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RESUMO

MELO, Thiago Mendes de. On the collusion conditions in the indefinitely
repeated Prisoners’ Dilemma under different decision criteria – a compu-
tational approach. 2016. 64 f. Dissertação (Mestrado em Informática) - PPGI,
Instituto de Matemática, Instituto Tércio Pacitti de Aplicações e Pesquisas Com-
putacionais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

A competição entre empresas é uma parte essencial da operação dos mercados,
proporcionando inovação, produtividade e crescimento, que geram benefícios, criação
de riqueza e redução da pobreza. Competição, entretanto, tende a reduzir os lucros
totais das empresas. Como consequência, empresas tentam chegar a acordos através
de um comportamento chamado conluio. Embora um conluio possa aumentar os
lucros de empresas rivais, algumas delas podem explorá-lo em benefício próprio, ao
custo das demais empresas que obedecem o conluio. Para desencorajar esse tipo
de atitude, empresas em um conluio frequentemente fazem ameaças de retaliação
contra quaisquer desvios praticados pelas empresas participantes.

O estudo das condições em que conluios podem ser alcançados usando o Dilema
dos Prisioneiros Iterado (IPD) é de grande importância, não apenas para as empresas
rivais, mas também para as agências reguladoras. As condições para formação de
conluios encontradas na literatura consideram apenas um critério de racionalidade,
que consiste em escolher a consequência que traz a maior utilidade esperada dos
ganhos. Entretanto, condições para formação de conluio dependem fortemente das
racionalidades dos tomadores de decisão, que não estão limitadas à maximização da
utilidade esperada.

Esta dissertação tem dois objetivos: (1) propor um novo modelo para determinar
se a formação de um conluio é possível no IPD considerando diferentes critérios de
decisão além da utilidade esperada para mostrar, usando um conjunto de exemplos,
que as condições para formação de um conluio dependem fortemente dos critérios de
decisão utilizados pelos agentes; (2) mostrar que a aplicação de tais critérios requer,
na maior parte das vezes, cálculos muito elaborados, tornando-os quase inacessíveis
para o raciocínio humano apenas. Para utilizá-las com sucesso é necessário auxílio
de ferramentas computacionais. Como subproduto desta pesquisa, uma ajuda com-
putacional baseada na linguagem R foi criada para auxiliar no processo de seleção
das melhores ações a serem tomadas de acordo com cada critério.

Palavras-chave: teoria dos jogos. dilema dos prisioneiros iterado. teoria da de-
cisão. conluio



ABSTRACT

MELO, Thiago Mendes de. On the collusion conditions in the indefinitely
repeated Prisoners’ Dilemma under different decision criteria – a com-
putational approach. 2016. 64 f. Dissertation (Master in Computer Science) -
PPGI, Instituto de Matemática, Instituto Tércio Pacitti de Aplicações e Pesquisas
Computacionais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

Competition among firms is an essential part of the operation of markets, pro-
viding innovation, productivity and growth, all of which generate benefits, wealth
creation and reduction of poverty. Competition, on the other hand, tends to min-
imize firms’ total profits. As a consequence, firms try to engage in agreements in
a behaviour called collusion. Although collusion can increase competing firms prof-
itability, it can also be exploited by one of the competitors to its own advantage at
the expense of the other collusion obeying companies. To discourage this kind of
behaviour, colluding firms often pose threats to retaliate deviations by participant
companies.

The study of the conditions on which collusive behaviour can be achieved using
the Iterated Prisoners’ Dilemma, or IPD, turns out to be of great importance, not
only for the competing firms but also for regulating agencies. The conditions for
collusion formation found in the literature consider only one rationality criterion,
which consists in choosing the consequence that brings the largest expected utility
of the outcomes. However, conditions for collusion are highly dependant on decision
makers’ rationalities, which are not limited to expected utility maximization.

This dissertation has two objectives: (1) propose a new model for determining
whether collusion is possible in the IPD considering decision criteria other than just
expected utility to show, by using a set of examples, that the collusion conditions are
highly dependent on the rational decision criteria used by the agents; (2) to show
that the application of these criteria require, most of the time, rather elaborate
computations, making them almost inaccessible to human reasoning alone. Their
successful application requires support from computational tools. As a byproduct
of this research, a computational aid, based on the R language, was created to help
the process of selecting the best actions according to each criteria.

Keywords: game theory. iterated prisoners’ dilemma. decision theory. collusion
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1 INTRODUCTION

Competition among firms is an essential part of the operation of markets,

providing innovation, productivity and growth, all of which generate benefits such as

wealth creation and reduction of poverty. Economic models of oligopoly competition,

such as Cournot-Nash and Bertrand models [24], predict that, under circumstances

of perfect competition, firms total profit in equilibrium is lower than the monopoly

profits. This is due to the fact that maximization of profits of the competing firms

is achieved by the reduction of the competitor’s profit[6]. As a consequence, firms

try to engage in agreements, such that all competitors could increase their profits,

usually at the consumer’s expense. This type of behaviour is called collusion. Since

this kind of activity is harmful for consumers, regulation agencies provide many

rules intended to prevent price fixing and cartel formation (such as antitrust laws

and competition policy).

The oligopoly competition models, however, do not take into account the

(frequently) collusive behaviour that may arise among firms in the market [6]. We

can cite examples of collusion that are still found in some markets, such as in the oil

industry with OPEC – an example of explicit cartel – or in the danish ready-mixed

concrete market – an implicit cartel [1].

Although collusion can increase competing firms profitability, it can also be

exploited by one of the competitors to its own advantage at the expense of the other

collusion obeying companies. This is due to the fact that one firm may feel tempted

to lower its prices in order to obtain competitive advantage over its rivals, who

will be setting collusive, and, therefore, higher prices. To discourage this kind of

behaviour, colluding firms often pose threats to retaliate deviations by participant
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companies. Examples of threats are starting a price war or flooding the market,

both of which will reduce the profits of the deviant company [6].

Collusive behaviour can be achieved provided that the threats are both cred-

ible and sufficiently severe and that the value of the future payoffs is not discounted

too much [27]. This is due to the fact that firms in a market compete on a daily basis

and during indefinitely large periods of time. Under these circumstances, deviation

would lead to harmful financial consequences, while colluding could be beneficial for

them. The study of the conditions on which collusive behaviour can be achieved

(and maintained) turns out to be of great importance, not only for the competing

firms but also for regulating agencies trying to impede the occurrence of this type

of situation. The theoretical conditions for collusion can be studied using tools sup-

plied by game theory and decision theory (such as dominance, Nash equilibrium and

expected utility [22, 21, 16]).

Game theory is the study of mathematical models of interactions that aims

to understand how rational agents behave in situations in which their decisions are

interdependent [22, 20]. In economics, it plays a big role in helping to understand

competitive strategy, which includes situations of competition and collusion.

The Prisoners’ Dilemma (PD) is probably the most studied case in Game

Theory. This game and its variations, mainly the Iterated Prisoners’ Dilemma or

IPD, can be used to model collusive situations like the ones previously described,

such as cartel formation, R&D and advertisement investment. The application of

game theory concepts to these models makes it possible to determine the conditions

that make collusion possible (or not). The IPD will be the model for all collusion

situations presented in this study.

A very simple example can help understanding the situations where firms do
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make collusion agreements. Imagine that two supermarkets compete in the same

neighbourhood, they share the local market equally and have equivalent market

power. To attract more customers, either may offer discounts in its products, which

will earn it more profit by increasing its market share as long as it is the only

one to do so. If the two use the same strategy, however, they’ll be cutting down

their profit margin while keeping the same market share, which will result in loss

to both, thus making the cartel a reasonable option. To discourage deviations from

the cartel, each supermarket threatens to start a permanent price war if discounts

are ever offered. Because the game is repeated indefinitely, the payoffs of the firms

can be described as probability density functions (PDF). But how does one know if

a collusion is possible in this situation?

