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RESUMO 
 

Este trabalho descreve um arcabouço com um processo computacional para auxiliar 
intérpretes durante a atividade de interpretação sísmica, detectando bright spots como 
possíveis indicadores de hidrocarbonetos em dados sísmicos. Esse conjunto de dados 
compreende um conjunto de atributos sísmicos, uma vez que  tais dados podem ser 
vastos, a interpretação sísmica manual pode ser difícil ou mesmo inviável, assim nosso 
arcabouço surge para tratar esse problema. Nossa proposta usa a teoria de Rough Set e 
uma infra-estrutura de processamento massivamente paralelo. Através de Rough Set, 
podemos tentar reduzir o conjunto de atributos sísmicos e criamos um conjunto de 
regras de classificação para detectar bright spots. Para gerar as regras de classificação, 
executamos um processo de treinamento supervisionado via Rough Set na 
implementação do nosso arcabouço, incorporando conhecimento de especialista, o que 
aumenta a acurácia de nossos resultados. Em relação ao desempenho, nosso arcabouço 
pode ser melhor do que outra proposta, uma vez que distribuímos adequadamente os 
dados sísmicos em um banco de dados de processamento massivamente paralelo. Outra 
vantagem que nosso arcabouço tem sobre outra abordagem é: nossas regras de 
classificação podem ser genéricas para diferentes conjuntos de dados sísmicos. Assim, a 
geração de regras ocorre apenas uma vez, que é na implementação do arcabouço. Uma 
vez que mantemos o mesmo conjunto dessas regras, para garantir flexibilidade ao nosso 
arcabouço de suporte à interpretação sísmica, fornecemos ao usuário um conjunto de 
parâmetros de entrada, que permite ajustar a consulta para detectar bright spots. Por fim, 
experimentos preliminares, realizados com dados sísmicos reais da costa holandesa, 
demonstram que nosso arcabouço é capaz de identificar bright spots relacionados à 
acumulação de hidrocarbonetos. 

 
Palavras-chave: Análise de Dados. Processo de Suporte. Rough Set. Processamento 
Paralelo. Interpretação Sísmica. Petróleo & Gás. 
  



 

 

 

 

 

ABSTRACT 
 

This work describes a framework with a computational process to assist interpreters 
during the seismic interpretation activity, detecting bright spots as potential 
hydrocarbon indicators within a seismic dataset. Such dataset comprises a set of seismic 
attributes, and since the dataset can be vast the manual seismic interpretation can be 
hard or even unviable, thus our framework emerges to tackle this problem. Our proposal 
uses Rough Set theory and a massively parallel processing infrastructure. Through 
Rough Set, we can attempt to reduce the set of seismic attributes and, we create a set of 
classification rules to detect bright spots. To achieve the classification rules, we run a 
Rough Set's supervised training process in the framework implementation, 
incorporating specialist’s knowledge, which increases the accuracy of our results. 
Regarding performance, our framework further may be faster than another proposal 
since we properly distributed the seismic data in a massively parallel processing 
database. Another advantage that our framework has over another approach is: our 
classification rules may be generic for any seismic dataset. Thus, the rules generation 
occurs just once at our framework implementation. Since we always keep the same set 
of rules, to guarantee flexibility to our seismic interpretation support framework, we 
provide to the interpreter user a set of input parameters, which allows tuning the pattern 
query for detect bright spots. Finally, preliminary experiments running on real seismic 
data of Dutch coast show that our framework can identify bright spots related to 
hydrocarbon accumulation. 

 
Keywords: Data Analysis. Support Process. Rough Set. Parallel Processing. Seismic 
Interpretation. Oil & Gas. 
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1 INTRODUCTION 

In oil & gas exploration, the geological analysis is a process to verify the 

structures of a given area aiming at finding a potential accumulation of hydrocarbons. 

The seismic volume is one of the most used data sources to perform such geological 

analysis (FIGUEIREDO 2007). The data of a seismic volume originates from an 

acquisition method called seismic reflection, which scans the subsoil layers to produce a 

set of time series representing the seismic waves commonly called seismic traces. Once 

acquired, the seismic volume is processed to remove noises, which are interferences that 

change the amplitude values of the seismic traces. After the processing, it is still 

possible to have remaining noises, because some of them are quite close to the seismic 

traces then such noises can be mistaken with the seismic traces. Finally, the seismic 

volume is interpreted in the so-called seismic interpretation phase (THOMAS 2004), 

which aims at identifying seismic patterns related to hydrocarbons presence. 

1.1 MOTIVATIONS 

During the seismic interpretation, the interpreter (usually a geologist or 

geophysicist) analyzes the seismic volume to find certain geological structures, such as 

horizons and faults, and hydrocarbon indicators (FIGUEIREDO, 2007). The indicators 

can be bright spots, which represents, for example, local increase of amplitude followed 

by phase inversion, usually indicating an accumulation of gas (RAILSBACK 2011). In 

different lithologies, the occurrences and characteristics of the geological structures in 

the seismic data will define the geological complexity of the seismic volume 

(FIGUEIREDO, 2007). For example, complex geological structures like thin layers of 

the subsurface or multi-plane fault. 

Usually, the interpreter starts the seismic interpretation with the identification of 

geological structures, by tracing horizons and faults in seismic volume in a 

computational tool. Once faults and horizons are detected, the interpreter manually 

selects sections (also called subvolumes) of the seismic volume to further investigate the 

presence of hydrocarbons. Finally, the interpreter proceeds to search for hydrocarbons 

indicators, such as bright spots, in the seismic sections previously selected. Presented 

this overview of seismic interpretation and considering the potentially huge size of the 

seismic volume, manual selection of features, such as searching for bright spots, 
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requires considerable time and effort by the interpreter. Despite this fact, there is still a 

lack of a (semi)automatic framework to assist the seismic interpretation in such type of 

activity (FARFOUR et al. 2012). 

To tackle the issues mentioned above, this dissertation aims to propose a 

framework with a computational process for semi-automatic detection of bright spots, 

helping interpreters to select relevant seismic sections, focusing only on such sections 

that potentially have bright spots. Therefore, the interpreter can benefit from the 

reduction of the search space in the selected seismic section, interpreting and processing 

only the data in the neighborhood of bright spots that were detected by our framework. 

Furthermore, to provide a process capable of managing huge seismic data volumes, our 

framework is implemented in a Massively Parallel Processing Database (MPPDB) 

infrastructure.  

In our framework, we choose bright spots as the seismic pattern to be identified, 

because such feature is more related to the behavior of the seismic attributes than to the 

nominal values that change for the same seismic pattern in different seismic datasets. 

For example, to detect bright spots the search for amplitude increase behavior and phase 

inversion behavior close to amplitude peak is more important than the nominal values of 

the amplitude (RAILSBACK 2011). Therefore, our framework considers the behavior 

of the seismic attributes, producing a more generic and robust solution that works across 

different seismic datasets. 

The proposed framework is underpinned by the Rough Set Theory (PAWLAK 

1982). Also, we cogitated to apply Principal Component Analysis (PCA) (JOLLIFFE 

2002) to our process. However, previous studies comparing Rough Set with PCA has 

demonstrated the advantage of the former. PEREIRA et al. (2012) show as the main 

advantage of using Rough Set the reduction of dependence on human expertise in the 

decision making. In turn, LEI et. al (2008), demonstrate the overall accuracy of Rough 

Set as being better than PCA.  

About the Rough Set features, there is a formal procedure to eliminate irrelevant 

conditional attributes within a given information system, yielding to a reduct, which 

contains a subset of conditional attributes able to keep the same properties about all 

attributes of the same information system. In addition, Rough Set provides a mean to 
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classify objects of an information system according to the conditional attributes. 

Besides, the mathematical foundation of Rough Set allows discovering hidden patterns 

and also provides mechanisms to manage the problem of inaccurate information (such 

as noisy data) in datasets. Finally, the usefulness of Rough Set to perform data mining 

and processing signals is proved by a growing number of studies (PAWLAK 1982, 

1991; ZARANDI et al. 2008) and, concerning the implementation of Rough Set in 

seismic dataset we have some papers regarding reservoir prediction  (LIU et al. 2007; 

HONGJIE et al. 2014).  

1.2 OBJECTIVE AND HYPOTHESIS 

The goal of our research is to assess the applicability of Rough Set to detect 

potential bright spots in seismic datasets; we also aim to provide a support framework 

for seismic interpretation. Our proposal is prepared to be implemented in a Massively 

Parallel Processing Database (MPPDB) infrastructure, aiming to promote faster 

interpretation for geoscientists. Therefore, we wish to answer the question: In light of 

Rough Set and MPPDB, how to build a framework to support and speed up seismic 

interpretation by detecting bright spots? According to this question, we raise the 

following hypothesis: it is possible to speed up the seismic interpretation process in an 

MPPDB infrastructure and using Rough Sets for the semi-automatic detection of bright 

spots.  

1.3 DISSERTATION ORGANIZATION 

The remainder of this dissertation organized as follows. Section 2 provides the 

background knowledge of Seismic exploration, MPPDB and Rough Set. Section 3 

presents the related works. In Section 4 we present the proposed framework, in Section 

5 we discuss our framework design, while Section 6 presents the implementation of our 

framework. Following in Section 6 we detail the mechanism of our seismic 

interpretation framework. Section 7 shows the accuracy and performance evaluations of 

our proposal. Finally, in Section 8 we have the conclusion of our work. 
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2 BASIC CONCEPTS 

This research tackles different areas of knowledge. In this section, we introduce 

the notions of the seismic exploration, which allow the understanding of the data type 

used in this study. Also, we explain MPPDB concepts and the Rough Set theory.  

2.1 SEISMIC EXPLORATION 

The process of searching for oil and gas, using seismic methods, can be divided 

into three main stages: acquisition, processing, and interpretation (ROBINSON et al. 

1980), as depicted in Figure 1 and detailed in next sub-sections. 

 

Figure 1. Stages of hydrocarbons exploration based on seismic reflection.  

Adapted from (SILVA 2004) 

2.1.1 Acquisition 

The subsoil usually consists of different geological layers with different physical 

properties. Among these properties, the acoustic impedance is the one that the seismic 

reflection uses for seismic data acquisition (FIGUEIREDO 2007). This data acquisition 

is done by generating artificial elastic waves of short duration (order of 200 

milliseconds) (THOMAS 2004). This generation of waves occurs at specific points on 

the surface of the area to be mapped (except in the offshore scenario where we generate 

the waves on the sea surface, but we want to map the layers from the seabed).  

