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Resumo 

 

SANTOS, Igor Leão dos S.. On the Virtualization and Resource Allocation in the Cloud of 
Sensors. 2017. 122 f. Tese (Doutorado em Informática) – Instituto de Matemática, Instituto 
Tércio Pacciti, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. 
 

 

 

O novo paradigma da nuvem de sensores (CoS) vem ganhando visibilidade 

recentemente, reunindo os paradigmas de computação em nuvem e de redes de atuadores e 

sensores sem fio (RASSF) sob a forma de uma arquitetura de dois níveis. Com o surgimento 

mais recente do paradigma de computação de borda, disponibilizando recursos de 

computação, armazenamento e rede na borda da rede, tornou-se interessante considerar 

uma arquitetura de CoS de três camadas (compreendendo os níveis de sensor, borda e 

nuvem). Para proporcionar um nítido desacoplamento entre a arquitetura de três níveis de 

CoS e as aplicações, propomos o conceito de virtualização de CoS em nosso trabalho. Ao 

empregar a virtualização de CoS, um conjunto de nós virtuais (VNs) é disponibilizado para as 

aplicações. Alocar VNs às requisições de aplicações de maneira oportuna e eficiente, para 

atender aos requisitos das aplicações, dá origem ao desafio da alocação de recursos na CoS. 

Neste trabalho, formulamos o problema da alocação de recursos em CoS e propomos Zeus, 

um algoritmo parcialmente descentralizado para resolvê-lo. Escolhemos uma abordagem 

heurística para formular Zeus, devido à baixa sobrecarga de computação e rápida execução 

desse tipo de abordagem. Como características-chave, o Zeus é capaz de (i) executar 

requisições em comum entre múltiplas aplicações apenas uma vez, e compartilhar os 

resultados dessa execução única entre essas múltiplas aplicações, (ii) lidar com prioridades de 

aplicações e (iii) gerenciar relações de precedência entre as aplicações. Entre suas 

contribuições, Zeus é escalável em termos de número de VNs e aplicações na CoS, fornece 

suporte a aplicações sensíveis ao atraso e melhora a vida útil de WSANs. 

 

Palavras-chave: Nuvem de Sensores, Computação em Nuvem, Computação em Borda, Fusão 
de Informação, Virtualização, Redes de Atuadores e Sensores Sem Fio, Alocação de Recursos, 
Otimização, Programação Não-Linear Inteira Mista, Provisionamento de Dados, Atualidade de 
dados, Algoritmo Heurístico. 



 
 

 
 

Abstract 

 

SANTOS, Igor Leão dos S.. On the Virtualization and Resource Allocation in the Cloud of 
Sensors. 2017. 122 f. Tese (Doutorado em Informática) – Instituto de Matemática, Instituto 
Tércio Pacciti, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. 
 

 

 

The novel paradigm of cloud of sensors (CoS) gained momentum recently, bringing 

together the cloud computing and wireless sensor and actuator network (WSAN) paradigms 

in the form of a two-tier CoS architecture. With the more recent emergence of the edge 

computing paradigm, enabling computation and networking capabilities at the edge of the 

network, it became worth considering a three-tier CoS architecture (comprising the sensor, 

edge and cloud tiers). To provide a clean decoupling between the three-tier CoS architecture 

and applications, we propose the concept of CoS virtualization in our work. By employing such 

concept of CoS virtualization, a set of virtual nodes (VNs) is made available to applications. 

Assigning VNs to application requests in a timely and efficient way, in order to meet the 

requirements of applications, gives rise to the challenge of resource allocation in CoS. In this 

work, we formulate the problem of resource allocation in CoS and propose Zeus, a partly 

decentralized algorithm for solving it. We choose a heuristic approach to formulate Zeus, due 

to its low computation overhead and fast execution. As its key features, Zeus is capable of (i) 

performing requests in common for multiple applications only once, sharing the results of this 

single execution among these multiple applications, (ii) handling priorities and (iii) handling 

precedence relationships among applications. Among its contributions, Zeus is scalable in 

terms of the number of VNs and applications in the CoS, provides support to delay-sensitive 

applications, and improves the lifetime of WSANs. 