One can also look at the collusion formation matter as a decision problem

for the competing companies, as a choice between the best of two the alternatives,

either to collude or not. A generic decision problem D can be modeled as

D : A×B → C (1.1)

in which A is the set of possible actions the decision maker may take, B is the set

of possible states of the world, and C is the set of possible consequences [5].

The decision maker is supposed to choose an action in A such that, depending

on the state of the world B will lead to the desired outcome in C. If the state of the

world is known at the time of decision, then the decision problem is trivial: choose

the ai that provides the best consequence. But when the decision must be made

ex-ante, the problem is classified as a decision under uncertainty or decision under

risk depending the type of the knowledge available about the future states.

The decision maker is defined to be a rational person when he/she makes

choices that are always consistent with his/her preferences among the possible

outcomes[5]. This implies in the existence of a preference order relation in the
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set C. But, how does one define the preference order of the outcomes when they are

uncertain? Or, formally, how does one define a preference order when each conse-

quence is a random variable? Decision Theory provides several criteria (methods or

rules for basing decisions on) that can be used to choose among different alternatives

[9], both under uncertainty and under risk. So how does one define if a collusive

engagement is possible under each different criteria?

The conditions for collusion formation found in the literature consider only

one rationality criterion, which consists in choosing the consequence that brings

the largest expected utility of the PDF of the consequences [27, 6, 34]. Nothing

exceptional to this fact, since von Neumann proved that, under some conditions,

the criterion of maximum expected utility is the optimal choice for a rational agent

[22]. On the other hand, the criterion can be difficult (or impossible) to use, because

it relies on the knowledge of the preference curve of all agents, which is rarely the

case in real world situations [16]. Also, the probability distribution of the payoffs

can be quite skewed, which may also make this metric of limited help to the decision

maker whose decisions take into account a risk perspective [28].

The first objective of this dissertation is to propose a new model for de-

termining whether collusion is possible in the IPD. A model considering decision

criteria (methods of choosing among alternatives) other than expected utility. We

show, through a set of examples, that the collusion conditions are highly dependent

on the decision criteria used by the agents. Although these conditions are depen-

dent on very personal views of the world, provided that the agent uses them in a

consistent manner, they must also be considered as rational. As a result, in the

same situation, one criterion would lead to collusion and another to defection. The

second objective is to show that the application of these criteria requires, most of

the time, rather elaborate computations, making them almost inaccessible to human

reasoning alone. Their successful application requires support from computational
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tools. As a byproduct of this research, a computational framework, based on the R

language, was created for helping the process of selecting the best actions according

to each criteria.

This dissertation is organized as follows: section 2 describes the conceptual

framework, presenting an overview of Game Theory concepts used in the analysis

presented here, the formal definition of an IPD and the decision methods utilized

in this study; section 3 presents an example of an IPD situation, shows the solu-

tions based on the different decision criteria presented and shows the computational

approach used to achieve the results presented in this study; section 4 compares

our study to its related works; finally, section 5 presents the conclusions and final

remarks.
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2 CONCEPTUAL FRAMEWORK

2.1 GAME THEORY

2.1.1 Fundamentals of Game Theory

Game Theory can be shortly defined as the study of mathematical models

designed for analysing situations in which rational individuals make decisions that

influence one another’s welfare, in other words, they’re mutually interdependent.

These situations are called games, the individuals are called players and the main

goal of game theory is to understand players’ behaviour in the games [20, 27].

The complete definition of a game requires the knowledge of: who the players

are, what are the actions available for each player, the payoffs for each possible

combination of choices made by the players and, sometimes, the chronological order

of the actions taken. Thus, a strategic game model contains the basic elements as

follows:

Definition 1 (Players) N = {P1, P2, . . . , Pn} where N is a finite set of play-

ers. The players in a game are decision-maker agents whose behaviors dictate their

choices. In order to establish interaction between strategies, or mutual interdepen-

dence, at least two players are required to compete in a game.

Definition 2 (Strategies) Si = {s1, s2, . . . , sn} is the finite set of pure strategies

for player i. Let S ′i =
∏
(Si) be the finite set of mixed strategies for players except

i. If
∏
(X) be the set of all probability functions over a set X, then S ′i is the set
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of mixed strategies for player i. A strategy is an entire description of how a player

could behave in response to what can be observed about its opponents’ actions during a

game. A game is considered symmetric when the set of pure strategies is identical for

all players, and the payoff to playing a given strategy depends only on the strategies

being played, not on who plays them.

Definition 3 (Strategy profiles) Let Sp = {S1 × S2 × · · · × Sn} be she set of

strategy profiles. The set Sp of strategy profiles is the Cartesian product of the S ′is,

consisting of every possible game combination.

Definition 4 (Utility function) Then (ui : Sp → R) is the utility function for

player i. An utility function represents a player’s preference relation over each

strategy profile. Given that this study involves monetary rewards as outcomes, e.g.

profits, a payoff function is suitable to evaluate them. In general, rational players

are induced and stimulated to prefer higher payoffs, and naturally choose a strategy

profile that promotes the maximization of their utilities.

A basic assumption of Game Theory is that players are rational, meaning that

they are supposed to act in their own self-interest with the objective of maximizing

the expected utility of their own payoffs and not caring about the payoffs of others

[27]. This is the rationality principle described by maximization of utility [22].

Determining the best strategy in each situation, however, depends on the

context or essence of the game, which may involve cooperation or competition. When

cooperation exists, players can assume binding and enforceable commitments with

one another, so that real intentions of each individual are flagged and formalized.

By contrast, in a non-cooperative game, players need to conceal their strategies
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from each other, making them individualistic by nature and thus resembling the

real world competition environment between companies [27].

2.1.2 Static Games and the Prisoners’ Dilemma

In a static game, decisions are made in isolation, that is, without knowledge

of others’ decisions. Since players do not have information about which strategy

has been adopted by their opponents, these are, inherently, games of imperfect

information [27]. In addition, these games are predominantly represented in normal

(matrix) form, since the amount of information available to players is constant within

a game (no information is obtained during its course), and timing of decisions has

no effect on players’ choices [27]. A common interpretation of a static game is that

it models a unique event, also called stage game or one-off game [27].

The widely discussed static game called "The Prisoners’ Dilemma" describes

a game with prison sentence rewards (thus the reason for its name) [26]. The

dilemma’s description is given as follows: two members of a criminal gang are ar-

rested and placed under solitary confinement, unable to communicate with each

other. The police doesn’t have enough evidence to convict them on the main charge

and thus the officer makes the same offer to each prisoner, saying that if he/she

accuses his/her partner then he/she will be set free while the accused will spend

three years in jail on the main charge. However, if both accuse each other, the two

will be sentenced to two years in prison. On the other hand, if both stay silent, they

will be be sentenced to one year in jail on a minimum charge. So the prisoners need

to choose between accusing their partner or staying silent.

This game can be described by its players, their possible actions (accuse, stay

silent) and the payoffs for each situation, and can be represented in the form of a
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table such as in Table 2.1. This is called a normal form representation [27].

Prisoner 2
Staying Silent Accusing

Prisoner 1 Staying Silent -1, -1 -3, 0
Accusing 0, -3 -2, -2

Table 2.1: The Prisoners’ Dilemma in Normal Form.

The game table shows in each cell the number of years in jail (negative value

of the sentences being imposed) with the first number being outcome for the first

prisoner followed by the outcome for the second. For example, if both testify against

each other, the outcome will be two years in prison (-2) for each one of them, while

unilateral betrayal gives the accuser a payoff of liberty (0) whilst the accused has to

spend three years (-3) in prison.

Assuming that both prisoners are rational, each one will reason as follows:

"my partner has only two choices, if he chooses to give me up to the police (accusing),

I will be better off turning him in as well (accusing); on the other hand, if he chooses

to keep quiet (staying silent), I will still be better off by turning him in (accusing).

