 Mape-k	 Layer	 (NML)	 and	 Sensor	 Mape-k	 Layer	 (SML).	 In	

RAMSES,	 the	 communication	 technology	 used	 by	 SML	 depends	 on	

hardware/software	 platform	 of	 sensor	 nodes.	 There	 are	 currently	 many	

hardware	and	software	platforms	available	for	WSN.	These	platforms	may	work	

together	 in	 the	 same	 network	 infrastructure	 since	 they	 often	 use	 the	 same	

wireless	 communication	 protocol.	 Actually,	 these	 platforms	 execute	 specific	

operating	 systems	 and	 applications	 for	 WSN,	 and	 they	 are	 implemented	 in	

specific	 programming	 languages,	 then	 a	 method	 for	 enabling	 the	

communication	 and	 integration	 between	 these	 platforms	 and	 a	 gateway	

system	is	needed.	A	well-known	and	widely	used	example	of	WSN	platform	is	

the	 sensor	 nodes	 manufactured	 by	 Crossbow,	 currently	 MEMSIC	 (MEMSIC)	

(such	 as	 Mica	 and	 MicaZ).	 Such	 platform	 is	 supported	 by	 TinyOS	 operating	

	
	

	
106	

system	 (TinyOS).	 Other	 example	 are	 the	 sensor	 nodes	 manufactured	 by	 Sun	

(Oracle)	named	Sun	Spot	that	use	Java	programming;	and	the	sensor	nodes	of	

Arduino	 platform	 (Arduino)	 (such	 as	 Arduino	 Mega,	 Arduino	 Uno,	 among	

others).	 Therefore,	 the	broker	pattern	hides	 and	mediates	 all	 communication	

between	NML	and	the	heterogeneity	of	SML	components.	

b. Network	Monitor:		

This	 component	 receives	 sensing	data	 from	 the	Gateway	and	publishes	 these	

data	to	the	Application	Manager	component.	It	also	publishes	the	sensing	data	

to	 the	 Network	 Analyzer	 component	 to	 analyze	 the	 network	 context.	 The	

Network	Monitor	monitors	context	information	provided	by	the	whole	network	

and	 uses	 the	 hierarchical	 control	 pattern	 to	 summarize	 the	 underlying	

monitoring	 information.	 It	 monitors	 sensing	 data	 (measures	 of	 physical	

phenomena),	 context	 information	 (such	 as	 battery	 status	 of	 sensor	 nodes),	

services	 provided	 by	 nodes	 (such	 as	 temperature,	 humidity)	 and	 application	

requirement	 (such	 as	 data	 delivery	 model,	 desired	 services,	 and	 QoS	

requirements)	as	depicted	in	Figure	27.	

	

Figure	29.	Network	Monitor	concerns			

c. Network	Analyzer:		

This	 component	 detects	 symptoms	 to	 determine	 the	 need	 of	 network	

adaptation.	 With	 the	 monitored	 information	 and	 adaptation	 policies,	 the	

Network	 Analyzer	 is	 able	 to	 support	 the	 implementation	 of	 methods	 for	

verifying	 if	 application	 requirements,	 coverage,	 and	 connectivity	 are	

	
	

	
107	

guaranteed,	and	for	verifying	the	energy	state	of	the	network.	If	an	adaptation	

need	 is	 detected,	 then	 an	 adaptation	 request	must	 be	 performed.	 Figure	 28	

depicts	the	main	concerns	of	this	component.	

	

Figure	30.	Network	Analyzer	concerns	

d. Network	Planner:		

This	 component	plans	 a	network	 configuration	once	an	adaptation	 request	 is	

sent	 by	 the	 Network	 Analyzer.	 The	 Network	 Planner	 component	 considers	

adaptation	policies	to	generate	a	network	configuration.	A	policy	specifies	a	set	

of	 actions	 that	 should	 be	 taken	 by	 the	 middleware	 upon	 the	 occurrence	 of	

adaptation	requests.	These	plans	concern,	as	depicted	in	Figure	29,	to	Topology	

Control,	a	Sensor	Tasks	and	Routing	Protocols.	

	

Figure	31.	Network	Planner	concerns	

e. Network	Configuration	Manager:		

This	 component	 receives	 configuration	 parameters	 from	 Network	 Planner,	

translates	these	parameters	in	a	configuration	message,	and	disseminates	this	

message	to	the	nodes,	through	the	Gateway	Communication	component.	Since	

our	 RA	 adopts	 a	 hierarchical	 control	 pattern,	 the	 underlying	 monitoring	

information,	 provided	 by	 the	 Sensor	 Manager	 component,	 is	 able	 for	

configuring	an	adaptation	plan	for	whole	network.	

	
	

	
108	

f. Network	Knowledge	Base:		

This	 component	 stores	 all	 context	 information	 and	 supports	 the	 MAPE-K	

process.	 This	 component	 stores	 information	 (Figure	 30)	 regarding	 Sensor	

Context,	 Sensing	 Data,	 Network	 Services,	 Application	 requirements,	 and	

Network	Adaptation	Policies.	

	
Figure	32.	Network	Knowledge	Base	concerns	

	

C. Sensor	MAPE-K	Layer	(SML):	

SML	 consists	 in:	 Sensor	 Manager,	 Sensor	 Analyzer,	 Sensor	 Planner,	 Sensor	

Knowledge	 Base,	 Sensor	 Communication,	 and	 Acquisition	 Manager.	 	 In	 order	 to	

promote	 loose	 coupling	 and	 simplify	 the	 communication	between	 SML	 components,	

the	 Mediator	 pattern	 (see	 3.3.4.6)	 was	 applied.	 Sensor	 Manager	 encapsulate	 the	

collective	behavior	in	a	separate	mediator	module.	

a. Sensor	Manager:		

Manages	the	nodes	behavior	and	determines	all	adaptation	actions	needed	to	

reconfigure:	(i)	a	cluster,	if	the	node	is	configured	as	a	manager;	and	(ii)	itself,	if	

the	node	is	configured	as	a	managed	node.	This	component	 is	responsible	for	

executing	the	MAPE-K	process.		

The	Sensor	Manager	component	is	declared	with	connections	for	receiving	the	

new	 configuration	 from	 NML,	 for	 setting	 the	 new	 configuration	 in	 its	 own	

sensors,	 and	 for	 forwarding	 the	 new	 configuration	 for	 the	 other	 nodes	 of	

cluster,	 if	 the	 component	 belongs	 to	 a	 node	 that	 is	 a	 cluster	 head	 (node	

manager).		

Moreover,	in	the	case	of	a	node	manager,	the	component	can	use	connections	

for	 receiving	an	adaptation	plan.	 In	 this	 case,	 this	 component	encompasses	a	

	
	

	
109	

function	aiming	to	convert	the	adaptation	plan	in	a	sensor	node	configuration.	

If	 the	 node	 is	 a	 manager,	 this	 data	 will	 be	 analyzed	 by	 the	 Sensor	 Analyzer	

component.		

b. Sensor	Analyzer:		

This	 component	 uses	 the	 analyseData	 connector	 to	 collect	 contextual	

information	of	sensor	and	detects	symptoms	to	determine	an	adaptation	need.	

With	 the	 information	monitored	by	Sensor	Manager	 (via	Acquisition	Manager	

Component)	and	adaptation	policies,	the	Sensor	Analyzer	component	is	able	to	

support	 implementation	 of	 simple	methods	 for	 verifying	 if	 QoS	 of	 nodes	 are	

guaranteed	and	verifies	hardware	resources.	If	an	adaptation	need	is	detected	

an	adaptation	request	must	be	performed.	Figure	31	depicts	the	main	concerns	

of	this	component.	

	

Figure	33.	Sensor	Analyzer	concerns	

	
c. Sensor	Planner:		

Plans	 a	 sensor	 configuration	 once	 an	 adaptation	 request	 is	 sent	 by	 Sensor	

Analyzer	 component.	 The	 Sensor	 Planner	 component	 considers	 adaptation	

policies	to	generate	a	new	sensor	configuration	(such	as	a	new	topology	cluster	

plan,	 an	 alert	 plan	 or	 a	 task	 plan).	 Since	 we	 adopt	 the	 hierarchical	 control	

pattern	for	distributing	the	management	of	the	WSN	we	consider	each	cluster	

as	an	autonomic	element.	Each	cluster	in	the	set	is	independent	and	complete.	

Figure	32	depicts	the	main	concerns	of	this	component.	

	
	

	
110	

	

Figure	34.	Sensor	Planner	concerns	

	
d. Sensor	Knowledge	Base:		

Stores	 sensor	 policies,	 tasks	 of	 nodes,	 alert	 messages,	 and	 information	 to	

support	 the	 MAPE-K	 process.	 Figure	 33	 depicts	 the	 main	 concerns	 of	 this	

component.	

	

Figure	35.	Sensor	Knowledge	Base	concerns	

e. Acquisition	Manager:		

Collects	measures	of	physical	phenomena	monitored	by	sensors	and	executes	

the	data	delivery.	If	an	adaptation	request	defines	changes	in	the	data	delivery	

model,	 this	 component	 will	 be	 notified.	 Acquisition	 Manager	 component	 is	

declared	with	an	output	connection	for	sending	sensing	data	to	cluster	head	to	

it	executes	a	local	MAPE-K	(Master	Slave	pattern)	and	an	input	connection	for	

receiving	the	new	configuration	(tasks)	of	the	sensor	node.		

f. Sensor	Communication:		

This	component	allows	the	communication	among	nodes.	On	one	hand,	when	

this	 component	 is	 instantiated	 into	 a	 node	 manager,	 the	 Broker	 pattern	 is	

applied	 for	 supporting	 the	 communication	 between	 sensor	 network	 and	

Gateway.	 On	 the	 other	 hand,	 when	 this	 component	 is	 instantiated	 into	 a	

managed	node,	the	Data	Gathering	pattern	is	applied.	

	
	

	
111	

3.5.3 Runtime	Viewpoint	

This	 viewpoint	 shows	 the	 dynamic	 behavior	 of	middleware	 systems	 that	will	 be	

built	 based	 on	 RAMSES.	 Since	 this	 viewpoint	 must	 represent	 a	 RA,	 it	 shows	 the	

behavior	 of	 RAMSES	 in	 a	 high	 level	 of	 abstraction.	 This	 viewpoint	 presents	 the	

structure	of	a	system	at	the	moment	when	it	is	executed,	through	the	representation	

of	 components,	 interfaces,	 packages,	 provided	 and	 required	 interfaces,	 ports	 and	

connectors.	In	this	viewpoint,	two	architectural	views	are	presented	for	architects	and	

developer	stakeholders:	

	(i)	Collaborative	components	view,	that	describes	the	RA	as	a	set	of	components	

interacting	 and	 using	 a	 set	 of	 shared	 data	 repositories	 (data	 flow)	 to	 perform	 the	

required	functionality	at	runtime;	

(ii)	Process	view,	that	describes	the	RA	as	a	set	of	concurrently	executing	units	and	

their	interactions.	

Dynamic	 behavior	 is	 particularly	 relevant	 in	 the	 domain	 of	 wireless	 sensor	

networks	(WSNs),	where	numerous	and	unexpected	changes	of	the	execution	context	

prevail.	 In	 this	 perspective,	we	noted	 a	 lack	 of	well-defined	 architecture	 design	 that	

supports	the	autonomy	of	sensor	networking.	Hence,	RAMSES	follows	the	autonomic	

computing	model	MAPE-K,	 for	making	decisions	 aiming	 to	 attend	 self-adaptive	WSN	

requirements.		

The	 choice	 of	 a	modeling	 approach	 that	 supports	 this	 dynamism	 is	 a	 challenge.	

WSN	 applications	 have	 to	 face	 environments	 in	 which	 operation	 conditions	 change	

very	 often,	 requiring	 that	 the	 system	be	 able	 to	 adapt	 and	 reconfigure	 according	 to	

these	dynamic	scenarios.	Managing	the	dynamic	and	context-aware	adaptation	is	not	

an	 easy	 task,	 and	whereas	 nodes	 in	 a	WSN	 can	 be	 heterogeneous,	 having	 different	

sensor	 devices,	 and	 communication	 constraints	 (Sohraby	 et	 al.,	 2007).	 In	 terms	 of	

architecture	 design,	most	 of	 current	WSN	 applications	 use	 the	 same	 fixed	 software	

architecture	for	each	network	node,	and	these	are	designed	in	tightly	coupled	closed	

architectures.	 By	 architecture	we	mean	 a	 set	 of	 system	 components,	 the	 externally	

properties	 of	 those	 components	 and	 the	 relationship	 between	 them.	 For	 simple	

	
	

	
112	

applications,	 the	 choice	 of	 a	 static	 architecture	 might	 not	 be	 a	 problem.	 However,	

when	we	 consider	more	 complex	 applications,	with	 dynamic	 requirements	 that	may	

change	 at	 runtime,	 and	 assume	 the	WSN	 infrastructure	must	 be	 shared	 by	multiple	

applications,	 the	need	for	a	more	advanced,	dynamically	reconfigurable	architecture,	

arises.	 The	 idea	 behind	 node	 reconfigurability	 is	 that	 the	 network	 can	 adapt	 its	

functionality	 to	the	current	situation,	 in	order	to	 lessen	the	use	of	 the	scarce	energy	

and	memory	resources	of	nodes,	while	maintaining	the	integrity	of	its	operation.	

These	peculiarities	demand	WSN	to	have	a	dynamic	behavior	to	deal	with	both	the	

environmental	nature	where	they	are	deployed	and	the	HW/SW	constraints	of	sensor	

nodes.	WSN	must	be	able	to	monitor	their	context	and	to	take	adaptation	decisions	in	

runtime	 to,	 for	 instance,	 change	 the	 current	 routing	 protocol	 with	 a	 new	 one	 that	

requires	 less	 energy	 consumption;	 reconfigure	 the	 network	 topology	 to	 attend	

coverage	and	connectivity	requirements	that	are	no	longer	guaranteed	due	to	a	failure	

or	 node	 malfunction;	 add	 new	 node	 tasks	 to	 attend	 requirements	 of	 new	 started	

applications;	 load	 a	 module	 of	 cryptography	 to	 attend	 a	 security	 policy	 against	 a	

threat;	 etc.	However,	 current	 techniques	of	 architectural	modeling	 for	WSN	 systems	

mainly	focus	on	the	static	and	structural	representation	of	WSN	architectures	and,	as	

we	 argued	 in	 (Portocarrero	 et	 al.,	 2014),	 there	 is	 a	 lack	 of	 proposals	 to	 represent	

behavioral	 and	 dynamic	 aspects	 of	 WSN	 architectures	 and	 with	 a	 high	 level	 of	

formality	that	could	make	their	verification	and	implementation	easier.	

In	 literature	 there	 are	 several	 architecture	 description	 languages	 (ADLs)	 that	

enable	 runtime	 representation	 of	 a	 software	 architecture.	 However,	 most	 existing	

ADLs:	(i)	are	focused	on	structural,	topological	aspects	of	the	architecture;	(ii)	do	not	

provide	an	adequate	support	for	representing	behavioral	concerns	of	the	architecture;	

(iii)	do	not	support	an	expressive	description	of	dynamic	aspects	of	 the	architecture;	

(iv)	have	limitations	in	terms	of	automated	verification	of	architectural	properties	and	

constraints;	 and	 (v)	 are	 disconnected	 from	 the	 implementation	 level,	 thus	 entailing	

architectural	 mismatches	 and	 inconsistencies	 between	 architecture	 and	

implementation.	

	
	

	
113	

In	order	to	tackle	these	problems,	we	are	proposing	the	use	of	Pi-ADL	to	support	

WSN	modeling.	 This	 ADL	 is	 a	 formal	 language	 for	 describing	 software	 architectures	

under	both	structural	and	behavioral	viewpoints	while	fostering	a	rigorous,	automated	

analysis	of	such	architectures.		

3.5.3.1 Collaborative	Components	view	

This	viewpoint	describes	RAMSES	as	a	set	of	components	 interacting	 to	perform	

the	required	functionality	at	runtime.	This	view	is	depicted	in	Figure	36	through	a	Pi-

ADL	language.	

In	 Pi-ADL	 language,	 an	 architecture	 is	 described	 in	 terms	 of	 components,	

connectors	 and	 their	 composition.	 Components	 are	 described	 in	 terms	 of	 external	

connections	 and	 an	 internal	 behavior.	 Components	 can	 send	 or	 receive	 values	 via	

connections.	Connections	provide	communication	channels	between	two	architectural	

elements.	A	connection	can	be	declared	as	an	output	connection	(for	sending	values),	

input	 connection	 (for	 receiving	 values),	 or	 input-output	 connection.	 Connectors	 are	

special-purpose	 components	 responsible	 to	 specify	 interactions	 among	 components.	

Components	provide	the	 locus	of	computation,	while	connectors	manage	 interaction	

among	components.	A	component	cannot	be	directly	connected	to	other	component;	

there	must	be	a	connector	between	them.		

Figure	36	depicts	 the	specification	of	a	 fragment	of	code	of	 the	Sensor	Manager	

component	 (SensorManagerCP).	 In	 line	 2,	 the	 Boolean	 type	 IsManager	 is	 used	 to	

manage	the	behavior	of	nodes.	When	IsManager	is	True,	a	sensor	node	must	act	as	a	

node	manager	(cluster	head)	and,	if	False,	a	sensor	node	must	act	as	a	managed	node	

(ordinary	node).	Types	Context,	Configuration	and	AdaptationPlan	are	used	to	manage	

data	messages	 exchanged	 by	 this	 component.	 In	 lines	 4	 and	 5,	 an	 input	 connection	

(receiveMessage)	and	an	output	connection	(sendMessage)	are	respectively	specified.	

From	 line	7,	 the	behavior	of	 this	component	 is	specified.	 It	 is	 important	 to	note	that	

this	 component	 performs	 different	 behaviors	 depending	 on	 the	 type	 of	 messages	

received	 by	 it.	 The	 possible	 types	 of	message	 are:	 Context	messages	 received	 from	

nodes,	Configuration	messages	received	from	NML	or	a	node	manager,	and	Adaptation	

Plan	message	received	from	the	Sensor	Planner	component.	The	choose	structure	(line	

	
	

	
114	

9)	 is	 used	 to	 select	 the	 current	 behavior	 of	 the	 node.	 If	 the	 node	needs	 to	 act	 as	 a	

manager,	 then	 it	 needs	 to	 dynamically	 upload	 (lines	 12	 to	 30)	 the	 components	

responsible	 for	 executing	 the	MAPE-K	 process	 (Sensor	 Analyzer,	 Sensor	 Planner	 and	

Sensor	Knowledge	Base).		

	

Figure	36.	Pi-ADL	Specification	of	Sensor	Manager	

Architecture-based	 approaches	 to	 self-adaptation,	 as	 RAMSES,	 exploits	

architecture	 models	 to	 reason	 about	 and	 control	 adaptation	 at	 runtime.	 An	

architecture	model	represents	the	adaptable	system	as	a	composition	of	components	

and	their	interconnections,	with	mappings	to	their	implementations.	Pi-ADL	allows	this	

	
	

	
115	

representation	 where	 changes	 to	 the	 architectural	 model	 are	 mapped	 to	 the	

application	 implementation	 (as	described	 in	 lines	12	 to	30	of	 Figure	27),	 and	 can	be	

executed	at	runtime.	RAMSES	introduces	an	architectural	runtime	view	in	in	order	to	

evaluate	and	adapt	the	running	system.	

Appendix	B	details	the	complete	Pi-ADL	specification	of	the	runtime	viewpoint	of	

RAMSES.	 It	 is	 also	 available	 on	 is	 available	 at	

http://146.164.247.214/wordpress/rawsn/.	

3.5.3.2 Process	View	

This	 view	 describes	 RAMSES	 as	 a	 set	 of	 concurrently	 executing	 units	 and	 their	

interactions.	RAMSES	Process	View	is	represented	as	the	activity	diagram	depicted	in	
Figure	37	

The	 process	 starts	with	 activity	 1,	where	 users	 define	 application	 requirements,	

and	 activity	 2,	 where	 network	 administrators	 define	 policies	 to	 be	 applied	 by	 the	

middleware	 in	 order	 to	 guide	 the	 adaptive	 network	 behavior	 whenever	 a	 context	

change	occurs.	Both,	application	requirements	and	adaptation	policies	are	stored	in	a	

database	 managed	 by	 the	 Network	 Knowledge	 Base	 component.	 Following,	 the	

Network	 Monitor	 component	 starts	 monitoring	 the	 context	 (for	 instance,	 new	

application	 requirements,	 new	 sensing	 data	 and	 current	 battery	 level	 of	 nodes)	 and	

performs	activity	3	to	update	the	database	with	the	current	state	of	the	network.		

Activity	 4	 is	 performed	 by	 the	 Network	 Analyzer	 component	 to	 analyze	 the	

context	changes	 in	search	of	symptoms	that	 indicate	deviations	between	the	current	

and	desired	behaviors	of	the	network.	A	desired	behavior	of	the	network	 is	one	that	

attends	all	application	requirements	and	complies	with	the	current	policies.	Activity	5	

is	performed	to	plan	a	new	network	configuration	according	to	the	stored	application	

requirements	and	policies.	In	activity	6,	a	message	is	created	with	the	definition	of	the	

new	configuration	parameters	of	nodes	in	order	to	be	sent	to	the	network	in	a	format	

compatible	 with	 the	 target	 platform.	 Activity	 7	 is	 performed	 by	 the	 Gateway	

Communication	component	to	send	the	configuration	message	to	the	network	using	a	

dissemination	protocol	specific	to	the	target	platform.		

	
	

	
116	

	

Figure	37.	RAMSES	Process	View	

	

	

	

	
	

	
117	

Activity	 8	 is	 performed	 whenever	 a	 node	 manager	 (cluster	 head)	 receives	 a	

message	 (configuration	message	 or	 context	message).	 If	 a	 Configuration	Message	 is	

received,	the	Sensor	Manager	component	updates	the	local	database	(activity	9)	and	

requests	to	the	Sensor	Analyzer	component	to	analyze	the	new	configuration	(activity	

10)	 in	 order	 to	 verify	 if	 the	 current	 configuration	 of	 nodes	 is	 able	 to	 guarantee	

application	 requirements	 and	 if	 the	 cluster	 nodes	 are	working	 in	 conformance	with	

policies.	 If	 the	 cluster	 needs	 to	 be	 adapted,	 activity	 11	 is	 performed	 to	 plan	 a	 new	

configuration	for	the	cluster	and	a	configuration	message,	containing	the	current	node	

tasks,	is	created	(activity	12)	and	sent	to	all	nodes	of	the	cluster	(activity	13).	When	a	

managed	node	(ordinary	node)	receives	a	configuration	message	from	the	cluster	head	

(activity	 14),	 the	 Sensor	 Manager	 component	 updates	 configuration	 parameters	 of	

nodes	 (activity	15)	 and	 starts	 collecting	 the	 context	 information	 (activity	16)	 such	as	

battery	 level	 and	physical	measures.	Next,	 a	 context	message	 is	 created	and	 sent	 to	

the	cluster	head	(activities	17	and	18	respectively).	After	a	context	message	is	sent	to	

the	 cluster	 head,	 activity	 8	 is	 performed	 again	 in	 order	 to	 receive	 and	 process	 such	

message.	 Context	 information	 of	 nodes	 is	 updated	 in	 the	 database	 (activity	 9)	 and,	

after	that,	two	activities	are	performed	in	parallel.	On	one	hand,	activities	10	to	18	are	

executed	 until	 the	 network	 stabilization.	 On	 the	 other	 hand,	 the	 Sensor	 Manager	

component	 creates	 a	 context	message	 containing	 aggregated	 data	 of	 all	 the	 cluster	

nodes	 and	 sends	 it	 towards	 the	 sink.	When	 the	 context	message	 is	 received	 by	 the	

Gateway	 Communication	 component	 (activity	 19),	 the	Network	Monitor	 component	

updates	the	knowledge	base	and	resumes	all	the	process	(activity	3).		

An	 adaptation	 can	 be	 triggered	mainly	 by	 a	 node	 (or	 link)	 fault,	 an	 application	

requirement	not	fulfilled	by	the	network,	a	node	configuration	error,	and/or	a	chance	

of	 optimization.	 The	main	 causes	 of	 failures	 in	 sensor	 nodes	 are	 (Paradis,	 2007):	 (i)	

nodes	may	 fail	due	 to	depletion	of	batteries	or	destruction	by	an	external	event,	 (ii)	

links	 are	 failure-prone,	 causing	 network	 partitions	 and	 dynamic	 changes	 in	 network	

topology,	and	(iii)	congestion	may	lead	to	packed	loss.		

	

	

	
	

	
118	

RAMSES	provides	two	strategies	for	network	adaptation.		

The	 first	 is	 supported	 by	 the	 reconfiguration	 of	 node	 parameters	 (parametrical	

adaptation).	Five	message	structures	are	defined:		

(i) Configuration	message,	used	to	configure	sensor	tasks;		

(ii) Topology	message,	 used	 to	 configure	 clusters	 and	 cluster	 topology	 by	

selecting	active/inactive	nodes;		

(iii) Data	 message;	 used	 to	 deliver	 to	 cluster	 head	 the	 sensing	 data	 and	

context	information	of	nodes;		

(iv) CH	message;	used	to	deliver	to	NML	the	aggregated	cluster	data;	and		

(v) Adaptation	 policies	 messages,	 used	 to	 update	 the	 network	 with	 the	

current	adaptation	policies	that	support	the	autonomic	behavior.		

The	 second	 strategy	 is	 supported	 by	 reprogramming	 the	 sensor	 nodes.	 Many	

different	mechanisms	for	reprogramming	sensor	nodes	have	been	developed	ranging	

from	 full	 image	 replacement	 to	 virtual	 machines.	 RAMSES	 suggests	 to	 use	 method	

based	 on	 dynamic	 loading	 of	 components	 in	 order	 to	 load	 specific	 components	

required	for	a	managed	node	(ordinary	node)	becomes	a	node	manager	(cluster	head).	

Dynamic	 loading	 method	 is	 effective	 for	 reprogramming	 even	 resource	 constrained	

WSN.		

	 	

	
	

	
119	

3.5.4 Deployment	Viewpoint	

Deployment	 viewpoint	 describes	 the	 hardware	 and	 software	 installed	 on	 each	

piece	 of	 hardware,	 the	 technology	 constraints	 and	 network	 connections.	 For	 this	

architectural	viewpoint,	we	describe	the	deployment	view	in	Section	3.5.4.1	and	its	Pi-

ADL	specification	in	Section	3.5.4.2.	System	administrators,	developers	and	testers	are	

the	stakeholders	interested	in	this	architectural	view.	

3.5.4.1 Deployment	View	

This	 architectural	 view,	 depicted	 in	 Figure	 38,	 describes	 RAMSES	 through	 the	

hardware	 structure,	 on	 which	 middleware	 components	 are	 allocated,	 and	 their	

network	connections	symbolizing	the	interaction	between	these	devices.		