Once generated, the seismic wave propagates in the underground. When it 

encounters an interface, such as the interface between two types of rock, one part of the 

wave refracts and propagates into the subsoil. Another part of the wave reflects and 

returns to the surface where receivers capture it. Such receivers record the arrival time 

of the wave, and the amount of energy returned. The reflected portion of energy is 

proportional to the difference between the acoustic impedances two layers in the 

interface (FIGUEIREDO 2007). 



18 

 

 

 

The receivers, located at specific points on the surface, can be (i) geophones – 

electromagnetic sensors to onshore wave capture or (ii) hydrophones – pressure sensors 

for data acquisition in marine areas. Once the receivers collect the information, an 

equipment called seismograph record the data; this device stores the amplitudes of the 

waves at regular intervals, usually 2 or 4 milliseconds (THOMAS 2004). Figure 2 

illustrates such acquisition processes. 

 

Figure 2. Model of seismic acquisition. Adapted from (GERHARDT 1998) 

2.1.2 Processing 

In this stage, some errors inherent to the seismic survey, for example, noises are 

minimized. Furthermore, the data are rearranged to form a three-dimensional grid with 

seismic amplitude sample at each grid vertex (voxel), presenting two of the dataset 

dimensions as spatial directions and related to the positions of the sources and seismic 

receivers. Also, processing stage enables to consider the third dimension of the dataset 

as the time, and that wave propagation is done only in the vertical direction (SILVA 

2004). 

For each receiver on the surface, the seismic image obtained will consist of a 

respective vertical set of amplitudes samples (FIGUEIREDO 2007). This set of samples 

having the same spatial coordinates, only varying the time, is named as a seismic trace. 

The maximum and minimum amplitude of the seismic trace are called seismic events. 
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Figure 3 illustrates the arrangement of samples in the seismic dataset, at the left 

there is a seismic trace with their amplitudes, undulating signal wave, the only 

dimension is temporal (1D). At the center (Figure 3), it is a vertical section of the 

seismic dataset formed by a set of seismic traces, which is named seismic section, with 

spatial and temporal dimension (2D). For 3D seismic dataset (Figure 3, on the right), we 

have the seismic volume formed by several seismic sections. In this case, there are two 

spatial directions, which are inline (parallel to the direction of acquisition) and crossline 

( perpendicular to the direction of acquisition) plus a temporal direction. Concerning 

datasets with 2D and 3D, the seismic trace representation presents the seismic attribute 

color scale (SILVA 2004), sometimes grayscale, where each color represents the 

intensity of the amplitude value of each sample. 

 

Figure 3. Seismic trace (left), seismic section (center) and seismic volume (right). 

Adapted from (SILVA 2004) 

In our proposed framework, a requirement is that the seismic dataset derives from 

a SEG-Y that is one of the several standards of seismic file formats developed by 

the Society of Exploration Geophysicists (SEG) (NORRIS et al. 2002). Also, the SEG-

Y must be post-stack file format (SEG-Y pre-processed), instead of SEG-Y pre-stack 

file (SEG-Y without pre-processing). 

2.1.3 Interpretation 

In the interpretation stage, the interpreter analyzes the seismic dataset and 

attempts to create a model that represents the geology of the survey area. Figure 4 

shows a geological model that could be the result when interpreting a seismic section. 
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Figure 4. Geological model. Adapted from (ROBINSON et al. 1980) 

In Figure 4, we can see the representation of the subsoil layers, where the 

interface that separate two different layers is called seismic horizon. Such interface 

associates with a reflection stretching for an enormous area (SHERIFF 1991) and, it is 

detected by a series of continuous reflections of similar intensities found in the lateral 

vicinity along the seismic dataset.  

Advances in data acquisition, processing and interpretation now make it possible 

to use seismic traces to reveal more than just shape and position of the reflector. 

Changes in the character of seismic pulses returning from the reflector can be 

interpreted to verify the depositional history of the basin, the rock type in a layer, and 

even the nature of the pore fluid. This last refinement (pore fluid identification) can be 

reached using the attribute energy from a trace segment (DGB, 2015b). Equation 1 

shows how to calculate such trace segment energy (E): 

 

� =
�∑ ��

���

����
�

�
												(1) 

Where, ts is the time start and te is the time end for the desired trace segment; s is the 

sample amplitude value, and n is the number of samples in the time interval. 

This attribute can enhance seismic events and, therefore, useful to detect a seismic 

pattern, such as bright spots (Figure 5), since the response energy characterizes the 

acoustic rock properties (DGB, 2015b).   
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Normally, in the pore fluid detection, also it is possible to perform AVO 

(Amplitude Versus Offset) analysis (CHIBURIS et al. 1993) but preferable for pre-stack 

SEG-Y. Since in our approach we envision to attend SEG-Y post-stack data, the use of 

AVO would reflect negatively on our accuracy (ANDERSON et al. 2009). 

The early practical evidence that seismic waves could detect fluids came from 

bright spots, which often signify gas accumulation. Since the early 1970s, bright spots 

have been the goal of seismic exploration (GEORGE 1997); they comprise amplitude 

events that indicate the presence of hydrocarbons. Despite other improvements in 

seismic acquisition and interpretation, the bright spots as hydrocarbon indicators 

continue to be sought, even as data density and increased resolution vastly expand the 

volume of the data itself. As a consequence, the interpreter is confronted by a massive 

amount of data from which he/she must quickly derive an accurate evaluation.  

One of the main objectives of seismic interpretation is to evaluate the chance of 

seismic events that may be related to the presence of hydrocarbons (RODEN et al., 

2005). The seismic events in our study conform to bright spots associated with 

hydrocarbons, Figure 5 depicts such hydrocarbons indicators.  

 

Figure 5. Hydrocarbon indicators. Bright spots and flat spots in the seismic 

dataset. Adapted from (RAILSBACK 2011). 

In a hydrocarbon indicator of type bright spots, the gas presence in the horizon 

pores causes a dramatic decrease in acoustic impedance compared to the encasing shale 

(high amplitude value). Also, it is remarkable a phase inversion for the amplitudes of a 

seismic trace in the bright spots region, as noticed in Figure 5. Such typical bright spots 
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seismic events are identified if appropriate seismic attributes have been used 

(FARFOUR et al. 2012). 

 The flat spots feature, a particular case of bright spots, occurs by the contrast 

between the small acoustic impedance of gas-filled porous rock and the greater acoustic 

impedance of liquid-filled porous rock, at horizontal gas-liquid contact. Flat spots 

feature is recognizable because it is discordant with the non-horizontal surrounding 

structures as we can see in Figure 5 (RAILSBACK 2011). 

2.2 MPPDB INFRASTRUCTURE 

In the present research, we adopted as MPPDB infrastructure the Pivotal 

Greenplum (GOLLAPUDI  2013; PIVOTAL 2015), which is based on PostgreSQL. 

Also, Greenplum is a representative example of MPPDB, it is Open Source, and it is 

based on the shared-nothing MPP architecture. Figure 6 shows this architecture where 

data is partitioned across multiple segment servers.  

 

Figure 6. Greenplum shared-nothing massively parallel processing architecture. 

Adapted from (PIVOTAL 2015) 
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The master server is the entry point to the Greenplum database system. The 

architecture supports backup of the master server to be used when the primary master 

server becomes non-operational.  The segment servers are where data is stored, and the 

majority of the processes are created to handle the work of a query. Each segment server 

has its processor, memory, disk, operating system and manages a distinct portion of the 

overall data (PIVOTAL 2015). 

The shared-nothing architecture presents challenges to designers of database 

schemas. In particular, the correct allocation of data in the segments is an important 

point of analysis, which can directly affect the efficiency and scalability. The 

configuration of the data distribution is done through the Data Definition Language 

(DDL) commands extended to allow the specification of the distribution policies of the 

data in the segments (PIVOTAL 2015). For example, the following command creates a 

table using O_ORDERKEY column as a distribution key. Thus, the table rows are 

assigned to segments in accordance with the value of O_ORDERKEY column:  

CREATE TABLE ORDERS (O_ORDERKEY INT, ...)  

DISTRIBUTED BY (O_ORDERKEY)  

The configuration of the distribution key should ideally ensure that data, 

commonly requested by the same query, are grouped into the same segment. If such 

data is stored in different segments, during queries execution, the data motion occurs 

between segments, which characterizes a processing skew since the query processing 

time is increased (PIVOTAL 2015). Figure 7 shows processing skew scenario with data 

motion.  
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Figure 7. Data motion and processing skew scenario. Adapted from (PIVOTAL 

2015) 

Furthermore, the distribution key configuration is directly associated with the 

segment’s data balance (containing approximately the same amount of data). Otherwise, 

an unbalanced data allocation, which is called data skew (PIVOTAL 2015), can 

negatively impact the performance. Figure 8 depicts the data skew scenario yielding a 

processing skew when during queries execution the segment with the larger volume of 

information can become a bottleneck in the process. 
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Figure 8. Data skew and processing skew scenarios. Adapted from (PIVOTAL 

2015) 

2.3 ROUGH SET THEORY 

Rough Set based data analysis usually starts with a data table, called information 

system. The information system comprises data about objects of interest characterized 

regarding some conditional attributes and presenting a decision attribute, for this reason, 

such information system is also called a decision table that describes decisions in terms 

of conditions. With every decision table a set of classification rules can be associated 

(PAWLAK 2002). 

Information systems containing data redundancy are more costly to be processed, 

in this context, Rough Set Theory presents a process to eliminate such data redundancy. 

Rough Set theory can also be used to classify objects of an information system, 

according to the object's conditional attributes, and if there is inaccurate information, 

Rough Set can manage such imprecisions, noisy and incomplete information present in 

the information system. Thus, objects that cannot be specified by the available data will 

be classified in this theory through concepts of lower and upper approximations 

(KOMOROWSKI et al. 1999; PATRÍCIO et al. 2005). 
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Considering the above, in the methodology to design and implement our 

framework, we will creates an information system and apply Rough Set on it aiming: (i) 

to reduce the number of seismic attributes, keeping only the relevant ones to bright 

spots detection; (ii) to generate classification rules by a supervised training process, 

rules for the pattern recognition process to detect bright spots, and (iii) incorporates 

specialist's knowledge in our framework to improve the accuracy of our support 

process.   