So, my best decision, independently of what he does, is to accuse him". The same

chain of reasoning occurs to the second prisoner and so the predicted behavior to

the dilemma is both prisoners accusing each other and thus spending two years in

jail each.

For a game to be a Prisoners’ Dilemma it has to be configured such as shown

in Table 2.2, in which Collusion and Defection are the possible strategies and the

payoffs T for temptation, R for reward, P for punishment and S for sucker. The re-

lation between these payoffs must be T > R > P > S, although it is also acceptable

if T ≥ R > P > S or yet T > R > P ≥ S [14].
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Player 2
Collusion Defection

Player 1 Collusion R, R S, T
Defection T, S P, P

Table 2.2: Symmetric game of the Prisoners’ Dilemma class.

2.1.3 Solution of a Game

A solution to a game is a way of predicting how it will be played and giving

its result through a description of the strategies adopted by all players [27]. It is a

systematic description of the outcomes that may emerge in a game [25]. There are

some different ways of finding solutions to games.

As observed in the prisoners’ reasoning in section 2.1.2, since accusing always

gives a better payoff than staying silent despite the other player’s strategy, the

former is said to be a strictly dominant strategy whilst the latter is said to be

strictly dominated.

In certain types of games, however, the strict dominance concept may not

predict a unique solution when strictly dominated strategies are non-existent, thus

iterated elimination cannot be employed. On the other hand, every game with a

finite number of players that may choose from among a finite number of strategies

has at least one Nash Equilibrium [21]. Players are in Nash equilibrium if they are

choosing their best responses in relation to each other players’ choices and no player

has incentive to change his/her strategy. In other words, no player can be made

better-off by changing his/her strategy unilaterally [27].

In a Prisoners’ Dilemma Game, the Nash Equilibrium is that none of the

players (given that both are rational) will collude with each other, which makes this

situation not Pareto efficient, because both could have better payoffs if they both
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changed strategies and colluded. But for that to happen, they would have to choose

a strategy that is dominated and thus risk having serious losses in their payoffs if

the other player defects. That’s why it is called a dilemma.

2.1.4 Dynamic Games and the Iterated Prisoners’ Dilemma

Games can be dynamic if at least one player is able to observe the actions

of others and thus condition his/her strategy accordingly. A game can be dynamic

if decisions are not simultaneous and some player(s) know others’ choices before

having to move, or if a static game is repeated a number of times and players can

learn from their previous interactions. Being able to conditioning optimal actions

on what other players have done in the past is an essential feature of all dynamic

games [27].

Another aspect of dynamic games is that players can pose threats or make

promises as a form of trying to prevent undesired behaviour from other players.

When considering this kind of maneuver, it’s fundamental that these threats and

promises are credible or believable, meaning that it’s in the player’s interest to carry

it out at the appropriate time. Therefore, credibility is another important concept,

since rational players will only believe in credible statements [27].

Situations like the one in the Prisoners’ Dilemma, in which the equilibrium

is not Pareto efficient can be avoided if games are repeated a sufficient number of

times. If a Prisoners’ Dilemma class game is repeated a number of times, it is called

Iterated Prisoners’ Dilemma or IPD.

These sort of dilemmas are more common than they appear to be. In modern

economy, for example, IPD situations can be found in cartel formation, advertising
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and marketing expenditures; and new product or technology development. Not to

mention applications in other areas, such as public relations and animal behaviour

[32, 7].

If a Prisoners’ Dilemma class game is played only once, the Nash equilibrium

for both players is to defect, which is not the Pareto efficient solution. However, if

this situation is repeated, then it could be more profitable if both players colluded.

This can be achieved by establishing a punishment strategy of permanently changing

the strategy to defection if one of the players tries to defect, thus discouraging selfish

behaviour. This is called a trigger strategy because it is activated by an action

performed by either of the players, and the punishment strategy is known as grim

because it changes permanently the players’ strategies [27].

Let us consider the case where the game is played an infinite number of times

and payoffs are discounted in the future, which makes future values less interesting

than the current ones. This can be expressed by discounting future values by a

factor discount rate 0.0 < δ < 1.0. This means that, some value V at time k will be

worth V δk.

The payoffs obtained by the player in an IPD can then be expressed as:

Collusion Payoff =R +Rδ +Rδ2 + ... =
∑∞

i=0Rδ
i = R

1−δ

Defection Payoff=T + Pδ + Pδ2 + ... = T +
∑∞

i=1 Pδ
i = T + Pδ

1−δ

Expected value solution says that collusive behaviour is possible if
R

1− δ
≥ T +

Pδ

1− δ
(2.1)

with δ = 1/(1 + t), where t the interest rate.
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Alternatively, the IPD can be repeated an indefinite number of times by

adding a stochastic component to its structure, such as a probability p (which is

beyond the control of either player) that the game will finish by the end of each

round. This way, the end of the game is no longer known by the players and the

discount rate used in equation 2.1 is now evaluated as δ = (1 − p)/(1 + t) (for a

derivation of this formula see Appendix A).

2.2 DECISION THEORY

2.2.1 Fundamentals of Decision Theory

Decision Theory can be defined as a set of knowledge, concepts and analytical

techniques developed to describe the rational process of decision making in order to

help understand it and help decision makers make the best choice when faced with

multiple possible alternatives [19].

Decision making is a process consisting of the following steps: problem specifi-

cation, developing the alternatives, describing the consequences, relating alternatives

to consequences and, finally, making the decision [9].

The decision situations we consider are cases in which a decision maker has

to choose between a list of mutually exclusive options. In other words, from among

the alternatives, one and only one choice can be made. Each of these choices might

have one or more possible consequences that are beyond the control of the decision

maker, which, again, are mutually exclusive.

Decision theory can be distinguished between decision under uncertainty and

decision under risk. For example, when a gamble consists of rolling a fair die,
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the probability of it landing on any face is known to be p = 1/6, making this a

problem of decision under risk, but when the gamble consists of rolling an unbalanced

die, the probabilities associated to it landing on each face are no longer known,

they’re uncertain and thus this is a problem of decision under uncertainty [16]. Risk

can be measured and is defined by a pair of values (x, p(x)), while uncertainty is

immeasurable, because the probabilities of each event are not known [12].

There are lots of different methods for evaluating risky assets. Some are very

popular, such as mean-variance analysis, semi-variance analysis and value-at-risk

[16]. However, these methods can be too subjective to analyse the situations in this

study (requiring that the decision-maker establishes a threshold value associated

with the risk) and therefore are not very suited for this purpose. Considering this,

the chosen methods that will be used in the analysis in this study are presented in

the following subsections.

2.2.2 Decision making under uncertainty

When facing a situation in which the outcome of the game is uncertain, mean-

ing that there are no probabilities associated to what might happen, the principle of

indifference (principle of insufficient reason) [11] states that all events are considered

equally probable because there is no evidence that one of them has higher chance

of occurring. In these situations, a player may choose among a number of different

criteria to decide his/her course of action. They are:
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2.2.2.1 Maximin

Here, the decision rule is to consider the worst consequence of each possible

course of action and choose the one that has the least worst consequence. It is the

most pessimistic decision to be used; therefore the chosen strategy is the one that

maximizes the outcome for the worst-case situation [5].

2.2.2.2 Maximax

The very opposite of Maximin, this is the most optimistic rule to look at, as

the decision maker considers the best possible outcome for each course of action and

chooses one that gives the maximum outcome [5].

2.2.2.3 Minimax regret

"Regret" (also referred as "opportunity loss") is defined as the difference

between what we actually get and the best position that we could have gotten if

a different course of action had been taken. The minimum regret is evaluated by

listing the maximum amount of regret for each possible strategy and selecting the

one that corresponds to the minimum [29, 5].