In	this	view,	each	node	represents	a	physical	piece	from	the	equipment	where	a	

RAMSES	 instantiation	will	 be	deployed.	 In	RAMSES	Deployment	 view	are	 considered	

the	following	elements:	

(i) Global	Server,	 it	 is	a	node	 that	contains	 the	services	provided	by	GML	

layer	 components	 (Application	Manager,	 Adaptation	 Policies	Manager	

and	 Inspection	 Manager),	 the	 following	 NML	 layer	 components	

(Network	 Monitor,	 Network	 Analyzer,	 Network	 Planner	 and	 Network	

Configuration	 Manager)	 and	 the	 data	 server	 to	 support	 the	 Network	

Knowledge	Base	component.		

(ii) Gateway	 Server,	 it	 is	 a	 node	 deployed	 belong	 a	 WSN	 and	 it	 is	

responsible	for	enabling	the	communication	between	the	network	and	

the	Global	Server	 (via	serial	 interface).	This	node	contains	 the	services	

provided	 by	 the	 Gateway	 Communication	 component,	 Security	

Marshaller	component	and	the	Request		

(iii) Sensor	Node,	 representing	 the	 sensor	devices	 that	 establish	 the	WSN.	

These	devices	contain	SML	components.	RAMSES	considers	three	types	

of	Sensor	Nodes:	

a. Base	 Station:	 This	 type	 of	 node	 contains	 two	 communication	

interfaces.	 The	 first	 is	 used	 to	 communicate	 a	 WSN	 with	 the	

Gateway	Server	via	serial	interface,	and	the	second	interface	is	used	

	
	

	
120	

to	communicate	this	node	with	other	type	of	nodes	 (Cluster	Head)	

via	Zigbee	interface.	Zigbee	technology	implements	the	standard	for	

wireless	communication	IEEE	802.15.4,	specifically	projected	for	this	

kind	of	communication.	

b. Cluster	Head:	In	this	type	of	node	are	deployed	all	SML	components	

and	 it	 is	 responsible	 for	 managing	 a	 group	 of	 Ordinary	 Nodes	 via	

Zigbee	technology.	

c. Ordinary	 Node:	 In	 this	 type	 of	 node	 are	 deployed	 all	 SML	

components.	 However,	 if	 a	 target	 platform	 is	 capable	 for	

dynamically	 loading	 components,	 then	 this	 node	 can	 dynamically	

unload	 the	 Sensor	 Analyzer	 component	 and	 the	 Sensor	 Planner	

component	 (these	 components	 are	 specifically	 used	 in	 MAPE	

process,	that	is	an	exclusive	Cluster	Head	responsibility.	

	

Figure	38.	RAMSES	Deployment	View	

	

	
	

	
121	

3.5.4.2 Deployment	Pi-ADL	Specification	

Figure	 39	 presents	 a	 fragment	 of	 Pi-ADL	 specification	 of	 the	 Deployment	 View	

detailed	in	Section	7.2.2.1.	The	complete	Pi-ADL	specification	of	this	architectural	view	

is	 presented	 in	 Appendix	 C.	 It	 is	 available	 at	

http://146.164.247.214/wordpress/rawsn/.	

Figure	39.	Pi-ADL	Deployment	View	Specification	

In	this	deployment	view	representation,	lines	4	to	8	represent	the	deployed	node	

elements	 detailed	 in	 previous	 Section	 (Ordinary	 Node,	 Cluster	 Head,	 Base	 Station,	

Gateway	 Server	 and	 Global	 Server),	 and	 lines	 9	 to	 11	 represent	 the	 used	

communication	 technology	 between	 them.	 We	 note	 that	 Base	 Station	 (BS)	 and	

Gateway	Server	(GW)	have	two	interfaces	of	communication	(an	input	and	an	output	

connector	for	each	interface),	Zigbee	and	Serial	for	BS	(lines	17	to	20)	and,	Serial	and	

TCP/IP	for	GW	(lines	21	to	24).	

	
	

	
122	

Although	RAMSES	does	not	depend	on	any	specific	implementation	technologies,	

in	 Deployment	 view	were	 presented	 some	 communication	 protocols	 (Zigbee,	 Serial,	

TCP/IP)	 aiming	 support	 an	 understanding	 of	 it.	 However,	 the	 proposed	 components	

interaction	 does	 not	 depend	 of	 such	 technology,	 and	 they	 can	 be	 implemented	 by	

equivalents	technologies,	since	these	technologies	support	the	target	platform.	

RAMSES	can	be	deployed	on	the	main	target	platform	for	WSN	such	as	the	sensor	

motes	manufactured	by	MEMSIC,	Sun	Spots,	Contiki	and	Arduino	platform.		

3.5.4.3 Technology	view	

This	 view	presents	 requirements	 for	 standards	 and	 tools	 commonly	 used	within	

instances	of	a	reference	architecture	to	guide	selection	of	appropriate	or	compatible	

technologies	for	the	purposes	of	the	reference	architecture.		

Hence,	 we	 present	 the	 RAMSES	 instantiation	 process	 (Figure	 40)	 in	 order	 to	

determine	the	involved	technologies,	actors	and	their	respective	activities	and	roles.	In	

this	process,	the	required	steps	to	develop	a	self-adaptive	middleware	for	WSN	based	

on	RAMSES	are	described.	

	

Figure	40.	RAMSES	Instantiation	process	

	
	

	
123	

All	 the	 activities	 take	 place	 previously	 to	 the	 WSN	 nodes	 deployment.	 The	

software	 artifacts	 produced	 as	 outcome	 of	 the	 first	 activity	 represent	 the	 RAMSES	

architecture	 runtime	 view	 specification,	 written	 in	 pi-ADL.	 Aiming	 to	 instantiate	

RAMSES	 into	 a	 concrete	 software	 architecture,	 a	 domain	 expert,	 and	 a	 software	

architect	 should	 refine	 the	 RA,	 in	 order	 to	 extend	 it	 with	 architectural	 decisions	

(specified	 with	 PI-ADL)	 that	 address	 the	 specific	 requirements	 of	 the	 concrete	

middleware,	such	as	target	platform	constraints	and	extension	of	RAMSES	components	

that	address	specific	requirements	of	the	instantiated	middleware.		

Following,	“Automatic	Transformation	(M2T)”	 is	accomplished;	 this	activity	 takes	

as	 input	the	Pi-ADL	specification	and	the	transformation	code	concerning	the	chosen	

target	 platform	 (for	 the	 Global	 Server,	 Gateway	 Server	 and	 Sensor	 Node)	 and	

generates	 as	 output	 the	 source	 code	 to	 be	 deployed	 in	 these	 RAMSES	 deployment	

nodes.	 Pi-ADL	 specifications	 are	 able	 to	 be	 automatically	 transformed	 into	 a	 source	

code	of	the	target	platform,	chosen	by	a	domain	expert,	by	applying	a	model	to	text	

transformation	engine	(M2T).	The	output	source	code	is	refined	by	a	WSN	developer	

and	 validated	 by	 a	 domain	 and	 network	 experts	 in	 order	 to	 fulfill	 the	 target	

programming	language	constraints	and	specific	middleware	requirements.		

A	Model	to	Text	(M2T)	transformation	was	used	to	generate	the	source	code	for	

both	 gateway	 and	 sensor	 nodes.	 For	 gateway,	 the	 M2T	 transformation	 solution,	

proposed	 in	 (Cavalcante,	 2014),	 was	 used	 to	 generate	 the	 RAMSES	 source	 code	 for	

gateway	 components	 in	 Go	 programming	 language.	 For	 sensor	 nodes,	 we	

implemented	a	M2T	transformation	(see	Chapter	4)	to	the	target	sensor	node	platform	

Contiki	 (A.	 Dunkels,	 Grönvall,	 &	 Voigt,	 November	 2004),	 a	 lightweight	 and	 flexible	

operating	system	for	tiny-networked	sensors,	with	support	for	dynamic	loading.	

	

	

	

	 	

	
	

	
124	

3.6 Step	RA-4:	Reference	Architecture	Evaluation	

In	this	Section	we	conduct	the	fourth	step	of	the	ProSA-RA	process.	In	this	step,	

ProSA-RA	 proposes	 the	 use	 of	 a	 checklist-based	 inspection	 approach	 named	 FERA	

(Framework	 for	 Evaluation	 of	 Reference	 Architectures)	 (J.	 Santos,	 Guesse,	 Gaister,	

Feitosa,	&	Nakagawa,	2013).	This	checklist	corresponds	to	a	list	of	questions	that	guide	

reviewers	in	detecting	defects	in	documents	related	to	reference	architectures.		

The	main	intention	of	using	FERA	is	to	validate	if:		

(i) The	RA	is	adequately	represented;	i.e.	if	it	provides	general	information	

(such	as	the	potential	risk,	constraints,	and	scope).	

(ii) The	RA	contains	an	adequate	set	of	architectural	viewpoints,	view	and	

models;		

(iii) The	 documentation	 related	 to	 the	 RA	 contain	 important	 information;	

such	as	architectural	decision,	best	practices	and	guidelines,	polices	and	

rules,	international	standards,	and	interfaces	among	modules;		

(iv) The	RA	considers	quality	attributes	important	to	its	domain	

(v) The	RA	can	be	easily	instantiated	

(vi) The	 RA	 could	 be	 changed,	 if	 necessary,	 in	 order	 to	 improve	 the	

reference	architecture	documentation.	

Therefore,	 we	 followed	 the	 recommendation	 and	 used	 FERA	 to	 conduct	 an	

evaluation.	 Four	 evaluators	 (two	 specialists	 in	 the	 RA	 domain	 and	 two	 specialists	 in	

WSN	 domain)	 answered	 93	 questions	 (FERA	 checklist	 is	 available	 at	

http://146.164.247.214/wordpress/rawsn/ra-	evaluation/).		

As	 main	 results,	 66.93%	 of	 the	 questions	 were	 answered	 as	 satisfactory	 or	

partially	satisfactory,	and	33.07%	as	not	satisfactory.	Summarizing,	the	results	showed	

that	 the	 provided	 abstraction	 level	 is	 adequate	 for	 the	 RA	 purposes,	 the	 concepts	

underlying	 the	 RA	 are	 clearly	 explained	 and	 its	 detail	 level	 favors	 the	 RA	

understanding.	 Moreover,	 all	 modules	 of	 the	 RA	 are	 clearly	 identified,	 the	

relationships	 between	 these	 modules	 can	 be	 determined,	 and	 the	 runtime	

dependencies	 of	 these	 modules	 can	 be	 identified.	 Finally,	 the	 required	 hardware	

	
	

	
125	

elements	can	be	identified,	the	RA	is	in	conformance	and	complete	regarding	domain	

requirements,	and	it	addresses	the	key	issues	of	the	WSN	domain.	On	the	other	hand,	

the	main	problems	reported	in	the	conducted	inspection	are	the	lack	of	explicit	of	the	

variability	 mechanisms	 of	 our	 RA	 and	 documentation	 regarding	 the	 threats	 for	

introducing	the	RA.	

Based	on	these	results,	we	complete	our	architectural	description	by	using	the	

RAModel	in	order	to	overcome	the	pointed	drawbacks	of	the	RA	adoption.	Considering	

all	 documentation	 of	 RAMSES	 presented	 in	 Section	 3.5	 of	 this	 Chapter	 we	 could	

analyze	 this	 architecture	 considering	 the	 elements	 proposed	 in	 RAModel.	 These	

elements	are	organized	in	four	groups	(detailed	in	Appendix	A).	

i) Domain	

RAMSES	 addresses	 non-functional	 requirements	 related	 to	 quality	 attributes,	

such	 as	 fault-tolerance,	 adaptability	 and	 scalability.	 Thus,	 we	 can	 say	 that	 RAMSES	

presents	 information	 related	 to	 quality	 attributes	 or	 non-functional	 requirements.	

Besides	that,	RAMSES	provides	information	about	their	WSN	modules,	it	also	uses	IEEE	

802.15.4.1	as	a	 communication	 standard	and,	 considering	 that	RAMSES	 is	 supported	

by	most	of	WSN	platforms,	we	consider	that	the	system	compliance	element	and,	the	

legislation,	standard	and	regulation	elements	are	partially	addressed.	

ii) Application	

Throughout	 the	 documentation	 of	 RAMSES,	 goals	 and	 needs	 are	 addressed,	

since	the	RA	proposes	an	autonomic	computing	method	to	manage	WSN	through	the	

implementation	 of	 a	 hierarchical	 MAPE	 process.	 The	 scope	 of	 RAMSES	 also	 is	

presented,	by	supporting	a	 framework	 for	 the	 implementation	of	self-adaptive	WSN.	

RAMSES	 also	 defines	 a	 set	 of	 functional	 requirements	 as	 detailed	 in	 Section	 3.4.1.	

Regarding	domain	data,	i.e.,	data	used	by	systems	resulting	from	RAMSES	and	related	

directly	 to	 the	domain	 is	 present	 (as	 detailed	 Table	 9).	 In	 addition,	 data	used	 in	 the	

application	 interfaces	 are	 generally	 established.	 Moreover.	 RAMSES	 restricts	 its	

implementation	 in	 hierarchical	 WSN	 networks,	 then	 we	 consider	 constraint	 and	

limitations	 elements	 addressed.	 However,	 the	 risks	 of	 its	 implementation	 could	 be	

deeeper	explored.	

	
	

	
126	

iii) Infrastructure	

RAMSES	 presents	 a	 fully	 detailed	 and	 layered	 architecture.	 Hence,	 the	 RA	

addresses	 information	 regarding	 the	 general	 structure	 of	 RAMSES,	 such	 as	

architectural	 styles	 and	 patterns.	 It	 therefore	 aggregates	 the	 best	 practices	 for	

developing	 an	 instance	 of	 the	 RA	 by	 proposing	 an	 automatic	 instantiation	 process	

provided	 by	 the	 formal	 specification	 of	 the	 RA.	 Throughout	 the	 documentation	 of	

RAMSES,	 a	 set	 of	 software	 elements	 can	 be	 identified.	 Thus,	 we	 can	 say	 that	

information	 about	 software	 elements	 has	 been	 addressed	 by	 RAMSES.	 It	 is	 also	

observed	that	information	about	hardware	elements	that	compose	a	system.	We	can	

find	 elements,	 such	 as	 each	 type	 of	 sensor	 node	 device,	 where	 RAMSES	 explicitly	

presents	how	to	manage	these	elements,	in	a	general	way.	Hence,	information	about	

hardware	elements	is	also	presented	in	RAMSES.	

iv) Crosscutting	Elements	

RAMSES	 explicitly	 establishes	 a	 set	 of	 standardized	 interfaces,	 including	

interfaces	between	 its	 architectural	 layers	 that	 support	 hardware	 independence	and	

the	 separation	 of	 concerns	 between	 the	 network	 management	 and	 the	 WSN	

application	management.	These	interfaces	are	defined	on	a	lower	level	of	abstraction,	

on	 the	 source	 code	 level	 written	 in	 Pi-ADL.	 In	 addition,	 RAMSES	 provides	 the	 well-

defined	 interfaces	 for	 each	 component	 of	 the	 RA.	 These	 interfaces	 refer	 to	

communication	 among	 different	 software	 components	 that	 are	 present	 in	 these	

applications.	 Thus,	 we	 can	 say	 that	 information	 related	 internal	 communication	 is	

present	in	RAMSES.	

Regarding	 external	 communication	 and	 considering	 a	 WSN	 application	 as	 a	

unique	 system,	 this	 communication	 is	 established	 by	 RAMSES	 through	 Gateway	

Communication	component	 (involving,	 for	 instance,	communication	with	other	WSN,	

internet,	 or	 other	 systems).	 Information	 related	 to	 external	 communication	 is	

therefore	addressed	by	RAMSES.	This	architecture	also	presents	a	glossary	containing	

the	definitions	of	all	mayor	terms	used,	thereby	establishing	the	domain	terminology	

adopted	 by	 the	 architecture	 (Section	 3.5.1.1).	 Thus,	 information	 about	 domain	

terminology	 used	 in	 the	 RA	 is	 contained	 in	 RAMSES.	 Throughout	 RAMSES	

documentation,	mainly	in	Section	3.5.1,	we	addressed	the	main	architectural	decision	

	
	

	
127	

when	 establishing	 the	 RA.	 Thus,	 we	 can	 say	 that	 decision	 element	 is	 addressed	 by	

RAMSES.	

Through	this	analysis,	we	identified	which	elements	of	RAModel	are	present	in	

RAMSES	and	which	are	not.	We	consider	RAMSES	a	complete	architecture,	according	

to	RAModel.	However,	some	elements,	such	as	risk,	laws	and	current	regulations	could	

be	added	to	this	RA.		

3.7 Final	Considerations	

In	 this	 Chapter,	 we	 presented	 RAMSES,	 a	 reference	 architecture	 of	 a	 self-

adaptive	middleware	for	WSN.	To	build	RAMSES,	we	conduct	each	step	of	ProSA-RA.	

The	first	step	was	performed	an	investigation	of	useful	information	sources	to	design	

the	RA.	In	this	step,	a	set	of	requirements	for	self-adaptation	in	WSN	and	the	different	

approaches	used	to	build	an	autonomic	WSN	application	were	identified.	In	the	second	

step,	the	architectural	requirements	for	self-adaptive	WSN	applications	and	their	main	

quality	attributes	were	obtained.	They	were	defined	 from	a	primary	studies	analysis,	

selected	in	the	first	step,	where	the	main	related	works	of	reference	architectures	for	

autonomous	 systems	 and	WSN	 applications	were	 analyzed.	 In	 third	 step,	we	 design	

RAMSES	 using	 RAModel	 as	 a	 framework	 and	modeling	 the	 architecture	 through	 the	

following	 architectural	 viewpoints:	 crosscutting	 viewpoint,	 runtime	 viewpoint	 and	

deployment	 viewpoint.	 Pi-ADL	 specification	 of	 runtime	 view	 and	 deployment	 view	

were	applied	in	order	to	explicitly	define	the	dynamic	behavior	of	WSN	networks,	a	key	

issue	in	this	type	of	systems.		

In	fourth	and	final	step	for	ProSA-RA	was	performed	an	evaluation	of	RAMSES	

through	FERA,	 a	 framework	 for	 evaluation	RAs.	 It	 is	 important	 to	note	 that	RAMSES	

contains	 characteristics	 of	 a	 research-driven	 RA,	 in	which	 details	 of	 development	 of	

some	modules	 needs	 to	 be	 investigated.	 In	 the	 context	 of	 this	 work,	 in	 addition	 to	

FERA	 evaluation,	 in	 order	 to	 identify	 related	 failure	 to	 omission,	 ambiguity,	

inconsistency	 and	 incorrect	 information,	 the	 evaluation	 of	 RAMSES	was	 also	 carried	

out	through	a	case	study,	detailed	in	Section	4.	

	
	

	
128	

CHAPTER	4: Proof	of	Concept	–	SAMSON	

4.1 Initial	Considerations	

In	this	Chapter,	we	present	the	evaluation	of	the	proposed	approach	through	a	

proof	of	concept.	We	assess	through	a	series	of	adaptation	scenarios	the	execution	of	

an	 instance	 of	 RAMSES,	 named	 SAMSON	 (Self-Adaptive	 Middleware	 for	 wireless	

SensOr	Networks),	 to	verify	 if	 it	achieves	 the	requirements	of	an	adaptive	system	by	

performing	 the	MAPE-K	 model.	 Thus,	 in	 this	 evaluation	 we	 executed	 four	 different	

scenarios	to	verify	the	following	self-*	properties:		

• Self-configuration	 (Scenario	1)	 to	 check	 the	mechanisms	 that	enable	 the	WSN	 to	

adapt	 itself	 to	 the	environment,	 changing	 its	 behavior	 as	 specified	 through	high-

level	 policies,	 by	 dynamically	 altering	 values	 of	 parameters	 according	 to	 the	

changing		

• Self-healing	 (Scenarios	 2	 and	 3)	 to	 verify	 the	 ability	 of	 SAMSON	 adaptive	

mechanism	 to	 react	 to	 node	 failures	 (both	 ordinary	 nodes	 and	 cluster	 heads)	 at	

runtime.		

• Self-	 optimization	 (Scenario	 4)	 to	 verify	 the	 capabilities	 of	 the	 autonomic	

management	 process	 of	 extending	 the	 network	 operational	 lifetime	 by	 applying	

actions	defined	in	adaptation	policies.		

Furthermore,	 we	 evaluate	 the	 benefits	 of	 RAMSES	 instantiation	 in	 terms	 of	

implementation	effort	 (quantified	as	 lines	of	 code)	when	using	 the	proposed	model-

driven	 transformations	 to	 generate	 a	 middleware	 instance	 (SAMSON)	 from	 the	

reference	architecture.		

	

	 	

	
	

	
129	

4.2 Instantiation	Process	

Software	architects,	who	are	responsible	for	the	RA	instantiation,	often	do	not	

have	 the	knowledge	about	programming,	especially	on	coding	 for	WSN	platforms.	 In	

this	context,	model	transformations	can	be	used	to	enable	a	mapping	between	models	

from	different	abstraction	 levels,	namely	architecture	 instance,	 into	platform-specific	

code.	 Thus,	 to	 fulfill	 the	 gap	 between	 the	 architecture	 specification	 and	 platform	

implementation,	 in	 this	 Section	 we	 describe	 how	 an	 architectural	 description	

(architecture	 instance)	 created	 using	 RAMSES	 can	 be	 mapped	 into	 an	 executable	

source	code	for	a	target	platform.		

A	model	transformation	is	the	process	to	generate	text	or	documentation	from	

a	source	model.	To	run	a	model-to-text	transformation	and	generate	code	for	a	target	

platform,	 some	 software	 artifacts	 are	 mandatory:	 (i)	 the	 source	 model,	 (ii)	 its	

respective	 meta-model,	 (iii)	 the	 mappings	 between	 meta-model	 elements	 of	 the	

source	model	and	code	elements	of	the	target	platform	respecting	the	syntax	rules	of	

the	native	programming	language.		

Following	the	process	presented	in	Section	3.5.4.3,	the	specified	RA	(in	Pi-ADL	

language)	 is	 considered	 the	 source	meta-model	 and	 the	 software	 architect	 job	 is	 to	

specify	the	concrete	architecture,	or	the	source	model	(also	in	Pi-ADL	language).	Thus,	

it	is	only	necessary	to	select	the	target	platform	and	its	respective	transformation	rules	

that	 were	 already	 developed.	 In	 this	 context,	 potentially	 any	 platform	 that	 uses	 a	

programming	language	defined	under	a	well-defined	set	of	syntax	rules	can	be	used	as	

target	platform.		

In	this	proof	of	concept,	we	considered	Contiki	as	the	target	WSN	platform	for	

code	 generation.	 In	 the	 remainder	 of	 this	 section	we	 specify	 the	 necessary	 steps	 to	

develop	the	model	transformation	rules	for	Contiki	platform.	This	proof	of	concept	can	

be	used	as	reference	to	specify	M2T	transformations	for	other	platforms.		

The	 first	 step	 in	 the	 process	 of	 generating	 the	middleware	 source	 code	 is	 to	

perform	 the	 logical	 mapping	 between	 components	 of	 SML	 layer	 of	 RAMSES	 (which	

conforms	 to	 pi-ADL	 meta-model)	 and	 the	 coding	 elements	 of	 the	 target	 sensor	

	
	

	
130	

platform	(see	Table	14	for	a	summary	of	the	mapping	for	Contiki).		

Table	14.	Correspondences	between	RAMSES	and	Contiki	
RAMSES	(Pi-ADL)	 Contiki	(C)	

Component	 Process	
Connector	 Process	
Behavior	 Main	process	implementation	
Connection	 Send/Receive	data	process	
Declaration	of	Connections	 Send/Receive	library	includes		
Architecture	 Main	process	declaration	
Basic	types	(except	Any)	 Primitive	C	types	
Unobservable	elements	 Empty	Interface	
Any	type	 Empty	Body	

	

• The	 Component,	 Connector,	 and	 Behavior	 elements	 of	 RAMSES	 represent,	

respectively,	 a	 unit	 of	 computation	 of	 a	 system,	 an	 interconnection	 among	

components	 to	 support	 their	 interactions,	 and	 the	 internal	 behavior	 of	 the	

component.	Components	and	connectors	are	mapped	to	Contiki	functions	and	

processes.	All	Contiki	programs	are	processes.	A	process	is	a	piece	of	code	that	

is	executed	regularly	by	the	Contiki	system	and	run	until	an	event	is	triggered,	

such	 as	 a	 timer	 firing	 or	 the	 occurrence	 of	 an	 external	 event.	 The	 behavior	

element	is	represented	in	Contiki	as	the	sequence	of	actions	that	are	specified	

in	the	main	process,	including	timers,	event	triggers,	and	others.		

	

• The	 Connection	 and	 the	 Declaration	 of	 Connections	 elements	 of	 RAMSES	

provide	 communications	 channels	 between	 two	 components.	 A	 component	

can	send/receive	values	via	connections.	A	connection	is	represented	in	Contiki	

as	 the	 invocation	 of	 a	 function	 to	 send/receive	 data	 to/from	 a	 remote	

component	 of	 the	 network.	 As	 there	 are	 different	 protocols	 to	 send	 data	

through	 the	network,	 the	declaration	of	 connections	establishes	 the	mapping	

to	the	chosen	protocol.		

	

• The	 Architecture	 element	 of	 RAMSES	 encompasses	 the	 composition	 of	

component	and	connector	instances.	The	architecture	is	represented	in	Contiki	

by	 the	 specification	of	 the	main	process	and	of	 the	 list	of	processes	 that	will	

auto-start	when	the	application	starts.		

	
	

	
131	

• The	 Basic	 types,	 Unobservable	 elements,	 and	 Any	 type	 of	 RAMSES	 express,	

respectively,	atomic	values,	 the	capability	 to	enact	an	action	 invisibility	and	a	

generic	 type.	As	Contiki	 is	 implemented	 in	C	 language,	 all	 C's	 basic	 types	 are	

present,	 thus	 there	 is	 a	 direct	 map	 between	 RAMSES	 Basic	 types	 to	 Contiki	

types.	Moreover,	 the	unobservable	elements	and	any	type	can	be	mapped	to	

the	 declaration	 of	 empty	 functions	 or	 the	 use	 of	 the	 void	 type	 in	 Contiki,	

respectively.		

Finally,	 once	 the	 transformation	 rules	 are	 specified,	 the	M2T	 transformation	

can	be	executed	as	many	times	as	necessary	to	generate	the	code	of	the	source	model	

produced	 by	 the	 software	 architect.	 To	 perform	 the	 transformation	 from	 the	

architectural	description	to	source	code,	an	M2T	transformation	engine	 is	necessary.	

We	 used	 Xtext	 to	 validate	 the	 pi-ADL	 architectural	 descriptions	 developed	 using	 pi-

ADL.	 Therefore,	 we	 used	 the	 Xtend	 tool	 to	 map	 an	 architectural	 description	 into	

Contiki	 code	 following	 the	mapping	presented	 in	 Table	 14.	 	 SAMSON	 source	 code	 is	

available	at	http://146.164.247.214/wordpress/rawsn/.	

4.3 Evaluation	Methodology	

We	 performed	 this	 proof	 of	 concept	 to	 evaluate	 SAMSON	 operation	 in	 four	

different	scenarios.	We	simulated	a	WSN	with	two	clusters,	each	one	containing	a	set	

of	 thirty	 (30)	nodes	with	different	 sensing	 capabilities	 (temperature	and	 luminosity).	