2.3.1 Information system  

On Rough Set approach, a common way for data representation is via an 

information system (IS), which can be defined by the Equation 2. 

�	 = (
,�	 ∪ �)											(2) 

Where, U is a set of objects, where each object has some conditional attributes (C) 

and, a decision attribute (D) that classifies objects according to some criteria as the 

example in Table 1. Such attributes are the same for each of the objects in IS, but their 

nominal values may differ (KOMOROWSKI et al. 1999; PATRÍCIO et al. 2005). 

Table 1 Information system example. Adapted from (KOMOROWSKI et al. 1999). 

U C D 

Toy Color Size Touch Texture Material 

Child's 

reaction 

1 blue big hard undefined plastic negative 
2 red medium moderate flat wood neutral 
3 yellow small soft rugged plush positive 
4 blue medium moderate rugged plastic negative 
5 yellow small soft undefined plastic neutral 
6 green big hard flat wood positive 
7 yellow small hard undefined metal positive 
8 yellow small hard undefined plastic positive 
9 green big hard flat wood neutral 
10 green medium moderate flat plastic neutral 
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Table 2 Attributes nominal values. Adapted from (KOMOROWSKI et al. 1999). 

  Attribute Nominal Values 

C 

Color blue, red, yellow, green 
Size big, medium, small 
Touch hard, moderate, soft 
Texture flat, rugged, undefined 
Material plastic, wood, plush, metal 

D Attitude neutral, negative, positive 

2.3.2 Discernibility matrix and discernibility function 

Be an equivalence class (Cl) determined by a set of nominal values of C that exist 

at least for one object in IS. Considering IS and C, we have a discernibility matrix 

denoted Md(C) symmetric n × n, where n equals the number of existing equivalence 

classes in IS. Thus, a discernibility matrix element Md(i, j), where i, j = 1, ..., n, it is a set 

of conditional attributes B⊆C that differentiates objects from two equivalence classes 

(KOMOROWSKI et al. 1999; PATRÍCIO et al. 2005). Table 3 depicts an example of 

discernibility matrix, where in a simplest representation we have Color equals Co; Size 

equals Sz; Touch equals To; Texture equals Te; Material equals Ma. 

Table 3 Discernibility matrix. Adapted from (KOMOROWSKI et al. 1999). 

 

Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9

Co,Sz,To,

Ma

Ma
Co,Sz,To,

Te,Ma

Co,Sz,To,

Te,Ma

Co,Sz,To,

Te, Ma

Co,Sz,To,

Te, Ma

Co,Sz,To,

Te, Ma

Co,Sz,To,

Te, Ma

Co,Sz,To,

Te,Ma

Co,Sz,To,

Te

Co,Sz,To,

Te, Ma

Co,Sz,To,

Te

Co,Sz,To,

Te

Co,Sz,To,

Te

Co,Sz,To

,Te,Ma

Co,Sz,Te,

Ma

Co,Sz,Te,

Ma

Sz,To,MaCo,Te

To,Te,Ma To

To,MaTo,Te,Ma

Co,Sz,To,

Te

Co,Sz

Co,Sz,Ma

Co,Te,Ma

Co,Sz,To

Co,Sz,To,

Te,Ma

Co,Ma

Co,Sz,To

Te,Ma

Cl9 Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Cl2

Cl1

Cl5

Cl6

Cl7

Cl8

Sz,To,Te Co,Te,Ma

Co,Sz,To,

Te, Ma

Co,Sz,To,

Te,Ma

Cl4

Cl3
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The discernibility function Fd(C) is a Boolean function that determines the 

minimum set of attributes from C to differentiate any equivalence class of the others. 

Fd(C) is obtained as follows: for the attributes contained within each discernibility 

matrix element, one applies the operator sum or or or ˅ and, among the discernibility 

matrix elements, one uses the operator product or and or ˄, resulting in a Boolean 

expression of Product of Sum. The Fd(C) of the Md(C) in Table 3 is represented by the 

Equation 3 (KOMOROWSKI et al. 1999): 

Fd(C) = (Co ˅ Sz ˅ To ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ To ˅ Te ˅ Ma) ˄ (Sz ˅ To ˅ Te) 

˄ (Co ˅ Sz ˅ To) ˄ (Co ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ Ma) ˄ (Co ˅ Sz) ˄ (Co ˅ 

Sz ˅ To ˅ Te) ˄ (Co ˅ Sz ˅ To ˅ Te ˅ Ma) ˄ (Co ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ 

To ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ To) ˄ (Co ˅ Sz ˅ To ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ 

To ˅ Te ˅ Ma) ˄ (Co ˅ Ma) ˄ (Co ˅ Sz ˅ To ˅ Ma) ˄ (Te ˅ Ma) ˄ (Co ˅ Sz  

˅ To ˅ Te ˅ Ma) ˄ (To ˅ Te ˅ Ma) ˄ (To ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ To ˅ Te 

˅ Ma) ˄ (Co ˅ Sz ˅ To ˅ Te) ˄ (Co ˅ Sz ˅ To ˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ To 

˅ Te ˅ Ma) ˄ (Co ˅ Sz ˅ To ˅ Te) ˄ (Co ˅ Te) ˄ (Co ˅ Sz ˅ To ˅ Te ˅ Ma) 

˄ (To ˅ Ma) ˄ (To) ˄ (Co ˅ Sz ˅ To ˅ Te) ˄ (Co ˅ Sz ˅ Te ˅ Ma) ˄ (Co ˅ 

Sz ˅ Te ˅ Ma) ˄ (Sz ˅ To ˅ Ma) ˄ (Ma) ˄ (Co ˅ Sz ˅ To ˅ Te ˅ Ma) ˄ (Co 

˅ Sz ˅ To ˅ Te) 

To conclude, using theorems, properties, and postulates of Boolean algebra, it is 

possible to get the minimized expression (KOMOROWSKI et al. 1999; PATRÍCIO et 

al. 2005). The minimized expression for our Fd(C) example is represented by the 

Equation 4: 

                               Fd(C) = ((Co ˄ To ˄ Ma) ˅ (Sz ˄ To ˄ Te ˄ Ma))                          (4) 

Finally, using the discernibility matrix and discernibility function, the reduction of 

attributes and generation of classification rules can be done (PAL et al. 1999; VASHIST 

et al. 2011) (See Section 2.3.3).  

2.3.3 Reduction of the information system and generation of classification rules 

In an information system, there is usually among the stored attributes the ones that 

are relevant, and some that are irrelevant to a particular decision-making. For example, 

some attributes from a seismic dataset may not be pertinent to identify a horizon on a 

seismic interpretation. Thus, for a process to assist in a specific decision, only a subset 

(3) 
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of attributes is necessary. Rough Set theory has a procedure to eliminate irrelevant 

attributes within an information system. This procedure outcome is a reduct, which 

determines a set of minimum attributes needed to preserve the knowledge of an 

information system having all their attributes. Consequently, the reduct can classify 

objects without affecting the knowledge representation (PAWLAK 1982). If such 

reduction process does not find any information system reduct, it means that all the 

attributes in C are relevant, in this case, all the IS conditional attributes are kept, and 

reduct equals C. 

Summing up, an information system reduct is a set of attributes R where R ⊆ C, 

being dispensable all the attributes d ∈ (C – R), where the minimum terms of 

discernibility function Fd(C) determine the reducts of C (see Equation 4). Therefore in 

an information system, we may find multiple reducts (KOMOROWSKI et al. 1999; 

PATRÍCIO et al. 2005). Regarding our example, in Equation 4 we can identify the 

reducts of our IS. Table 4 shows one of such reducts. 

Table 4 Reduct example. Adapted from (KOMOROWSKI et al. 1999). 

U R 

Toy Color Touch Material 

1 blue hard plastic 
2 red moderate wood 
3 yellow soft plush 
4 blue moderate plastic 
5 yellow soft plastic 
6 green hard wood 
7 yellow hard metal 
8 yellow hard plastic 
9 green hard wood 
10 green moderate plastic 

Following the classification rules are built using the attributes R and such rules 

can be expressed in the form: 

IF EXP THEN D 

Where EXP is a conjunctive expression whose clauses are R with their nominal values 

and D with its nominal value. Considering our information system reduct example 

(Table 4), we have the rules in Table 5: 
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Table 5 Classification rules example. Adapted from (KOMOROWSKI et al. 1999). 

R
u
le
s
 

R1: 
IF 

Color = 
blue 

AND 
Touch = 

hard 
AND 

Material 
= 

plastic 
THEN 

Child's 
reaction 

= 
negative 

R2: 
IF 

Color = 
red 

AND 
Touch = 
moderate 

AND 
Material 
= wood 

THEN 
Attitude 

= 
neutral 

R3: 
IF 

Color = 
yellow 

AND 
Touch = 

soft 
AND 

Material 
= plush 

THEN 
Attitude 

= 
positive 

R4: 
IF 

Color = 
blue 

AND 
Touch = 
moderate 

AND 
Material 

= 
plastic 

THEN 
Attitude 

= 
negative 

R5: 
IF 

Color = 
yellow 

AND 
Touch = 

soft 
AND 

Material 
= 

plastic 
THEN 

Attitude 
= 

neutral 

R6: 
IF 

Color = 
green 

AND 
Touch = 

hard 
AND 

Material 
= wood 

THEN 
Attitude 

= 
positive 

R7: 
IF 

Color = 
yellow 

AND 
Touch = 

hard 
AND 

Material 
= metal 

THEN 
Attitude 

= 
positive 

R8: 
IF 

Color = 
yellow 

AND 
Touch = 

hard 
AND 

Material 
= 

plastic 
THEN 

Attitude 
= 

positive 

R9: 
IF 

Color = 
green 

AND 
Touch = 

hard 
AND 

Material 
= wood 

THEN 
Attitude 

= 
neutral 

R10: 
IF 

Color = 
green 

AND 
Touch = 
moderate 

AND 
Material 

= 
plastic 

THEN 
Attitude 

= 
neutral 

The rules are called non-deterministic or inconsistent when they share the same 

nominal values for conditional attributes but have different nominal values for the 

decision attribute, for example, the rules R6 and R9 in Table 5. By applying non-

deterministic rules, one cannot affirm that the decision-making will be correct. In 

addition, the rules are said deterministic or consistent when they share the same values 

for both conditional attributes and the decision attribute (KOMOROWSKI et al. 1999; 