2.2.3 Decision making under risk

When the probabilities associated to each possible outcome in a game can

be measured, then we have decision under risk. In this study, only the following

criteria will be covered:
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2.2.3.1 Expected value

Consider a lottery L = {p1x1, p2x2, . . . , pnxn} where pi is the probability of

payoff xi be obtained. The expected value E[X] of this lottery is the weighted mean

of the possible payoffs (calculated as in equation 2.2) and determines the average

payoff a player would get if he/she played the lottery an infinite number of times

[18].

E[X] =
n∑
i=1

pixi (2.2)

2.2.3.2 Expected utility

This criterion is defined by expected utility theory [22] and takes into consid-

eration decision maker’s risk attitude [4], which follows a utility function. A decision

maker’s risk attitude can be determined by the minimum value they would trade a

risky asset for. This minimum value is called the certainty equivalent (ce) of that

asset. If a lottery L has an expected payoff of E[X], then the decision maker is

risk-averse if his certainty equivalent is ce < E[X], risk-neutral if ce = E[X] and

risk-seeking if ce > E[X]. Expected utility theory gives the optimal decision if the

decision maker follows certain axioms [22].

The way to calculate the expected utility payoff is very similar to calculat-

ing the expected value, but considering the utility function instead of the abso-

lute payoff. It is given by E[X] =
∑∞

i=1 U(xi)pi for discrete distributions and by

E[X] =
∫∞
−∞ U(x)dF (x) for continuous distributions, where F (x) is the cumulative

distribution function (CDF) of the distribution.
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2.2.3.3 Stochastic dominance

Roughly speaking, one lottery A is said to dominate another lottery B if

A gives at least as good result as B for each probability p according to a utility

function U(x). For example, if there is a lottery L and $1 is added to each of its

payoffs, then the new lottery dominates the old one.

Stochastic dominance decision rules are, thus, used to determine whether a

lottery dominates another. They consist of two phases: one objective phase, in which

lotteries are evaluated and dominated ones are deemed inefficient and eliminated;

and one subjective phase, in which lotteries that are not dominated are evaluated by

the decision maker [16]. They only require knowledge of the distributions’ CDFs.

For second-order or higher stochastic dominance, the decision maker’s risk attitude

is also required because each rule is meant for a determined risk attitude.

First-order stochastic dominance (FSD) describes that, for every non-decreasing

utility function (i.e. any utility function U(x) with U ′(x) ≥ 0 and a strict inequality

at some x), lottery A dominates lottery B if, given their cumulative distribution

functions FA(x) and FB(x),

FA(x) ≤ FB(x) (2.3)

for all x with a strict inequality at some x. This means that, for every payoff x,

A has at least as high probability of giving at least x than lottery B [16]. The

probability of getting a value higher than x in B is given by 1 − FB(x), and the

probability of getting higher than x in A is given by 1 − FA(x). Thus, graphically,

FA would have to be below FB for the condition (1 − FA(x)) > (1 − FB(x)) to be

satisfied and for FSD to exist.

Second-order stochastic dominance (SSD) describes that, for every non-decreasing

concave (implying risk-aversion) [16] utility function (i.e. any utility function U with
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U ′(x) ≥ 0 and U”(x) ≤ 0 with strict inequality in at least one x), lottery A domi-

nates lottery B if, given their cumulative distribution functions FA(x) and FB(x),∫ x

−∞
[FB(t)− FA(t)]dt ≥ 0 (2.4)

for all x with a strict inequality at some x. This means that the area below FB must

be greater or at least equal to that below FA for every value of x from the lower

values to the higher ones [16].

Risk-seeking stochastic dominance (RSD) is similar to SSD, but with convex

utility functions, or U”(x) ≥ 0 (implying risk-seeking behaviour) [16] and is defined

by ∫ ∞
x

[FB(t)− FA(t)]dt ≥ 0 (2.5)

meaning that the area below FB must be greater or at least equal to that below FA

for every value of x from the higher values of the distribution to the lower ones [16].

2.2.3.4 Prospect theory criterion

Based on Prospect Theory [10], this criterion also considers risk profiles,

but argues that expected utility theory’s results do not reflect on real life decision

situations because it ignores two factors: individuals tend to overweight outcomes

that are certain in relation to outcomes which are only probable (certainty effect)

and generally overweight small probabilities in relation to large ones (probability

weighting). These two elements help explain things such as gambling with small

probabilities of winning and insurance [10].

Prospect Theory argues that people are generally risk-averse for gains and

risk-seeking for losses. A latter version of the theory, called Cumulative Prospect

Theory (CPT) [33] made it possible to calculate the certainty equivalent of multiple-
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outcome lotteries. For more information on how to find the CPT value of a asset

see Appendix B.
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3 COLLUSION CONDITIONS IN THE IPD

In this section, an example will be described which will be the object of the

analysis throughout the following subsections. First, game theory concepts will be

used to model the situation in the form of a game, which will help in the latter

analysis. Afterwards, decision theory concepts will be used to show the collusion

conditions, first under uncertainty and then under risk. Results found will be com-

pared to show how each decision criteria influences in the collusion conditions in the

IPD.

The figures shown throughout this section were produced using the R package

that was created for this study (see section 3.4 for more information). Mostly, they

are graphs comparing the values obtained with defection to those obtained with a

collusion (according to each decision criteria) intended to illustrate which strategy

is preferred in a given scenario (with different probabilities of the game ending and

different interest rates).

3.1 EXAMPLE

Since the intent of this study is to analyse situations as close to reality as

possible, the following example contains outcomes for both gains and losses because,

in real life, most of the investment decision problems have probability distributions

that include chances of gains as well as chances of losses [17].

Consider an hypothetical situation in which two supermarkets compete in

the same neighbourhood. Both are equivalent in size, have the same market share
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and are interested in increasing their own profit. To that end, they can lower their

prices in order to attract more customers, thus increasing their sales at the cost

of their profit margin, which gives them a competitive advantage over their rival.

However, this strategy is costly and can only be profitable for the supermarket if it

is the only one to lower the prices, meaning that if both do so, they’ll keep the same

market share and will have their profit margin reduced, which will result in loss for

both of them. The alternative is for both to form a cartel, thus keeping their market

shares and their profit margins unchanged. The payoffs of the supermarkets’ game

are shown in Table 3.1.

Supermarket 2
Cartel Lower Prices

Supermarket 1 Cartel 3, 3 -2, 5
Lower Prices 5, -2 -1, -1

Table 3.1: Supermarkets’ game in normal form.

Imagine that this scenario is repeated every week and the supermarkets make

their sales plan in the beginning of each week. Both also have some trouble with the

tax inspection, meaning that there’s a probability p = 10% that, at the end each

the week, one of them may suffer an intervention and be forced to close, in which

case the game ends. Payoffs are subject to an interest rate of t = 5%.

To keep a non-cooperative collusion, supermarket 1 threatens supermarket

2 by stating that if 2 chooses to lower its prices, it will retaliate by lowering its

own forever onwards, using a grim trigger strategy. This is a credible threat and,

therefore, sufficient to keep a non-cooperative collusion. Let’s also assume that

supermarket 1 and supermarket 2 have the same rationality (thus using the same

decision criteria) and both know that.

This situation can be seen as an IPD class game where the collusion strategy

is the one of forming a cartel whilst the defection strategy is the one of lowering
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prices trying to get more customers.

3.2 COLLUSION CONDITIONS UNDER UNCERTAINTY

Now, the scenario previously described will be analysed to find the collusion

conditions when using decision under uncertainty criteria. When we apply each

of the uncertainty criteria to the one-off Prisoners’ Dilemma, the solution is the

same for all of them: the best strategy is to defect and lower the prices. This

happens because the strategy of defecting strictly dominates the one of colluding

and forming a cartel. But when considering a repeated version of the game, the

value of the future influences in the decision and new payoff tables (Table 3.2 and

Table 3.3, both portraying supermarket 1’s point of view with δ = 1/(1 + t)) must

be considered.