Moreover,	 for	purposes	of	 comparison,	 in	addition	 to	 the	 regular	 implementation	of	

SAMSON	 (S1)	 we	 instantiated	 another	 version	 of	 the	 middleware	 (S2)	 without	 the	

dynamic	 adaptation	 features,	 where	 the	 MAPE-K	 process	 initialized	 by	 the	 Sensor	

Manager	component	was	deactivated.		

Both	 instances	 (S1	 and	 S2)	 were	 executed	 with	 the	 same	 network	

configuration.	This	proof	of	concept	was	executed	using	Cooja	Simulator	on	virtual	SKY	

nodes.	 All	 scenarios	 defined	 for	 this	 proof	 of	 concept	 specify	 a	WSN	 application	 to	

collect	 temperature	 and	 luminosity	measures	 every	 15	 seconds	 and	 the	 application	

must	remain	active	for	one	week.		

	
	

	
132	

4.3.1 Scenario	1:	Self-configuration:		

For	 this	 scenario,	 in	 a	 pre-deployment	 phase	 each	 node	 was	 statically	

configured	to	associate	itself	to	a	predefined	cluster	head.	All	clusters	were	previously	

grouped	based	on	the	distance	between	nodes	and	statically	defined	by	the	network	

administrator	in	a	pre-deployment	phase.		

When	 the	 middleware	 starts	 running,	 the	 selection	 of	 cluster	 heads	 is	

performed	by	SAMSON	(when	needed)	as	part	of	the	autonomic	management	of	the	

network	 and	 based	 on	 the	 residual	 energy	 of	 nodes.	 So,	 at	 runtime	 all	 nodes	 of	 a	

cluster	 are	 dynamically	 reconfigured	 to	 associate	 themselves	 to	 the	 new	 selected	

cluster	head.		

4.3.2 Scenario	2:	Self-healing	(node	failure)	

In	 this	 scenario,	 after	 one	 day	 of	 simulation,	 node	 failures	 were	 manually	

introduced	(by	turning	off	nodes)	until	the	network	coverage	or	connectivity	were	no	

longer	 guaranteed.	 The	 goal	 was	 to	 verify	 the	 self-healing	 property	 through	 the	

adaptation	by	parameter.	The	coverage	is	guaranteed	when	a	given	area	is	monitored	

by	at	least	k	different	active	sensors	(D.	L.	Li,	H,	2009),	and	connectivity	is	guaranteed	

when	 the	messages	 sent	 by	 all	 active	 sensor	 nodes	 can	 reach	 the	 sink	 (D.	 L.	 Li,	 H,	

2009).		

When	 any	 of	 these	 events	 is	 detected,	 the	 MAPE-K	 process	 of	 the	 node	

manager	 (CH)	 reads	 the	 activated	 adaptation	 policy	 in	 order	 to	 plan	 (activation	 of	

redundant	nodes	that	are	inactive)	and	execute	an	action	(sending	of	a	configuration	

message	 to	 nodes	 of	 the	 cluster)	 to	 reconfigure	 the	 cluster	 and	 keep	 a	 minimal	

number	 of	 active	 nodes.	 There	 are	 sophisticated	 heuristic-based	 algorithms	 for	

selecting	active	nodes,	as	 in	(F.	 Delicato,	 Protti,	 Pirmez,	 &	 Rezende,	 2006).	 In	this	

experiment,	we	 applied	 a	 simple	 approach,	 based	 on	 the	 energy	 level	 of	 nodes,	 for	

activating	 them	until	 achieving,	when	possible,	 80%	of	 active	nodes	per	 cluster.	 The	

minimal	percentage	of	active	nodes	 required	by	 the	defined	policy	 is	60%	 (18	nodes	

per	cluster).		

	

	
	

	
133	

4.3.3 Scenario	3:	Self-healing	(cluster	head	failure).		

In	 this	 scenario,	 we	 adopted	 a	 proactive	 policy	 for	 replacing	 a	 low	 energy	

cluster	head.	The	new	manager	must	dynamically	load	specific	components	of	cluster	

heads,	in	order	to	perform	the	MAPE-K	process	inside	the	cluster.		

The	 goal	 of	 this	 scenario	 is	 to	 verify	 the	 self-healing	 property	 thought	 the	

adaptation	 by	 dynamic	 load	 of	 components.	 The	 adaptation	 policy	 is	 activated	

whenever	the	residual	energy	of	the	current	cluster	head	is	below	30%	(value	reached	

after	about	60	hours	of	simulation).	When	this	policy	is	activated,	the	CH	broadcasts	a	

configuration	message	to	the	cluster	nodes	advertising	the	ID	of	the	new	CH.	When	a	

node	with	 the	 same	 ID	 receives	 that	message,	 then	 this	 node	dynamically	 loads	 the	

specific	components	to	become	the	new	CH.		

4.3.4 Scenario	4:	Self-optimization:		

In	 this	 scenario,	 we	 defined	 an	 application	 to	 periodically	 monitor	 the	

temperature	 of	 a	 given	 area	 and	 notify	 users	 whenever	 the	 sensed	 data	 reaches	 a	

value	higher	than	15oC	(this	condition	is	simulated	to	happen	every	12	hours	per	day).		

To	 optimize	 the	 energy	 consumption	 of	 nodes,	 an	 adaptation	 policy	 was	

defined	 to	 decrease	 the	 data	 delivery	 rate	 of	 a	 node	 (from	 15	 sec	 to	 60	 sec)	 if	 the	

collected	 data	 is	 frequently	 under	 a	 given	 threshold.	 Thus,	 reducing	 the	 number	 of	

messages	 and	 increasing	 the	 system	 lifetime,	 since	 in	 WSNs	 the	 communication	

consumes	most	of	the	energy.		

4.4 Analysis	

Table	15	shows	the	collected	data	regarding	energy	consumption	of	nodes	(EC)	

and	 the	average	number	of	 transmitted	messages	 (TM)	sent	by	ordinary	nodes	 (ON)	

and	 received	 by	 each	 cluster	 head	 (CH)	 for	 each	 scenario.	 These	 data	 indicate,	 in	

average,	that	the	energy	consumption	of	nodes	is	more	efficiently	managed	when	the	

adaptation	strategy	employed	by	SAMSON	is	used	(S1).		

	

	
	

	
134	

Table	15.	SAMSON	Evaluation	
	 Scenario	2	 Scenario	3	 Scenario	4	

S1	 S2	 S1	 S2	 S1	 S2	

EC	 646.5	J	 92.36	J	 646.5	J	 646.5	J	 404	J	 646.5	J	

TM	 1209600CH	172800CH	432000CH1				

777600CH2	

1209600CH1	 25200ON		 40320ON	

	

In	 scenario	 2,	 the	 adaptive	mechanism	 allowed	 the	 recovery	 of	 the	 network	

coverage	and	assured	that	the	network	was	kept	alive,	extending	the	network	lifetime	

for	all	 the	simulation	time	(one	week).	Such	mechanism	was	autonomously	executed	

by	the	CH	without	interrupting	the	network	operation	or	human	interference.	On	the	

other	 hand,	 after	 the	 coverage	 fault	 in	 S2,	 the	 network	was	 not	 able	 to	 recover	 its	

operation,	 and	 the	 monitored	 area	 was	 uncovered,	 thus	 incurring	 in	 a	 failure	 in	

meeting	 application	 requirements.	 Therefore,	 the	 network	 stopped	 to	 provide	 its	

functionality	 and	was	 declared	 inoperative	 after	 one	 day	 of	 operation	 in	 simulation	

time.		

In	 scenario	3,	 the	 residual	energy	of	 the	cluster	head	 (CH1)	 is	depleting,	 thus	

compromising	 its	 lifetime	and	the	cluster	functionality.	 If	a	cluster	head	fails,	all	area	

covered	 by	 the	 cluster	 will	 be	 unmonitored	 and	 disconnected	 to	 the	 rest	 of	 the	

network.	 In	 this	 case,	 a	 reconfiguration	 of	 the	 cluster	 topology	 is	 required	 and	 a	

selection	of	a	new	cluster	is	a	mandatory	operation.	Thus,	in	S1,	when	the	problematic	

cluster	achieves	a	predetermined	residual	energy,	an	adaptation	policy	is	activated	to	

select	a	new	leader	(CH2),	based	on	the	amount	of	residual	energy	of	nodes.		

When	the	chosen	node	receives	a	configuration	messages	with	 instruction	for	

turning	 itself	 in	a	CH,	 the	exclusive	components	 for	a	node	manager	 (responsible	 for	

performing	the	MAPE-K)	are	dynamically	loaded.	Such	result	is	very	important	for	the	

WSN	domain,	as	memory	is	a	valuable	resource	that	is	often	very	restrict	in	the	current	

hardware.		

Therefore,	 Table	 16	 shows	 that	 by	 applying	 dynamic	 loading	 of	 components,	

ordinary	 nodes	 (managed	 nodes)	 consume	 less	 memory	 than	 cluster	 heads.	 In	

addition,	RAM	consumption	was	31%	below	the	memory	capacity	of	SKY	nodes,	since	

	
	

	
135	

SKY	 platform	 contains	 10	 Kb	 of	 RAM	 and	 48	 KB	 of	 flash	 memory.	 Thus,	 SAMSON	

memory	 consumption	 is	 aligned	 with	 current	 WSN	 hardware	 platforms.	 Regarding	

SAMSON	 image	 size,	 in	 ordinary	 nodes	 it	 is	 smaller	 (-	 10%)	 than	 in	 cluster	 heads,	

demonstrating	that	only	the	necessary	components	are	loaded	according	to	the	node	

responsibility	(manager/managed),	thus	saving	the	valuable	resources	of	nodes.		

Table	16.	SAMSON	Overhead	
	 Node	Manager	Managed	Node	

RAM	 6.9	Kb	 6.6	Kb	

Image	Size	 29.3	Kb	 26.3	Kb	

	

In	 scenario	 4,	 the	 average	 of	 energy	 consumption	 of	 nodes	 supported	 by	 S1	

(404	J)	was	approximately	37%	lower	than	a	network	running	without	the	adaptation	

support	 (646.5	J).	Such	result	can	be	explained	by	the	policy	applied	by	S1	to	reduce	

the	number	of	transmitted	messages.	Thus,	ordinary	nodes	that	measure	values	below	

the	predefined	threshold	were	configured	to	send	messages	every	60	seconds	(instead	

of	every	15	seconds),	thereby	reflecting	into	less	energy	usage	by	reducing	the	number	

of	message	transmissions	from	40320	to	25200,	for	each	ordinary	node.		

Finally,	 this	 evaluation	 process	 also	 included	 an	 analysis	 of	 the	 middleware	

instantiation	 process	 with	 the	 purpose	 of	 evaluating	 its	 implementation	 effort	 from	

the	 RA.	We	 analyzed	 the	 number	 of	 lines	 of	 code	 as	 a	 metric	 to	 evaluate:	 (i)	 how	

simple	 it	 is	 to	 instantiate	RAMSES	and	generate	SAMSON	using	the	M2T	engine	and,	

(ii)	directly	with	Contiki	programming.	RAMSES	 instantiation	method	(supported	by	a	

formal	ADL	specification	–	pi-ADL–	and	a	M2T	transformation	engine)	makes	it	simple	

to	 implement	 SAMSON,	 by	 requiring	 128	 lines	 of	 codes	 against	 453	 for	 Contiki	

programming.	 Thus,	 the	 developer	 is	 only	 concerned	 in	 the	 implementation	 of	

predefined	functions	and	the	architectural	decisions	are	inherited	from	the	RA.		

	

	

	
	

	
136	

4.5 Related	self-adaptive	middleware	instances	for	WSN	

In	 this	 section,	 SAMSON	 is	 compared	with	 self-adaptive	middleware	 systems	

found	in	literature.	

DISON	 (Minh	et	al.,	 2013)	adopts	a	Policy-based	 reasoning	 (PBR)	approach	 to	

provide	a	generic	management	system	for	WSN.	Its	main	goal	is	to	allow	sensor	nodes	

to	adapt	autonomously	to	changes	in	application	requirements	and	network	resources.	

A	multilevel	management	mechanism	is	used	where	every	sensor	nodes	is	empowered	

to	 participate	 in	 the	 management	 process	 at	 different	 levels	 according	 to	 their	

resources.	 A	 management	 function	 in	 DISON	 aims	 to	 monitor	 network	 resources,	

detecting	faults,	and	reconfiguring	nodes	operation.		

Our	middleware	 also	 allows	 individual	 sensor	nodes	 to	perform	management	

functions	 locally	 based	 on	 adaptation	 policies.	 In	 SAMSON,	 these	 functions	 are	

responsibility	of	the	SML	layer.	However,	the	main	difference	concerns	SAMSON	NML	

layer,	 located	 outside	 the	 network.	 Such	 layer	 can	 work	 as	 a	 central	 manager	 to	

maintain	 operations	 from	 a	 global	 perspective.	 Thus,	 the	 self-adaptation	 process	 is	

performed	 in	 two	 levels	of	abstraction.	One	 level	 is	performed	 in	 the	SML	 layer	and	

aims	to	provide	more	localized	management	decisions.	The	second	level	is	performed	

in	 the	 NML	 layer	 and	 allows	 global	 decisions	 involving	 the	 entire	 WSN.	 Such	

distribution	of	 responsibilities	 favors	energy	efficiency	while	at	 the	same	time	allows	

potentially	 optimal	 decisions	 (not	 possible	 with	 a	 partial	 view	 of	 the	 network).	

Moreover,	the	management	functions	applied	in	our	SAMSON	are	based	on	the	MAPE-

K	model,	which	provides	well-grounded	guidelines	for	specifying	architectural	aspects	

of	autonomic	systems.		

(Jemal	&	Halima,	June,	2013)	describe	a	QoS-Driven	Self-Adaptive	Architecture	

for	 WSN.	 This	 architecture,	 based	 on	 feedback	 control	 loop	 (FCL),	 adopts	 MAPE-K.	

Generally,	 WSN	 middleware	 systems	 that	 apply	 this	 approach	 use	 hierarchical	

networks	 typically	 defined	 with	 three	 levels:	 sensor	 nodes,	 cluster	 head	 and	 base	

station	 levels.	 Accordingly,	 in	 (Jemal	&	Halima,	 June,	 2013),	 three	 different	 levels	 of	

adaptation	 are	 defined.	 Cluster	 heads	 perform	 actions	 like	 message	 filtering,	

adjustment	of	frequency,	and	optimization	of	the	transmission	signal	frequency.	Base	

	
	

	
137	

station	provides	 the	 actions	 of	 global	 network	 reorganization,	 including	 components	

deployment,	 redeployment,	 undeployment,	 activation	 and	 deactivation.	 SAMSON	 is	

also	 based	 on	MAPE-K	model	 with	 different	 levels	 of	 adaptation,	 including	 a	 global	

perspective	operating	outside	the	network	(NML).	Its	adaptation	process	operates	via	

configuration	messages	and,	when	needed,	we	applied	a	dynamic	run-time	linking	and	

loading	process.		

Starfish	 (Bourdenas	 &	 Sloman,	 2010;	 Bourdenas	 et	 al.,	 Oct,	 2011)	 is	 a	 PBR	

system	 proposed	 for	 specifying	 and	 dynamically	managing	 policies	 in	 sensor	 nodes.	

They	 include	 a	 policy	 system	 to	 specify	 dynamic	 adaptation.	 Such	 system	 is	 named	

Finger	 2,	 an	 extension	 of	 Finger.	 Another	 PBL	 middleware	 based	 on	 Finger	 is	

SMART507	 	 (S.	et	al.,	2013).	 Its	main	goal	 is	 to	automatically	generate	policies	which	

introduce	swarm	intelligence	into	the	WSN	management.	In	SAMSON,	the	structure	of	

adaptation	 policies	 is	 defined	 in	 Pi-ADL,	 at	 the	 architectural	 level.	 Hence,	 it	 is	 not	

necessary	to	learn	another	language	for	specifying	policies.	In	SAMSON,	users	are	able	

for	managing	policies	via	the	Adaptation	Policies	Manager	component.		

Table	 17	 summarizes	 the	 highlighted	 characteristics	 of	 these	 self-adaptive	

middleware	systems.	

Table	17.	Characteristics	of	self-adaptive	middleware	for	WSN	
Reference	 Develop.	

Approach	
Deploy.	
Approach	

RM-based/		
RA-based	

ADL	
spec.	

Self-adaptation	
process	

Evaluation	

DISON	 	 	 (Cao	 et	 al.,	
Sep,	 2014;	 Minh	 et	
al.,	2013)	

PBR	 Distributed	 -	 Blocks	 Structured	
messages	

TinyOS	and	
SENSE	sim.	

SMART507	 	 (S.	 et	 al.,	
2013)		

PBR	 Hybrid	 Finger/1,2	
extension	

Blocks	 Structured	
messages	

Contiki	
OS/Cooja	

Ahmed	 	 (Jemal	 &	
Halima,	June,	2013)	

FCL,	PBR	 Distributed	 MAPE		 Blocks	 Deploy,	
Structured	
messages	

AZEM	sim.	

Starfish	(Bourdenas	&	
Sloman,	 2010;	
Bourdenas	et	al.,	Oct,	
2011)	

PBR	 Distributed	 Finger2	 Blocks	 Virtual	machine	 TinyOS	2.x	

SAMSON	 FCL,	PBR	 Hybrid	 MAPE/		
RAMSES	

Pi-ADL,	
UML	

Dynamic	 Loading,	
Structured	
Messages	

Contiki	
OS/Cooja	
sim.	

	

	

	
	

	
138	

The	 first	 column	 “Develop.	 Approach”	 shows	 the	 type	 of	 development	

approach	 followed	 for	 each	 middleware.	 We	 noticed	 that	 all	 FCL-based	 (Feedback	

control	 loop)	 systems	 are	 supported	 by	 some	 kind	 of	 policy	management	 reasoning	

(PBR).	Starfish	depends	on	virtual	machines,	these	systems	can	somewhat	simplify	the	

WSN	management	 tasks,	but	 they	still	 require	a	 lot	of	management	effort	 to	specify	

the	policies	or	writing	management	code.	Scripts	are	significantly	smaller	to	transmit	

than	binary	images	and	do	not	require	rebooting	nodes,	but	operational	overheads	of	

a	 full	 virtual	 machine	 can	 be	 significant.	 SMART507	 improve	 these	 drawbacks	 by	

implementing	 a	 management	 server	 equipped	 with	 a	 smart	 policy	 generation	

subsystem.	After	 the	 generation	process,	management	 server	 assigns	 the	policies	 to	

node	 clients	 through	 the	 sensor	 network.	 However,	 the	 node	 client	 needs	 to	 run	 a	

policy	 interpreter.	 Finally,	 both	 DISON	 and	 SAMSON	 introduce	 a	 policy	 data	 model	

aiming	to	attend	the	limited	resources	of	WSN.		

The	column	“Deploy.	Approach”	shows	the	deployment	approaches	applied	for	

each	 middleware.	 A	 distributed	 approach	 enables	 to	 apply	 a	 robust	 autonomic	

process,	 the	management	overhead	 is	 reduced	and	 the	complexity	and	coordination	

issues	can	be	addressed	by	applying	an	hybrid	approach	deploying	a	central	manager	

with	a	complete	view	of	network.	SAMSON	and	SMART507	follow	hybrid	approaches.	

The	 third	 column	 shows	 which	 middleware	 systems	 are	 based	 on	 reference	

architectures	 (RA-based)	 or	 reference	 models	 (RM-based).	 Some	 PBR	 systems	 are	

based	 on	 Finger	 and	 FCL	 are	 based	 on	MAPE	model.	 SAMSON	 is	 also	 a	 FCL	 system	

based	 on	 a	 RA.	 RAMSES	 supports	 SAMSON	 in	 a	 systematic	 and	 principled	way.	 This	

support	 relies	 on	 design	 pattern	 and	 well-defined	 architectural	 styles	 specific	 for	

autonomic	WSN.	SAMSON	architecture	is	also	more	comprehensive	due	to	it	contains	

a	 formal	 runtime	specification	 (pi-ADL).	As	showed	 in	 the	 fourth	column	(ADL	spec.),	

our	 middleware	 is	 the	 unique	 among	 the	 related	 systems	 that	 uses	 an	 ADL	 for	

specifying	 its	 architecture.	 It	 contributes	 for	 minimizing	 the	 development	 and	

maintenance	cost.	

The	fifth	column	(Adaptation	Process)	shows	the	mechanisms	that	middleware	

systems	use	 for	adaptation	process.	We	noticed	 that	all	 systems	define	a	 structured	

	
	

	
139	

scheme	of	messages.	These	messages	are	used	for	collecting	and	disseminating	policy-

based	messages.	Furthermore,	we	found	four	types	of	mechanisms	used	for	applying	

self-adaptation	in	WSN.	These	mechanisms	are	based	on:	(i)	interpreter	of	policies,	(ii)	

redeploying	 of	 applications,	 (iii)	 virtual	machines	 and,	 (iv)	 dynamic	 loading.	Dynamic	

loading	 process	 is	 more	 efficient	 in	 terms	 of	 WSN	 resource	 management	 (A.	 F.	

Dunkels,	 N;	 Eriksson,	 J;	 Voigt,	 T,	 November,	 2006).	Finally,	the	last	column	shows	

that	TinyOS-based	and	Contiki	OS	were	the	sensor	platforms	most	used	for	evaluating	

the	afore-mentioned	WSN	middleware	systems.	

4.6 Final	Considerations	

In	 this	 chapter,	 we	 aimed	 at	 leveraging	 the	 adoption	 of	 RAMSES,	 by	

automatizing	 the	mapping	 process	 between	 a	 RA	 and	 its	 instantiation	 in	 a	 concrete	

middleware	 implementation.	 Following	 the	 presented	 approach,	 software	 architects	

can	design	self-	adaptive	WSNs	at	a	high	level	of	abstraction,	independent	of	a	specific	

platform,	and	generate,	through	an	MDD	approach,	the	target	middleware	code	that	

meets	 the	 requirements	 raised	 and	 the	 chosen	platform.	 This	 approach	 reduces	 the	

gap	between	the	RA	specification	and	its	implementation.		

An	 important	 benefit	 of	 RAMSES	 is	 to	 reduce	 the	 effort	 in	 developing	 and	

maintaining	 WSN	 applications.	 The	 literature	 points	 out	 that	 complexity	 in	 the	

development	of	WSN	application	is	a	critical	issue,	even	with	the	latest	advances	in	the	

area.	With	 RAMSES,	 will	 be	 possible	 to	 generate	 the	middleware	 code	 for	 different	

WSN	platforms.	Thus,	the	proposed	approach	contributes	to	deal	with	heterogeneity	

issues,	and	promotes	the	integration	of	several	WSN	platforms.		

	
	

	
140	

CHAPTER	5: Comparative	Analysis	

5.1 Initial	Considerations	

In	 this	 Chapter,	 we	 present	 a	 comparative	 analysis	 between	 RAMSES	 and	

related	reference	architectures,	and	we	also	evaluate	the	completeness	of	those	RAs.		

In	 order	 to	 obtain	 the	 RAs	 proposed	 in	 the	 self-adaptive	 WSN	 domain,	 in	

Section	 3.3.3	 we	 conducted	 two	 systematic	 literature	 reviews	 to	 identify	 the	 most	

important	RAs	in	WSN	and	autonomic	computing	domains.	As	result	we	discovered	10	

reference	architectures	proposed	 for	WSN	domain	and	25	 for	autonomic	computing.	

Based	on	RAMSES	requirements	(see	Section	3.4.1),	we	classified	6	of	these	reference	

architectures	as	related	to	self-adaptive	WSN	domain,	and	that	are	presented	in	Table	

18.	

Table	18.	Reference	Architectures	for	self-adaptive	WSNs	
ID	 Reference	 Title	 Related	to	

RAMSES	 Our	proposal	 RAMSES	 WSN,	AC	
RA1	 (Casola	et	al.,	July,	2009)	 SeNsIM	 WSN	
RA2	 (ISO/IEC,	2014)	 SNRA	 WSN	
RA3	 (Gluhak	&	al.,	June,	2006)	 e-SENSE	 WSN	
RA4	 (Cherif	et	al.,	2014)	 ReMoSSa	 AC	
RA5	 (Villegas	et	al.,	2012)	 DYNAMICO	 AC	
RA6	 (IBM,	2005)	 ACRA	 AC	

	

Moreover,	 in	 order	 to	 analyse	 the	 completeness	 of	 the	 related	 reference	

architectures	 for	 self-adaptive	 middleware	 for	 WSN,	 we	 used	 the	 RAModel,	 as	

proposed	 by	 (Garces,	 Ampatzoglou,	 Avgeriou,	 &	 Nakagawa,	 2015),	 to	 present	 (i)	 an	

evaluation	of	the	completeness	of	reference	architetures	with	a	focus	on	its	elements;	

and	 (ii)	a	more	 focused	study,	 in	 the	sense	 that	 it	 is	 stricktly	 related	 to	self-adaptive	

middleware	for	WSN	and	not	in	the	entire	WSN	or	autonomic	computing	domains.	

In	this	perspective,	Section	5.2	analyses	if	the	identified	requirements	for	self-

adaptation	 in	 WSN,	 presented	 in	 section	 3.4.1,	 are	 addressed	 by	 the	 selected	

reference	architectures.	 Section	5.3	describes	 the	elements	defined	by	each	RA,	and	

we	analyse	their	level	of	completeness.	

	
	

	
141	

5.2 Requirements	for	self-adaptation	in	WSN	

Requirements	 for	 self-adaptation	 in	 WSN	 have	 been	 established	 in	 section	

3.4.1.	Table	19	identifies	which	ones	are	addressed	by	the	selected	RAs.	

Req.	 RAMSES	 RA1	 RA2	 RA3	 RA4	 RA5	 RA6	

Req-A	 X	 X	 X	 X	 X	 	 	

Req-B	 X	 X	 X	 X	 X	 	 	

Req-C	 X	 	 X	 X	 X	 X	 X	

Req-D	 X	 	 	 	 X	 X	 X	

Req-E	 X	 X	 X	 	 	 	 	

	

• Req-A:	 A	 WSN	 should	 contain	 one	 or	 more	 sink	 nodes	 or	 base	 stations,	

endowed	 with	 a	 wireless	 communication	 interface	 and	 one	 interface	 with	 a	

Gateway.	 This	 requirement	 is	 addressed	 in	 reference	 architectures	 RAMSES,	

RA1,	RA2,	RA3	and	RA4.	RA1,	RA2	and	RA3	are	designed	for	connecting	a	WSN	

with	 external	 networks;	 RA-4	 partially	 attends	 this	 requirements,	 however,	 it	

may	 be	 adapted	 to	 design	 a	 WSN	 once	 it	 was	 projected	 for	 attending	

distributed	systems.	

• Req-B:	The	RA	must	enable	the	definition	of	a	set	of	sensing-based	applications.	

This	 requirement	 is	 also	 addressed	 in	 reference	 architectures	 RAMSES,	 RA1,	

RA2,	 RA3,	 RA4.	 These	 RAs	 offer	 a	 set	 of	 services	 for	 defining	 specific	

applications	for	WSN.	