PATRÍCIO et al. 2005), for example the rules R1, R2, R3, R4, R5, R7, R8 and, R10  in 

Table 5.  
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3 RELATED WORKS 

In the literature, studies related to seismic interpretation with pattern recognition 

comprise three groups of proposals: (i) detection of horizons and/or faults (BAKKE et 

al. 2012; SONG et al. 2012; YU et al. 2013;  BASIR et al. 2013); (ii) Reservoir 

prediction (HERRERA et al. 2006; LIU et al. 2007; CLIFFORD et al. 2011; HONGJIE 

et al. 2014); and (iii) detection of hydrocarbon indicators (FARFOUR et al. 2012) 

Concerning the detection of horizons and faults, BAKKE et al. (2012) propose a 

technique called seismic DNA that translates the continuous seismic data into 

characters. Once the translation is done, the next step is to create a regular expression 

which describes the feature the interpreter is searching, allowing the interpreter do the 

translation and the design of the search expression using a graphical user interface to 

interact with the seismic data. They demonstrate their method with the extraction of a 

horizon from a seismic volume with the additional condition that such horizon should 

be intersected by faults. About the research of SONG et al. (2012), they present a 

method for fault detection; such method is based on surface fitting algorithm, which is a 

popular method used for image edge detection. The dataset adopted to validate their 

technique is part of Netherlands offshore F3 volume. With reference to YU et al. 

(2013), they propose a pattern recognition-based algorithm for horizon auto-tracking, 

generating orientation vectors from seismic amplitude data and guide the pick selection. 

In addition, they apply a minimum-spanning tree (MST) algorithm to guide and 

optimize the trace selection, which yields a complete and accurate horizon. Lastly, Basir 

et al. propose a fault detection, pre- processing the seismic dataset, then computing the 

seismic attributes and, applying the techniques ant-tracking and an unsupervised 

artificial neural network (ANN) to combine multiple attributes to achieve the fault 

detection. 

Regarding reservoir prediction HERRERA et al. (2006) and, CLIFFORD et al. 

(2011) both proposals apply ANN aiming reservoir characterization, and HERRERA et 

al. (2006) generate seismic attributes that are related to the reservoir properties and 

combining these attributes to predict the properties of the reservoir. LIU et al. (2007) 

and, HONGJIE et al. (2014) they address Rough Set as the main process to reduce the 

seismic attributes, showing that attribute reduction not only can satisfy the prediction 
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precision but also can save cost, improve process speed and have a remarkable effect on 

oil-gas prediction.  

 Finally, the work of FARFOUR et al. (2012) is the most similar to our proposed 

framework. Such paper proposes a method to recognize bright spots associated with 

hydrocarbon accumulation. Their method combines and transforms seismic attributes to 

detect seismic patterns, using an ANN with a supervised training, incorporating 

specialist's knowledge. Also, they use the seismic dataset F3 to demonstrate their 

approach. Despite having the same goal as our work, FARFOUR et al. (2012) do not 

even test their proposal for performance evaluation and, they do not mention any 

requirement of efficiently managing a large amount of data, which is one of our 

requirements. Moreover, unlike the research of FARFOUR et al., our Rough Set based 

process comprises generic rules for pattern recognition, providing more robustness to 

our framework that does not need to generate new classification rules for different 

seismic datasets of study, as it is the case of their approach that trains the ANN for each 

different seismic dataset, when the interpreter decides the seismic pattern to be 

addressed and picks examples for the ANN. 
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4 PROPOSED FRAMEWORK 

Our proposal consists of a seismic interpretation support framework for semi-

automatic detection of bright spots, using the Rough Set theory and an MPPDB 

infrastructure. An interpreter uses the proposed framework to run pattern recognition 

queries in a given seismic dataset to have the indication of bright spots, reducing the 

search space and thus reducing the time spent on the seismic interpretation activity.  

In Figure 9, we can see the steps of seismic interpretation until the interpreter 

achieves all the bright spots associated with hydrocarbon accumulation, considering two 

scenarios: (i) on the left, we depict the usual steps followed by the interpreter; we can 

notice that the selection of seismic sections is manual and the interpreter would process 

all the data from selected seismic sections;  (ii) on the right, we describe the steps when 

the interpreter uses our framework; we can see that the selection of seismic sections is 

semi-automated and there is no need to analyze all data from selected seismic sections. 
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Figure 9. Seismic Interpretation to detect bright spots: on the left, following usual 

steps; on the right, using our framework 
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5 FRAMEWORK DESIGN 

In this section, we conceptually explain the methodology to design our framework 

in light of Rough Set and seismic interpretation aspects. The following subsections will 

address the planning for our information system, attributes reduction and rules 

generation. 

5.1 INFORMATION SYSTEM DESIGN 

To design our information system, we analyzed a seismic section of a well-known 

real seismic volume, which was already interpreted as containing bright spots associated 

with hydrocarbon accumulation. The chosen seismic volume, called F3, is from the gas 

reservoir of the Dutch coast and is available on dGB Earth Sciences web page (DGB, 

2015a) in a SEG-Y file format. 

The object of our information system will be the seismic trace. Thus, to design our 

Information System, it is necessary to define C attributes and D (as discussed in Section 

2.3.1), where C must be related to our D that states the presence of bright spots, which 

are the seismic pattern the interpreter wishes to detect. Thus, we will conveniently 

define our C to highlight bright spots in light of a specialist's knowledge in seismic 

interpretation, the conceptual definition of the bright spots and the interpreted seismic 

volume F3. 

Regarding literature on seismic attributes, HAMPSON et al. (2001) defined 

seismic attributes as any mathematical transformation of the seismic trace data, which 

goes from simple attributes such as amplitude, phase, and frequency, to complex 

attributes such as AVO. Moreover, such transformations could incorporate other data 

sources than the seismic dataset itself. In our proposal, to define our seismic conditional 

attributes we will follow the Hampson’s definition, extracting from a SEG-Y file the 

seismic trace data. Still, on the generation of our seismic conditional attributes, we will 

incorporate on such attributes the information from a neighborhood of the seismic trace, 

which is a relevant requirement for the pattern recognition process, since our pattern 

associates with a region of seismic traces. Thus, in our framework we will have the 

input parameter trace_search_radius (Figure 10), defining the neighborhood size 

(window) in terms of the number of consecutive seismic traces inside the region to be 
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analyzed. Therefore such parameter provides the expected horizontal size for the pattern 

bright spots (see Section 6 and Section 7). 

Also, for our seismic conditional attributes, since we are interested in amplitude 

peaks we have to know if the phase reference is positive or negative for the amplitudes 

of seismic traces, such reference is inferred from the analysis of the SEG-Y file by a 

specialist. If we have a positive phase reference, then the maximum amplitudes of 

seismic traces will present positive values; therefore negative phase reference implicates 

negative values for maximum amplitudes of seismic traces. The SEG-Y F3 that we will 

use in our framework implementation has positive phase reference. However we must 

prepare our framework to handle both values for phase reference, therefore to be more 

robust, providing to the final user of our framework a phase reference input parameter.  

 

Figure 10. Schematic example for the input parameters trace_search_radius (e.g. 

value 8 traces in the neighborhood of an object seismic trace) and 

time_search_interval (e.g. value 16 ms) 

Concerning the seismic dataset as a source to design our information system, only 

one seismic dataset with bright spots will be enough. Because instead of generating our 

conditional attributes based on nominal values of attributes within the seismic trace, 

which change from one seismic dataset to other, our conditional attributes will consider 
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the behaviors of such attributes close to bright spots, and the behaviors are the same for 

different seismic datasets with bright spots. Thus we designed a set of generic seismic 

conditional attributes for our framework, providing a generic pattern recognition 

process, where we will look for amplitude phase inversion that is typical of a bright 

spots region (see Section 6 and Section 7) that counts only on attributes behaviors to 

detect bright spots independently of the seismic dataset. Regarding the discretization of 

our conditional attributes values, we defined intervals that are related to the behavior of 

each trace in the neighborhood of the current seismic trace. 

A specialist geologist helped us to choose the discrete values for our seismic 

conditional attributes empirically. Also, if necessary, the final user will be able to adjust 

the attributes discretization indirectly, since values of attributes are linked to the input 

parameters trace_search_radius and time_search_interval (Figure 10). This 

time_search_interval defines the expected vertical size of the pattern bright spots, which 

is an interval time in milliseconds starting on the higher amplitude within a seismic 

trace (See  Section 6 and Section 7). Following, we present the conditional attributes 

defined for our information system. 

� bright_spot_pieces_region 

This conditional attribute means the continuity/frequency of the bright spots traces 

in the trace neighborhood, where some traces may be a piece of bright spots and 

others may not, representing discontinuities. The best candidate for the bright 

spots is the one that comprises a neighborhood with 100% of continuity; it means 

that the neighborhood is compounded only by traces that were classified as bright 

spots piece. Concerning the discrete values of bright_spot_pieces_region they are 

according to the percentage of traces classified as bright spots piece within the 

neighborhood, as following:  

� '>90%TraceRadius' when the percentage is greater than or equal to 90. 

� '[80-90[%TraceRadius' when the percentage is greater than or equal to 80 

and less than 90. 

� '[70-80[%TraceRadius' when the percentage is greater than or equal to 70 

and less than 80. 

� '[60-70[%TraceRadius' when the percentage is greater than or equal to 60 

and less than 70. 

� '<60%TraceRadius' when the percentage is less than 60. 
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� sample_max_indexes_region  

The present conditional attribute represents the horizontality of the bright spots 

region, such horizontality is related to the position (index) of the higher amplitude 

sample (sample_max) of each seismic trace in the trace neighborhood, indicating 

how well aligned are such samples. The higher horizontality occurs when in the 

neighborhood all the indexes of sample_max are the same. The best bright spots 

candidate has the best horizontal alignment. Concerning the discrete values of 

sample_max_indexes_region they are according to the difference in samples 

between the highest index and the lowest index among all the sample_max of the 

traces within the neighborhood, as following: 

� 'Inclination0Sample' when the difference is zero. 