 

Keywords: Cloud of Sensors, Cloud Computing, Edge Computing, Information Fusion, 
Virtualization, Wireless Sensor and Actuator Networks, Resource Allocation, Optimization, 
Mixed Integer Non-linear Programming, Data Provisioning, Data Freshness, Heuristic 
Algorithm 
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1 Introduction 

During the first decades of the XXI century, several sectors of industry, academia and 

society have been witnessing the wide spreading of a multitude of new paradigms, which are 

revolutionizing the field of Information and Communication Technologies (ICT) [34]. The novel 

cloud of sensors (CoS) paradigm [40] is one of such paradigms that has gained momentum 

recently. The CoS combines wireless sensor and actuator networks (WSANs) [26] with cloud 

computing [6], making up a two-tier architecture.  

Formally, a cloud is a large-scale (ideally unlimited) set of virtualized computing 

resources that owners can dynamically reconfigure to serve a variable load, seeking optimum 

resource utilization [6], [33]. Accordingly, virtualization is a key feature that grounds the cloud 

computing paradigm. The authors in [33] define virtualization in terms of hiding from clients 

the variety of types of infrastructures, platforms and data available at the back-end, 

facilitating application delivery. 

Recently, another paradigm built on virtualization principles has been gaining 

momentum: the edge computing [39]. Edge computing proposes the virtualization of physical 

edge devices, to enable computation, storage, and networking capabilities at the edge of the 

network, i.e. among the sensor nodes and traditional clouds [39]. Physical edge devices are 

heterogeneous in terms of their capabilities and can be either resource-poor devices such as 

access points, routers, switches, base stations, and smart sensors, or resource-rich machines 

like a “cloud-in-a-box”, such as Cloudlets [36]. Edge devices perform a number of tasks. For 

instance, collecting the data and performing preprocessing, filtering the data and 

reconstructing it into a more useful form, uploading only the necessary data to the cloud. In 

addition, edge nodes can monitor smart objects and sensors activities, keeping check on their 

energy consumption. The edge consumes locally the portion of data generated by sensors that 

require real-time processing (from milliseconds to tenths of seconds). Then, it transmits the 

rest of such data to the cloud, for operations with less stringent time constraints (from 

seconds to minutes) [39]. Therefore, edge computing allows real-time delivery of data, 

especially for latency sensitive services. On the other hand, the closer to the cloud, the longer 

the time scale, and the wider is the geographical coverage. The cloud provides the ultimate 
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and global coverage, and serves as a repository for data for a duration of months or years, 

besides allowing more complex data analytics, based on historical data.  

Combining WSANs and cloud/edge computing paradigms in the form of a three-tier 

CoS architecture (comprising the sensor, edge and cloud tiers) potentially leverages mutual 

advantages. On the one hand, WSANs could benefit from the virtually unlimited resources, 

besides the low latency, mobility and location-awareness support, of a cloud/edge 

environment to implement service management and composition for exploiting the smart 

sensors and their produced data. On the other hand, the cloud/edge computing paradigms 

can benefit from WSANs by extending their scopes to deal with real world objects in a 

distributed and dynamic way, enabling the delivery of a wider variety of new services in real 

world scenarios. However, despite the advantages of the three-tier CoS architecture, one 

important challenge in the design of the CoS pertains to the development of a model for CoS 

virtualization, which we describe in Section 1.1. 

1.1 The challenge of CoS virtualization 

Essentially, in the CoS paradigm, the cloud and edge tiers perform CoS virtualization, 

which is built on the concept of WSAN virtualization [7]. The concept of CoS virtualization 

provides a clean decoupling between the whole three-tier CoS infrastructure and applications 

via an abstract representation of the data, computation and communication capabilities of 

the former. Through CoS virtualization, it is possible to hide from users the complexity of the 

three-tier CoS infrastructure, facilitating application delivery and allowing the sharing of such 

infrastructure among several applications.  