When deciding under uncertainty, the probability of the game lasting one

round or lasting infinitely is considered to be the same, and thus analyzing these

two extremes is enough to determine which is the best strategy according to each

uncertainty criterion.

3.2.1 Maximax criterion

Since maximax is an optimistic approach, it assumes that the other player will

be willing to collude and form a cartel (which is the best-case scenario). Therefore,

this criterion chooses from the maximum between a series of collusions (if the game

lasts indefinitely) or a single defection (if the game ends in one round), such as

shown in Table 3.2 (where max(A,B) means the maximum value between A and

B).
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P2
Collusion

P1 Collusion max
(
R

1−δ , R
)

Defection max
(
T + Pδ

1−δ , T
)

Table 3.2: Maximax view of an IPD.

Note that the values of T , R, P and S can be all positive, all negative or

mixed as long as they satisfy the conditions shown in the end of section 2.1.2.

When using maximax, collusion is possible if the maximum value obtained

from collusion is greater than the maximum value obtained from defection. Applying

this criterion to the example of the supermarkets’ game, the maximum value gained

from collusion would be max(3/(1 − δ), 3) (63 if the game lasts indefinitely and 3

if it lasts one round) with, which would result in max(63, 3) = 63. The maximum

value gained from defection would be max(5 + (−1δ/(1 + δ)), 5), which resolves to

max(5,−15) = 5. In this case, the best option is clearly to collude, because in the

best-case scenario, it gives a higher payoff.

3.2.2 Maximin criterion

Maximin, on the other hand, is a pessimistic approach. Therefore, it assumes

that the other player is willing to defect and lower its prices (which is the worst-

case scenario) and since the best response to a defection is also to defect, then the

solution is that both players will defect and lower their prices, making the formation

of a cartel impossible. Analytically, this is shown by the fact that P > S (see section

2.1.2) and so P+Pδ/(1−δ) > S+Pδ/(1−δ), thus defection rules out any possibility

of collusion because colluding would always give one S in the first round.

In the supermarkets’ game, for example, if maximin is used and supermarket
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P2
Defection

P1 Collusion max
(
S + Pδ

1−δ , S
)

Defection max
(
P

1−δ , P
)

Table 3.3: Maximin view of an IPD.

1 is sure that 2 will lower its prices, it needs to choose between lowering its prices too,

getting −1 (P ) in the first round and the value of P discounted in all the following

rounds, or getting −2 (S) for sure and receive the punishment P discounted in all

the following rounds. Since P > S, lowering the prices is the best choice.

3.2.3 Minimax regret criterion

Minimax regret is called an opportunistic approach because it chooses the

least regrettable option, with regret being the difference between the most desirable

outcome and the actual gain in a given scenario. Thus, minimax regret combines

Table 3.2 and Table 3.3 and sees the regret associated to each situation. In this

case, a cartel is only possible if

max

(
R

1− δ
, R

)
> max(T +

Pδ

1− δ
, T )

and[
max

(
R

1− δ
, R

)
−max

(
T − Pδ
1− δ

, T

)]
> (P − S)

(3.1)

otherwise defection is the best option and the supermarkets will lower its prices (see

Appendix C for more detailed explanation).

In the supermarkets’ game, for example, according to the maximax the best

strategy is to collude (gives a payoff of 63 against a maximum 5 from defecting)

and according to the maximin the best strategy is to defect (gives −1 against −2
from colluding). The regret of not choosing collusion when the best-case scenario
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(maximax) occurs is 63− 5 = 58 and the regret of not choosing defection when the

worst-case scenario (maximin) occurs is −1 − (−2) = 1. Since the regret of not

choosing collusion is higher and the objective of this criterion is to minimize regret,

collusion is the preferred strategy.

Although this is an interesting example on how decision criteria could influ-

ence collusion conditions in the IPD, these criteria assume all outcomes as equiprob-

able. Since they do not consider the probability associated to each event, they are

not very suited for situations in which the probabilities are known to be different,

which are the most common cases.

3.3 COLLUSION CONDITIONS UNDER RISK

Since the distribution of the payoffs is usually described by a probability

function, decision under risk criteria can be used to determine which are the con-

ditions for collusion in each situation. Figure 3.1 shows the PDFs of each strategy

(collusion and defection) with the horizontal axis (value) being the possible payoffs

and the vertical axis being the probability of getting that payoff. Thus, the collusion

distribution given by Ci =
(∑i

k=1Rδ
(i−1); p(1− p)(i−1)

)
and defection distribution

by D1 = (T, p) and Di =
(∑i

k=2 Pδ
i−1; p(1− p)(i−1)

)
.

3.3.1 Expected value criterion

The expected payoffs obtained with each strategy are shown in section 2.1.4

and the collusion conditions under expected value criterion are described in equation

2.1. However, now the probability p of the game ending must be accounted for and

so the value of the discount rate is δ = (1 − p)/(1 + t). If the condition exposed
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Figure 3.1: PDF of the payoffs for collusion(C) and defection(D) with T=5, R=3,
P=-1, p=10% and t=5%.

in equation 2.1 is not satisfied, then the equilibrium is mutual defection and both

supermarkets will lower their prices. In the case of the supermarkets’ game, the

condition would be

3

1− δ
> 5 +

−1δ
1− δ

(3.2)

which resolves to δ > 1/3, meaning that δ has to be greater than approxi-

mately 0.33 for a cartel to be the best strategy for both supermarkets according to

the expected value criterion. Since δ = (1− 0.1)/(1+ 0.05) ≈ 0.86, then collusion is

possible and a cartel will be formed.

To illustrate how the criterion works, if we change the value of R to 2 and

the value of P to 1, then δ has to be greater than 0.75 for collusion to happen. But

if we change the values of p to 20% and t to 10%, for example, then δ ≈ 0.72, which

is lower than 0.75 and so collusion is not possible and the supermarkets will lower

their prices.
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Nevertheless, people rarely consider only the mean value when making a

decision because the probability distribution may be quite skewed and the mean

may not have much significance (such as in the St. Petersburg Paradox [4], where

the expected value is infinite). There are also matters such as the form of the

distribution or the risk of loss that should also be considered.

3.3.2 Expected utility criterion

Utility theory states that individuals have particular utilities for different

values, which gives each one a utility function. If there is complete information on

preferences (i.e. the utility function U(x) is known), then it is simple to calculate

the maximum expected utility of a lottery.

If there is complete information and the utility function is known, then the ex-

pected utility of both strategies can be calculated such as shown under expected util-

ity in section 2.2.3. E[U(XC)] being the expected utility of collusion and E[U(XD)]

being that of defection, if the former is greater than the latter, then collusion is the

best strategy. Thus, if supermarket 1 knows supermarket’s 2 utility function U(x),

it could use the PDF of the distributions (Figure 3.1) to calculate the expected

utility for each strategy and then identify which one supermarket 2 will choose.

One problem that arises when trying to identify the collusion conditions when

both players intend to maximize expected utility is that they hardly ever have the

same utility functions. In the oil cartel (OPEC), for example, each country has

its own political positions and needs, which vary in terms of wealth, population, re-

sources, etc, and thus, different utilities for the price of the oil barrel [35]. Therefore,

it can happen that in the same situation the best strategy for one decision maker is

not the best strategy for another.
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Some examples of different utility functions and their effects on the preferred

strategies in the supermarkets’ game are shown in Figure 3.2. To plot the graph,

the expected value of each strategy (collusion and defection) were calculated and

whichever one had the greatest value was considered the preferred strategy. The light

areas represent the regions where collusion is possible (i.e. E[U(XC)] > E[U(XD)])

while the dark areas represent the regions where defection is the best strategy (i.e.

E[U(XD)] > E[U(XC)]) according to each utility function.

Figure 3.2: Collusion regions of the EU for the functions g(x) = x3, f(x) = x and
exp(x) = 1− e−x with T = 5, R = 3 and T = −1.