• Req-C:	The	RA	must	enable	the	definition	of	a	set	of	high-level	goals.	RAMSES,	

RA2,	RA3,	RA4,	RA5	and	RA6.	This	requirement	is	addressed	with	support	of	the	

Adaptation	Manager	component	in	RAMSES	where	a	set	of	adaptation	policies	

are	defined,	in	RA2,	this	requirement	is	supported	by	the	Rule	engine,	a	Policy	

Management	component	is	defined	in	RA3.	A	definition	of	system’s	objectives	

is	 proposed	 in	 RA4.	 RA5	 specifies	 the	 Control	 objective	 manager	 and	 RA6	

guides	the	uses	of	high-level	goal	to	support	adaptation	planning.	

• Req-D:	The	RA	must	enable	the	self-management	of	the	network	by	defining	a	

set	 of	 software	 components	 (middleware	 platform)	 responsible	 for	managing	

the	WSN.	 RA4,	 RA5	 and	 RA6	 define	 a	 set	 of	 components	 based	 on	MAPE-K	

	
	

	
142	

control	 loops.	 RAMSES	 defines	 these	 components	 at	 the	middleware	 level.	 A	

future	work	of	RA4	aims	to	develop	a	set	of	generic	self-adaptable	middleware.	

• Req-E:	The	RA	must	consider	a	hierarchical	topology	for	the	WSN	organization.	

This	 requirement	 is	 addressed	 in	 reference	 architectures	 RAMSES,	 RA1,	 RA2.	

RA3	 does	 not	 provide	 enough	 information	 to	 determine	 whether	 the	

architecture	supports	this	requirement.	

5.3 Analysis	of	Completeness	

Table	20	presents	the	RAModel	elements	(as	described	in	Appendix	A),	in	order	

to	undertand	which	information	is	contained,	and	which	is	missing,	in	the	definitions	of	

RAs	for	self-adaptive	middleware	for	WSN.	Following,	we	present	a	brief	discussion	of	

the	elements	defined	by	each	RA.	It	is	worth	to	highlight	that	a	complete	evaluation	of	

RAModel	elements	of	RAMSES	was	detailed	in	Section	3.6.	

Table	19.	RAModel	elements	defined	by	each	RA	
Group	 Element	 RAMSES	 RA1	 RA2	 RA3	 RA4	 RA5	 RA6	

Domain	 Legislation,	standards,	and	

regulations	

	 	 X	 	 	 	 X	

Quality	attributes	 X	 	 X	 	 	 X	 X	

System	compliance	 	 	 X	 	 	 	 	

Applications	 Constraints	 X	 	 	 	 	 	 	

Domain	data	 X	 	 X	 	 X	 X	 X	

Functional	requirements	 X	 	 X	 X	 	 X	 X	

Goals	&	Needs	 X	 X	 X	 X	 X	 X	 X	

Limitations	 X	 	 X	 	 	 	 	

Risks	 	 	 	 	 	 	 	

Scope	 X	 X	 X	 	 	 	 X	

Infrastructure	 Best	practices	and	guidelines	 X	 X	 	 X	 X	 X	 X	

General	structure	 X	 X	 X	 X	 X	 X	 X	

Hardware	elements	 X	 X	 X	 X	 	 	 X	

Software	elements	 X	 X	 X	 X	 X	 X	 X	

Crosscuting	

elements	

Decisions	 X	 X	 	 	 X	 	 X	

Domain	terminology	 X	 	 X	 	 X	 X	 X	

External	communication	 X	 X	 X	 X	 	 X	 X	

Internal	communication	 X	 X	 X	 X	 X	 X	 X	

	

	
	

	
143	

• RA1	–	SeNsIM:	This	reference	architecture	for	Sensor	Networks	Integration	and	

Management,	 proposed	 by	 (Casola	 et	 al.,	 July,	 2009),	 allows	 a	 single	 unified	

view	 of	 sensor	 systems	 in	 order	 to	 satisfy	 user	 or	 application	 queries,	 and	

enables	 a	 flexible	 deployment	 and	 interconnection	 between	 them,	 even	 if	

located	in	different	places.	The	architecture	is	based	on	the	Mediator/Wrapper	

paradigm	in	order	to	provide	a	layered	and	scalable	architecture.	For	designing	

phase,	 authors	 have	 used	 a	 box	 diagram	 in	 order	 to	 model	 the	 main	

components	 of	 the	 architecture	 and	 for	 the	 implementing	 phase,	 they	 have	

used	Java	programming	and	TinyDB.		

SeNsIM	 details	 documentation	 about	 the	 rationale	 obtained	 during	 the	

reference	 architecture	 development,	mainly	 regarded	 to	 design	 patterns	 and	

architectural	 styles.	 Hardware	 and	 software	 elements	 are	 also	 defined.	 The	

general	 structure	 of	 the	 RA	 is	 made	 of	 four	 logical	 layers	 (Figure	 41):	 (i)	 an	

application	 or	 user	 layer	 to	 submit	 queries	 and	 elaborate	 the	 retrieved	 data;	

 (ii)	a	mediator	layer	to	format	and	forward	queries	to	specific	wrappers;	(iii)	a	

wrapper	 layer	to	extract	and	manage	network	 information	and	data;	 (iv)	 the	

sensor	 system	 layer	 with	 or	 without	 a	 specific	 middleware	 or	 operating	

 system.	

	

Figure	41.	Abstraction	layers	of	SeNsIM	(Casola	et	al.,	July,	2009)	

SeNsIM	partially	details	crosscutting	element,	 they	do	not	report	all	details	of	

domain	 terminology.	 External	 communication	 is	 detailed	 through	 network	

interfaces,	and	internal	communication	centralized	by	the	mediator	layer.	

SeNsIM	 reference	 architecture	 does	 not	 describe	 domain	 elements	 hindering	

	
	

	
144	

the	 understanding	 of	 laws,	 standards,	 regulations	 that	 SeNsIM	 systems	must	

address.	 There	 is	 a	 lack	 of	 quality	 attributes	 and	 it	 makes	 difficult	 the	

architectural	 validation.	 Additionally,	 it	 does	 not	 offer	 a	 clear	 understanding	

about	the	limitation	of	its	use,	the	set	of	systems	that	could	be	developed	using	

it,	the	risk	of	using	it,	and	the	functional	requirements	that	are	important	when	

software	 systems	 are	 evaluated	 by	 stakeholders.	 It	 lacks	 guidelines	 defining	

well-experimented	practices	to	develop	SeNsIM	systems.		

• RA2	–	SNRA:	The	Sensor	Network	Reference	Architecture	(SNRA),	proposed	by	

(-.	 ISO/IEC,	 2014),	 describes	 generic	 and	generalized	 sensor	network	 services.	

SNRA	is	an	architectural	representation	of	sensor	network	entities’	(e.g.,	sensor	

nodes,	 gateway	nodes,	 and	other	 hardware	 in	 the	node)	 functions,	 activities,	

and	roles	through	operation	 layer	and	 interoperable	 interfaces	to	provide	the	

sensor	 network	 developers	 and	 implementers	 with	 reusable	 sensor	 network	

architecture	 for	 their	 target	 applications.	 SNRA	 depicts	 (in	 Figure	 42)	 the	

general	operational,	functional	and	technical	characteristics	of	WSNs.		

SNRA	 applies	 a	 multi-layered	 style,	 defining	 four	 layers:	 (i)	 sensor	 node	

hardware	 layer,	 that	 contains	 sensors,	 actuators,	 and	 power	 supply	

components;	 (ii)	basic	 function	 layer	responsible	to	process	the	data	acquired	

by	sensors,	storage	such	data,	and	communicate	sensor	nodes;	(iii)	service	layer	

that	 consists	 of	 services	 specific	 to	 domain	 and	 common	 services;	 (iv)	

application	layer	in	where	are	located	user	applications;	and	(v)	Cross-layer	that	

comprises	 components	 to	manage	 and	monitoring	different	 characteristics	 of	

the	sensor	network	system.	

	
	

	
145	

	

Figure	42.	Sensor	Network	Reference	Architecture	(-.	ISO/IEC,	2014)	

SNRA	 details	 documentation	 related	 legislation,	 standards,	 and	 regulations.	

SNRA	describes	 some	 laws	 related	 to	privacy	of	 sensor	networks	 and	 generic	

security	 services	 where	 the	 accountability	 services	 are	 highlighted.	

Accountability	means	that	users	can	rely	on	the	information	provided,	it	implies	

that	all	actions	are	traceable.	However,	this	requires	ethical	standards	and	legal	

regulations.	 SNRA	also	considers	 the	 following	quality	attributes:	 security	and	

privacy,	 robustness,	 scalability,	 quality	of	 service,	 heterogeneity,	mobility	 and	

power	management.	

Application	 and	 crosscutting	 elements	 are	 widely	 described.	 Regarding	

infrastructure	 elements.	 SNRA	 details	 the	 structure	 of	 the	 architecture.	

However,	there	is	a	lack	of	means	(architectural	viewpoints)	that	allow	verifying	

that	 SNRA	 systems	 are	 created	 following	 best	 practices	 and	 guidelines	

definition	for	its	use	and	instantiation.

	
	

	
146	

• RA3	-	e-SENSE:	The	e-SENSE	Project	(Reference	Model	for	Sensor	Networks	in	

B3G	 Mobile	 Communication	 Systems)	 (Gluhak	 &	 al.,	 June,	 2006)	 aims	 to	

provide	 the	 enabling	 technology	 required	 to	 capture	 the	 desired	 ambient	

intelligence	 surrounding	 the	 users	 of	 services	 and	 service	 related	 objects	

through	a	WSN	environment	for	B3G	mobile	communication	systems.	e-SENSE	

defines	 the	 elementary	 building	 blocks	 of	 the	 architecture	 and	 identifies	 the	

communication	interfaces	between	those	blocks.	

The	 ambient	 intelligence	 is	 captured	 with	 sensor	 nodes,	 which	 are	 the	

elementary	 building	 blocks	 of	 the	 WSN.	 Based	 on	 the	 application	 spaces	

envisioned	 in	 e-SENSE,	 the	 reference	 model	 considers	 various	 types	 of	WSN	

architectural	 views.	 The	 e-SENSE	 reference	 model	 aims	 to	 provide	 an	

infrastructure	 where	 information	 sensed	 by	 nodes	 is	 processed	 in	 a	 totally	

distributed	 fashion	 and,	 if	 necessary,	 the	 result	 is	 transmitted	 to	 actuating	

nodes	and/or	 to	 the	 fixed	 infrastructure	by	 the	means	of	 a	 relaying	gateway.	

Figure	 43	 depicts	 an	 overview	 of	 the	 distributed	 processing	 middleware	

architecture.		

	
Figure	43.	Reference	model	for	the	distributed	processing	middleware	of	e-SENSE	

(Gluhak	&	al.,	June,	2006)	

	

	
	

	
147	

Infrastructure	and	communication	elements	are	detailed	in	e-SENSE	reference	

architecture.	 The	 general	 structure	 is	 described	 in	 high-level	 and	 low-level	 of	

abstraction,	the	gateway	of	e-SENSE	ensures	required	connectivity	to	facilitate	

the	exchange	of	middleware	messages.	

e-SENSE	 documentation	 lacks	 information	 about	 its	 risks,	 limitations	 and	

quality	 attributes	 at	 using	 either	 as	 a	whole	 or	 parts	 of	 it.	Quality	 attributes,	

domain	data,	risk,	and	limitations	are	not	defined.	

• RA4	–	ReMoSSa:	This	 is	a	 formal	 reference	model	 for	specifying	self-adaptive	

Service-Based	 Applications.	 ReMoSSA	 integrates	 self-adaptation	 mechanisms	

and	 strategies	 to	 provide	 autonomic	 and	 adaptable	 services.	 It	 provides	 a	

dynamic	 monitoring	 and	 dynamic	 adaptation	 in	 the	 design	 phase.	 ReMoSSA	

reduces	 the	 cost	 and	 the	 effort	 of	 maintenance.	 ReMoSSA	 was	 inspired	 by	

FORMS	model	 (Cherif	 et	 al.,	 2014)	 and	 the	 automated	 element	 proposed	 by	

IBM	 researchers	 (IBM,	 2005).	 ReMoSSA	 can	 be	 used	 to	 check	 if	 the	 dynamic	

monitoring	and	the	dynamic	adaptation	are	being	considered	in	the	designs.		

ReMoSSA	 is	 divided	 into	 four	 main	 functionalities	 of	 the	 MAPE-K	 loop.	

ReMoSSA	aims	to	 incorporate	various	points	of	view	into	a	unifying	reference	

model.	The	strength	of	ReMoSSA	model	includes	three	mechanisms;	Reflection,	

MAPE-K,	 and	 self-adaptive	 strategies	 pattern.	 ReMoSSA	 emphasizes	 the	

visibility	 of	 formal	 representation	 (based	 in	 Z	 language).	 ReMoSSA	 contains	 a	

set	of	relationships	between	the	entities.	 It	constitutes	a	guide	to	design	self-

adaptive	SOA	applications.		

Figure	 44	 shows	 an	 overview	 of	 ReMoSSA	 model	 which	 extending	 the	

primitives	 of	 FORMS	 (D.	Weyns	 et	 al.,	 2010a)	 and	 adding	 the	 new	 elements	

required	 to	support	dynamic	adaptation.	With	 this	model	we	can	dynamically	

add	 or	move	 conditions,	 planning	 strategies,	 or	 adaptation	 actions	 to	modify	

the	way	the	autonomic	behavior	is	implemented	in	the	application.		

	
	

	
148	

	

Figure	44.	ReMoSSA	reference	model.	Source:	(Cherif	et	al.,	2014)	
	

ReMoSSA	uses	self-adaptation	mechanisms	like	reflection	mechanisms	that	can	

be	 used	 to	 adapt	 the	 behavior	 of	 applications	 dynamically.	 A	 reflection	

mechanism	provides	the	ability	for	the	application	to	observe	and	to	modify	its	

computation.		

ReMoSSA	establishes	a	 set	of	 interfaces	 that	 support	 internal	 communication	

between	components.	However,	there	is	a	lack	of	communication	interfaces	to	

communicate	ReMoSSA	with	external	networks.	ReMoSSA	documentation	also	

lacks	information	about	its	risks,	limitations	and	quality	attributes.		

• RA5	 –	 DYNAMICO:	 A	 Reference	 Model	 for	 Context-Based	 Self-Adaptation	

(DYNAMO)	 (Cherif	 et	 al.,	 2014)	 is	 based	 on	 feedback	 control	 with	 explicit	

functional	 elements	 and	 corresponding	 interactions	 to	 control	 dynamic	

adaptation.	These	are	the	MAPE-K	loop	elements.		

The	separation	of	concerns	 is	a	key	aspect	of	 this	model,	which	defines	 three	

	
	

	
149	

subsystems	to	achieve	self-adaptation	(i)	Control	objective	manager:	Manages	

the	target	system’s	purpose	in	terms	of	its	control	objectives,	according	to	the	

policies	 given	 by	 administrators.	 (ii)	 Context	 manager:	 Responsible	 for	

maintaining	 the	 pertinence	 and	 relevance	 of	 the	 context	 monitoring	

infrastructure	with	 respect	 to	 the	 target	 system	under	changing	conditions	of	

execution;	and	(iii)	Adaptation	mechanism:	Responsible	for	the	adaptive	actions	

over	 the	 target	 system	according	 to	 the	 evaluation	 of	 its	 behavior.	 Figure	 45	

shows	the	general	representation	of	DYNAMO.	 	

	

Figure	45.	Reference	model	for	DYNAMO.	Source:	(Cherif	et	al.,	2014)	
	

DYNAMO	 lacks	 techniques	 to	 evaluate	 system	 compliance	 to	 legislation,	

standards,	and	regulations.	Quality	attributes	are	addressed	with	the	support	of	

Control	 objective	manager	 and	 domain	 terminology	 element	 is	 supported	 by	

the	Smarter	Context	ontology.	

	
	

	
150	

DYNAMO	 does	 not	 specify	 its	 constraints	 and	 risks	 at	 using	 this	 RA.	 At	 the	

infrastructure	level,	there	is	a	lack	of	hardware	elements.		

DYNAMO	establishes	interfaces	that	support	internal	communication	between	

MAPE-K	 components.	 External	 communication	 is	 also	 supported,	 where	 a	

Semantic	 Web	 inference	 rules	 are	 defined	 as	 part	 of	 the	 Smarter-Context	

ontology.		

• RA6	–	ACRA:	The	Autonomic	Computing	Reference	Architecture	 (ACRA)	 (IBM,	

2005)	 consists	of	 three	parts:	 a	 set	of	 architectural	 elements	 for	 constructing	

autonomic	systems,	patterns	for	using	these	elements	in	a	system	context,	and	

interface	and	data	interchange	specifications	that	facilitate	integration.		

As	 shown	 in	Figure	46,	ACRA	provides	a	basic	 systems	management	 topology	

that	 includes	a	hierarchical	set	of	managers	which	manage	a	set	of	resources.	

The	 orchestrating	 managers	 control	 the	 management	 operations	 of	 the	

resource	 managers,	 and	 the	 resource	 managers	 provide	 the	 management	

support	 for	 a	 set	 of	 resources.	 Both	 types	 of	 managers	 may	 implement	

autonomic	manager	capabilities	and	typically	support	user	interaction	through	

one	 or	 more	 manual	 manager	 elements.	 The	 managers	 might	 also	 access	

management	data	from	one	or	more	knowledge	sources.		

The	central	component	in	the	ACRA	is	the	autonomic	manager	(shown	in	Figure	

3).	 It	 automates	 certain	 management	 functions	 and	 externalizes	 these	

functions	according	to	the	behavior	defined	by	management	standards.		

	
	

	
151	

Figure	46.	Autonomic	computing	referece	architecture	(ACRA).	Source:	(IBM,	2005)	

ACRA	 is	 based	 on	 the	 IBM	 blueprint.	 Thus	 it	 details	 documentation	 related	

legislation,	 standards,	 and	 regulations.	 ACRA	 identifies	 relevant	 existing	

computing	industry	standards	related	to	autonomic	computing.	

This	 architecture	 does	 not	 prescribe	 a	 particular	 management	 protocol	

or	instrumentation	technology	because	the	architecture	needs	to	work	with	the	

various	computing	technologies	and	standards	that	exist	in	the	industry	today.	

Infrastructure	 and	 crosscutting	 elements	 are	 detailed	 in	 ACRA	 reference	

architecture.	However,	it	does	not	offer	documentation	about	the	risk	of	use	it	

and	its	limitations.		

	 	

	
	

	
152	

5.4 Final	Considerations	

In	this	chapter,	a	comparative	analysis	between	RAMSES	and	related	works	was	

presented.	Moreover,	we	evaluated	the	completeness	of	 those	related	RAs.	Through	

this	 analysis,	we	 identified	which	elements	of	RAModel	are	present	 in	 the	 reference	

architectures	 and	 which	 are	 not.	 We	 consider	 that	 most	 of	 the	 related	 reference	

architectures	are	not	according	to	RAModel	because	there	were	built	in	an	ad	hoc	way	

since	 there	 is	 a	 lack	 of	 a	 well-defined	 methodology	 used	 to	 built	 the	 reference	

architecture.	 RAMSES	 was	 built	 by	 following	 the	 ProSA-RA	 process	 and	 based	 on	

RAModel.		

We	notice	that	most	of	the	previously	studied	works	were	still	insufficient	since	

they	 do	 not	 reveal	 the	 coherence	 and	 traceability	 between	 specifications	 and	

implementation	of	internal	parts	of	systems	resulted	from	the	reference	architecture.	

We	also	notice	 a	 lack	of	 usage	of	 architectural	 viewpoints	 for	 representing	different	

perspectives	of	RAs	for	supporting	a	better	understanding	of	the	proposed	RAs.	

It	is	important	to	note	that	most	of	the	related	reference	architectures	contain	

characteristics	of	a	 research-driven	RA,	 in	which	details	of	 the	development	of	 some	

modules,	laws,	standards	and	regulations	needs	to	be	more	investigated.	

	

	
	

	
153	

CHAPTER	6: CONCLUSION	

	
Autonomic	 Computing	 is	 a	 promising	 option	 to	 meet	 basic	 requirements	 in	

WSN	design.	Despite	this	fact,	we	noticed	a	lack	of	well-defined	reference	architecture	

designs	that	support	the	autonomy	of	WSN	and	middleware	systems	able	to	support	

network	management	without	 involving	human	operators.	 This	 thesis	 contributed	 in	

this	sense,	supporting	a	better	understanding	and	systematization	of	the	architecture	

design	 of	 self-adaptive	 middleware	 for	 WSN.	 The	 proposed	 reference	 architecture,	

named	 RAMSES,	 provides	 a	 common	 structure	 and	 guidelines	 for	 dealing	 with	 core	

aspects	of	developing	and	using	self-adaptive	middleware	for	WSNs.		

The	 set	 of	 contributions	 described	 in	 the	 thesis	 is	 revisited	 in	 Section	 5.1.	

Section	5.2	summarizes	directions	for	further	research.	Finally,	the	list	of	publications	

related	to	this	research	is	detailed	in	Section	5.3.	

6.1 Revisiting	the	thesis	contribution	

	
This	section	summarizes	the	main	contributions	of	this	thesis.	

	

• Definition	of	a	reference	architecture	that	meets	requirements	for	self-adaptive	

middleware	systems	for	WSNs.	

We	proposed	a	reference	architecture,	named	RAMSES,	to	facilitate	the	design	

of	 self-adaptive	 middleware	 for	 WSN	 (see	 Chapter	 3).	 	 The	 conception	 of	

RAMSES	was	motivated	by	the	lack	of	guidelines	and	well-defined	middleware	

architectures	for	WSNs	that	provides	an	explicit	way	for	defining	the	underlying	

autonomic	behavior	of	WSNs.		

Our	 architecture	 follows	 ProSA-RA,	 a	 process	 that	 systematizes	 the	 design,	

representation,	and	evaluation	of	reference	architectures.	Our	RA	was	inspired	

on	 autonomic	 computing	 systems	 by	 applying	 the	 MAPE-K	 for	 providing	

autonomy	to	networks.	We	designed	RAMSES	using	RAModel	as	a	framework,	

that	defines	a	 set	of	 architectural	 views	needed	 for	documenting	a	 reference	

	
	

	
154	

architecture.	 Moreover,	 the	 patterns	 applied	 in	 RAMSES	 are	 derived	 from	

common	knowledge	in	the	field	of	self-adaptation	and	experiences	acquired	by	

the	authors	with	building	self-adaptive	systems	and	WSN	middleware	systems.		

Finally,	 we	 applied	 both	 an	 early	 and	 a	 late	 evaluation	 in	 our	 RA.	 The	 early	

evaluation	 was	 based	 on	 FERA,	 which	 mainly	 indicates	 that	 (i)	 the	 provided	

abstraction	 level	 and	 the	 use	 of	 autonomic	 computing	 principles,	 based	 on	

MAPE-K,	 are	 adequate	 for	 the	 RA	 purposes,	 (ii)	 RAMSES	 is	 clearly	 explained,	

and	 its	 detail	 level	 favors	 the	 RA	 understanding.	 For	 late	 evaluation,	 we	

conducted	a	proof	of	concept,	which	 indicates	 that:	 (i)	adaptation	capabilities	

of	the	WSN	were	provided	by	the	middleware	architectural	design	and,	(ii)	the	

instantiation	 of	 RAMSES	 reduces	 the	 effort	 for	 developing	 and	 maintaining	

WSN	applications.	

	

• Specification	of	the	reference	architecture	using	pi-ADL	Architecture	Description	

Language.	

We	specified	the	runtime	view	and	deployment	view	of	RAMSES	using	pi-ADL.	

This	 ADL	 enables	 the	 representation	 of	 dynamic	 software	 architectures	 as	

required	 by	 WSNs,	 which	 demands	 continuously	 adapting	 the	 network	 to	

dynamic	 environments	 and	 unpredictable	 events.	 Therefore,	 we	 used	 Pi-ADL	

specification	to	explicitly	define	the	dynamic	behavior	of	WSN	networks,	a	key	

issue	in	this	type	of	systems.		

In	this	perspective,	it	is	worth	highlighting	that	it	was	the	first	time	Pi-ADL	was	

used	 in	 the	 representation	 context	 of	 middleware	 systems	 specific	 to	 these	

networks,	 where	 the	 main	 contributions	 of	 Pi-ADL	 for	 WSNs	 area	 are:	 (i)	

behavioral	representation	of	WSN	architectures;	(ii)	representation	of	dynamic	

aspects	of	 a	WSN;	 and	 (iii)	 facilitating	 the	 source-code	generation	due	 to	 the	

formal	modeling	of	the	architecture.	

	

• A	middleware	instantiation	of	the	reference	architecture.	

RAMSES	 was	 instantiated	 by	 building	 a	 self-adaptive	 middleware	 for	 WSN,	

named	 SAMSON.	 This	 middleware	 was	 built	 for	 evaluating	 RAMSES	 in	

deployment	 time.	 For	 properly	 assessing	 the	 middleware	 functionality,	 four	

	
	

	
155	

adaptation	 scenarios	 were	 established	 to	 verify	 if	 adaptation	 capabilities	

managed	by	MAPE	components	were	correctly	executed.		

SAMSON	was	deployed	in	a	hierarchical	network	of	virtual	SKY	nodes	that	run	

Contiki	 OS.	 The	 Cooja	 Simulator	 supported	 this	 evaluation.	 The	 results	 show	

that	 SAMSON	 correctly	 monitors	 and	 analyzes	 the	 network	 context,	 and	 a	

diagnosis	based	on	adaptation	policies	is	properly	used	for	planning	a	network	

adaptation,	whenever	it	is	needed.	Furthermore,	SAMSON	was	compared	with	

other	 self-adaptive	 middleware	 systems	 found	 in	 the	 literature.	 We	 noticed	

that	 SAMSON	 stood	 out	 for	 offering	 a	 well-defined	 RA-based	 design	 for	

supporting	dynamic	behavior	in	WSNs.	

	

• A	 model-driven	 solution	 composed	 of	 a	 model	 to	 text	 transformation	 engine	

(M2T)	for	mapping	from	RAMSES	components	(specified	with	pi-ADL)	into	Contiki	

code.	

We	 established	 the	 RAMSES	 instantiation	 process	 that	 describes	 the	 steps	

required	to	develop	a	self-adaptive	middleware	for	WSN	based	on	RAMSES.	In	

this	 process	 was	 determined	 the	 involved	 stakeholders	 and	 their	 respective	

activities	and	roles	in	order	to	translate	the	RAMSES	elements,	specified	in	pi-

ADL	into	a	concrete	middleware	instance.		

This	 solution	 takes	 as	 input	 the	 Pi-ADL	 specification	 and	 the	 transformation	

code	 concerning	 the	 chosen	 target	 platform	 and	 generates	 as	 output	 the	

source	code	to	be	deployed	in	the	sensor	nodes.	The	M2T	transformation	can	

be	 executed	 as	many	 times	 as	 necessary	 to	 generate	 the	 code	 of	 the	 source	

model	produced	by	the	software	architect	 in	 the	design	phase.	This	approach	

reduces	 the	 gap	 between	 the	 RA	 specification	 and	 its	 implementation.	

Moreover,	 an	 important	 benefit	 of	 RAMSES	 is	 to	 reduce	 the	 effort	 in	

developing	WSN	applications.		

The	 achievements	 of	 this	 multidisciplinary	 thesis	 contribute	 to	 the	 areas	 of	

Software	 Architecture	 and	 WSNs,	 as	 they	 advance	 the	 current	 state-of-art	 on	 the	

architectural	 design	 of	 self-adaptive	 middleware	 for	 WSN	 based	 on	 autonomic	

computing	principles.	