� 'Inclination1Sample' when the difference is one sample. 

� 'Inclination2Samples' when the difference is two samples. 

� 'Inclination3Samples' when the difference is three samples. 

� 'Inclination>4Samples' when the difference greater than or equal to four 

samples. 

The discrete values of our conditional attributes will compose the clauses of the 

conjunctive expression in the classification rules. 

5.2 REDUCT AND CLASSIFICATION RULES DESIGN 

To extract reducts and classification rules from our information system, we will 

employ Rosetta (ØHRN 2001), which is a general-purpose toolkit for analyzing tabular 

data in light of Rough Set discernibility-based model. Such toolkit is designed to 

support the overall data mining and knowledge discovery process via computation of 

minimal attributes sets and generation of classification rules in a supervised training 

process, using the concepts of discernibility matrix and discernibility function 

(PAWLAK 1982; SELVI et al. 2014). Such training is supervised because we will 

indicate the objects that are bright spots, based on the SEG-Y F3 already interpreted by 

a specialist. Therefore we will incorporate the specialist's knowledge in our proposal 

framework (see Section 6).  
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6 FRAMEWORK IMPLEMENTATION 

Concerning the implementation of our Framework, the UML activity diagram 

depicted in Figure 11 provides an overview of the process followed in the 

implementation, comprising two sub-processes: (i) Information System and 

Classification Rules Specification (ii) Rough Sets. The developer of our framework is 

responsible for executing the framework implementation activities, but the final 

interpreter user of our framework is not in charge to run such implementation activities.  

Next, we describe in detail each activity with their artefacts.  

 

Figure 11. Activity diagram of our framework implementation 

The sub-process Information System and Classification Rules Specification is 

carried on using the Greenplum database. However, the same process applies to another 

database with minor adaptations.  

6.1 SEISMIC ATTRIBUTES GENERATION 

The first activity of this subprocess is the Seismic Attributes Generation. The 

objective of this activity is to build the information system attributes (see Section 5.1). 

The Seismic Attributes Generation receives the two input artefacts below:  
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� Interpreted SEG-Y with bright spots 

This artefact corresponds to the table segy as depicted in Table 6. We consider the 

table segy already created and populated in our database, storing seismic traces 

from several SEG-Y files. This table has the following columns: (i) seg_id to 

identify the SEG-Y file, (ii) trace_id to identify the seismic trace within its 

respective SEG-Y file, and (iii) trace_data that is an array containing the set of 

amplitudes for the corresponding seismic trace in the same table's row. 

Table 6. Table segy with seismic trace data from several SEG-Y files 

 

� Data distribution strategies 

Since our framework will work in both ways serial or parallel processing, thus this 

artefact is a PostgreSQL Script (POSTGRESQL 2015) to determine the data 

distribution policies if we desire to store and distribute the seismic data within an 

MPPDB. These policies allocate the data avoiding common problems such as 

processing skew and data skew (GOLLAPUDI  2013; PIVOTAL 2015), by 

setting the appropriate distribution keys for each table in our database schema 

named seismic. Thus, we defined a distribution key composed of two attributes for 

the table segy: segy_id and trace_id. We chose this key for two reasons: (i) the 

interpreter will work in only one SEG-Y at a time; and (ii) the attribute trace_id is 

directly related to seismic trace that is the object of our information system. If our 

framework is not in an MPPDB, the present artefact will not be used. 

The output of the Seismic Attributes Generation activity is the artefact 

Conditional Attributes and Decision Attribute. This artefact comprises the definition of 

our seismic attributes (defined in Section 5.1) and a SQL Script (stored procedure called 

implement_rough_set_information_system) to generates and populates the temporary 

table temp_data (Table 7) that is required to achieve our conditional attributes in the 

information_system table (Table 8). 
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Table 7. Table temp_data populated with intermediate calculations  

 

The table temp_data presents the following columns: (i) trace_id to identify the 

seismic trace, (ii) sample_max_index to indicate the position of the higher amplitude 

sample within the respective seismic trace, (iii) bright_spot_piece describes if the 

seismic trace is a piece of bright spots. Such attribute presents the value t when it is true 

that the seismic trace is a piece of bright spots (presence of phase inversion around 

sample_max_index) and, in the opposite case, the value f is designated.   

6.2 INFORMATION SYSTEM TABLE CREATION 

The next activity is the Information System Table Creation. The purpose of this 

activity is to create and populate the conditional attributes in the table 

information_system (Table 8) of our database.  

Table 8. Table information_system populated with the conditional attributes  

 

The Information System Table Creation uses the input artefact Conditional 

Attributes and Decision Attribute by running the 

implement_rough_set_information_system in Greenplum database, as the following 

query and input parameters below: 

SELECT seismic.implement_rough_set_information_system (3,16,4,8,'+') 
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� segy_id 

The first parameter is segy_id; it selects the seismic dataset that corresponds to the 

seismic section of the F3 volume (inline 250, crossline interval 300 - 1250, time 

slice interval 0 - 1848). A specialist geologist helped us to choose this section 

because it was one of the sections with real bright spots samples. The passed 

parameter value is 3 because the tag for such SEG-Y seismic section is 3, in the 

table segy. 

� time_search_interval 

The second parameter is time_search_interval. In our framework implementation, 

a specialist geologist helped us to choose empirically such parameter value equals 

16, which allows covering the vertical size of the major bright spots occurring in 

our seismic section. 

� sample_time 

The third parameter is sample_time; it informs the sampling time for the samples 

that constitutes the seismic trace in the SEG-Y. In our framework implementation, 

the sample time for the chosen SEG-Y is four milliseconds.  

� trace_search_radius 

The fourth parameter is trace_search_radius. In our framework implementation, a 

specialist geologist helped us to choose empirically such parameter value equals 

8, which yields a neighborhood fitting within the horizontal sizes of the bright 

spots in our seismic section. 

� phase_reference 

The fifth parameter is phase_reference; it informs that the referential phase is 

positive for the chosen SEG-Y in our framework implementation. 

6.3 INFORMATION SYSTEM CONSTRUCTION 

After populating the conditional attributes in the table information_system, we go 

to the first activity Information System Construction of the sub-process Rough Sets. The 

aim of Information System Construction is to import to Rosetta toolkit the registers from 

the table information_system from our database. This activity produces the output 
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artefact Information System without Values for Decision Attribute that consists of our 

decision table (see section 2) in Rosetta toolkit.  

6.4 SPECIALIST'S KNOWLEDGE INCORPORATION 

In the present activity called Specialist's knowledge incorporation, the objective is 

to fill the decision attribute values in the input artefact Information System without 

Values for Decision Attribute. Such values are based on the input artefact Interpreted 

SEG-Y with Bright Spots that is one of the F3 seismic sections containing bright spots 

(see Section 5.1). In our implementation, we choose the seismic section in the inline 

250, but such a seismic section could be any other since it contained samples of bright 

spots (Figure 12). Therefore the specialist's knowledge comes from the interpreters who 

worked on such F3 seismic section.  

 

Figure 12. On the top, a magnification of bright spots region. On the bottom, the 

interpreted seismic section (inline 250) of F3 volume 

The assignment of the decision attribute values is done manually by the developer 

of this framework, editing directly in the decision table Information System without 

Values for Decision Attribute, inputting value t for the seismic trace objects that were 

interpreted as bright spots in F3 seismic section (inline 250). Thus, the activity 

Specialist's knowledge incorporation produces the output artefact Information System, 
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which consists of a decision table in Rosetta toolkit (Figure 13) containing the values of 

conditional attributes for all the objects of the information system, and the values of the 

decision attribute for the objects that states a bright spots occurrence. 

 

Figure 13. Information system as decision table in Rosetta toolkit 

6.5 REDUCTS GENERATION AND CLASSIFICATION RULES GENERATION 

The next activities are Reducts Generation and Classification Rules Generation.  

This activity receives as input the artefact Information System and is responsible for 

running a supervised training process in Rosetta (see Section 5.2) generating an 

information system reduct if applicable and classification rules to detect bright spots. 

The output artefact Bright Spots Classification Rules (Table 9) is provided by Rosetta 

toolkit and comprises: (i) rules for the information system reduct; such rules present in 

their expression only one conditional attribute; (ii) rules for the information system that 

contain the two conditional attributes in their conjunctive expression. Once finish this 

activity, the framework accomplishes the subprocess Rough Sets. 
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Table 9. Table with classification rules in Rosetta toolkit 

 

In Table 9, for each rule, we have an associated value for accuracy, which 

corresponds respectively to decisions outputted by the rule.  For example, the seventh 

rule in Table 9 has accuracy equals 0.72 when identifying not bright spots and has 

accuracy equals 0.28 when detecting true bright spots.    

6.6 IMPLEMENTATION IN POSTGRESQL OF BRIGHT SPOTS 

CLASSIFICATION RULES 

The following activity is the Implementation in PostgreSQL of Bright Spots 

Classification Rules. This activity receives as input the artefact Bright Spots 

Classification Rules, and this activity is in charge of selecting and implementing part of 

the classification rules as PostgreSQL rules (POSTGRESQL 2015) in our database. 

Since some rules within Bright Spots Classification Rules do not indicate bright spots or 

have a low accuracy to indicate bright spots, we applied the following selection 

heuristics. First, all the deterministic rules (see Section 2.3.3) that are the ones with 

accuracy value equals 1.0, in Table 9 they are the information system rules 10, 11, 12, 

13 for bright spots presence and, the information system reduct rules 14 and 15 for 

bright spots absence. Next, among the non-deterministic rules (see Section 2.3.3), we 

selected those with more than 70% of accuracy for bright spots presence, in Table 9, 

they are the information system rules 7 and 8. An expert geologist helped us empirically 

choose this percentage value, since above this value of accuracy, significant detection of 

bright spots was still possible. Finally, the selected rules were manually codified as 

PostgreSQL rules by the developer of this framework, finishing the framework 

implementation. 
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7 SEISMIC INTERPRETATION FRAMEWORK 

In our framework, we have a computational process to identify a set of bright 

spots (BS), and the user of our framework inputs query parameters (QP) specifying the 

options for BS detection. Thus, based on QP the process populates the values for C in 

IS; then the computational process proceeds to detect BS in IS, assigning the value True 

for D of objects in IS that fits the case of a BS. The computational process is provided 

with a set of classification rules to detect BS. Such rules were generated based on Rough 

Set Theory as described in Section 2.3 and Section 6.  