Utility functions with different concavities (see Figure 3.3) and thus different

risk attitudes were used to show how variations in the utility can result in different

collusion conditions for the same distributions. This shows that collusion may not

arise if the decision problem falls in the domain where one of the players’ best

strategy is to defect even if the other’s best strategy is to collude.

Table 3.4 gives an idea of how expected utility can affect the payoffs in the

supermarkets’ game. It is the same as Table 3.1 shown in section 3.1 but with

the transformed values of T , R, P and S if supermarket 1 utility function were

exp(x) = 1− e−x and supermarket 2 utility function were g(x) = x3.

To show how different utility functions can influence in the chosen strategy,

suppose that in the supermarket’s game the value of T = 5, R = 1 and P = −1.
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Figure 3.3: Utility functions’ concavities of (A) x3, (B) x and (C) exp(x) for the
payoffs collusion (C) and defection (D) in the supermarkets’ game.

Supermarket 2 U2(x) = x3

Collusion Defection
Supermarket 1 U1(x) = 1− e−x Collusion 0.95, 27 -6.39, 125

Defection 0.99, -8 -1.72, -1

Table 3.4: Supermarkets’ game with transformed values according to expected utility
functions exp(x) = 1− e−x and g(x) = x3.

Suppose also that the supermarkets know the tax inspection is tightening their

surveillance and thus the probability of one of them being inspected and closed is

p = 35%. Interest rate is still t = 5%. Imagine that supermarket 1 has a utility

function U(x) = 1− e−x and supermarket 2 has a utility function U(x) = x.

Finding the PDF for each strategy’s distribution and calculating the expected

utility one can find that, for supermarket 2, E[U(XC)] ≈ 2.63 and E[U(XD)] ≈ 3.38,

making lowering prices the best strategy for it. As for supermarket 1, E[U(XC)] ≈
0.83 and E[U(XD)] ≈ −1.14, making a cartel the best option. This situation shows

that, under the same circumstances, it can happen that two decision makers choose

different strategies because they have different utility functions.

To be able to use expected utility to solve a decision problem, the utility

function of the decision maker must be known. If, however, there is not complete
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information and the utility function is not known, it can be really difficult to compare

different lotteries [16]. There is also a possibility that people’s decisions may violate

expected utility theory axioms, such as the examples shown in Prospect Theory [10],

which means that people don’t always follow the rationality principle described by

Expected Utility Theory.

3.3.3 Stochastic dominance criterion

Through the PDF (Table 3.1) of the distributions it is possible to find the

CDF for each of them (Figure 3.4). Once again the horizontal axis (value) are the

possible payoffs and the vertical axis being the cumulative probability of that payoff

(i.e. the probability with which one can get a value less or equal that payoff).

Figure 3.4: CDF of the payoff for collusion (C) and defection (D) with T=5, R=3,
P=-1, p=10% and t=5%.

Using the criteria of stochastic dominance it is possible to determine which

is the best strategy without knowledge of the utility function and knowing only the

distribution. Applying the concepts shown in section 2.2.3, by examining the CDFs

of both distributions (Figure 3.4) of the supermarkets’ game, it is plain to see that
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collusion dominates defection by first-order dominance (because for any value X

in both distributions, the probability of one supermarket getting at least X with

collusion is always greater than with defection [16]) and thus, cartel formation is the

best alternative.

The graphs that follow (Figures 3.5, 3.6 and 3.7) were plotted in a way that, if

collusion dominates defection, then it is the preferred strategy and the area is marked

with a ’C’. If it is the other way around, then the area is marked with a ’D’. If there

is no dominance, then one cannot determine which one is the preferred strategy by

objective means and thus the area is marked with a ’ND’ for ’no dominance’.

Figure 3.5 shows the dominance in the supermarkets’ game according to FSD.

The areas enclosed between the origin and the curve are the regions where collusion

dominates defection, whereas the outer areas represent no dominance between the

two strategies. The regions where no dominance exists represent situations in which

the decision maker cannot decide the best strategy by objective means, thus making

it necessary to subjectively choose between his/her options.

Figure 3.5: Dominance regions of collusion (C) and no dominance (ND) by FSD
with T=5, R=3 and P=-1.

Although stochastic dominance can be used under incomplete information
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requiring only the risk-attitude of the decision maker, it allows only partial order-

ing, meaning that if there is no dominance then the different options can only be

ranked by subjective means. Also, different risk profiles can render different results

according to stochastic dominance decision rules.

For example, imagine that T = 5, R = 2 and P = −1 and supermarket 1

is risk-averse while supermarket 2 is risk-seeking. In this situation, 1 will have a

collusion region such as that shown in Figure 3.6, while 2 will have one like Figure

3.7. Imagine now that p = 40% and t = 5%. In this case, the decision problem will

fall in the domain in which, for supermarket 1, there exists no dominance, while for

supermarket 2 collusion dominates defection. So 2 will be willing to collude, but it

doesn’t know what 1 will do, making it impossible to predict whether there will be

collusion or not.

Figure 3.6: Dominant strategies’ regions by SSD for the values of T=5, R=2 and
P=-1. ’C’ stands for collusion, ’D’ for defection and ’ND’ for no dominance.

This shows that variations in the risk profile can alter the collusion conditions

and that it is only possible to predict if players will collude if the colluding strategy

is the best option for both of them, otherwise subjective means will determine the

outcome of the game and thus the solution won’t depend on stochastic dominance

decision rules alone.
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Figure 3.7: Collusion/defection regions by RSD for the values of T=5, R=2 and
P=-1. ’C’ stands for collusion, ’D’ for defection and ’ND’ for no dominance.

3.3.4 Cumulative prospect theory based criterion

The CPT method offers a function claimed to be a good approximation to

most individual’s preferences. Since calculating the value or the certainty equivalent

of a lottery through CPT can be difficult because of the algorithm used and the many

variables involved, a computational approach is of great help. After calculating the

CPT value of each strategy, the one with the higher value is the preferred one.

Consider the example of the supermarkets’ game where T = 5, R = 1,

P = −1, t = 5% and p = 40%. In this situation, using the expected value criterion,

collusion is possible if δ > 0.67, but in this case δ = 0.57 and thus defection is the

best decision. Using the CPT criterion, however, the value of cooperation is 2.27

against 2.17 of defection (these values can be calculated as shown in Appendice B),

and so the best strategy is to collude. This happens because in the CPT values are

transformed and probabilities are distorted, thus, even though there’s a reasonably

high probability of getting a payoff of 5 in the first round with defection followed by

low probabilities of negative values, these low probabilities are over-weighted and,
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because of the loss aversion, collusion is slightly preferred.

Even though CPT describes a S-shaped utility function, it allows that each

decision maker use his/her own parameters to describe his/her preference curve.

Because of that, it may be that two decision makers using the CPT may have

different opinions in relation to the same decision problem. An example of such case

is shown in Figure 3.8, which pictures two different CPT value functions applied to

the supermarkets’ game. For each curve (A and B) the CPT value of each strategy

was calculated. If the CPT value of cooperation is greater than that of defection,

then cooperation is the preferred strategy and vice versa. Thus, the light area below

the curve represents the region where collusion is possible (because colluding is the

preferred strategy) while the dark area above represents the region where defection

is the preferred strategy and thus collusion is not possible.

Figure 3.8: Collusion/defection regions by CPT criterion with T=5, R=3 and P=-1
for the function A(α = β = 1.5, λ = −2.25, γ = δ = 0.5) and B(α = β = 0.1, λ =
−2.25, γ = δ = 1.0).

So, if supermarket 1 must decide on which strategy to use according to the

CPT criterion, it will have to calculate the CPT value of each strategy and also

have to know other details about supermarket 2 preferences (such as risk aversion,

or probability distortion degree) in order to identify 2’s preferred strategy, which
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could vary depending on the values of the parameters in its value function. This

shows, once again, that the decision makers’ must know each others’ preferences and

have the same CPT function in order to determine if collusion is possible or not.