	
	

	
156	

6.2 Limitations	and	Future	Work	

This	 section	 describes	 limitations	 of	 this	 thesis	 and	 how	 they	 can	 be	 tackled.	

We	conclude	by	pointing	out	future	directions	of	research	in	the	areas	associated	with	

the	design	of	software	architectures	for	self-adaptive	WSNs.		

• Evolution	of	the	domain	terminology	into	an	ontology:	

The	 evolution	 of	 the	 domain	 terminology	 and	 conceptual	 view,	 detailed	 in	

Section	 3.5.1.1,	 into	 an	 ontology	 can	 be	 an	 important	 contribution	 to	 this	

reference	 architecture.	 Therefore,	 investigating	 the	 relationship	 among	 the	

domain	terminology	proposed	in	RAMSES	and	available	ontologies	for	WSN	or	

related	areas,	such	as	 the	SNN-Ontology	 (Neuhaus	&	Compton,	2009),	can	be	

considered	a	promising	extension	of	this	work.	

	

• Modeling	of	Variability	Viewpoint:	

RAMSES	 was	 designed	 for	 various	 WSN	 domains	 and	 purposes.	 However,	 a	

deeper	 analysis	 must	 be	 conducted	 in	 order	 to	 establish	 a	 more	 reasoned	

definition	 of	 variability	 aspects	 in	 RAMSES.	 Variability	 is	 the	 ability	 of	 the	

software	artifacts	built	from	reference	architectures	to	easily	be	adapted	for	a	

specific	context.	In	this	perspective,	research	on	variability	views	on	reference	

architectures	 can	 contribute	 to	 clear	 understanding	 about	 how	 to	 adapt	 and	

evolve	our	RA	to	a	concrete	architecture	for	a	given	WSN	domain.	

	

• Automatized	verification	of	architectural	properties:	

The	 critical	 nature	 of	 many	 complex	 software	 systems	 calls	 for	 rigorous	

architectural	models	(such	as	architecture	descriptions)	as	means	of	supporting	

the	 automated	 verification	 and	 enforcement	 of	 architectural	 properties	 and	

constraints.	 Pi-ADL	 is	 a	 formal	 ADL	 that	 supports	 automatized	 verification	 of	

properties	and	provides	textual	notations	based	on	mathematical	principles.	In	

this	 perspective,	 research	 for	 developing	 tools	 for	 automatically	 verifying	

RAMSES	 properties	 would	 contribute	 to	 precisely	 determine	 if	 a	 WSN	

architecture	 can	 satisfy	 properties	 related	 to	user	 requirements.	Additionally,	

	
	

	
157	

automated	verification	provides	an	efficient	method	 to	 check	 the	correctness	

of	architectural	design.	

	

• Limitation	of	the	Instantiation	process	of	RAMSES:	

The	 instantiation	process	described	 in	Section	3.5.4.3	provides	guidelines	that	

facilitate	the	development	of	self-adaptive	middleware	for	WSN	based	on	the	

proposed	 reference	 architecture,	 RAMSES.	 However,	 additional	 information	

and	 support	 could	 be	 provided	 to	 facilitate	 the	 application	 of	 its	 phases.	 For	

instance,	 we	 could	 improve	 the	 proposed	 process	 by	 providing	 document	

templates	 and	 further	 directions	 on	 how	 stakeholders	 must	 conduct	 their	

activities.	

	

• Limitation	of	the	M2T	transformations	

In	 RAMSES,	 automatic	 transformations	 (M2T)	 takes	 as	 input	 the	 Pi-ADL	

specification	 and	 the	 transformation	 code	 concerning	 the	 chosen	 target	

platform	and	generates	as	output	the	source	code	to	be	deployed	 in	RAMSES	

deployment	 nodes.	 In	 order	 to	 generate	 the	 source	 code	 for	 gateway	

components,	 the	 M2T	 transformation	 solution	 maps	 the	 source	 code	 in	 Go	

programming	 language,	and	 for	 sensor	nodes,	 it	maps	 into	C	code	 for	Contiki	

OS.	However,	the	proof	of	concept	described	in	section	4.2	can	be	used	as	the	

reference	to	specify	M2T	transformations	for	other	platforms,	such	as	TinyOS.	

	

• Limitation	in	the	Evaluation	Methodology	of	the	Proof	of	Concept:	

We	conducted	a	proof	of	concept	to	evaluate	RAMSES	by	instantiating	it	into	a	

concrete	 architecture	 used	 to	 build	 SAMSON.	 The	 preliminary	 results	 were	

promising.	 However,	 the	 benefits	 of	 adopting	 reference	 architectures	 are	

inherently	difficult	to	estimate	and	generalize.	Therefore,	conducting	larger	and	

longer	scenarios	to	observe	qualitative	aspects	and	conceiving	other	adaptation	

scenarios	 (such	 as	 a	 self-protection	 scenario	 to	 evaluate	 security	 issues)	may	

contribute	to	validate	the	RA.	Moreover,	the	proof	of	concept	used	to	evaluate	

SAMSON	was	 performed	on	 virtual	 nodes	 supported	 by	 Cooja	 simulator.	 The	

	
	

	
158	

obtained	results	provide	encouraging	evidence,	but	the	scope	was	limited	and	

opportunities	for	evaluations	could	include	real	sensor	nodes.	This	future	work	

can	provide	additional	evidence	that	 increase	the	confidence	on	the	adoption	

of	RAMSES.	

6.3 List	of	Publications	

The	publication	results	directly	provided	from	this	PhD	thesis	are	presented	
bellow:	

	

- PORTOCARRERO,	JESÚS	M.	T.;	Delicato,	Flávia	C.;	Pires,	Paulo	F.;	Rodrigues,	

Taniro	C.;	Batista,	Thais	(in	press).	“SAMSON:	Self-Adaptive	Middleware	for	

Wireless	Sensor	Networks”.		

Event:	31st	ACM	Symposium	on	Applied	Computing	SAC'16	(SA-TTA),	2016,	

Pisa,	Italy	(in	press)		

	

- PORTOCARRERO,	J.	M.	T.;	DELICATO,	F.	C.;	PIRES,	P.	F.;	NAKAGAWA,	ELISA	

Y.;	 OQUENDO,	 FLAVIO.	 “Self-Adaptive	 Middleware	 for	 Wireless	 Sensor	

Networks:	A	Reference	Architecture”.	In:		

Event:	 European	 Conference	 on	 Software	 Architecture,	 2015,	

Dubrovnik/Cavtat,	Croatia.	ECSAW	'15.	

	

- PORTOCARRERO,	 JESÚS	M.	 T.;	Delicato,	 Flávia	C.;	Pires,	Paulo	F.;	GÁMEZ,	

NADIA;	FUENTES,	LIDIA;	LUDOVINO,	DAVID;	FERREIRA,	PAULO.	“Autonomic	

Wireless	Sensor	Networks:	A	Systematic	Literature	Review”.		

Journal:	Journal	of	Sensors,	v.	2014,	p.	1-13,	2014.	

	

- PORTOCARRERO,	 J.	 M.	 T.;	 DELICATO,	 F.	 C.;	 PIRES,	 P.	 F.;	 BATISTA,	 T.V.	

“Reference	Architecture	 for	Self-Adaptive	Management	 in	Wireless	Sensor	

Networks”.		

Event:		2014	International	Conference	on	Adaptive	and	Intelligent	Systems	-	

ICAIS'14,	2014,	Bournemouth	-	UK.		

	

	
	

	
159	

Other	related	publications:	

	

- SILVA,	J.	R.;	DELICATO,	F.	C.;	PIRMEZ,	L.;	PIRES,	P.	F.;	PORTOCARRERO,	J.	M.	

T.;	 RODRIGUES,	 T.	 C.;	 BATISTA,	 T.V.	 “PRISMA:	 Publish	 /	 Subscribe	 and	

Resource	Oriented	Middleware	for	Wireless	Sensor	Networks”.		

Event:	 The	 Tenth	 Advanced	 International	 Conference	 on	

Telecommunications	AICT	2014,	Paris,	France.		

	

- Delicato,	 F.	 C.;	 PORTOCARRERO,	 J.	 M.	 T.;	 SILVA,	 J.	 R.	 ;	 Pires,	 Paulo	 F.;	

ARAUJO,	R.;	BATISTA,	T.	V.	“MARINE:	MiddlewAre	for	resource	and	mIssion-

oriented	sensor	Networks”.		

Journal:	ACM	SIGMOBILE	Mobile	Computing	and	Communications	Review,	

v.	17,	p.	40-54,	2013.		

	

- Pires,	 Paulo	 F.;	 Delicato,	 Flávia	 C.;	 PORTOCARRERO,	 J.	 M.	 T.	 “Enfoque	

basado	en	MDA	para	apoyar	evoluciones	seguras	en	sistemas”.		

Journal:	Novática,	v.	221,	p.	25-33,	2013.		

	

- ARAUJO,	R.	P.	M.;	PORTOCARRERO,	 J.	M.	T.;	DELICATO,	F.	C.;	PIRES,	P.	F.;	

PIRMEZ,	L.;	BATISTA,	T.;	ROSSETTO,	S.;	SOUTO,	A.	L.	“Middleware	Baseado	

em	Componentes	e	Orientado	a	Recursos	para	Redes	de	Sensores	sem	Fio”.		

Event:	 XXX	 Simpósio	 Brasileiro	 de	 Redes	 de	 Computadores	 e	 Sistemas	

Distribuídos	(SBRC),	2012,	Ouro	Preto,	MG,	Brazil.		

	

- ARAUJO,	R.	P.	M.;	PORTOCARRERO,	 J.	M.	T.;	SILVA,	 J.	R.;	DELICATO,	F.	C.;	

PIRES,	 P.	 F.	 “MARINE:	 MiddlewAre	 for	 Resource	 and	 mIssion	 oriented	

sensor	Networks”.		

Event:	The	First	ACM	Annual	 International	Workshop	on	Mission-Oriented	

Wireless	Sensor	Networking	(ACM	MiSeNet	2012),	2012,	Istanbul,	Turkey.	

	

	
	

	
160	

REFERENCES	

Affonso,	 F.,	 Scannavino,	 K.,	 Oliveira,	 L.,	 &	 Nakagawa,	 E.	 (2014).	 Reference	

Architectures	 for	 Self-Managed	 Software	 Systems:	 a	 Systematic	 Literature	

Review.	 Paper	 presented	 at	 the	 Software	 Components,	 Architectures	 and	

Reuse	(SBCARS),	Eighth	Brazilian	Symposium	on.	

Affonso,	F.	J.,	Vecchiato	Saenz,	M.,	Rodrigues,	L.,	Luis,	E.,	&	Nakagawa,	E.	Y.	(2015).	

A	 Reference	 Model	 as	 Automated	 Process	 for	 Software	 Adaptation	 at	

Runtime.	 Latin	 America	 Transactions,	 IEEE	 (Revista	 IEEE	 America	 Latina),	

13(1),	214-221.		

Allen,	 R.,	 Douence,	 R.,	 &	 Garlan,	 D.	 (1998).	 Specifying	 and	 analyzing	 dynamic	

software	 architectures.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 First	

International	 Conference	 on	 Fundamental	 Approaches	 to	 Software	

Engineering	(FASE’98),	Lisbon,	Portugal.	

Amin,	S.	O.,	&	Hong,	C.	S.	(2005).	On	Design	Patterns	for	Sensor	Networks.		

Andersson,	 J.,	 de	 Lemos,	 R.,	 Malek,	 S.,	 &	 Weyns,	 D.	 (2009).	 Reflecting	 on	 self-

adaptive	software	systems.	Paper	presented	at	the	Software	Engineering	for	

Adaptive	and	Self-Managing	Systems,	2009.	SEAMS	’09.	ICSE	Workshop	on,	

Vancouver,	Canada.	

Angelov,	S.,	Grefen,	P.,	&	Greefhorst,	D.	(2009).	A	classification	of	software	reference	

architectures:	Analyzing	their	success	and	effectiveness.	 Paper	 presented	 at	

the	 Software	 Architecture,	 2009	 \&	 European	 Conference	 on	 Software	

Architecture.	WICSA/ECSA	2009.	

Angelov,	S.,	Grefen,	P.,	&	Greefhorst,	D.	(April,	2012).	A	framework	for	analysis	and	

design	 of	 softwre	 reference	 architectures.	 Information	 and	 Software	

Technology,	54(4),	417-431.		

Angelov,	 S.,	 Trienekens,	 J.	 J.,	 &	 Grefen,	 P.	 (2008).	 Towards	 a	 Method	 for	 the	

Evaluation	 of	 Reference	 Architectures:	 Experiences	 from	 a	 Case.	 Paper	

presented	at	the	ECSA	'08	Proceedings	of	the	2nd	European	conference	on	

Software	Architecture,	Springer-Verlag	Berlin,	Heidelberg.	

Arduino.	Arduino.			Retrieved	from	http://arduino.cc/.	

	
	

	
161	

Aslam,	M.	S.	a.	O.	R.,	Eoin	and	Rea,	Susan	and	Pesch,	Dirk.	(2009).	Open	framework	

middleware:	an	experimental	middleware	design	concept	 for	wireless	sensor	

networks.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 6th	 international	

workshop	on	Managing	ubiquitous	communications	and	services.	

Avgeriou,	 P.,	 &	 Zdun,	 U.	 (2005).	 Architectural	 patterns	 revisited	 –	 a	 pattern	

language.	Paper	presented	at	the	In	10th	European	Conference	on	Pattern	

Languages	of	Programs	(EuroPlop	2005),	Irsee,	Germany.	

Balakrishnan,	G.,	&	Hiremath,	 S.	 S.	 (Jan,	2012).	Autonomous	 sensor	networks	 for	

process	monitoring	and	automation.	 IEEE	10th	Int.	Symp.	Appl.	Mach.	Intell.	

Informatics,	47–52.		

Bass,	L.,	Clements,	P.,	Kazman,	R.	(2012).	Software	Architecture	in	Practice.	Addison-

Wesley:	Longman	Publishing	Co.,	Inc.,	Boston,	MA,	USA.	

Bayer,	J.,	Forster,	T.,	Ganesan,	D.,	Girard,	J.,	John,	I.,	Knodel,	J.,	.	.	.	Muthig,	D.	(2004).	

Definition	 of	 reference	 architectures	 based	 on	 existing	 systems.	 Retrieved	

from		

Bhattacharya,	 A.	 (2012).	 Mobile	 agent	 based	 elastic	 executor	 service:	 Reference	

architecture	of	an	executor	service	using	a	mobile	agent	platform	to	control	

the	elasticity	of	the	system.	Paper	presented	at	the	JCSSE’2012.	

Blair,	 G.	 (2004).	Middleware	 Technologies	 for	 Future	 Communication	 Networks.	

IEEE	Netw,	18(1).		

Bourdenas,	 T.,	 &	 Sloman,	 M.	 (2010).	 Starfish:	 policy	 driven	 self-management	 in	

wireless	 sensor	 networks.	 Proc.	 2010	 ICSE	Work.	 Softw.	 Eng.	 Adapt.	 Self-

Managing	Syst,	75–83.		

Bourdenas,	T.,	Tei,	K.,	Honiden,	S.,	&	Sloman,	M.	(Oct,	2011).	Autonomic	Role	and	

Mission	 Allocation	 Framework	 for	 Wireless	 Sensor	 Networks.	 2011	 IEEE	

Fifth	Int.	Conf.	Self-Adaptive	Self-Organizing	Syst.,	61-70.		

Buschmann,	 F.,	 Henney,	 K.,	 &	 Schimdt,	 D.	 (2007).	 Pattern-oriented	 Software	

Architecture:	On	Patterns	and	Pattern	Language.	John	wiley	and	sons,	5.		

Canal,	 C.,	 Pimentel,	 E.,	&	Troya,	 J.	 (1999).	Specification	and	refinement	of	dynamic	

software	architectures.	Paper	presented	at	the	Proceedings	of	the	TC2	First	

Working	IFIP	Conference	on	Software	Architecture	(WICSA1),	San	Antonio,	

TX,	USA.	.	

	
	

	
162	

Cao,	 T.	M.,	 Bellata,	 B.,	&	Oliver,	M.	 (Sep,	 2014).	Design	 of	 a	 generic	management	

system	for	wireless	sensor	networks.	Ad	Hoc	Networks,	20,	16-35.		

Cardei,	M.,	Fernandez,	E.,	Sahu,	A.,	&	Cardei,	I.	(2011).	A	pattern	for	sensor	network	

architectures.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 2nd	 Asian	

Conference	on	Pattern	Languages	of	Programs.	

Cardellini,	V.	e.	a.	(2009).	A	scalable	approach	to	qos-aware	self-adaption	in	service-

oriented	architectures.	Paper	presented	at	the	QSHINE’2012.	

Casola,	V.,	Gaglione,	A.,	&	Mazzeo,	A.	(July,	2009).	A	reference	architecture	for	sensor	

networks	 integration	 and	 management.	 Paper	 presented	 at	 the	 IEEE	

Proceedings	of	GSN	2009,	Oxford,	UK.	

Castañeda,	 L.	 (2012).	A	Reference	Architecture	for	Component-Based	Self-Adaptive	

Software	 Systems.	 (Magister	 in	 Informatics	 and	 Telecommunications	

Management	Magister	Graduation	Project),	ICESI	University.				

Castejon,	 H.,	 et	 al.	 (2011).	 Towards	 a	 dynamic	 cloud-enabled	 service	 eco-system.	

Paper	presented	at	the	ICIN’2011.	

Castelli,	 G.,	 Mamei,	 M.,	 Rosi,	 A.,	 &	 Zambonelli,	 F.	 (2015).	 Engineering	 pervasive	

service	 ecosystems:	 the	 SAPERE	 approach.	 Paper	 presented	 at	 the	 ACM	

Transactions	on	Autonomous	and	Adaptive	Systems	(TAAS).	

Cavalcante,	E.	O.,	F;	Batista,	T.	(2014).	Architecture-	Based	Code	Generation:	From	π-

ADL	Architecture	Descriptions	to	Implementations	in	the	Go	Language.	Paper	

presented	 at	 the	 European	 Conference	 on	 Software	 Architecture	 (ECSA),	

Vienna,	Austria.	

Cherif,	 S.,	 Djemaa,	 R.	 B.,	 &	 Amous,	 I.	 (2014).	 ReMoSSA:	 Reference	 Model	 for	

Specification	of	Self-adaptive	Service-Oriented-Architecture.	Paper	presented	

at	the	New	Trends	in	Databases	and	Information	Systems.	

Chong,	C.,	&	Kumar,	S.	(Aug,	2003).	Sensor	Networks:	Evolution,	Opportunities,	and	

Challenges.	Proceedings	of	the	IEEE,	91(8),	1247.		

Clements,	P.,	&	Northrop,	L.	(2002).	Software	product	lines:	practices	and	patterns:	

Addison-Wesley.	

Clements,	 P.	 C.	 (March,	 1996).	 A	 Survey	 of	 Architectural	 Description	 Languages.	

Paper	 presented	 at	 the	 Eighth	 International	 Workshop	 on	 Software	

Specification	and	Design,	Germany.	

	
	

	
163	

Clements,	P.	C.,	Kazman,	R.,	&	Klein,	M.	(2002).	Evaluating	Software	Architectures.	

Boston.	

Cloutier,	 R.,	 Muller,	 G.,	 Verma,	 D.,	 Nilchiani,	 R.,	 Hole,	 E.,	 &	 Bone,	 M.	 (2010).	 The	

concept	of	reference	architectures.	Systems	Engineering,	13	(1),	14--27.		

Costa,	P.,	Coulson,	G.,	Gold,	R.,	Lad,	M.,	Mascolo,	C.,	Mottola,	L.,	 .	 .	 .	 Zachariadis,	 S.	

(2007).	 The	 RUNES	 Middleware	 for	 Networked	 Embedded	 Systems	 and	 its	

Application	in	a	Disaster	Management	Scenario.	Paper	presented	at	the	Fifth	

Annual	 IEEE	 International	 Conference	 on	 Pervasive	 Computing	 and	

Communications	(PerCom’07).	

Dashofy,	E.,	 van	der	Hoek,	A.,	&	Taylor,	R.	 (August,	2001,	28–31	August	2001).	A	

highly-extensible,	 XML-based	 architecture	 description	 language.	 Paper	

presented	 at	 the	 Proceedings	 of	 the	 Working	 IEEE/IFIP	 Conference	 on	

Software	Architecture	(WICSA	2001),	Amsterdam,	The	Netherlands.	

Delicato,	 F.,	 Protti,	 F.,	 Pirmez,	 L.,	 &	 Rezende,	 J.	 (2006).	 An	 efficient	 heuristic	 for	

selecting	 active	 nodes	 in	 wireless	 sensor	 networks.	 Computer	 Networks,	

50(18),	3701-3720.		

Delicato,	 F.	 C.,	 Pirmez,	 L.,	 Rust,	 L.,	 &	 Pires,	 P.	 C.	 (2003).	 A	 Flexible	 Middleware	

System	 for	 Wireless	 Sensor	 Networks.	 ACM/IFIP/USENIX	 International	

Middleware	Conference.	Lecture	Notes	on	Computer	Science,	2672,	474-492.		

Ding,	 P.,	 Holliday,	 J.,	 &	 Celik,	 A.	 (Jun/Jul,	 2005).	 Distributed	 energy-efficient	

hierarchical	clustering	for	wireless	sensor	networks.	 Paper	 presented	 at	 the	

Proceedings	 of	 the	 First	 IEEE	 international	 conference	 on	 Distributed	

Computing	in	Sensor	Systems,	Marina	del	Rey,	CA.	

Dunkel,	 J.	 (2009).	 On	 complex	 event	 processing	 for	 sensor	 networks.	 Paper	

presented	 at	 the	 Autonomous	 Decentralized	 Systems,	 2009.	 ISADS'09.	

International	Symposium	on.	

Dunkel,	 J.	 (2011).	 Towards	 a	 multiagent-based	 software	 architecture	 for	 sensor	

networks.	 Paper	 presented	 at	 the	 Autonomous	 Decentralized	 Systems	

(ISADS),	2011	10th	International	Symposium	on.	

Dunkels,	A.,	Grönvall,	B.,	&	Voigt,	T.	 (November	2004).	Contiki	-	a	lightweight	and	

flexible	operating	system	for	tiny	networked	sensors.	 Paper	presented	at	 the	

First	IEEE	Workshop	on	Embedded	Networked	Sensors,	ampa,	Florida,	USA.	

	
	

	
164	

Dunkels,	 A.	 F.,	 N;	 Eriksson,	 J;	 Voigt,	 T.	 (November,	 2006).	 Run-Time	 Dynamic	

Linking	 for	Reprogramming	Wireless	 Sensor	Networks.	 Paper	 presented	 at	

the	4th	International	conference	on	Embedded	networked	sensor	systems.	

SenSys’06,	Boulder,	Colorado,	USA.	

Eeles,	 P.	 (2008).	 Understanding	 architectural	 assets.	 Paper	 presented	 at	 the	

Software	Architecture,	2008,	WICSA	2008.	Seventh	Working	IEEE/IFIP.	

ElGammal,	 M.,	 &	 Eltoweissy,	 M.	 (Oct,	 2011).	 Towards	 Aware,	 Adaptive	 and	

Autonomic	 Sensor-Actuator	 Networks.	 2011	 IEEE	 Fifth	 Int.	 Conf.	 Self-

Adaptive	Self-Organizing	Syst.,	210-211.		

Fernandez-Gago,	 M.	 (2007).	 A	 survey	 on	 the	 applicability	 of	 trust	 management	

systems	 for	 wireless	 sensor	 networks.	 Secur.	 Priv.	 Trust	 Pervasive	

Ubiquitous	Comput.		

Fok,	C.-L.,	Roman,	G.-C.,	&	Lu,	C.	(2009).	Agilla:	A	mobile	agent	middleware	for	self-

adaptive	 wireless	 sensor	 networks.	ACM	Transactions	on	Autonomous	and	

Adaptive	Systems	(TAAS),	4(3).		

Fortino,	G.,	Galzarano,	S.,	&	Liotta,	A.	(Jan,	2012).	An	autonomic	plane	for	Wireless	

Body	Sensor	Networks.	Int.	Conf.	Comput.	Netw.	Commun,	94-98.		

Gamez,	 N.,	 Fuentes,	 L.,	 &	 Araguez,	 M.	 (2011,	 September	 13–16).	 Autonomic	

computing	 driven	 by	 feature	 models	 and	 architecture	 in	 FamiWare.	 Paper	

presented	 at	 the	 Software	 Architecture:	 Proceedings	 of	 5th	 European	

Conference,	ECSA	2011,,	Essen,	Germany.	

Gamez,	N.,	 Romero,	D.,	 Fuentes,	 L.,	 Ruovoy,	 R.,	 &	Duchien,	 L.	 (2012).	 Constraint-

based	 self-adaptation	 of	 wireless	 sensor	 networks.	 Proc.	 2nd	 Int.	 Work.	

Adapt.	Serv.	Futur.	Internet,	20–27.		

Garces,	L.	M.,	Ampatzoglou,	A.,	Avgeriou,	P.,	&	Nakagawa,	E.	(2015).	A	Comparative	

Analysis	 of	 Reference	 Architectures	 for	 Healthcare	 in	 the	 Ambient	 Assisted	

Living	Domain.	 Paper	 presented	 at	 the	 Computer-Based	 Medical	 Systems	

(CBMS),	2015	IEEE	28th	International	Symposium	on.	

Garlan,	 D.,	 Allen,	 R.,	 &	 Ockerbloom,	 J.	 (December,	 1994).	 Exploiting	 style	 in	

architectural	 design	 environments.	 Paper	 presented	 at	 the	 Proc.	 of	

SIGSOFT’94:	The	 second	ACM	SIGSOFT	Symposium	on	 the	Foundations	of	

Software	Engineering.	

	
	

	
165	

Garlan,	 D.,	Monroe,	 R.,	 &	Wile,	 D.	 (Nov,	 1997).	ACME.	An	architecture	description	

language.	Paper	presented	at	the	Proceedings	of	CASCON'97.	

Garlan,	 D.,	 Schmerl,	 B.,	 &	 Cheng,	 S.	 (2009).	 Software	 Architecture-Based	 Self-

Adaptation.	Autonomic	Computing	and	Networking,	31-55.		

Gluhak,	 A.,	 &	 al.,	 e.	 (June,	 2006).	 e-SENSE	Reference	Model	 for	Sensor	Network	 in	

B3G	 Mobile	 Communications	 Systems.	 Paper	 presented	 at	 the	 15th	 IST	

Summit	2006,	Myconos,	Greece.	

Gotz,	M.,	 Rettberg,	 A.,	&	 Podolski,	 I.	 (Mar,	 2011).	Middleware	 Support	 for	 a	 Self-

Configurable	 Wireless	 Sensor	 Network.	 2011	 14th	 IEEE	 Int.	 Symp.	

Object/Component/Service-Oriented	Real-Time	Distrib.	Comput.	Work,	 143–

151.		