7.1 FRAMEWORK ARCHITECTURE 

The proposed framework has a logical architecture comprising three main 

modules: API, Processing and Data Storage as depicted in Figure 14. Following we 

describe the components of each one of these modules. 

 

Figure 14. Logical architecture of our seismic interpretation framework 
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Users access the framework through the API module using the Query Bright Spots 

component. Such component is implemented by a stored procedure, which defines a 

pattern recognition query and has the following parameters (similar to the parameters in 

Section 6): (i) segy_id – specifies the SEG-Y file as seismic dataset to be interpreted; 

(ii) time_search_interval (See Section 5.1);  (iii) sampling_time – informs the sampling 

time for the SEG-Y file to be interpreted; (iv) trace_search_radius (See Section 5.1); 

(v) phase_reference – value "+" for SEG-Y file with positive amplitude phase reference 

or value "-" in the opposite case; (vi) trace_segment_energy – indicates the number of 

samples in the subtrace to be considered when calculating the energy, such subtrace 

starts in the trace sample with higher amplitude value, a null value will indicates to use 

all the samples within the trace; (vii) top_percent_filter – specifies the percentage of 

best candidates to be kept in the final results; (viii) rules – specifies which classification 

rules must be used, informationSystem for information system rules or reduct for 

information system reduct rules. 

Regarding the Processing module, this is responsible for extracting potential 

bright spots of the seismic dataset and encompasses the components that are SQL 

scripts implemented as stored procedures in our database. When the user runs the Query 

Bright Spots such functions will be called in the same order of the Processing 

components below:   

� Seismic Attributes Calculator 

The Seismic Attributes Calculator is responsible for calculating the values of 

seismic conditional attributes for each object in our information system. Such 

calculation is performed according to the Query Bright Spots parameters.  

� Pattern Recognition Executor 

The Pattern Recognition Executor is in charge of carrying out the pattern 

recognition, analyzing for each object in the information system the values of 

seismic conditional attributes. Such values will determine if there are bright spots 

in the current object, in the affirmative case, the object will receive the value True 

in its decision attribute. The component’s execution is according to the component 

Query Bright Spots, in the module API and according to the artefact Rough Sets 

Classification Rules, in the module Data Storage. 
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� Candidates Solutions Generation 

The objective of Candidates Solutions Generation is to select, in the Information 

System, the objects that present the value True for the decision attribute. Thus, this 

component generates as output a set of candidates objects for the pattern 

recognition result.   

� Energy Cost Function Calculator 

The responsibility of Energy Cost Function Calculator is to apply a cost function 

for each seismic trace object selected by the component Candidates Solutions 

Generation, calculating the Energy of such objects. The result of Energy Cost 

Function Calculator permits to indicate the objects that present more potential for 

pore fluid, therefore, objects with higher probability to be bright spots associated 

with hydrocarbon accumulation.  

� Filter 

The Filter is in charge to mitigate the occurrence of false positives in our result. 

For this purpose the component ranks decreasingly by the Energy value the 

candidates from Candidates Solutions Generation, filtering to be in the results 

only the x% first top candidates, where x% is informed by the parameter filter in 

the component Query Bright Spots.  

Concerning the Data Storage module, the responsibility of this module is to store 

the seismic dataset, to provide all the necessary tables and rules used by our 

computational process of our framework, encompassing the following artefacts:  

� Segy 

The table Segy (see Table 6) allocates the SEG-Y files. In the module Processing, 

the component Seismic Attributes Calculator accesses Segy. 

� Temp Data 

The table Temp Data (see Table 7) stores the intermediate calculations results for 

the components in the module Processing. 

� Information System 

The table Information System (see Table 8) represents our information system. In 

the module Processing, the component Seismic Attributes Calculator generates 
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the values to populate the conditional attributes in the Information System. Also, 

all the others components in Processing access this artefact.  

� Rough Sets Classification Rules 

The Rough Sets Classification Rules is a set of PostgreSQL rules (POSTGRESQL 

2015) in our database and, such rules provide the if-then rules generated at our 

framework implementation. 

The final result of our computational process is the output Potential Bright Spots, 

which consists of a CSV text file, containing a list of coordinates for seismic traces 

objects that present bright spots potentially associated with hydrocarbon accumulation. 

The coordinate comprises: (i) trace identification (see trace_id in Table 7) and, (ii) 

sample time of sample_max_index (see Table 7). 

7.2 COMPUTATIONAL PROCESS DESCRIPTION 

In this section, we describe the computational Seismic Interpretation Support 

Process of our Framework to identify bright spots in seismic datasets. The entire 

process is split into two sub-processes: (i) Pattern Recognition Query and (ii) 

Information System Customisation. We envision one user profile in our framework: the 

Interpreter, who handles the query parameters description, according to the bright spots 

of his/her interest. The UML activity diagram depicted in Figure 15 shows the process 

as a whole with its sub-processes, input and output artefacts.  Following, we describe 

this activity diagram relating to the logical architecture of our seismic interpretation 

framework. 
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Figure 15. Activity diagram of the computational seismic interpretation support 

process 

 

� Query Parameters Specification 

This activity is the first step of the sub-process Pattern Recognition Query and, 

consists of the specification of the query parameters. Query Parameters 

Specification uses the component Query Bright Spots (Figure 14) and generates 

the Pattern Recognition Constraints artefact, containing the parameters inputted 

by the user (Figure 14). 

� Seismic Conditional Attributes Customisation 

The purpose of this activity is to customise the seismic conditional attributes, 

calculating their values according to the Pattern Recognition Constraints and, 

according to others two input artefacts Segy and Information System (Figure 14 

and Figure 15). Also, this activity uses the component Seismic Attributes 

Calculator (Figure 14). Lastly, the present activity produces the artefact 

Customised Information System, which consists of the Information System (Figure 

14) populated with the values of the seismic conditional attributes for each object. 
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Once finish this activity, we accomplished the subprocess Information System 

Customisation. 

� Run Query Bright Spots 

After creating the Customised Information System, the framework proceeds with 

the sub-process Pattern Recognition Query, where the activity Run Query Bright 

Spots uses the components Pattern Recognition Executor and Candidate Solutions 

Generator (Figure 14) to identify the bright spots in the input artefact Customised 

Information System. In addition, this activity has another input artefact the Rough 

Sets Classification Rules (Figure 14 and Figure 15). This activity creates the 

artefact Potential Bright Spots, which corresponds to the Information System 

(Figure 14) with the values of the conditional and decision attributes for objects 

were classified as bright spots associated with potential hydrocarbon 

accumulation.  

� Energy Cost Function and Filter Application 

The aim of this activity is to refine the result of the previous activity, using the 

components Energy Cost Function Calculator and Filter (Figure 14). This activity 

receives the input artefacts Potential Bright Spots and Pattern Recognition 

Constraints; then the activity calculates the energy for each object and, filters the 

top percentage with higher energy values, producing the artefact Filtered 

Potential Bright Spots that is analog to our framework output (Figure 14). Finally, 

we achieve the sub-process Pattern Recognition Query, concluding the Seismic 

Interpretation Support Process.   

  



52 

 

 

 

8 EVALUATION 

The proposed framework was evaluated through a set of experiments. The first set 

intends to assess the framework accuracy to detect bright spots as potential hydrocarbon 

indicators. The second set of experiments evaluates the framework performance in 

different scenarios. All the evaluations were performed in the MPPDB Greenplum 

(GOLLAPUDI  2013; PIVOTAL 2015).  

8.1 ACCURACY TESTS 

Since we built our framework (as described in Section 6), this is ready to be 

evaluated and after that used by an interpreter. A preliminary examination consists in 

confronting our results with F3 seismic volume, verifying how close are our detection of 

bright spots from the real bright spots. Performing this test, we can verify if our 

framework attends to the functional requisite.  

We present four evaluation scenarios to verify the correctness of our framework's 

results. Such scenarios state examples of the use of our framework, envisaging to cover 

the cases when executing the framework with no energy filter and with energy filter,  

then checking how well the filter removes false positives. Also, the scenarios cover the 

cases when considering the information system and when considering the information 

system reduct. Thus we can evaluate the impact of the reduction of our seismic 

conditional attributes.  

Scenario 1: Framework over the information system without energy filter 

In Greenplum database, we execute the following query to yield the scenario 1: 

SELECT seismic.query_bright_spots (1,16,4,8,'+',  , 100, 'informationSystem'); 

Note that the parameter segy_id has value 1, which is related to a SEG-Y that 

corresponds to a seismic section of F3 volume (inline 200, crossline interval 300 - 1250, 

time slice interval 0 - 1848). Such seismic section is different from that one used in our 

framework implementation.  
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Figure 16 shows the results of our first test over the information system. To 

facilitated the visualization of seismic events, we adopted the representation in 

grayscale for our seismic section. In the grayscale representation, for a positive phase 

reference, the higher amplitude value will be black, and the smaller amplitude value will 

be white, or the opposite if adopted a negative phase reference; the intermediate 

amplitudes values will present a proportional gray color intensity. Moreover, we put a 

yellow marker (SCHINELLI 2011) in the samples that are the higher amplitude value of 

a seismic trace related to the bright spots. 

 

Figure 16. Framework results considering the information system and without 

energy filter in a seismic section of F3 volume (inline 200) 

In scenario 1, our framework detected correctly 32 (True Positives – TP) of the 89 

bright spots (Positives – P). Also, our framework classified correctly 756 (True 

Negatives – TN) of 862 not bright spots (Negatives – N). Thus we reached a rate of 

correct results equals 82.86% and sensitivity (TP rate) of 35.95%.  

Scenario 2: Framework over the information system with energy filter 

In Greenplum database, we execute the query below to achieve the scenario 2. 

Figure 17 shows the results of the present scenario evaluation. 

SELECT seismic.query_bright_spots (1,16,4,8,'+',  ,80, 'informationSystem'); 
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Figure 17. Framework results considering the information system and with energy 

filter in a seismic section of F3 volume (inline 200) 

In scenario 2, our framework detected correctly 32 (TP) of the 89 bright spots (P). 