Moreover, although the CPT function is said to be an approximation to most

peoples’ preferences, it is very restrictive. Also, it is arguable whether the function

is really a good approximation because experiments used to determine it were made

using either positive-only or negative-only lotteries and not mixed lotteries, which

are the majority of real life problems [17].

3.4 COMPUTATIONAL APPROACH

In order to be able to make the right choice in every situation, the decision

maker must be well informed. But even knowing the many decision criteria might

not be enough, because it can be difficult to fit the game structure into each one

of them and appropriately determine the best strategy to be used. On top of that,

some of the decision methods involve reasonably complicated calculations. Thus, a

computational approach is necessary to determine the best strategy.

The statistical computing language R was used to create a package (which

can be obtained at http://equipe.nce.ufrj.br/eber/IPD2DT\ipd2dt_1.0.tar.

gz) containing the algorithms that calculate the probability distributions of each

strategy taking into account different interest rates and probabilities. The package

also determines dominance between different distributions plots region graphs (such

as those shown in section 3) that show the preferable strategy. Some of the package

functions are described in Table E.1, found in appendix E. The functions extend

the decision criteria to the domain of the IPD, making it so that the decision maker

must only know the conditions of the game (T,R, P, S, t and p) in order to calculate
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the solutions.

This computational aid is intended to make it easier for the decision maker

to determine when collusive behaviour is possible according to each criterion. It

applies the decision criteria methods to the IPD scenarios so that both theories are

put together and shows the results in a way that is simple to understand. In short,

it helps the decision maker to analyse the possibilities and choose the best option

according to the decision criterion of his/her preference.
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4 RELATED WORKS

Kreps et al. [13] had pointed that incomplete information could lead to collu-

sion throughout at least part of the finitely repeated prisoners’ dilemma with mixed

payoffs. The main difference between their study and ours is that, in theirs, the

game is one of incomplete information (i.e. players are not certain about their op-

ponent’s rationality), whereas in ours, players have complete information on their

opponent’s rationality (making it a game of complete information). Another impor-

tant difference is that, in their study, players know that the game is finite and when

it will end, while in ours the game is indefinitely repeated and players do not know

when it will end (there exists uncertainty about the future), which is an important

factor that strongly influences decision making process.

In their study, Sabater-Grande and Georgantzis [28] draw attention to the

fact that risk aversion is an important factor to be considered while solving an IPD.

They show, through empirical experiments with positive-only outcomes, that risk

aversion tends to lead to defection and that stochastic discount factors (such as the

probability of the game ending) are more important than deterministic ones (such

as interest rates) for determining whether collusion is possible or not. Their study

differs from ours in the sense that, in our analysis, we consider the possibility of

both types of discount factors (stochastic and deterministic) coexisting and that we

account for situations in which there are positive and negative outcomes.

Van Assen and Snijders [34] show in their study how individuals who are

not risk-neutral behave in IPDs with mixed outcomes. They show empirically that

loss-aversion favours collusion these situations. This reinforces the fact that risk-

orientation is an important factor to be considered in the IPD analysis. Their study
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differs from ours in the objectives, because theirs is mainly interested in showing

the correlation between risk aversion and cooperation or loss aversion and collusion

conditions in the IPD. Their approach also categorizes peoples’ preferences as those

of the CPT criterion, while our study considers other different rationalities. Another

difference is that theirs i an empirical study while ours is a theoretical one.

Au et al. [2] show that risk-aversion can favour defection if collusion is

the riskier strategy, while risk-seeking behaviour may favour collusion in the same

situation, which suggests that the risk index associated to each strategy can also

influence in the equilibrium of the PD. The main difference between their study and

ours is that theirs consider only the one-off PD game and therefore does not take into

consideration the risk associated to the IPD’s payoffs’ probability distribution, while

in our study we consider the game in its iterated form and thus the risk associated

to the distribution of the payoffs.

Ng et al. [23] also show, in their study, how players’ risk orientation, game

riskiness and expectation of cooperation affect collusion conditions in one-off PDs.

Their study differs from ours in the fact that they analyse the one-off PD as opposed

to ours, which analyses the iterated version of the PD, and also in the fact that theirs

is an empirical study while ours is a theoretical one.

Guilfoos and Pape [8] show in their study how case-based decision theory

can be used to predict if collusion is possible in the IPD. This study is closely

related to ours in the sense that it observes the decision making process in the

IPD through a rationality different from expected utility, using instead case-based

decision theory in order to identify possibility of collusion. In our study we have the

same objective (identifying collusion conditions in the IPD) but we consider other

different rationalities, such as decision under uncertainty, stochastic dominance and

the CPT, for instance.
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Other studies use the IPD as model to develop new strategies for evolutionary

players to learn and adapt to their adversaries strategies. some of these studies do

this by considering players’ reputations along with risk-orientation [15], others con-

sider risk-orientation and use the standard deviation of the payoffs as income stream

risk [36], and others consider expectation of cooperation as input for developing a

new strategy [30]. Like ours, these studies show that factors such as other players

reputations and risk-orientation are also something to be considered in competitive

environments, but they differ from ours because their goal is to define an optimal

strategy for a player to better react to any unknown environment in which it is put

on, whereas our objective is to determine if collusive behaviour is possible in well

defined scenarios in which players’ rationalities are known.

Shigenaka et al. [31] also try to identify the possibility collusion formation

in the IDP, but they add observation errors as another component to be considered

in the situation. The main difference from their study and ours lies in the fact that

they analyse the collusion conditions in the IPD with an additional variable that is

the possibility of observation errors, which we do not account for in our study. On

the other hand, they consider expected utility as the only rationality criteria while

we consider other different rationalities.
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5 FINAL REMARKS

5.1 CONCLUSION

Some of the most popular existent methods do not take the totality of the

IPD’s characteristics into account, such as the probability distribution of the payoffs

and the fact that players have preferences in relation to the possible outcomes.

However, these factors are relevant to the solution of the game and therefore must

not be ignored.

As it was shown in previous sections, the collusion conditions in an IPD may

vary according to the criterion used by each agent to determine the best strategy.

This result contrasts with the recurrent solution of using the expected utility, a

method rarely ever used to evaluate financial prospects and barely efficient for such

purposes [16]. With these new perspectives comes a whole new set of possibilities

of collusion conditions depending on each agent’s decision criteria.

A major difference with expected utility is that there is only one scenario

in which the decision maker is indifferent between two strategies (when they have

the same utility) and it is not possible to determine whether there will be collusion

or defection. Using criteria such as the FSD, for example, there can be whole

regions where the decision maker is indifferent between collusion or defection and

thus making it impossible to determine what decision he/she will make.

Under the circumstances shown in Figure 5.1, it is useful to know the possible

combinations between strategies in order to try to make the best of each possible

situation based on the agents’ rationalities.
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Figure 5.1: Different criteria regions for the values of T=5, R=3 and P=-1

To precisely determine the collusion conditions, it is important to know the

decision criteria used by the decision makers. But the importance of these results

is not limited only to the fact that the decision makers must know each other’s

rationalities to predict if there can be collusion or not. It can also be extended to

situations between computational agents without human interference.

Finally, the question of whether there can be collusion or not in the IPD is

far from settled because it can only be answered in particular cases in which the

rationalities of the decision makers are known and are the same. The examples

presented in this study intend to show these particular cases and, even so, there are

situations in which the decision makers must choose subjectively.
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Method Preferred Strategy
Collude if

Expected Value R
1−δ > T + Pδ

1−δ
else defection
Collude if

Maximax max( R
1−δ , R) > max(T + Pδ

1−δ , T )

else defect
Maximin Always Defect (see section 3.2.2)

Collude if[
max

(
R

1−δ , R
)
−max

(
T−Pδ
1−δ , T

)]
> (P − S)

else defect (see Appendix C)
Expected Utility Collude if E[UC(x)] > E[UD(x)]

CDFC(x) ≤ CDFD(x) (FSD)
Stochastic Dominance

∫ x
−∞[CDFD(t)− CDFC(t)]dt ≥ 0 (SSD)∫∞
x
[CDFD(t)− CDFC(t)]dt ≥ 0 (RSD)

Cumulative Prospect Theory Calculated using the CPT calculation (Appendix B)

Table 5.1: Preferred strategy according to each decision criteria.