Guessi,	M.,	 de	 Oliveira,	 L.,	 &	 Nakagawa,	 E.	 Y.	 (2011).	Representation	of	Reference	

Architectures:	 A	 Systematic	 Review.	 Paper	 presented	 at	 the	 Software	

Engineering	and	Knowledge	Engineering	(SEKE'11).	

Hadim,	 S.,	 &	Mohamed,	N.	 (Mar,	 2006).	Middleware:	Middleware	 Challenges	 and	

Approaches	for	Wireless	Sensor	Networks.	IEEE	Distrib.	Syst,	Online	7(3),	1-

1.		

Hayes-Roth,	 B.	 e.	 a.	 (1995).	 Domain-specific	 software	 architecture	 for	 adaptive	

intelligent	systems.	Transactions	on	Software	Engineering,	21(4),	288-301.		

IBM.	(2005).	An	Architectural	blueprint	for	autonomic	computing.		

Imran,	M.,	 Alnuem,	M.	 a.,	 Alsalih,	W.,	 &	 Younis,	M.	 (Jun,	 2012).	 A	 novel	wireless	

sensor	 and	 actor	 network	 framework	 for	 autonomous	 monitoring	 and	

maintenance	of	lifeline	infrastructures.	2012	IEEE	Int.	Conf.	Commun,	6484–

6488.		

ISO/IEC.	(2011).	Systems	and	software	engineering	-	Systems	and	software	Quality	

Require-	 ments	 and	 Evaluation	 (SQuaRE)	 –	 System	 and	 software	 quality	

models	Tech	Report	25010/2011.	

ISO/IEC,	 -.	 (2014).	 Sensor	 networks:	 Sensor	 Network	 Reference	 Architecture	

(SNRA)	Information	technology.	

ISO/IEC/IEEE.	(2011).	ISO/IEC/IEEE	42010.	

Jemal,	 A.,	 &	Halima,	 R.	 B.	 (June,	 2013).	A	QoS-driven	self-adaptive	architecture	for	

wireless	sensor	networks.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 22nd	

	
	

	
166	

IEEE	International	Workshop	on	Enabling	Technologies:	 Infrastructure	for	

Collaborative	Enterprises	(WETICE	’13),	Hammamet,	Tunisia.	

Jiao,	W.,	&	Mei,	H.	(2004).	Automated	adaptations	to	dynamic	software	architectures	

by	using	autonomous	agents.	Paper	presented	at	the	JEAAI.	

Joshi,	 H.,	 &	 Michel,	 H.	 (2008).	 Integrated	 Technical	 Reference	 Model	 and	 Sensor	

Network	 Architecture,	 ICWN,	 International	 Conference	 on	 Wireless	

Networks.	

Kay,	I.,	Kaste,	O.,	&	Mattern,	F.	(2008).	Middleware	Challenges	for	Wireless	Sensor	

Networks.	ACM	SIGMOBILE	Mob.	Comput.	Commun,	6(4),	59-61.		

Kazman,	 R.,	 Klein,	 M.,	 &	 Clements,	 P.	 C.	 (2000).	 ATAM:	Method	 for	 Architecture	

Evaluation	 Paper	 presented	 at	 the	 Software	 Engineering	 Institute,	

Pittsburgh,	PA.	

Kerasiotis,	F.,	Koulamas,	C.,	&	Papadopoulos,	G.	(2012).	Developing	wireless	sensor	

network	applications	based	on	a	 function	block	programming	abstraction.	

IEEE	Int.	Conf.	Ind.	Technol,	372–377.		

Khedo,	 K.,	 &	 Subramanian,	 R.	 (2009).	 A	 Service-Oriented	 Component-Based	

Middleware	Architecture	 for	Wireless	 Sensor	Networks.	 Int.	J.	Comput.	Sci.	

Netw.	Secur,	9(3),	174-182.		

Kitchenham,	 B.,	 &	 Charters,	 S.	 (2007).	 Guidelines	 for	 performing	 Systematic	

Literature	 reviews.	 Software	 Engineering.	 EBSE	 Technical	 Report.	 EBSE-

2007-01,	2(3)		

Kramer,	 J.,	&	Magee,	 J.	 (2007).	Self-managed	Systems:	an	Architectural	Challenge.	

EEE	Computer,	259–268.		

Lane,	S.	e.	a.	(2012).	Soadapt:	A	process	reference	model	for	developing	adaptable	

service-based	 applications.	 Information	 and	 Software	 Technology,	 54(3),	

299-316.		

Lemos,	R.	a.	G.,	Holger	and	Müller,	Hausi	A.	and	Shaw,	Mary.	 (2013).	On	Patterns	

for	Decentralized	Control	in	Self-Adaptive	Systems	Software	Engineering	for	

Self-Adaptive	 Systems	 II:	 International	 Seminar,	 Dagstuhl	 Castle,	 Germany,	

October	 24-29,	 2010	 Revised	 Selected	 and	 Invited	 Papers	 (pp.	 76-107):	

Springer	Berlin	Heidelberg.	

	
	

	
167	

Li,	 C.	 e.	 a.	 (2012).	 Dynamic	 software	 architectures:	 formal	 specification	 and	

verification	with	CSP.	Paper	presented	at	the	Internetware’2012,	New	York,	

NY,	USA.	

Li,	 D.	 L.,	 H.	 (2009).	 Sensor	 Coverage	 in	 Wireless	 Sensor	 Networks.	 Wireless	

Networks:	Research,	Technology	and	Applications,	3-31.		

Li,	W.,	&	Shen,	W.	(Jul,	2011).	Swarm	behavior	control	of	mobile	multi-robots	with	

wireless	sensor	networks.	J.	Netw.	Comput.	Appl,	34(4),	1398–1407.		

Liu,	 L.,	&	 et,	 a.	 (2008).	A	reference	architecture	for	self-organizing	service-oriented	

computing.	Paper	presented	at	the	ARCS’2008.	

Liu,	 T.,	 &	 Martonosi,	 M.	 (2003).	 Impala :	 A	 Middleware	 System	 for	 Managing	

Autonomic	,	Parallel	Sensor	Systems.	Paper	presented	at	 the	Proceedings	of	

the	ninth	ACM	SIGPLAN	symposium	on	Principles	 and	practice	of	parallel	

programming.	

Loureiro,	A.,	Gonzàlez,	R.,	&	Mini,	R.	(2010).	QoS:	Requirements,	Design	Features,	

and	 Challenges	 on	 Wireless	 Sensor	 Networks.	 Handbook	 of	 Research	 on	

Developments	 and	 Trends	 in	 Wireless	 Sensor	 Networks:	 From	 Principle	 to	

Practice.	IGI	Global,	56-78.		

MacKenzie,	 C.	 M.	 a.	 L.,	 Ken	 and	 McCabe,	 Francis	 and	 Brown,	 Peter	 F	 and	 Metz,	

Rebekah	 and	 Hamilton,	 Booz	 Allen.	 (2006).	 Reference	 model	 for	 service	

oriented	architecture	1.0.	OASIS	standard,	12.		

Macolo,	 I.,	 Capra,	 L.,	 &	 Emmerich,	 W.	 (2002).	 Mobile	 Computing	 Middleware.	

Advanced	lectures	on	networking,	20-58.		

MDA.	Model	Driven	Architecture.			Retrieved	from	http://www.omg.org/mda/	

MEMSIC.	MEMSIC.			Retrieved	from	http://www.memsic.com/.	

Menasce,	 D.,	 Gomaa,	 H.,	 Malek,	 S.,	 &	 Sousa,	 J.	 (Nov/Dec,	 2011).	 SASSY:	 A	

Framework	 for	 Self-Architecting	 Service-Oriented	 Systems.	 IEEE	Software,	

28(6).		

Minh,	 T.,	 Bellalta,	 B.,	 &	 Oliver,	 M.	 (2013).	 DISON:	 A	 Self-organizing	 Network	

Management	Framework	for	Wireless	Sensor	Networks.	Ad	Hoc	Networks.		

Molla,	 I.,	 &	 Ahamed,	 I.	 (2006).	 A	 Survey	 of	Middleware	 for	 Sensor	 Network	 and	

Challenges.	Int.	Conf.	Parallel	Process,	223-228.		

Mouronte,	M.	 L.,	 Ortiz,	 O.,	 Garcia,	 A.	 B.,	 &	 Capilla,	 R.	 (May,	 2013).	Using	dynamic	

software	variability	to	manage	wireless	sensor	and	actuator	networks.	Paper	

	
	

	
168	

presented	at	the	Proceedings	of	the	IFIP/IEEE	International	Symposium	on	

Integrated	Network	Management	(IM'13).	

Muller,	 G.	 (2008).	 A	 reference	 architecture	 primer.	 Eindhoven	 University	 of	

Technology,	Eindhoven,	White	paper.		

Muller,	 H.,	 &	 et,	 a.	 (2009).	 Autonomic	 computing	 now	 you	 see	 it,	 now	 you	 don’t:	

Design	and	evolution	of	2009	autonomic	software	systems.	 Paper	 presented	

at	the	LNCS.	

Muraleedharan,	 R.,	 &	 Osadciw,	 L.	 A.	 (2009).	 Secure	 self-adaptive	 framework	 for	

distributed	 smart	 home	 sensor	 network.	 2009	 Conf.	 Rec.	 Forty-Third	

Asilomar	Conf.	Signals,	Syst.	Comput.,	284–287.		

Nair,	 N.,	 Morrow,	 P.,	 &	 Parr,	 G.	 (2012).	 Framework	 for	 a	 Self-managed	Wireless	

Sensor	Cloud	for	Critical	Event	Management.	Sens.	Syst.	Softw,	15-29.		

Nakagawa,	 E.,	 Oquendo,	 F.,	 &	 Becker,	 M.	 (2012).	RAModel:	A	reference	model	 for	

reference	 architectures.	 Paper	 presented	 at	 the	 Software	 Architecture	

(WICSA)	and	European	Conference	on	Software	Architecture	(ECSA).	

Nakagawa,	 E.	 Y.,	 Guessi,	 M.,	 Maldonado,	 J.,	 Feitosa,	 D.,	 &	 Oquendo,	 F.	 (2014).	

Consolidating	 a	 Process	 for	 the	 Design,	 Representation,	 and	 Evaluation	 of	

Reference	Architectures.	 Paper	 presented	 at	 the	 Proc.	 Working	 IEEE/IFIP	

Conf.	of	Software	Architecture	(WICSA	2014),	Sydney,	Australia.	

Nakagawa,	E.	Y.,	Oquendo,	F.,	&	Becker,	M.	 (2012).	RAModel:	A	reference	model	of	

reference	architectures.	Paper	presented	at	the	ECSA/WICSA	2012,	Helsinki,	

Finland.	

Neti,	S.,	&	Muller,	H.	A.	(May,	2007).	Quality	Criteria	and	an	Analysis	Framework	for	

Self-Healing	 Systems.	 Paper	 presented	 at	 the	 International	 Workshop	 on	

Software	Engineering	for	Adaptive	and	Self-Managing	Systems	(SEAMS'07).	

Neuhaus,	H.,	&	Compton,	M.	 (2009).	The	semantic	sensor	network	ontology.	 Paper	

presented	 at	 the	 AGILE	 workshop	 on	 challenges	 in	 geospatial	 data	

harmonisation,	Hannover,	Germany.	

Oquendo,	 F.	 (2004).	 π-ADL:	 An	 architecture	 description	 language	 based	 on	 the	

higher-	 order	 typed-calculus	 for	 specifying	 dynamic	 and	mobile	 software	

architectures.	ACM	SIGSOFT	Software	Engineering	Notes,	29(3),	1-4.		

Oquendo,	F.	(May,	2004).	π-ADL:	an	Architecture	Description	Language	based	on	the	

higher-order	 typed	 π-calculus	 for	 specifying	 dynamic	 and	 mobile	 software	

	
	

	
169	

architectures.	 Paper	 presented	 at	 the	 ACM	 SIGSOFT	 Software	 Engineering	

Notes,	New	York,	NY,	USA.	

Oquendo,	 F.,	 Warboys,	 B.,	 Morrison,	 R.,	 Dindeleux,	 R.,	 Gallo,	 F.,	 Garavel,	 H.,	 &	

Occhipinti,	 C.	 (May,	 2004).	 ArchWare:	 Architecting	 Evolvable	 Software.	

Paper	 presented	 at	 the	 Proceedings	 of	 the	 1st	 European	 Workshop	 on	

Software	Architecture,	LNCS	3047,	St	Andrews,	UK.	

Oracle.	oracle.		

Paradis,	 L.	 H.,	 Q.	 (2007).	 A	 Survey	 of	 Fault	 Management	 in	 Wireless	 Sensor	

Networks.	 Journal	 of	 Network	 and	 Systems	 Management.	 doi:DOI:	

10.1007/s10922-007-9062-0	

Picco,	 G.	 P.	 (2010).	 Software	 engineering	 and	 wireless	 sensor	 networks:	 happy	

marriage	or	consensual	divorce?	Paper	presented	at	 the	Proceedings	of	 the	

FSE/SDP	workshop	on	Future	of	 software	engineering	 research,	 Santa	Fe,	

New	Mexico,	USA.		

Pohl,	 K.,	 Bockle,	 G.,	 &	 Linden,	 F.	 (2005).	 Software	 product	 line	 engineering:	

foundations,	principles,	and	technique.	Springer,	Berlin.		

Portocarrero,	J.	M.	T.,	Delicato,	F.	C.,	Pires,	P.	C.,	Gamez,	N.,	Fuentes,	L.,	Ludovino,	D.,	

&	Ferreira,	P.	 (2014).	Autonomic	Wireless	Sensor	Networks:	A	Systematic	

Literature	 Review.	 Journal	 of	 Sensors,	 2014,	 13.	

doi:http://dx.doi.org/10.1155/2014/782789	

Potdar,	V.,	Sharif,	A.,	&	Chang,	E.	(2009).	Wireless	sensor	networks:	A	survey.	Paper	

presented	at	the	Internation	Conference	Advanced	Information	Networking	

and	Applications	Workshops,	WAINA'09.	

Puccinelli,	 D.,	 &	 Haenggi,	 H.	 (2005).	Wireless	 sensor	 networks:	 applications	 and	

challenges	of	ubiquitous	sensing.	IEEE	Circuits	and	Systems	Magazine,	3,	19-

29.		

Puviani,	M.,	Cabri,	G.,	&	Zambonelli,	F.	(2013).	A	taxonomy	of	architectural	patterns	

for	self-adaptive	systems.	 Paper	 presented	 at	 the	 International	 Conference	

on	Computer	Science	and	Software	Engineering	(C3S2E'13),	ACM,	New	York,	

NY,	USA.	

Qwasmi,	 N.,	 &	 Liscano,	 R.	 (Jan,	 2012).	 Framework	 for	 Distributed	 Policy-Based	

Management	in	Wireless	Sensor	Networks	to	Support	Autonomic	Behavior.	

Procedia	Comput.	Sci.,	10,	232-239.		

	
	

	
170	

Rahman,	A.	 (April,	2009).	Middleware	for	wireless	sensor	networks:	Challenges	and	

Ap-	proaches.	Paper	presented	at	the	Seminar	on	Internetworking,	Helsinki	

University	of	Technology,	Finland.		

Ravula,	S.,	Kim,	J.	E.,	Petrus,	B.,	&	Stoermer,	C.	(2005).	Quality	attributes	in	wireless	

sensor	networks.	Paper	presented	at	the	Third	IEEE	Workshop	on	Software	

Technologies	for	Future	Embedded	and	Ubiquitous	Systems.	SEUS	2005.	

S.,	 S.,	 Zeng,	 B.,	 &	 Liu,	 L.	 (2013).	 Smart	 policy	 generating	 mechanism	 for	 policy	

driven	self-management	in	wireless	sensor	networks.	Sensor	&	Transducers,	

154(7),	9-14.		

Salehie,	 M.,	 &	 Tahvildari,	 L.	 (2009).	 Self-Adaptive	 software:	 Landscape	 and	

research	challenges.	ACM	Trans.	Auton.	Adapt.	Syst.,,	4(2).		

Santos,	J.,	Guesse,	M.,	Gaister,	M.,	Feitosa,	D.,	&	Nakagawa,	E.	(2013).	A	checklist	for	

evaluation	of	reference	architectures	for	embedded	systems,.	Paper	presented	

at	the	SEKE’13,	Boston,	USA.	

Santos,	 J.,	Guessi,	M.,	Galster,	M.,	Feitosa,	D.,	&	Nakagawa,	E.	Y.	(2013).	A	checklist	

for	 evaluation	 of	 reference	 architectures	 for	 embedded	 systems.	 Paper	

presented	at	the	SEKE’13,	Boston,	USA.	

Serri,	J.	A.	(2004).	Reference	architectures	and	management	model	for	ad	hoc	sensor	

networks.	Paper	presented	at	the	Sensor	and	Ad	Hoc	Communications	and	

Networks,	First	Annual	IEEE	Communications	Society	Conference.	

Shah,	S.,	&	Szymanski,	B.	(Mar,	2013).	Autonomous	configuration	of	spatially	aware	

sensor	services	in	service	oriented	WSNs.	Pervasive	Comput.	Commun.	Work.	

(PERCOM),	312–314.		

Sheltami,	 T.,	 Al-Roubaiey,	 A.,	 &	 Mahmoud,	 A.	 (2015).	 A	 survey	 on	 developing	

publish/subscribe	 middleware	 over	 wireless	 sensor/actuator	 networks.	 .	

Wireless	Networks,	1-22.		

Sohraby,	 K.,	 Minoli,	 D.,	 &	 Znati,	 T.	 (2007).	Wireless	Sensor	Networks:	Technology,	

Protocols	and	Applications.	Paper	presented	at	 the	 John	Wiley	&	Sons,	 Inc.,	

Hoboken,	NJ,	USA.		

Stocker,	 M.,	 Rönkkö,	 M.,	 &	 Kolehmainen,	 M.	 (2015).	 Knowledge-based	

environmental	 research	 infrastructure:	moving	beyond	data.	Earth	Science	

Informatics,	1-19.		

	
	

	
171	

Tajalii,	 H.,	 &	 Medvidovic,	 N.	 (2012).	 A	 reference	 architecture	 for	 integrated	

development	and	run-time	environments.	Paper	presented	at	the	TOPI’2012.	

Takano,	C.,	Aida,	M.,	Murata,	M.,	&	Imase,	M.	(Jul,	2011).	Autonomous	Decentralized	

Mechanism	of	Structure	Formation	Adapting	 to	Network	Conditions.	2011	

IEEE/IPSJ	Int.	Symp.	Appl.	Internet,	524–531.		

TinyOS.	TinyOS.		

Tomforde,	 S.,	 &	 al.,	 e.	 (2011).	 Observation	 and	 control	 of	 organic	 systems.	 Paper	

presented	at	 the	Organic	Computing	 -	A	Paradigm	2011	Shift	 for	Complex	

Systems.	

Tóth,	A.,	&	Vajda,	F.	(2012).	Autonomous	Sensor	Network	Architecture	Model.	Inf.	

Commun.	Technol,	298–308.		

Villalba,	 C.	 e.	 a.	 (2008).	 Nature-inspired	 spatial	 metaphors	 for	 pervasive	 service	

ecosystems.	Paper	presented	at	the	SASOW’2008.	

Villalba,	 C.	 e.	 a.	 (2010).	 A	 self-organizing	 architecture	 for	 pervasive	 ecosystems.	

Paper	presented	at	the	Self-Organizing	Architectures.	

Villegas,	N.,	Tamura,	G.,	Mu	̈ller,	H.,	Duchien,	L.,	&	Casallas,	R.	(2012).	DYNAMICO:	A	

Reference	Model	for	Governing	Control	Objectives	and	Context	Relevance	in	

Self-Adaptive	 Software	 Systems.	 Software	 Engineering	 for	 Self-Adaptive	

Systems.	Springer,	7475	of	LNCS,	282	–	310.		

Wang,	 M.,	 Cao,	 J.,	 Li,	 J.,	 &	 al.,	 e.	 (May,	 2008).	 Middleware	 for	 wireless	 sensor	

networks:	 A	 survey.	 Journal	 of	 Computer	 Science	 and	 Technology,	 23(3),	

305-326.		

Weyns,	D.,	Malek,	S.,	&	Andersson,	J.	(2010a).	FORMS:	a	formal	reference	model	for	

self-adaptation.	Paper	presented	at	the	Proceedings	of	the	7th	international	

conference	on	Autonomic	computing.	

Weyns,	 D.,	 Malek,	 S.,	 &	 Andersson,	 J.	 (2010b).	 On	 decentralized	 self-adaptation:	

lessons	 from	the	trenches	and	challenges	 for	the	 future.	 Paper	 presented	 at	

the	 Proceedings	 of	 the	 2010	 ICSE	Workshop	 on	 Software	 Engineering	 for	

Adaptive	and	Self-Managing	Systems.	

Weyns,	 D.	 e.	 a.	 (2005).	 Architectural	 design	 of	 a	 distributed	 application	 with	

autonomic	 quality	 requirements.	 Paper	 presented	 at	 the	 DEAS’2005,	 New	

York,	NY,	USA.	

	
	

	
172	

Willig,	A.,	Hauer,	 J.	H.,	Karowski,	N.,	Baldus,	H.,	&	Huebner,	A.	 (2007).	The	ANGEL	

WSN	 Architecture.	 Paper	 presented	 at	 the	 14th	 IEEE	 International	

Conference	on	Electronics,	Circuits	and	Systems.	

Wils,	 A.,	 Berbers,	 Y.,	 Holvoet,	 T.,	 &	 De	 Vlaminck,	 K.	 (2006).	 Timing	 driven	

architectural	adaptation.	 Paper	 presented	 at	 the	 Distributed	 Applications	

and	Interoperable	Systems.	

Yang,	 Z.,	 Li,	 Z.,	 Jin,	 Z.,	 &	 Chen,	 Y.	 (2014).	 A	 Systematic	 Literature	 Review	 of	

Requirements	Modeling	and	Analysis	for	Self-adaptive	Systems.	Salinesi,	C.,	

van	de	Weerd,	I.	(eds.)	REFSQ	2014.	LNCS,	Springer,	Heidelberg,	8396,	55-71.		

Yu,	 I.,	Krishnamachari,	B.,	&	Prasanna,	V.	 (2004).	 Issues	 in	Designing	Middleware	

for	Wireless	Sensor	Networks.	IEEE	Netw,	18(1),	15-21.		

Zewdie,	 B.,	 &	 Carlson,	 C.	 (2006).	 Adaptive	 component	 paradigm	 for	 highly	

configurable	 business	 components.	 Paper	 presented	 at	 the	

Electro/information	Technology,	IEEE	International	Conference	on.		

	

	

	
	

	
173	

APPENDIX	A:	RAModel	–	Reference	model	for	Reference	

Architectures	

	
	

Table	20.	RAModel	group	of	elements	(E.	Nakagawa	et	al.,	2012)	

Gr
ou

p	

Element	 Description	

Do
m
ai
n	

Legislations,	
standards,	and	
regulations	

Laws,	standards,	and	regulations	existing	in	the	domain	that	
should	be	present	in	systems	resulted	from	the	reference	
architecture.	

Quality	
attributes		
	

Quality	attributes,	for	instance,	maintainability,	portability,	and	
scalability,	that	are	desired	in	systems	resulted	from	the	reference	
architecture.	

System	
compliance	

Means	to	verify	if	systems	developed	from	the	reference	
architecture	follow	existing	legislations,	standards,	and	regulations.		

Ap
pl
ic
at
io
n	

Constraints		
	

Constraints	presented	by	the	reference	architecture	and/or	
constraints	in	specific	part	of	a	reference	architecture.		

Domain	data		
	

Common	data	found	in	systems	of	the	domain.	These	data	are	
presented	in	a	higher	level	of	abstraction,	considering	the	higher	
level	of	abstraction	of	the	reference	architecture.		

Functional	
requirements	

Set	of	functional	requirements	that	are	common	in	systems	
developed	using	this	architecture.		

Goal	and	needs		
	

Intention	of	the	reference	architecture	and	needs	that	could	be	
covered	by	the	reference	architecture.		

Limitations		 Limitations	presented	by	the	reference	architecture	and/or	
limitations	in	specific	part	of	a	reference	architecture.		

Risks		 Risks	in	using	the	reference	architecture	and/or	risks	in	using	some	
part	of	such	architecture.		

Scope		
	

Scope	that	is	covered	by	the	reference	architecture,	i.e.,	the	set	of	
systems	developed	based	on	the	reference	architecture.		

In
fr
as
tr
uc
tu
re
	

Best	practices	
and	guidelines		
	

Well-experimented	practices	to	develop	systems	of	the	do-	main,	
These	practices	could	be	accompanied	by	guidelines	describing	how	
to	apply	these	practices.		

General	
structure		

General	structure	of	the	reference	architecture,	represented	
sometimes	by	using	existing	architectural	styles.		

Hardware	
elements		

Elements	of	hardware,	such	as	server	and	devices,	which	host	
systems,	resulted	from	the	reference	architecture.		

Software	
elements	

Elements	of	software	present	in	the	reference	architecture,	e.g.,	
subsystems	and	classes,	which	could	be	used	to	develop	software	
systems.		
	

	
	

	
174	

Cr
os
sc
ut
tin

g	
El
em

en
ts
	

Decisions		
	

Decisions,	including	description	of	the	decision,	options	
(alternatives),	rationale,	and	tradeoffs,	must	be	reported	during	the	
development	of	the	reference	architecture.		

Domain	
Terminology		
	

Set	of	terms	of	the	domain	that	are	widely	accepted	by	the	
community	related	to	that	domain	and	are,	therefore,	used	in	the	
description	of	the	reference	architecture.		

External	
communication		
	

Means	by	which	occurs	exchange	of	information	between	the	
systems	resulted	from	the	reference	architecture	and	the	external	
environment.		

Internal	
communication		
	

Means	by	which	occurs	exchange	of	information	among	internal	
parts	of	systems	resulted	from	the	reference	architecture.		