Also, our framework classified correctly 775 (TN) of 862 not bright spots (N). Thus we 

reached a rate of correct results equals 84.85% and sensitivity of 35.95%. Comparing 

with the scenario 1, the scenario 2 kept the correct results and minimized the False 

Positives (FP), validating the filter purpose.  

Scenario 3: Framework over the information system reduct without energy filter 

To produce the scenario 3, in Greenplum database we execute the query below. 

Figure 18 depicts the results of this present evaluation scenario. 

SELECT seismic.query_bright_spots (1,16,4,8,'+',  ,100, 'reduct'); 
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Figure 18. Framework results considering the information system reduct and 

without energy filter in a seismic section of F3 volume (inline 200) 

In scenario 3, our framework detected correctly 79 (TP) of the 89 bright spots (P). 

Also, our framework classified correctly 129 (TN) of the 862 (N) bright spots. Thus we 

reached a rate of correct results equals 21.87% and sensitivity of 88.76%. For such 

reduct, the high incidence of FP is because the classification rules address only one 

seismic attribute, what makes the rules less restrictive to classify an object as bright 

spots. 

Scenario 4: Framework over the information system reduct with energy filter 

To achieve the scenario 4, in Greenplum database we execute the query below. 

Figure 19 shows the results for Scenario 4. 

SELECT seismic.query_bright_spots (1,16,4,8,'+', 16, 25, 'reduct'); 
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Figure 19. Framework results considering the information system reduct and with 

energy filter in a seismic section of F3 volume (inline 200) 

In scenario 4, our framework detected correctly 36 (TP) of the 89 bright spots (P). 

Also, our framework classified correctly 647 (TN) of the 862 (N) bright spots. Thus we 

reached a rate of correct results equals 71.81% and sensitivity of  40.44%. 

Consequently, the filter minimized the number of FP, but also eliminate some correct 

results compared to the scenario 3 results.  

In the previous outcomes of the proposed framework, we can see in the Figures 

16, 17, 18 and 19 the oval shape indication (local magnification in the rectangular shape 

indication) showing the region with bright spots (black track) associated with a gas 

accumulation. Some pieces of the bright spots were properly detected by our framework 

as indicated by the yellow marker over the black track. Also, for example in Figure 19 

at the bottom left corner, our framework wrongly highlight (yellow marker) some 

horizons as bright spots. Therefore our framework may present some false positives in 

its results. 

On another perspective, even though our framework does not find all the bright 

spots, all the undetected bright spots (False Negatives – FN) are noticeably close to the 

majority of the TP, thus our framework leads the interpreter to focus just on relevant 

seismic sections and section regions with more probability of bright spots occurrence, 

saving him/her from analyzing all the sections and analyzing all data in the seismic 

section. Therefore our framework can make the seismic interpretation activity faster. 
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According to the Section 3, there is in the literature another semi-automatic 

method to identify bright spots (FARFOUR et al. 2012). However, we could not 

perform an evaluation to compare the accuracy of the results from our proposed solution 

and the results from that other approach, since the results presentations are not clear in 

such related work and its approach is not available, then we could not reproduce such 

results to proceed with the comparison. 

8.2 PERFORMANCE TESTS 

To evaluate how well the proposed framework performs in serial and parallel 

environments, we deployed the Greenplum MPPDB on a cluster and changed its 

configuration from 1 to 12 Greenplum computing segments. Table 10 presents the 

configuration of each cluster node. 

Table 10. Cluster node configuration 

Cores 4 
Memory 30 GB 
Hard Disk 400 GB 

Operating System CentOS 6 x64 

The configuration of cluster nodes was based on the Greenplum’s manual 

(PIVOTAL 2015) to create a robust cluster to perform the tests. The Greenplum master 

server and the computing segments follow the number of cores in a cluster node, thus as 

the nodes have four cores each one, it is possible to configure up to four segments for 

each node. About the master, it was allocated in one separated cluster node. 

We analyzed two groups of configuration: serial configuration, with one segment; 

and parallel configuration, with 2, 4, 8, and 12 segments. Furthermore, the tests were 

performed on seismic datasets containing 10, 20, 40, 80 and 120 times the seismic 

dataset from the F3 volume, which has 50 MB covering only the amplitudes of the 

seismic traces. Therefore, we totalize 25 scenarios, covering the combinations among 

the numbers of computing segments and the multiplication factors of the seismic 

dataset: 

(1) 1 computing segment and 10 times the dataset; 

(2) 1 computing segment and 20 times the dataset; 

(3) 1 computing segment and 40 times the dataset; 
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(4) 1 computing segment and 80 times the dataset;  

(5) 1 computing segment and 120 times the dataset; 

(6) 2 computing segments and 10 times the dataset; 

(7) 2 computing segments and 20 times the dataset; 

(8) 2 computing segments and 40 times the dataset; 

(9) 2 computing segments and 80 times the dataset;  

(10) 2 computing segments and 120 times the dataset; 

(11) 4 computing segments and 10 times the dataset; 

(12) 4 computing segments and 20 times the dataset; 

(13) 4 computing segments and 40 times the dataset; 

(14) 4 computing segments and 80 times the dataset;  

(15) 4 computing segments and 120 times the dataset; 

(16) 8 computing segments and 10 times the dataset; 

(17) 8 computing segments and 20 times the dataset; 

(18) 8 computing segments and 40 times the dataset; 

(19) 8 computing segments and 80 times the dataset;  

(20) 8 computing segments and 120 times the dataset; 

(21) 12 computing segments and 10 times the dataset; 

(22) 12 computing segments and 20 times the dataset; 

(23) 12 computing segments and 40 times the dataset; 

(24) 12 computing segments and 80 times the dataset;  

(25) 12 computing segments and 120 times the dataset; 

8.2.1 Initial experimental results 

The initial results are the total processing time of each scenario; Table 11 shows 

these times in seconds, where the presented values are the processing time average of 

three executions for each scenario.  
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Table 11. Processing time varying the number of segments and the multiplication 

factor of the dataset 

Number of Computing Segments 

  1 2 4 8 12 

D
a

ta
se

t 
 

M
u

lt
ip
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o

n
 

fa
ct

o
r 

10 227,8 115,5 66,3 31,7 21,0 

20 464,6 252,2 135,7 60,2 39,3 

40 941,4 480,1 253,9 131,4 85,4 

80 1989,4 1063,7 515,5 252,9 169,1 

120 3564,1 1805,4 901,5 453,3 317,9 

 

The calculated statistics for each scenario cover the values of mean, standard 

deviation (SD) and coefficient of deviation (CV), which are depicted in Table 12. 

Regarding the obtained CV values, which are small, we conclude that the standard 

deviation is minimal; consequently, three runs per scenario are sufficient to obtain a 

reliable and representative average of the processing time. Furthermore, in Table 13 we 

can see the confidence interval for each scenario in our experimental results. 

Looking at the results in Table 11, we can notice a reduction in processing time as 

we increase the parallelism. Nevertheless, for a better analysis of performance, 

according to others studies of distributed/parallel computation (SHAFER et al. 1996; 

ONG 2010), performance assessment considers the measurement of speedup, scaleup, 

and sizeup, which are present in the following subsections. 

Table 12. Statistics of the initial experimental results 

 Number of Computing Segments  

  1 2 4 8 12 

D
a

ta
se

t 
M

u
lt

ip
li

ca
ti

o
n

 

fa
ct

o
r 

10 227,8 3,5 1,6 115,5 0,4 0,4 66,3 0,2 0,4 31,7 0,3 0,9 21,0 0,4 1,8 

20 464,6 6,1 1,3 252,2 0,3 0,1 135,7 0,6 0,5 60,2 0,7 1,2 39,3 0,4 0,9 

40 941,4 3,2 0,3 480,1 0,2 0,0 253,9 0,2 0,1 131,4 0,6 0,4 85,4 0,7 0,8 

80 1989,4 5,3 0,3 1063,7 6,6 0,6 515,5 0,5 0,1 252,9 1,9 0,8 169,1 0,2 0,1 

120 3564,1 5,5 0,2 1805,4 0,4 0,0 901,5 1,6 0,2 453,3 2,7 0,6 317,9 3,4 1,1 

 

 

mean SD 

CV 

% mean SD 

CV 

% mean SD 

CV 

% mean SD 

CV 

% mean SD 

CV 

% 
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Table 13. Confidence intervals for each scenario 

 Number of Computing Segments  

 
 

1 2 4 8 12 

D
a

ta
se

t 

M
u

lt
ip

li
ca

ti
o

n
 f

a
ct

o
r 

10 227,8 ± 4,0 115,5 ± 0,5 66,3 ± 0,3 31,7 ± 0,3 21,0 ± 0,4 

20 464,6 ± 6,9 252,2 ± 0,3 135,7 ± 0,7 60,2 ± 0,8 39,3 ± 0,4 

40 941,4 ± 3,6 480,1 ± 0,2 253,9 ± 0,2 131,4 ± 0,7 85,4 ± 0,8 

80 1989,4 ± 6,0 1063,7 ± 7,4 515,5 ± 0,6 252,9 ± 2,2 169,1 ± 0,2 

120 3564,1 ± 6,2 1805,4 ± 0,4 901,5 ± 1,8 453,3 ± 3,0 317,9 ± 3,9 

 

 

confidence level 95% 

 

8.2.2 Speedup 

Speedup assesses the ability of the parallelism to optimize processing time. It is 

defined as the ratio of the serial processing time to the parallel processing time (ONG 

2010). Thus, speedup can be expressed as in Equation 5: 

Speedup��� =
�(�)

�(�)
																	(5) 

Where s is the number of computing segments, t(1) is the processing time of the 

proposed framework on one computing segment and, t(s) is the processing time on the 

parallel configuration with s computing segments. An ideal parallelism demonstrates 

linear speedup, for example, an infrastructure with m times the number of segments 

produces a speedup of m. Nevertheless, the linear speedup is complicated to accomplish 

since the communication cost rises with the number of computing segments. Figure 20 

shows de speedup evaluation results of our framework in each scenario. 
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Figure 20. Framework speedup results 

From the results acquired, the proposed framework demonstrates satisfactory 

speedup since the speedup factors progress at about the same rate as we increase the 

parallelism. In some scenarios the speedup factor is slightly below the proportion of the 

increased quantity of computing segments, such difference is probably linked to the 

cluster network cost. 