5.2 FUTURE WORKS

One limitation of this study which can be explored in future works is that it

only considers situations in which both players have the same rationality, although

it is quite common that the players have different rationalities, sometimes unknown

to the other agents.

Another limitation is that it uses only one punishment strategy (grim trigger)

ignoring less severe punishment strategies like the Tit-for-tat [3], for example. With

different punishment strategies, one aspect that could be explored is the one in which

players make mistakes in judgement, thinking that their opponents will defect when

in fact they are inclined to collude and end up defecting.

Another possibility is to conduct and empirical study designed to show that

(1) the decision makers rationalities can be really so diverse that, only by knowing
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the decision criteria used by the other player, the collusion conditions could be

determined, and (2) it would be hard to achieve without the help of computational

methods.
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APPENDIX A EXPECTED VALUE FORMULA

Consider δ = 1
1+t

and q = (1 − p), then the expected value of cooperation

Ec[X] is given by:

Ec[X] =
∞∑
n=0

(
pqn

n∑
k=0

Rδk

)
n∑
k=0

Rδk is the sum of the n terms of a geometric progression

with decreasing rate, thus it can be written as

=
∞∑
n=0

pqn
[
R
1− δn+1

1− δ

]
=

pR

1− δ

∞∑
n=0

qn
[
1− δn+1

]
=

pR

1− δ

∞∑
n=0

qn − δ
∞∑
n=0

qδn

=
pR

1− δ

(
1

1− q
− δ

1− qδ

)
=

pR

1− δ

(
1− qδ − δ + qδ

(1− q)(1− qδ)

)
=

pR

1− δ
1− δ

p(1− qδ)

=
R

(1− qδ)
=

R

(1− 1−p
1+t

)
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APPENDIX B CUMULATIVE PROSPECT THE-
ORY CALCULATION

Consider a lottery L = {p1x1, p2x2, . . . , pnxn}. Cumulative Prospect Theory

says that people have a utility for the outcomes that generally follows a power

function, thus the value function for each possible outcome xi in L is given by

v(x) =

{
xα if x ≥ 0

−λ xβ if x < 0
(B.1)

where, according to CPT, α = β = 0.88 and the average λ is −2.25, meaning

that the concavity of the preference curve is towards the horizontal axis. Also the

probability weighting function for each probability pi of each outcome xi in L is

w+(p) =
pγ

(pγ + (1− p)γ)
1
γ

, w−(p) =
pδ

(pδ + (1− p)δ) 1
δ

(B.2)

with w+ being for positive values of xi (gains) and γ equal to 0.61 while w− is for

negative values of xi (losses) and δ equal to 0.69.

In order to calculate the CPT value of a lottery, first it’s necessary to divide

the distribution in two: f+ = (x+n , . . . , x
+
0 ) and f− = (x−−m, . . . , x

−
0 ), then the weight

π of each value xi in the distribution is given by

π+
n = w+[p(xn)] and π−−m = w−[p(x−m)] (B.3)

π+
i = w+[p(xi) + · · ·+ p(xn)]

−w+[p(xi+1) + · · ·+ p(xn)], 0 ≤ i ≤ n− 1

π−i = w−[p(x−m) + · · ·+ p(xi)]

−w−[p(x−m) + · · ·+ p(xi−1)], 1−m ≤ i ≤ 0
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And so, the value of a prospect is given by

V (x) =
∞∑
i=1

πiv(xi) (B.4)

this is the CPT value from which it is possible to calculate the certainty equivalent

corresponding to the prospect.
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APPENDIX C COLLUSION CONDITIONS USING
MINIMAX REGRET

To calculate the regret associated with each strategy, it is necessary to com-

bine the maximax (Table 3.2) and maximin (Table 3.3) values in the IPD (see Table

C.1). This way, it is possible to identify the best-case scenario in each situation (the

maximum value in each row) and find the difference (regret) in relation to the other

outcomes in the table.

Maximax Maximin
Collusion max

(
R

1−δ , R
)

max
(
S + Pδ

1−δ , S
)

Defection max
(
T + Pδ

1−δ , T
)

max
(
P

1−δ , P
)

Table C.1: Minimax regret table with δ = 1/(1 + t)

The conditions under which collusion is possible are: when the value of col-

luding is higher than that of defecting and enduring the punishment (i.e. collusion

is the maximax preferred strategy). For that to happen, the condition

max(
R

1− δ
, R) > max(T +

Pδ

1− δ
, T ) (C.1)

must be satisfied; and if the regret associated to the collusion strategy is higher than

that of the defection strategy (which is always equals to P − S, because when the

other player defects, the strategy that maximizes the minimum value is to defect as

well, getting P in the first round while colluding would give a payoff of S in the first

round), thus the condition[
max

(
R

1− δ
, R

)
−max

(
T − Pδ
1− δ

, T

)]
> (P − S) (C.2)

must also be satisfied.

In other words, the collusion strategy has to be both the best-case scenario
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for the maximax and the regret of not choosing the collusion has to be higher than

the regret of not choosing the defection strategy, otherwise defection rules out.
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APPENDIX D CUMULATIVE PROSPECT THE-
ORY ALGORITHM

Algoritmo 1: Algorithm to compute the Cumulative Prospect Theory value
of a lottery
Input: Lottery L = x1p1, x2p2, . . . , xnpn
Output: The certainty equivalent of L according to Cumulative prospect

Theory

L+ ← positive values of x in L;
L− ← negative values of x in L;
pc ← 0.0;
v+ ← 0.0;
foreach xi in L+ do

p← pc + pi;

v+ ← v+ + xαi

(
pγ

(pγ+(1−p)γ)
1
γ
− pγc

(pγc+(1−pc)γ)
1
γ

)
;

pc ← p;
end foreach
pc ← 0.0;
v− ← 0.0;
foreach xi in L− do

p← pc + pi;

v− ← v− − λxβi
(

pδ

(pδ+(1−p)δ)
1
δ
− pδc

(pδc+(1−pc)δ)
1
δ

)
;

pc ← p;
end foreach
V ← v+ + v−;
if V >= 0 then

ce = V
1
α

end if
else

ce = (V
λ
)

1
β

end if
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APPENDIX E R FUNCTIONS DESCRIPTIONS

Function Description
genCoopPdf Generate the PDF of the gains

obtained with collusion
genGrimPdf Generate the PDF of the gains

obtained with defection
runplotdf Plots the distributions (PDF or CDF)

obtained with collusion and defection
maximax Determines which strategy gives the better

payoff according to the Maximax criterion
minimaxRegret Determines which strategy gives the better

payoff according to the Minimax Regret criterion
evalEU The expected utility value of each strategy

according to a given utility function
fsd Determines the dominance relation between

two given distributions according to FSD
ssd Determines the dominance relation between

two given distributions according to SSD
ssd Determines the dominance relation between

two given distributions according to RSD
calcCPTValue Evaluates the CPT value of a distribution

gridMaximax, gridMinimaxRegret, Generates a grid showing the strategy which gives
gridEU, gridFSD, gridSSD, better payoff according to the given criterion

gridRSD, gridCPT for different values of p and t
runplotPrefCurveEU Plots the utility curve of a given EU function

runplotMaximax, runplotMinimaxRegret, Plots the regions of collusion
runplotEU, runplotFSD, runplotSSD, and defection for the given criterion

runplotRSD, runplotCPT for different values of p and t

Table E.1: Functions included in the R package and their respective descriptions.