	
	

	 	

	
	

	
175	

APPENDIX	B:	Pi-ADL	specification	of	runtime	view	

/***	
	*	GOAL	MANAGEMENT	LAYER	
	***/	
	
//	COMPONENT	APPLICATION	MANAGER	
component	ApplicationManagerCP	is	abstraction()	{	
	 type	WSNData	is	Any	
	 type	AppReq	is	Any	
	 type	WSNServices	is	Any	
	 connection	publishWSNData	is	in(WSNData)	
	 connection	setAppReq	is	out(AppReq)	
	 connection	getServicesRequest	is	out(Boolean)	
	 connection	getServicesReply	is	in(WSNServices)	
	 protocol	is	{	
	 	 (via	publishWSNData	receive	WSNData	
	 	 via	setAppReq	send	AppReq	
	 	 via	getServicesRequest	send	Boolean	
	 	 via	getServicesReply	receive	WSNServices)*	 	 	
	 }	
	 behavior	is	{	
	 	 via	publishWSNData	receive	wsnData	:	WSNData	
	 	 via	setAppReq	send	AppReq	
	 	 via	getServicesRequest	send	True	
	 	 via	getServicesReply	receive	wsnServices:	WSNServices	
	 	 behavior()	
	 }	
	 	
}	
	
//	CONECTOR	PublishWSNData	
connector	PublishWSNDataCN	is	abstraction()	{	
		 type	WSNData	is	Any	
		 connection	fromNetworkMonitor	is	in	(WSNData)	
		 connection	toApplicationManager	is	out	(WSNData)	
		 protocol	is	{	
		 	 (via	fromNetworkMonitor	receive	WSNData		
		 	 via	toApplicationManager	send	WSNData)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkMonitor	receive	wsnData	:	WSNData	
		 	 via	toApplicationManager	send	wsnData	
		 	 behavior()	
		 }	
	}	
	
	
//COMPONENT	ADAPTATION	POLICIES	MANAGER	
component	AdaptationPoliciesManagerCP	is	abstraction(){	
	 type	Id	is	Integer	
	 type	Type	is	Integer	
	 type	ContextInfo	is	Any	

	
	

	
176	

	 type	Operator	is	String	
	 type	Value	is	Real	
	 type	Action	is	Any	
	 type	Priority	is	Integer	
	 	
	 type	AdaptationPolicy	is	tuple[Id,	Type,	ContextInfo,	Operator,	Value,	Action,	Priority]	
	 	
	 connection	setAdaptationPolicy	is	out(AdaptationPolicy)	
	 protocol	is	{	
	 	 (via	setAdaptationPolicy	send	AdaptationPolicy)*	
	 }	
	 behavior	is	{	
	 	 via	setAdaptationPolicy	send	AdaptationPolicy	
	 	 behavior()	
	 }	
}	
	
	
//	COMPONENT	INSPECTION	MANAGER	
component	InspectionManagerCP	is	abstraction(){	
	 type	AdaptationInfo	is	Any	
	 connection	getAdaptationInfo	is	in(AdaptationInfo)	
	 protocol	is	{	
	 	 (via	getAdaptationInfo	receive	AdaptationInfo)*	
	 }	
	 behavior	is	{	
	 	 via	getAdaptationInfo	receive	adaptationInfo	:	AdaptationInfo	
	 	 behavior()	
	 }	
}	
	
//	CONECTOR	AdaptationInfo	
connector	AdaptationInfoCN	is	abstraction()	{	
		 type	AdaptationInfo	is	Any	
		 connection	fromNetworkPlanner	is	in	(AdaptationInfo)	
		 connection	toInspectionManager	is	out	(AdaptationInfo)	
		 protocol	is	{	
		 	 (via	fromNetworkPlanner	receive	AdaptationInfo		
		 	 via	toInspectionManager	send	AdaptationInfo)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkPlanner	receive	adaptationInfo	:	AdaptationInfo	
		 	 via	toInspectionManager	send	adaptationInfo	
		 	 behavior()	
		 }	
	}	
		
	/***	
	*	NETWORK	MANAGEMENT	LAYER	
	***/	
	
//	COMPONENT	NETWORK	MONITOR	
	component	NetworkMonitorCP	is	abstraction()	{	
		 type	Context	is	Any	
		 connection	publishContext	is	in	(Context)	
		 connection	setAppReq	is	in	(Context)	
		 connection	sendCurrState	is	out(Context)	

	
	

	
177	

		 connection	analysingRequest	is	out(Boolean)	
		 connection	publishWSNData	is	out(Context)	
		 protocol	is	{	
		 	 (
		 	 	 via	publishContext	receive	Context	
		 	 	 via	setAppReq	receive	Context	
		 	 	 via	sendCurrState	send	Context	
		 	 	 via	analysingRequest	send	Boolean		 	 	 	
		 	 	 via	publishWSNData	send	Context	
)*	
		 }	
		 behavior	is	{	
		 	 via	publishContext	receive	wsnContext	:	Context	
		 	 via	setAppReq	receive	appContext	:	Context	
		 	 via	sendCurrState	send	wsnContext	
		 	 via	sendCurrState	send	appContext	
		 	 if	(wsnContext)	then	{	
		 	 	 via	analysingRequest	send	True	
		 	 	 via	sendCurrState	send	wsnContext	
		 	 	 via	publishWSNData	send	wsnContext	
		 	 }	
		 	 if	(appContext)	then	{	
		 	 	 via	analysingRequest	send	True	
		 	 	 via	sendCurrState	send	appContext	
		 	 }	
		 	 behavior()	
		 }	
	}	
	
//	CONECTOR	AppReq	
connector	AppReqCN	is	abstraction()	{	
		 type	Context	is	Any	
		 connection	fromApplicationManager	is	in	(Context)	
		 connection	toNetworkMonitor	is	out	(Context)	
		 protocol	is	{	
		 	 (via	fromApplicationManager	receive	Context		
		 	 via	toNetworkMonitor	send	Context)*	
		 }	
		 behavior	is	{	
		 	 via	fromApplicationManager	receive	context	:	Context	
		 	 via	toNetworkMonitor	send	context	
		 	 behavior()	
		 }	
	}	
		
	//	CONECTOR	publishContext	
connector	PublishContextCN	is	abstraction()	{	
		 type	Context	is	Any	
		 connection	fromGatewayCommunication	is	in	(Context)	
		 connection	toNetworkMonitor	is	out	(Context)	
		 protocol	is	{	
		 	 (via	fromGatewayCommunication	receive	Context		
		 	 via	toNetworkMonitor	send	Context)*	
		 }	
		 behavior	is	{	
		 	 via	fromGatewayCommunication	receive	context	:	Context	
		 	 via	toNetworkMonitor	send	context	

	
	

	
178	

		 	 behavior()	
		 }	
	}	
		
	//	COMPONENT	NETWORKANALYSER	
component	NetworkAnalyserCP	is	abstraction()	{	
	 type	Id	is	Integer	
	 type	Type	is	Integer	
	 type	ContextInf	is	Any	
	 type	Value	is	Real	
	 type	Context	is	tuple[Id,	Type,	ContextInfo,	Value]	
	 connection	analysingRequest	is	in(Boolean)	
	 connection	getCurrStateRequest	is	out(Boolean)	
	 connection	getCurrStateReply	is	in(Any)	
	 connection	adaptationRequest	is	out(Boolean)	
	 protocol	is	{	
	 	 (via	analysingRequest	receive	Boolean	
	 	 via	getCurrStateRequest	send	Boolean	
	 	 via	getCurrStateReply	receive	Any	
	 	 via	adaptationRequest	send	Boolean	
)*	
	 }	
		 behavior	is	{	
		 	 analyseContext	is	function	(c	:	Context)	:	Boolean	{	
		 	 	 unobservable	
		 	 	 return	True		 	 	 	
		 	 }	
		 	 via	analysingRequest	receive	b_analysingRequest	:	Boolean	
		 	 if	(b_analysingRequest)	then	{	
		 	 	 via	getCurrStateRequest	send	true	
		 	 	 via	getCurrStateReply	receive	context	:	Any	
		 	 	 if	analyseContext(context)	then	{		
		 	 		 	 via	adaptationRequest	send	(true)	
		 	 	 }	 	
		 	 }	
	 	 behavior()	
		 }	
	}	
		
	//	CONECTOR	analysingRequest	
connector	AnalysingRequestCN	is	abstraction()	{	
		 connection	fromNetworkMonitor	is	in	(Boolean)	
		 connection	toNetworkAnalyser	is	out	(Boolean)	
		 protocol	is	{	
		 	 (via	fromNetworkMonitor	receive	Boolean		
		 	 via	toNetworkAnalyser	send	Boolean)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkMonitor	receive	adaptationIsNeeded	:	Boolean	
		 	 via	toNetworkAnalyser	send	adaptationIsNeeded	
		 	 behavior()	
		 }	
	}	
		
	//	COMPONENT	NETWORKPLANNER	
	component	NetworkPlannerCP	is	abstraction()	{	
		 type	AdaptationPlan	is	Any	

	
	

	
179	

		 type	Id	is	Integer	
	 type	Type	is	Integer	
	 type	ContextInf	is	Any	
	 type	Operator	is	relational_operator	
	 type	Value	is	Real	
	 type	Action	is	Any	
	 type	Priority	is	Integer	
	 type	Context	is	tuple[Id,	Type,	ContextInfo,	Value]	
	 type	AdaptationPolicy	is	tuple[Id,	Type,	ContextInfo,	Operator,	Value,	Action,	Priority]	
	 connection	adaptationRequest	is	in(Boolean)	
	 connection	adaptationPlan	is	out(AdaptationPlan)	
	 connection	adaptationInfo	is	out(Any)	
	 protocol	is	{	
	 	 (via	adaptationRequest	receive	Boolean	
	 	 via	adaptationPlan	send	AdaptationPlan	
	 	 via	adaptationInfo	send	Any)*	
	 }	
		 behavior	is	{	
		 	 adaptationPlanFunction	is	function	(c	:	Context)	:	AdaptationPlan	{	
		 	 	 unobservable	
		 	 }	
		 	 via	adaptationRequest	receive	b_adaptationRequest	:	Boolean	
		 	 if	(b_adaptationRequest)	then	{	
		 	 	 via	adaptationPlan	send	adaptationPlanFunction(context)	
		 	 }	
		 	 via	adaptationInfo	send	context	
	 	 behavior()	
		 }	
	}	
		
	//CONECTOR	adaptationRequestCN	
	connector	AdaptationRequestCN	is	abstraction()	{	
		 connection	fromNetworkAnalyser	is	in	(Boolean)	
		 connection	toNetworkPlanner	is	out	(Boolean)	
		 protocol	is	{	
		 	 (via	fromNetworkAnalyser	receive	Boolean		
		 	 via	toNetworkPlanner	send	Boolean)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkAnalyser	receive	adaptationRequest	:	Boolean	
		 	 via	toNetworkPlanner	send	adaptationRequest	
		 	 behavior()	
		 }	
	}	
		
	//	COMPONENT	NETWORK	KNOWLEDGE	BASE	
	component	NetworkKnowlegdeBaseCP	is	abstraction()	{	
		 connection	setObject	is	in(Any)	
		 connection	getObject	is	out(Any)	
		 protocol	is	{	
		 	 (via	setObject	receive	Any	|	
		 	 via	getObject	send	Any	
)*	
		 }	 	
		 behavior	is	{	
		 	 o	is	location[Any]	
		 	 storeValue	is	function(data	:	Any)	{	

	
	

	
180	

		 	 	 o	=	data	
		 	 }	
		 	 returnValue	is	function(data2	:	Any)	:	Any	{	
		 	 	 return	o	
		 	 }	
		 	 via	setObject	receive	c	:	Any	
		 	 storeValue(c)	
		 	 via	getObject	send	returnValue(d)	
		 	 behavior()	
		 }	
	}	
		
	//CONECTOR	getServices	
	connector	GetServicesCN	is	abstraction()	{	
		 connection	fromNetworkKnowlegdeBase	is	in	(Any)	
		 connection	toApplicationManager	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromNetworkKnowlegdeBase	receive	Any		
		 	 via	toApplicationManager	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkKnowlegdeBase	receive	services	:	Any	
		 	 via	toApplicationManager	send	services	
		 	 behavior()	
		 }	
	}	
		
	//CONECTOR	setAdaptationPolicies	
	connector	SetAdaptationPoliciesCN	is	abstraction()	{	
		 connection	fromAdaptationPoliciesManager	is	in	(Any)	
		 connection	toNetworkKnowlegdeBase	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromAdaptationPoliciesManager	receive	Any		
		 	 via	toNetworkKnowlegdeBase	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromAdaptationPoliciesManager	receive	adaptationPolicies	:	Any	
		 	 via	toNetworkKnowlegdeBase	send	adaptationPolicies	
		 	 behavior()	
		 }	
	}	
		
	//CONECTOR	sendCurrState	
	connector	SendCurrStateCN	is	abstraction()	{	
		 connection	fromNetworkMonitor	is	in	(Any)	
		 connection	toNetworkKnowlegdeBase	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromNetworkMonitor	receive	Any		
		 	 via	toNetworkKnowlegdeBase	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkMonitor	receive	currentContext	:	Any	
		 	 via	toNetworkKnowlegdeBase	send	currentContext	
		 	 behavior()	
		 }	
	}	
		

	
	

	
181	

		//CONECTOR	getCurrState	
	connector	GetCurrStateCN	is	abstraction()	{	
		 connection	fromNetworkKnowlegdeBase	is	in	(Any)	
		 connection	toNetworkAnalyser	is	out	(Any)	
		 connection	toNetworkPlanner	is	out	(Any)	
		 protocol	is	{	
		 	 ((via	fromNetworkKnowlegdeBase	receive	Any		
		 	 via	toNetworkAnalyser	send	Any)	|		
		 	 (via	fromNetworkKnowlegdeBase	receive	Any		
		 	 via	toNetworkPlanner	send	Any))*	
		 }	
		 behavior	is	{	
	 	 via	fromNetworkKnowlegdeBase	receive	data	:	Any	
		 	 via	toNetworkAnalyser	send	data	
		 	 //via	fromNetworkKnowlegdeBase	receive	data	:	Any	
		 	 via	toNetworkPlanner	send	data	
		 	 behavior()	
		 }	
	}	
		
	//	COMPONENT	NETWORK	CONFIGURATION	MANAGER	
	component	NetworkConfigurationManagerCP	is	abstraction()	{	
		 type	AdaptationPlan	is	Any	
		 type	Configuration	is	Any	
		 connection	adaptationPlan	is	in	(AdaptationPlan)	
		 connection	wsnConfiguration	is	out	(Configuration)	
		 protocol	is	{	
		 	 (via	adaptationPlan	receive	AdaptationPlan	
		 	 via	wsnConfiguration	send	Configuration)*	
		 }	
		 behavior	is	{	
		 	 generateConfiguration	is	function	(a	:	AdaptationPlan)	:	Configuration	{	
		 	 	 unobservable	
		 	 }	
		 	 via	adaptationPlan	receive	adaptationPlan	:	AdaptationPlan	
		 	 via	wsnConfiguration	send	generateConfiguration(adaptationPlan)	
		 	 behavior()		
		 }	
	}	
			//CONECTOR	adaptationPlan	
	connector	AdaptationPlanCN	is	abstraction()	{	
		 type	AdaptationPlan	is	Any	
		 connection	fromNetworkPlanner	is	in	(AdaptationPlan)	
		 connection	toNetworkConfigurationManager	is	out	(AdaptationPlan)	
		 protocol	is	{	
		 	 (via	fromNetworkPlanner	receive	AdaptationPlan		
		 	 via	toNetworkConfigurationManager	send	AdaptationPlan)*	
		 }	
		 behavior	is	{	
		 	 via	toNetworkPlanner	receive	adaptationPlan	:	AdaptationPlan	
		 	 via	toNetworkConfigurationManager	send	AdaptationPlan	
		 	 behavior()	
		 }	
	}	
		
		//CONECTOR	WSNConfiguration	
	connector	WSNConfigurationCN	is	abstraction()	{	

	
	

	
182	

		 type	Configuration	is	Any	
		 connection	fromNetworkConfigurationManager	is	in	(Configuration)	
		 connection	toGatewayCommunication	is	out	(Configuration)	
		 protocol	is	{	
		 	 (via	fromNetworkConfigurationManager	receive	Configuration		
		 	 via	toGatewayCommunication	send	Configuration)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkConfigurationManager	receive	configuration	:	Configuration	
		 	 via	toGatewayCommunication	send	configuration	
		 	 behavior()	
		 }	
	}	
		
	component	SecurityMarshallerCP	is	abstraction()	{	
		 connection	marshallRequest	is	in	(Any)	
		 connection	marshallReplay	is	out	(Any)	
		 protocol	is	{	
		 	 (via	marshallRequest	receive	Any	
		 	 via	marshallReplay	send	Any)*	
		 }	
		 behavior	is	{	
		 	 encriptionFunction	is	function	(e	:	Any)	:	Any	{	
		 	 	 unobservable	
		 	 }	
		 	 marshallerFunction	is	function	(m	:	Any)	:	Any	{	
		 	 	 unobservable	
		 	 }	
		 	 via	marshallRequest	receive	data	:	Any	
		 	 data2	=	encriptionFunction(data)	
		 	 via	marshallReply	send	marshallerFunction(data2)	
		 	 behavior()	
		 }	
	}	
		
	connector	MarshallRequestCN	is	abstraction(){	
		 connection	fromGatewayCommunication	is	in	(Any)	
		 connection	toSecurityMarshaller	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromGatewayCommunication	receive	Any		
		 	 via	toSecurityMarshaller	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromGatewayCommunication	receive	data	:	Any	
		 	 via	toSecurityMarshaller	send	data	
		 	 behavior()	
		 }	
	}	
		
	connector	MarshallReplayCN	is	abstraction(){	
		 connection	fromSecurityMarshaller	is	in	(Any)	
		 connection	toGatewayCommunication	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromSecurityMarshaller	receive	Any		
		 	 via	toGatewayCommunication	send	Any)*	
		 }	
		 behavior	is	{	

	
	

	
183	

		 	 via	fromSecurityMarshaller	receive	data	:	Any	
		 	 via	toGatewayCommunication	send	data	
		 	 behavior()	
		 }	
	}	
		
	component	NetworkRequestHandlerCP	is	abstraction()	{	
		 connection	sendMsgHandler	is	in	(Any)	
		 connection	receiveMsgHandler	is	out	(Any)	
		 protocol	is	{	
		 	 (via	receiveMsgHandler	send	Any	|		
		 	 	via	sendMsgHandler	receive	Any	
)*	
		 }	 	
		 behavior	is	{	
		 	 datafromNetworkFunction	is	function()	:	Any	{	
		 	 	 unobservable	
		 	 }	
		 	 datatoNetworkFunction	is	function(d	:	Any)	{	
		 	 	 unobservable	
		 	 }	
		 	 choose	{	
		 	 	 via	receiveMsgHandler	send	datafromNetworkFunction()		
		 	 	 	
		 	 }	or	{	
		 	 	 via	sendMsgHandler	receive	data	:	Any	
		 	 	 datatoNetworkFunction(data)	
		 	 }	
		 	 behavior()	
		 }	
	}	
		
	connector	ReceiveMsgHandler_networkCN	is	abstraction(){	
		 connection	fromRequestHandler	is	in	(Any)	
		 connection	toGatewayCommunication	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromRequestHandler	receive	Any		
		 	 via	toGatewayCommunication	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromRequestHandler	receive	data	:	Any	
		 	 via	toGatewayCommunication	send	data	
		 	 behavior()	
		 }	
	}	
		
		connector	SendMsgHandler_networkCN	is	abstraction(){	
		 connection	fromGatewayCommunication	is	in	(Any)	
		 connection	toRequestHandler	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromGatewayCommunication	receive	Any		
		 	 via	toRequestHandler	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromGatewayCommunication	receive	data	:	Any	
		 	 via	toRequestHandler	send	data	
		 	 behavior()	

	
	

	
184	

		 }	
	}	
		
	/***	
	*	SENSOR	MANAGEMENT	LAYER	
	***/	
		//	COMPONENT	SENSOR	MANAGER	
	component	SensorManagerCP	is	abstraction()	{	
		 type	IsManager	is	Boolean			 type	Context	is	Any	
		 type	Configuration	is	Any		type	AdaptationPlan	is	Any	
		 connection	receiveMessage	is	in	(Any)	
		 connection	sendMessage	is	out	(Context)	
		 connection	publishData	is	in	(Context)	
		 connection	setConfiguration	is	out(Configuration)	
		 connection	analyzeData	is	out	(Context)	
		 connection	nodeAdaptationPlan	is	in	(AdaptationPlan)	
		 connection	update	is	out	(Any)	
		 protocol	is	{	
		 	 ((via	receiveMessage	receive	Configuration		
		 	 via	setConfiguration	send	Configuration	
		 	 via	update	send	Any)	|		 (via	receiveMessage	receive	Context	
		 	 via	publishData	receive	Configuration	via	analyzeData	send	Context	
		 	 via	sendMessage	send	Context	via	update	send	Any))*	
		 }	
		 behavior	is	{	
		 	 processConfiguration	is	function	(a	:	AdaptationPlan)	:	Configuration	{	
		 	 	 unobservable		
		 	 	 return	c	
		 	 }	

processMessage	is	function	(c	:	Configuration)	:	Boolean	{	
		 	 	 unobservable		
		 	 	 return		
		 	 }	
	
		 	 choose	{	
		 	 	 via	receiveMessage	receive	configuration	:	Configuration	
		 	 	 via	setConfiguration	send	configuration	
		 	 	 if	(IsManager)	then	{	
	 	 	 	 dyComp	=	processMessage(configuration)	
	 	 	 	 if	(dyComp	==	True)	then	{	
	 	 	 	 	 compose{	
	 	 	 	 	 	 a	is	SensorAnalyserCP()	
	 	 	 	 	 	 and	p	is	SensorPlannerCP()	
	 	 	 	 	 	 and	a_ad	is	AnalyseDataCN()	
	 	 	 	 	 	 and	p_ap	is	SensorAdaptationRequestCN()	
	 	 	 	 	 	 and	k_u	is	UpdateCN()	
	 	 	 	 	 	 and	p_s	is	SelectCN()	
	 	 	 	 	 	 and	a_s	is	SelectCN()	
	 	 	 	 	 }	where	{	
	 	 	 	 	 sm::analyseData	unifies	a_ad::fromSensorManager	
	 	 	 	 	 a_ad::toSensorAnalyser	unifies	a::analyseData	
	 	 	 	 	 a::adaptationRequest	unifies	p_ar::fromSensorAnalyser	
	 	 	 	 	 p::sensorAdaptationPlan	unifies	sm_ap::fromSensorPlanner	
	 	 	 	 	 p::toSensorMonitor	unifies	sm::sensorAdaptationPlan	
	 	 	 	 	 }	

}	 	
		 	 	 	 via	update	send	configuration	

	
	

	
185	

		 	 	 	 via	sendMessage	send	configuration	
			 	 	 }	
		 	 }	or{	
		 	 	 if	(IsManager)	then	{	
		 	 	 	 via	nodeAdaptationPlan	receive	adaptationPlan	:	AdaptationPlan	
		 	 	 	 via	update	send	adaptationPlan	
		 	 	 	 via	setConfiguration	send	processConfiguration(adaptationPlan)	
		 	 	 	 via	sendMessage	send	adaptationPlan	
			 	 	 }	
		 	 }or	{	
		 	 	 via	receiveMessage	receive	contextFromWSN	:	Context	
		 	 	 if	(IsManager)	then	{	
		 	 	 	 via	udpate	send	contextFromWSN	
		 	 	 	 via	analyzeData	send	contextFromWSN	 	
	 	 	 }	
	 	 	 via	sendMessage	send	contextFromWSN	
	 	 }or{	
	 	 	 via	publishData	receive	contextFromSensor	:	Context	
	 	 	 if	(IsManager)	then	{	
	 	 	 	 via	udpate	send	contextFromSensor	
	 	 	 	 via	analyzeData	send	contextFromSensor	 	
	 	 	 }	
	 	 	 via	sendMessage	send	contextFromSensor	
	 	 }	
	 	 behavior()	 	 	
		 }	
	}	
		
	//	COMPONENT	SENSOR	ANALYSER	
	component	SensorAnalyserCP	is	abstraction()	{	
	 type	Context	is	Any	
	 connection	analyseData	is	in(Boolean)	
	 connection	selectRequest	is	out(Boolean)	
	 connection	selectReply	is	in(Any)	
	 connection	adaptationRequest	is	out(Boolean)	
	 protocol	is	{	
	 	 (via	analyseData	receive	Boolean	
	 	 via	selectRequest	send	Boolean	
	 	 via	selectReply	receive	Any	
	 	 via	adaptationRequest	send	Boolean	
)*	
	 }	
		 behavior	is	{	
		 	 analyseContext	is	function	(c	:	Context)	:	Boolean	{	
		 	 	 unobservable	
		 	 	 return	True		 	 	 	
		 	 }	
		 	 via	analyseData	receive	b_analyseData	:	Boolean	
		 	 if	(b_analyseData)	then	{	
		 	 	 via	selectRequest	send	true	
		 	 	 via	selectReply	receive	context	:	Any	
		 	 	 if	analyseContext(context)	then	{		
		 	 		 	 via	adaptationRequest	send	(true)	
		 	 	 }	 	
		 	 }	
	 	 behavior()	
		 }	

	
	

	
186	

	}	
		
		//	COMPONENT	sensorPLANNER	
	component	SensorPlannerCP	is	abstraction()	{	
		 type	AdaptationPlan	is	Any	
		 type	Id	is	Integer	
	 type	Type	is	Integer	
	 type	ContextInf	is	Any	
	 type	Operator	is	relational_operator	
	 type	Value	is	Real	
	 type	Action	is	Any	
	 type	Priority	is	Integer	
	 type	Context	is	tuple[Id,	Type,	ContextInfo,	Value]	
	 type	AdaptationPolicy	is	tuple[Id,	Type,	ContextInfo,	Operator,	Value,	Action,	Priority]	
	 connection	adaptationRequest	is	in(Boolean)	
	 connection	nodeAdaptationPlan	is	out(AdaptationPlan)	
	 protocol	is	{	
	 	 (via	adaptationRequest	receive	Boolean	
	 	 via	nodeAdaptationPlan	send	AdaptationPlan	
)*	
	 }	
		 behavior	is	{	
		 	 adaptationPlanFunction	is	function	(c	:	Context)	:	AdaptationPlan	{	
		 	 	 unobservable	
		 	 }	
		 	 via	adaptationRequest	receive	b_adaptationRequest	:	Boolean	
		 	 if	(b_adaptationRequest)	then	{	
		 	 	 via	selectRequest	send	true	
		 	 	 via	nodeAdaptationPlan	send	adaptationPlanFunction(context)	
		 	 }	
	 	 behavior()	
		 }	
	}	
		
	component	AcquisitonManagerCP	is	abstraction()	{	
		 type	Context	is	Any	
		 type	Configuration	is	Any	
		 connection	publishData	is	out(Context)	
		 connection	setConfiguration	is	in(Configuration)	
		 protocol	is	{	
		 	 (via	publishData	send	Context	|	
		 	 via	setConfiguration	receive	Configuration)*	
		 }	
		 behavior	is	{	
		 	 choose	{	
		 	 	 readContext	is	function()	:	Context	{	
		 	 	 	 unobservable	
		 	 	 }	
		 	 	 via	publishData	send	readContext()	
		 	 }	or	{	
		 	 	 configureSensors	is	function(c	:	Configuration)	{	
		 	 	 	 unobservable	
		 	 	 }	
		 	 	 via	setConfiguration	receive	configuration		:	Configuration	
		 	 	 configureSensors(configuration)		
		 	 }	
		 	 behavior()	

	
	