8.2.3 Scaleup 

In the scaleup evaluation, we aim to verify the performance of our framework as 

we increase the number of computing segments for a constant sub-volume of the F3 

seismic dataset (SHAFER et al. 1996). Figure 21 shows the results of this set of 

sensitive experiments.  
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Figure 21. Processing time scaleup results 

Also, we want to evaluate the performance of the proposed framework when 

increasing the number of computing segments and the dataset size proportionally (ONG 

2010). In such context we have a scaleup factor that can be expressed as in Equation 6: 

Scaleup��� =
�(�,	)

�(�,�	)
                   (6) 

 Where s is the number of computing segments, t(1,�) is the processing time of 

the framework on 1 computing segment with dataset size equals D, t��, ���	is the 

processing time with s computing segments and data size equals s times D. An ideal 

parallelism demonstrates a constant scaleup with growing number of computing 

segments and dataset size. In Figure 22 we present the calculated scaleup factors for our 

framework.  
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Figure 22. Framework scaleup factor results 

Concerning the processing time decreasing in Figure 21 and, the small 

degradation of the scaleup factor (see Figure 22), these results indicate that the proposed 

framework is scalable since the performance is improved as we increase the number of 

computing segments in the Greenplum MPPDB. The decrease in the scaleup factor was 

probably due to the cluster network cost. 

8.2.4 Sizeup 

In the sizeup assessment, we examine the performance of our framework as we 

increase the size of the seismic dataset and the number of segments is fixed (ONG 

2010). The sizeup factor can be expressed as in Equation 7:  

Sizeup��,�� =
�(�,
	)

�(�,	)
                (7) 
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Where s is the number of computing segments, and n is the incremental factor of the 

dataset size. T(s, D) is the framework processing time on s computing segments, and 

dataset size equals D; T(s, nD) is the processing time with s computing segments, and 

dataset size equals n times D. 

The results of the sizeup tests are presented in Figure 23 and Figure 24. 

 

Figure 23. Framework processing time sizeup results 
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Figure 24. Framework sizeup factor results 

We can conclude that the sizeup results of our framework are satisfactory and 

coherent, as the processing time and sizeup factor increase approximately equal the 

proportion that the seismic dataset grows, as depicted in Figure 23 and Figure 24. In 

some scenarios, the sizeup factor increases slightly above the expected probably due to 

the cluster network cost.    
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9 CONCLUSION 

The research presented here has demonstrated the success of using Rough Set in 

the proposed seismic interpretation framework, classifying seismic datasets, 

incorporating specialist’s knowledge into the process, and generating classification rules 

that work for different datasets. 

Using a real seismic dataset, which contains bright spots, tests show that our 

framework can find a suitable pattern of bright spots. By the results of our accuracy 

tests, we conclude that our framework is a helpful support in the seismic interpretation 

since the interpreter will focus on the seismic sections and regions where our framework 

indicates bright spots, saving the interpreter from analyzing and processing all dataset. 

Therefore the seismic interpretation becomes faster.  

Unfortunately, the proposed framework may present some false positives. 

However, the user can minimize such false positives by tuning the query parameters to 

detect bright spots. In our framework, the small number of seismic conditional attributes 

possibly is the reason for the false positives. As a future work, we plan to increase the 

number of conditional attributes, to achieve more restrictive classification rules and, 

therefore we expect to reduce the false positives.  

Envisioning the interpretation of huge seismic datasets, our framework is prepared 

to run in an MPPDB if necessary, allocating the data avoiding processing and data 

skew, therefore ensuring a satisfactory processing time. Concerning the scenario with 

F3 dataset increased in 120 times, the performance tests show that moving from serial to 

parallel processing, we reduce the framework processing time in around 49%, 75%, 

87% and 91% running in 2, 4, 8 and 12 computing segments respectively. In addition, 

the tests show that our framework is scalable, the processing times conforms to the 

sizeup tests results and, the framework presents a satisfactory speedup. 

The quality of the results of the proposed framework is in parts determined by the 

quality of the query parameters, which customise the pattern recognition process for 

bright spots. Since the interpreter is who inputs such parameters, the framework is 

relatively dependent on user expertise and experience. Nevertheless, despite such 

dependency, we believe the framework will be a useful support process for the 

interpreter in the seismic interpretation activity.  
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As further developments, we plan to explore the interconnection between rough 

sets and dependencies in relational databases (KEEN et. al 1994) since one question that 

dependencies try to answer is what data is relevant to the user's query. In this potential 

direction we will focus on three types of dependencies: (i) the functional dependencies 

that are restrictive, assuming the relationship holds for all data under consideration, that 

there are no exceptions to the rule; (ii) partitioning dependencies that loosen the 

requirements slightly, they allow one X-value to determine more than one Y-value; and 

(iii) inductive dependencies are the least restrictive of these dependencies. They allow 

the data to be loosely grouped, by allowing the groups to overlap in some ways. 
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ANNEX A – SEG-Y REVISION 2.0 DATA EXCHANGE FORMAT1 

SEG-Y FILE STRUCTURE  

The SEG-Y format is intended to be independent of the actual medium on which 

it is recorded. For this standard, the terms file and data set are synonymous. Both terms 

are a collection of logically related data traces or ensembles of traces and the associated 

ancillary data. 

FILE STRUCTURE 

 Figure 25 illustrates the structure of a SEG-Y file. Following the optional SEG-Y 

Tape Label, the next 3600 bytes of the file are the Textual File Header and the Binary 

File Header written as a concatenation of a 3200-byte record and a 400-byte record. 

This is optionally followed by Extended Textual File Header(s), which consists of zero 

or more 3200-byte Extended Textual File Header records. The remainder of the SEG-Y 

file contains a variable number of Data Trace records that are each preceded by a 240-

byte Standard Trace Header and zero or more 240-byte Trace Header Extensions. The 

Trace Header Extension mechanism is the only structural change introduced in this 

revision and while not strictly backward compatible with prior SEGY formats, it has 

been carefully designed to have minimal impact on existing SEG-Y reader software. It 

should be simple for existing software to be modified to detect the presence of the 

optional trace headers and either process or ignore any Proprietary  Trace Header 

Extensions. 

 

Figure 25. Byte stream structure of a SEG-Y file with N Extended Textual File 

Header records and M traces records 

. 

                                                           
1 Adapted from: <http:// 
http://seg.org/Portals/0/SEG/News%20and%20Resources/Technical%20Standards/seg_y_rev2_
0-mar2017.pdf> 
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NUMBER FORMATS 

In earlier SEG-Y standards, all binary values were defined as using big-endian 

byte ordering. This means that, within the bytes that make up a number, the most 

significant byte (containing the sign bit) is written closest to the beginning of the file 

and the least significant byte is written closest to the end of the file. With SEG-Y rev 2, 

little-endian and pairwise byteswapped byte ordering are allowed, primarily for I/O 

performance. This is independent of the medium to which a particular SEG-Y file is 

written (i.e. the byte ordering is no different if the file is written to tape on a mainframe 

or to disk on a PC). These alternate byte orders are identified by examining bytes 3297-

3300 in the Binary File Header and apply only to the Binary File Header, Trace 

Headers, and Trace Samples. All values in the Binary File Header and the SEG defined 

Trace Headers are to be treated as two's complement integers, whether two, four or 

eight bytes long, with the exception of the new 8-character Trace Header Extension 

name, an optional IEEE double precision sample rate, and fields that cannot be negative 

such as the number of samples per trace. To aid in data recognition and recovery, a 

value of zero in any SEG or user assigned fields of these headers should indicate an 

unknown or unspecified value unless explicitly stated otherwise. Trace Data sample 

values are either integers or floating-point numbers. Signed integers are in two’s 

complement format. SEG-Y revision 2 adds unsigned integers, 24 and 64 bit integers 

and IEEE floatingpoint data sample types. 

VARYING TRACE LENGTHS 

The SEG-Y standard specifies fields for sample interval and number of samples at 

two separate locations in the file. The Binary File Header contains values that apply to 

the whole file and the Trace Headers contain values that apply to the associated trace. In 

SEG-Y, varying trace lengths in a file are explicitly allowed. The values for sample 

interval and number of samples in the Binary File Header should be for the primary set 

of seismic data traces in the file. This approach allows the Binary File Header to be read 

and say, for instance, this is six seconds data sampled at a two-millisecond interval. The 

value for the number of samples in each individual Trace Header may vary from the 

value in the Binary File Header and reflect the actual number of samples in a trace. The 

number of bytes in each trace record must be consistent with the number of samples in 

the Trace Header. This is particularly important for SEG-Y data written to disk files. 
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Allowing variable length traces complicates random access in a disk file, since the 

locations of traces after the first are not known without pre-scanning the file. To 

facilitate the option of random access, a field in the Binary File Header defines a fixed 

length trace flag. If this flag is set, all traces in the file must have the same length. This 

will typically be the case for poststack data. 

COORDINATES 

Knowing the source and receiver locations is a primary requirement for 

processing seismic data, and knowing the location of the processed data with respect to 

other data is essential for interpretation. Traditionally seismic coordinates have been 

supplied as geographic coordinates and/or grid coordinates. SEG-Y accommodates 

either form. However locations are ambiguous without clear coordinate reference 

system (CRS) definition. SEG-Y provides the ability to define the CRS used for the 

coordinates contained within the Binary Header, the Extended Textual Header and the 

Trace Headers. To avoid confusion, this standard requires that a single CRS must be 

used for all coordinates within an individual SEG-Y data set. Additionally, the 

coordinate units must be the same for all coordinates. 

TRACE DATA 

Trace Data immediately follow their attached Trace Header(s), with the trace data 

arranged in samples of fixed size (1, 2, 3, 4, or 8 bytes). The format of the data sample 

is specified in the Binary File Header (bytes 3225–3226). With SEG-Y revision 2, 

provision has been made via bytes 3297–3300 of the Binary File Header to consistently 

support littleendian byte ordering or pairwise byte swapping of the Binary File Header 

and both Trace Headers and Trace Data. The seismic data in a SEG-Y file is organized 

into ensembles of traces or as a series of stacked traces. When the trace data is 

organized into ensembles of traces, the ensemble type may be identified (Binary File 

Header bytes 3229–3230). 

 
 
 
 