	
187	

		 }	
	}	
		
		component	SensorKnowlegdeBaseCP	is	abstraction()	{	
		 connection	setObject	is	in(Any)	
		 connection	getObject	is	out(Any)	
		 protocol	is	{	
		 	 (via	setObject	receive	Any	|	
		 	 via	getObject	send	Any	
)*	
		 }	 	
		 behavior	is	{	
		 	 o	is	location[Any]	
		 	 storeValue	is	function(data	:	Any)	{	
		 	 	 o	=	data	
		 	 }	
		 	 returnValue	is	function(data2	:	Any)	:	Any	{	
		 	 	 return	o	
		 	 }	
		 	 via	setObject	receive	c	:	Any	
		 	 storeValue(c)	
		 	 via	getObject	send	returnValue(d)	
		 	 behavior()	
		 }	
	}	
		
	component	SensorCommunicationCP	is	abstraction()	{	
		 type	Context	is	Any	
		 type	Configuration	is	Any	
		 connection	sendMessage	is	in(Context)	
		 connection	sendMsgHandler	is	out(Any)	
		 connection	receiveMsgHandler	is	in(Any)	
		 connection	receiveMessage	is	out(Configuration)	
		 connection	securityMarshallRequest	is	out(Any)	
		 connection	securityMarshallReplay	is	in(Any)	
		 protocol	is	{	
		 	 (
		 	 	 (via	receiveMsgHandler	receive	Any	
		 	 	 via	securityMarshallRequest	send	Any	
		 	 	 via	securityMarshallReplay	receive	Any	
		 	 	 via	receiveMessage	send	Configuration	|	
		 	 	 via	sendMsgHandler	send	Any	
)	|	
		 	 	 (
		 	 	 via	sendMessage	receive	Context	
		 	 	 via	securityMarshallRequest	send	Any	
		 	 	 via	securityMarshallReplay	receive	Any	
		 	 	 via	sendMsgHandler	send	Any	
)	
)*	
		 }	
		 behavior	is	{	
		 	 choose	{	
		 	 	 via	receiveMsgHandler	receive	configuration	:	Configuration	
		 	 	 via	securityMarshallRequest	send	configuration	
		 	 	 via	securityMarshallReplay	receive	marshalledConfiguration	:	Configuration	
		 	 	 via	receiveMessage	send	marshalledConfiguration	

	
	

	
188	

		 	 	 behavior()	
		 	 }	or	{	
		 	 	 via	receiveMsgHandler	receive	contextHandler	:	Context	
		 	 	 via	securityMarshallRequest	send	context	
		 	 	 via	securityMarshallReplay	receive	marshalledContextHandler	:	Context	
		 	 	 if	(IsManager)	then	{	
		 	 	 	 via	receiveMessage	send	marshalledContext	
		 	 	 }	
		 	 	 via	sendMsgHandler	send	marshalledContext	
		 	 	 behavior()	
		 	 }or	{	
		 	 	 via	sendMessage	receive	context	:	Context	
		 	 	 via	securityMarshallRequest	send	context	
		 	 	 via	securityMarshallReplay	receive	marshalledContext	:	Context	
		 	 	 via	sendMsgHandler	send	marshalledContext	
		 	 	 behavior()	
		 	 }	
		 }	
	}	
		
	component	SensorSecurityMarshallerCP	is	abstraction()	{	
		 connection	marshallRequest	is	in	(Any)	
		 connection	marshallReplay	is	out	(Any)	
		 protocol	is	{	
		 	 (via	marshallRequest	receive	Any	
		 	 via	marshallReplay	send	Any)*	
		 }	
		 behavior	is	{	
		 	 encriptionFunction	is	function	(e	:	Any)	:	Any	{	
		 	 	 unobservable	
		 	 }	
		 	 marshallerFunction	is	function	(m	:	Any)	:	Any	{	
		 	 	 unobservable	
		 	 }	
		 	 via	marshallRequest	receive	data	:	Any	
		 	 data2	=	encriptionFunction(data)	
		 	 via	marshallReply	send	marshallerFunction(data2)	
		 	 behavior()	
		 }	
	}	
		
	connector	MarshallRequest_sensorCN	is	abstraction(){	
		 connection	fromSensorCommunication	is	in	(Any)	
		 connection	toSensorSecurityMarshaller	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromSensorCommunication	receive	Any		
		 	 via	toSensorSecurityMarshaller	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorCommunication	receive	data	:	Any	
		 	 via	toSensorSecurityMarshaller	send	data	
		 	 behavior()	
		 }	
	}	
		
	connector	MarshallReplay_sensorCN	is	abstraction(){	
		 connection	fromSensorSecurityMarshaller	is	in	(Any)	

	
	

	
189	

		 connection	toSensorCommunication	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromSensorSecurityMarshaller	receive	Any		
		 	 via	toSensorCommunication	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorSecurityMarshaller	receive	data	:	Any	
		 	 via	toSensorCommunication	send	data	
		 	 behavior()	
		 }	
	}	
		
	component	SensorRequestHandlerCP	is	abstraction()	{	
		 connection	receiveMsgHandler	is	out	(Any)	
		 connection	sendMsgHandler	is	in	(Any)	
		 protocol	is	{	
		 	 (via	receiveMsgHandler	send	Any	|		
		 	 	via	sendMsgHandler	receive	Any	
)*	
		 }	 	
		 behavior	is	{	
		 	 datafromGatewayFunction	is	function()	:	Any	{	
		 	 	 unobservable	
		 	 }	
		 	 datatoGatewayFunction	is	function(d	:	Any)	{	
		 	 	 unobservable	
		 	 }	
		 	 choose	{	
		 	 	 via	receiveMsgHandler	send	datafromGatewayFunction()	
		 	 }	or	{	
		 	 	 via	sendMsgHandler	receive	data	:	Any	
		 	 	 datatoGatewayFunction(data)	 	 	 	
		 	 }	
		 	 behavior()	
		 }	
	}	
		
	connector	ReceiveMsgHandler_sensorCN	is	abstraction(){	
		 connection	fromRequestHandler	is	in	(Any)	
		 connection	toSensorCommunication	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromRequestHandler	receive	Any		
		 	 via	toSensorCommunication	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromRequestHandler	receive	data	:	Any	
		 	 via	toSensorCommunication	send	data	
		 	 behavior()	
		 }	
	}	
		
		connector	SendMsgHandler_sensorCN	is	abstraction(){	
		 connection	fromSensorCommunication	is	in	(Any)	
		 connection	toRequestHandler	is	out	(Any)	
		 protocol	is	{	
		 	 (via		fromSensorCommunication	receive	Any		
		 	 via	toRequestHandler	send	Any)*	

	
	

	
190	

		 }	
		 behavior	is	{	
		 	 via		fromSensorCommunication	receive	data	:	Any	
		 	 via	toRequestHandler	send	data	
		 	 behavior()	
		 }	
	}	
		
	connector	SendMessageCN	is	abstraction()	{	
		 connection	fromSensorManager	is	in	(Any)	
		 connection	toSensorCommunication	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromSensorManager	receive	Any		
		 	 	 via	toSensorCommunication	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorManager	receive	data	:	Any	
		 	 via	toSensorCommunication	send	data	
		 	 behavior()	
		 }	
	}	
		
	connector	ReceiveMessageCN	is	abstraction()	{	
		 connection	fromSensorCommunication	is	in	(Any)	
		 connection	toSensorManager	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromSensorCommunication	receive	Any	
		 	 via	toSensorManager	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorCommunication	receive	data	:	Any	
		 	 via	toSensorManger	send	data	
		 	 behavior()	
		 }	
	}	
		
	connector	PublishDataCN	is	abstraction()	{	
		 type	Context	is	Any	
		 connection	fromAcquisitionManager	is	in	(Context)	
		 connection	toSensorManager	is	out	(Context)	
		 protocol	is	{	
		 	 (via	fromAcquisitionManager	receive	Context	
		 	 via	toSensorManager	send	Context)*	
		 }	
		 behavior	is	{	
		 	 via	fromAcquisitonManager	receive	context	:	Context	
		 	 via	toSensorManager	send	context	
		 	 behavior()	
		 }	
	}	
		
	connector	SetConfigurationCN	is	abstraction()	{	
		 type	Configuration	is	Any	
		 connection	fromSensorManager	is	in	(Configuration)	
		 connection	toAcquisitionManager	is	out	(Configuration)	
		 protocol	is	{	
		 	 (via	fromSensorManager	receive	Configuration	

	
	

	
191	

		 	 via	toAcquisitionManager	send	Configuration)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorManager	receive	configuration	:	Configuration	
		 	 via	toAcquisitionManager	send	configuration	
		 	 behavior()	
		 }	
	}	
		
	connector	AnalyseDataCN	is	abstraction()	{	
		 connection	fromSensorManager	is	in	(Boolean)	
		 connection	toSensorAnalyser	is	out	(Boolean)	
		 protocol	is	{	
		 	 (via	fromSensorManager	receive	Boolean		
		 	 via	toSensorAnalyser	send	Boolean)*	
		 }	
		 behavior	is	{	
		 	 via	fromNetworkMonitor	receive	adaptationIsNeeded	:	Boolean	
		 	 via	toNetworkAnalyser	send	adaptationIsNeeded	
		 	 behavior()	
		 }	
	}	
		
		connector	SensorAdaptationPlanCN	is	abstraction()	{	
		 type	Configuration	is	Any	
		 connection	fromSensorPlanner	is	in	(Configuration)	
		 connection	toSensorManager	is	out	(Configuration)	
		 protocol	is	{	
		 	 (via	fromSensorPlanner	receive	Configuration		
		 	 via	toSensorManager	send	Configuration)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorPlanner	receive	configuration	:	Configuration	
		 	 via	toSensorManager	send	configuration	
		 	 behavior()	
		 }	
	}	
		
		connector	SensorAdaptationRequestCN	is	abstraction()	{	
		 connection	fromSensorkAnalyser	is	in	(Boolean)	
		 connection	toSensorPlanner	is	out	(Boolean)	
		 protocol	is	{	
		 	 (via	fromSensorkAnalyser	receive	Boolean		
		 	 via	toSensorPlanner	send	Boolean)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorkAnalyser	receive	adaptationRequest	:	Boolean	
		 	 via	toSensorPlanner	send	adaptationRequest	
		 	 behavior()	
		 }	
	}	
		
		connector	UpdateCN	is	abstraction()	{	
		 connection	fromSensorManager	is	in	(Any)	
		 connection	toSensorKnowlegdeBase	is	out	(Any)	
		 protocol	is	{	
		 	 (via	fromSensorManager	receive	Any		

	
	

	
192	

		 	 via	toSensorKnowlegdeBase	send	Any)*	
		 }	
		 behavior	is	{	
		 	 via	fromSensorManager	receive	data	:	Any	
		 	 via	toSensorKnowlegdeBase	send	data	
		 	 behavior()	
		 }	
	}	
		
		connector	SelectCN	is	abstraction()	{	
		 connection	fromSensorKnowlegdeBase	is	in	(Any)	
		 connection	toSensorAnalyser	is	out	(Any)	
		 connection	toSensorPlanner	is	out	(Any)	
		 	
		 protocol	is	{	
		 	 (via	fromSensorKnowlegdeBase	receive	Any		
		 	 via	toSensorAnalyser	send	Any	|	
		 	 via	toSensorPlanner	send	Any)*	
		 }	
		 behavior	is	{	
		 	 choose	{	
		 	 	 via	fromSensorKnowlegdeBase	receive	ap_a	:	Any	
		 	 	 via	toSensorAnalyser	send	ap_a	
		 	 }	or	{	
		 	 	 via	fromSensorKnowlegdeBase	receive	ap_p	:	Any	
		 	 	 via	toSensorPlanner	send	ap_p	
		 	 }	
		 	 behavior()	
		 }	
	}	
	
		/***	
	*	REFERENCE	ARCHITECTURE	
	***/	
	architecture	rawsn	is	abstraction()	{	
	 behavior	is	{	
		 	 compose	{	
		 	 	 //COMPONENTS	GML	
		 	 	 gml_am	is	ApplicationManagerCP()		
		 	 	 and	gml_apm	is	AdaptationPoliciesManagerCP()	
		 	 	 and	gml_im	is	InspectionManagerCP()	
		 	 	 	
		 	 	 	 //CONNECTORS	GML	
		 	 	 	 and	gml_am_pd	is	PublishWSNDataCN()	
		 	 	 	 and	gml_im_ai	is	AdaptationInfoCN()	
		 	 	 	 	
		 	 	 //COMPONENTS	NML	
		 	 	 and	nml_m	is	NetworkMonitorCP()	
		 	 	 and	nml_a	is	NetworkAnalyserCP()	
		 	 	 and	nml_p	is	NetworkPlannerCP()	
		 	 	 and	nml_e	is	NetworkConfigurationManagerCP()	
		 	 	 and	nml_k	is	NetworkKnowlegdeBaseCP()	
		 	 	 and	nml_g	is	GatewayCommunicationCP()	
		 	 	 and	nml_sm	is	SecurityMarshallerCP()	
		 	 	 and	nml_rh	is	NetworkRequestHandlerCP()	
		 	 	 	
		 	 	 	 //CONNECTORS	NML	

	
	

	
193	

		 	 	 	 and	nml_m_ar	is	AppReqCN()	
		 	 	 	 and	nml_m_pc	is	PublishContextCN()	
		 	 	 	 and	nml_a_ar	is	AnalysingRequestCN()	
		 	 	 	 and	nml_p_ar	is	AdaptationRequestCN()	
		 	 	 	 and	nml_e_ap	is	AdaptationPlanCN()	
		 	 	 	 and	nml_g_wc	is	WSNConfigurationCN()	
		 	 	 	 and	nml_g_rh	is	ReceiveMsgHandler_networkCN()	
		 	 	 	 and	nml_k_gs	is	GetServicesCN()	
		 	 	 	 and	nml_k_scs	is	SendCurrStateCN()	
		 	 	 	 and	nml_k_ap	is	SetAdaptationPoliciesCN()	
		 	 	 	 and	nml_k_gcs	is	GetCurrStateCN()	
		 	 	 	 and	nml_sm_mrq	is	MarshallRequestCN()	
		 	 	 	 and	nml_sm_mrp	is	MarshallReplayCN()	
		 	 	 	 and	nml_rh_sm	is	SendMsgHandler_networkCN()	
		 	 	 	
		 	 	 //COMPONENTS	SML	
		 	 	 and	sml_sm	is	SensorManagerCP()	
		 	 	 and	sml_am	is	AcquisitonManagerCP()	
		 	 	 and	sml_a	is	SensorAnalyserCP()	
		 	 	 and	sml_p	is	SensorPlannerCP()	
		 	 	 and	sml_k	is	SensorKnowlegdeBaseCP()		
		 	 	 and	sml_sc	is	SensorCommunicationCP()	
		 	 	 and	sml_m	is	SensorSecurityMarshallerCP()	
		 	 	 and	sml_rh	is	SensorRequestHandlerCP()	
		 	 	 		 	 	 	
		 	 	 	 //CONNECTORS	SML	
		 	 	 	 and	sml_m_mrq	is	MarshallRequest_sensorCN()	
		 	 	 	 and	sml_m_mrp	is	MarshallReplay_sensorCN()	
		 	 	 	 and	sml_rh_sm	is	SendMsgHandler_sensorCN()	
		 	 	 	 and	sml_sc_rh	is	ReceiveMsgHandler_sensorCN()	
		 	 	 	 and	sml_sc_sm	is	SendMessageCN()	
		 	 	 	 and	sml_sm_rm	is	ReceiveMessageCN()	
		 	 	 	 and	sml_sm_pd	is		PublishDataCN()	
		 	 	 	 and	sml_sm_ap	is	SensorAdaptationPlanCN()	
		 	 	 	 and	sml_am_sc	is	SetConfigurationCN()	
		 	 	 	 and	sml_a_ad	is	AnalyseDataCN()	
		 	 	 	 and	sml_p_ap	is	SensorAdaptationRequestCN()	
		 	 	 				and	sml_k_u	is	UpdateCN()	
		 	 	 				and	sml_p_s	is	SelectCN()	
		 	 	 				and	sml_a_s	is	SelectCN()	
		 	 	 		 	 	 	
		 	 }	where	{	
		 	 	 //	GML	
		 	 	 gml_am::setAppReq	unifies	nml_m_ar::fromApplicationManager	
		 	 	 nml_m_ar::toNetworkMonitor	unifies	nml_m::setAppReq	
		 	 	 nml_p::adaptationInfo	unifies	gml_im_ai::fromNetworkPlanner	
		 	 	 gml_im_ai::toInspectionManager	unifies	gml_im::getAdaptationInfo	
		 	 	 	
		 	 	 //	NML	
		 	 	 nml_m::publishWSNData	unifies	gml_am_pd::fromNetworkMonitor	
		 	 	 gml_am_pd::toApplicationManager	unifies	gml_am::publishWSNData	
		 	 	 nml_m::analysingRequest	unifies	nml_a_ar::fromNetworkMonitor	
		 	 	 nml_a_ar::toNetworkAnalyser	unifies	nml_a::analysingRequest	
		 	 	 nml_m::sendCurrState	unifies	nml_k_scs::fromNetworkMonitor	
		 	 	 nml_k_scs::toNetworkKnowlegdeBase	unifies	nml_k::setObject	
		 	 	 nml_a::adaptationRequest	unifies	nml_p_ar::fromNetworkAnalyser	
		 	 	 nml_p_ar::toNetworkPlanner	unifies	nml_p::adaptationRequest	

	
	

	
194	

		 	 	 nml_p::adaptationPlan	unifies	nml_e_ap::fromNetworkPlanner	
		 	 	 nml_e_ap::toNetworkConfigurationManager	unifies	nml_e::adaptationPlan	
		 	 	 nml_e::wsnConfiguration	unifies	
nml_g_wc::fromNetworkConfigurationManager	
		 	 	 nml_g_wc::toGatewayCommunication	unifies	nml_g::wsnConfiguration	
		 	 	 	
		 	 	 //	SML	
		 	 	 sml_sc::receiveMessage	unifies	sml_sc_rm::fromSensorCommunication	
		 	 	 sml_sc_rm::toSensorManager	unifies	sml_sm::receiveMessage	
		 	 	 sml_sm::sendMessage	unifies	sml_sc_sm::fromSensorManager	
		 	 	 sml_sc_sm::toSensorCommunication	unifies	sml_sc::sendMessage	
		 	 	 sml_sm::setConfiguration	unifies	sml_am_sc::fromSensorManager	
		 	 	 sml_am_sc::toAcquisitonManager	unifies	sml_am::setConfiguration	
		 	 	 sml_sm::analyseData	unifies	sml_a_ad::fromSensorManager	
		 	 	 sml_a_ad::toSensorAnalyser	unifies	sml_a::analyseData	
		 	 	 sml_am::publishData	unifies	sml_sm_pd::fromAcquisitionManager	
		 	 	 sml_sm_pd::toSensorManager	unifies	sml_sm::publishData	
		 	 	 sml_a::adpationRequest	unifies	sml_p_ar::fromSensorAnalyser	
		 	 	 sml_p_ar::toSensorPlanner	unifies	sml_p::adaptationRequest		 	
	 	
		 	 	 sml_p::sensorAdpataionPlan	unifies	sml_sm_ap::fromSensorPlanner	
		 	 	 sml_sm_ap::toSensorMonitor	unifies	sml_sm::sensorAdaptationPlan	
		 	 }	
		 }	
}	
	
	
	 	

	
	

	
195	

APPENDIX	C:	Pi-ADL	specification	of	deployment	view	

component	OrdinaryNode	is	abstraction(){	
	 type	SMLMessage	is	Any	
	 connection	sensor	is	in	(String)	
	 connection	radioOut	is	out	(SMLMessage)	
	 connection	radioIn	is	in	(SMLMessage)	
	 protocol	is	{	
	 	 ((via	sensor	receive	String	|	via	radioIn	receive	SMLMessage))	
	 	 via	radioOut	send	SMLMessage	
)*	
	 }	
	 behavior	is	{	
	 	 convertRawData	is	function(m:	String)	:	SMLMessage	{	
	 	 	 unobservable	
	 	 }	
	 	 verifyTypeMessage	is	function(msg:	SMLMessage)	:	Boolean	{	
	 	 	 unobservable	
	 	 }	
	 	 choose	{	
	 	 	 via	sensor	receive	measure	:	String	
	 	 	 via	radioOut	send	convertRawData(measure)	
	 	 	 behavior()	
	 	 }	or	{	
	 	 	 via	radioIn	receive	message	:	SMLMessage	
	 	 	 if	verifyTypeMessage(message)	then	{	
	 	 	 	 via	radioOut	send	message	
	 	 	 }	
	 	 	 behavior()	
	 	 }	
	 }	
}	
	
component	ClusterHead	is	abstraction(){	
	 type	SMLMessage	is	Any	
	 connection	sensor	is	in	(String)	
	 connection	radioOut	is	out	(SMLMessage)	
	 connection	radioIn	is	in	(SMLMessage)	
	 protocol	is	{	
	 	 ((via	sensor	receive	String	|	via	radioIn	receive	SMLMessage))	
	 	 via	radioOut	send	SMLMessage	
)*	
	 }	
	 behavior	is	{	
	 	 convertRawData	is	function(m:	String)	:	SMLMessage	{	
	 	 	 unobservable	
	 	 }	
	 	 verifyTypeMessage	is	function(msg:	SMLMessage)	:	Boolean	{	
	 	 	 unobservable	
	 	 }	
	 	 choose	{	
	 	 	 via	sensor	receive	measure	:	String	
	 	 	 via	radioOut	send	convertRawData(measure)	

	
	

	
196	

	 	 	 behavior()	
	 	 }	or	{	
	 	 	 via	radioIn	receive	message	:	SMLMessage	
	 	 	 if	verifyTypeMessage(message)	then	{	
	 	 	 	 via	radioOut	send	context	
	 	 	 }	
	 	 	 behavior()	
	 	 }	
	 }	
}	
	
component	BaseStation	is	abstraction(){	
	 type	SMLMessage	is	Any	
	 connection	radioOut	is	out	(SMLMessage)	
	 connection	radioIn	is	in	(SMLMessage)	
	 connection	serialOut	is	out	(SMLMessage)	
	 connection	serialIn	is	in	(SMLMessage)	
	 protocol	is	{	
	 	 ((via	radioIn	receive	SMLMessage)	
	 	 via	serialOut	send	NMLMessage)	|	
	 	 (via	serialIn	receive	NMLMessage)	
	 	 via	radioOut	send	SMLMessage)		
)	*	
	 }	
	 behavior	is	{	
	 	 choose	{	
	 	 	 via	radioIn	receive	smlMessage	:	SMLMessage	
	 	 	 via	serialOut	send	smlMessage	
	 	 	 behavior()	
	 	 }	or	{	
	 	 	 via	serialIn	receive	nmlMessage	:	NMLMessage	
	 	 	 via	radioOut	send	nmlMessage	
	 	 	 behavior()	
	 	 }	
	 }	
}	
	
component	Gateway	is	abstraction(){	
	 type	NMLMessage	is	Any	
	 type	SMLMessage	is	Any	
	 connection	tcpOut	is	out	(NMLMessage)	
	 connection	tcpIn	is	in	(NMLMessage)	
	 connection	serialOut	is	out	(NMLMessage)	
	 connection	serialIn	is	in	(NMLMessage)	
	 protocol	is	{	
	 	 ((via	tcpIn	receive	NMLMessage)	
	 	 via	serialOut	send	NMLMessage)	|	
	 	 (via	serialIn	receive	NMLMessage)	
	 	 via	tcpOut	send	NMLMessage)		
)	*	
	 }	
	 behavior	is	{	
	 	 convertMessage	is	function(smlM:	SMLMessage)	:	NMLMessage	{	
	 	 	 unobservable	
	 	 }	
	 	 convertMessage	is	function(nmlM:	NMLMessage)	:	SMLMessage	{	
	 	 	 unobservable	

	
	

	
197	

	 	 }	
	 	 choose	{	
	 	 	 via	tcpIn	receive	nmlMessage	:	NMLMessage	
	 	 	 via	serialOut	send	convertMessage(nmlMessage)	
	 	 	 behavior()	
	 	 }	or	{	
	 	 	 via	serialIn	receive	smlMessage	:	SMLMessage	
	 	 	 via	tcpOut	send	convertMessage(smlMessage)	
	 	 	 behavior()	
	 	 }	
	 }	
}	
	
component	GlobalServer	is	abstraction(){	
	 type	NMLMessage	is	Any	
	 connection	tcpOut	is	out	(SMLMessage)	
	 connection	tcpIn	is	in	(SMLMessage)	
	 protocol	is	{	
	 	 (via	tcpIn	receive	SMLMessage	|	
	 	 via	tcpOut	send	SMLMessage)*	
	 }	
	 behavior	is	{	
	 	 processMessage	is	function(m:	NMLMessage)	{	
	 	 	 unobservable	
	 	 }	
	 	 choose	{	
	 	 	 via	tcpIn	receive	message	:	NMLMessage	
	 	 	 processMessage(message)	
	 	 	 behavior()	
	 	 }	or	{	
	 	 	 via	tcpOut	send	message	
	 	 	 behavior()	
	 	 }	
	 }	
}	
	
connector	ZigBee	is	abstraction()	{	
	 type	SMLMessage	is	Any	
	 connection	input	is	in	(SMLMessage)	
	 connection	output	is	out	(SMLMessage)	
	 protocol	is	{	
	 	 (via	input	receive	SMLMessage	
	 	 via	output	receive	SMLMessage)*	
	 }	
	 behavior	is	{	
	 	 via	input	receive	rm	:	SMLMessage	
	 	 via	output	send	rm	
	 	 behavior()	
	 }	
}	
	
connector	Serial	is	abstraction()	{	
	 type	SMLMessage	is	Any	
	 connection	input	is	in	(SMLMessage)	
	 connection	output	is	out	(SMLMessage)	
	 protocol	is	{	
	 	 (via	input	receive	SMLMessage	

	
	

	
198	

	 	 via	output	receive	SMLMessage)*	
	 }	
	 behavior	is	{	
	 	 via	input	receive	rm	:	SMLMessage	
	 	 via	output	send	rm	
	 	 behavior()	
	 }	
}	
	
connector	TcpIp	is	abstraction()	{	
	 type	NMLMessage	is	Any	
	 connection	input	is	in	(NMLMessage)	
	 connection	output	is	out	(NMLMessage)	
	 protocol	is	{	
	 	 (via	input	receive	NMLMessage	
	 	 via	output	receive	NMLMessage)*	
	 }	
	 behavior	is	{	
	 	 via	input	receive	rm	:	NMLMessage	
	 	 via	output	send	rm	
	 	 behavior()	
	 }	
}	
	
architecture	RAMSES_DeploymentView	is	abstraction()	{	
	 behavior	is	{	
	 	 compose	{	
	 	 	 ON	is	OrdinaryNode()	
	 	 	 and	CH	is	ClusterHead()	
	 	 	 and	BS	is	BaseStation()	
	 	 	 and	GW	is	Gateway()	
	 	 	 and	AS	is	GlobalServer()	 	 	 	
	 	 	 and	zb	is	ZigBee()	
	 	 	 and	ser	is	Serial()	
	 	 	 and	tcp	is	TcpIp()	
	 	 }	where	{	
	 	 	 ON::radioOut	unifies	zb::input	
	 	 	 zb::output	unifies	ON::radioIn	
	 	 	 CH::radioOut	unifies	zb::input	
	 	 	 zb::output	unifies	CH::radioIn	
	 	 	 	
	 	 	 BS::serialOut	unifies	ser::input	
	 	 	 ser::output	unifies	BS::serialIn	
	 	 	 BS::radioOut	unifies	zb::input	
	 	 	 zb::output	unifies	BS::radioIn	
	 	 	 	
	 	 	 GW::serialOut	unifies	ser::input	
	 	 	 ser::output	unifies	GW::serialIn	
	 	 	 GW::tcpOut	unifies	tcp::input	
	 	 	 tcp::output	unifies	GW::tcpIn	
	 	 	 	
	 	 	 GS::tcpOut	unifies	tcp::input	
	 	 	 tcp::output	unifies	GS::tcpIn	
	 	 }	
	 }	 	
}	