Traditional two-tier CoS architectures that are proposed in the literature [3], [4] 

consider the physical sensors as passive devices able to provide data to the closest sink node, 

which forwards such data to a (often) single database stored in the Cloud. Being fully inside 

the Cloud, the CoS virtualization takes place, simply based on processing/correlating data 

stored in this database, and thus in a centralized manner. Such a model is traditionally known 

as Sensing as a Service [3]. Moreover, CoS virtualization is usually based on publish/subscribe 

mechanisms [6], where each physical sensor publishes the sensed data and metadata 

(comprising sensor types, locations, and other useful descriptive information), and 

applications subscribe to the published sensor data. Each application subscription to a 

published set of sensor data results in the instantiation of new virtual nodes, or reuse of 
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existing ones. Consequently, the instances of virtual nodes are created and exist only inside 

the Cloud, based on the (possibly correlated) data provided by the existing physical sensors 

connected to the CoS. These centralized CoS virtualization approaches demand transmission 

of data to a sink node connected to the WSAN. The communication overhead caused by such 

an approach is aggravated when large-scale physical deployments are used to increase the 

frequency of simultaneous transmissions. This communication overhead results in at least two 

major drawbacks that hinder centralized CoS infrastructures to achieve better results when 

used as solutions to the challenge of the CoS virtualization.  

The first major drawback is the compromising of the WSAN lifespan, as the nodes of 

the WSAN have limited energy resources [3], [9], [11]. An effective solution for maximizing the 

system lifespan is to process and reduce the sensed data locally, within the physical WSAN. 

Such data reduction consists on decreasing the amount of data (that reduces the 

corresponding transmissions) used by applications to make decisions. A possible approach for 

data reduction is to make use of Information Fusion [9], which consists of the 

transforming/joining (fusing) of two or more pieces of information (data) from different 

sources, resulting in other information. In this approach, it is possible to consider virtual nodes 

as computational entities capable of performing a set of information fusion techniques. 

Therefore, it is possible to map the virtualization of physical sensors onto the three data 

abstraction levels of information fusion (measurement, feature and decision) [9], based on 

the input and output data of each of the virtual node. 

The second major drawback being that such a communication overhead imposes an 

additional delay on top of the response time of applications running within the CoS. The 

response time of applications comprises of the execution time of data acquisition, processing, 

decision, and actuation. In centralized CoS infrastructures [3], [6], [8], the response time of 

applications depend on several factors, such as: (i) the communication bottlenecks formed 

close to the sink nodes, (ii) the size (in hops) of the physical WSAN, (iii) the delay of routing 

data inside the Cloud, (iv) the delay in processing and making decisions within the Cloud, and 

(v) the delay of issuing an actuation message back to the physical WSAN. Although the 

approach of data reduction aids in decreasing the time spent due to each of the above factors, 

when transmitting the data via a sink node to the Cloud for instantiating virtual nodes and 

data processing, the total response time still comprises of all such factors. Such a situation 
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impedes several applications that require fast response [10], [18]. To overcome such a 

restriction, a feasible approach is to decentralize the decision processes of applications [11], 

[22], [40]. That is to say that the decentralized approach consists on performing the decision 

processes of applications inside the physical sensor, leveraging the in-network processing 

capabilities of the nodes.  

Further on this account, the existing publish/subscribe models proposed within the 

centralized CoS infrastructures ignore that sensors also have local processing and 

communication capabilities for performing localized and collaborative algorithms, which are 

required for applications that are inherently decentralized [11], [22], [40]. In particular, the 

adoption of the WSAN as one of the cornerstones of the Internet of Things (IoT) paradigm 

fosters the introduction of novel and more complex applications, such as domotics, assisted 

living, e-health, business/process management, structural health monitoring, and intelligent 

transportation of people and goods. To complete complex tasks in the IoT scenario, the 

applications require distributed processing within the network. In general, the centralized CoS 

infrastructure approach is unsuitable for the execution of decentralized applications. 

Therefore, for supporting a broader set of applications, it becomes essential that the CoS 

infrastructure allows the execution of localized and collaborative algorithms as a service 

within the physical sensors. Such an approach leads to a novel paradigm called the WSAN as 

a Service (WSANaaS), in which the concept behind the services provided by a WSAN node is 

much broader than the concept proposed in the traditional Sensing as a Service paradigm [3]. 

Therefore, the challenge of CoS virtualization refers to the development of a model for 

CoS virtualization that simultaneously meets the requirements of several applications, while 

dealing with the resource constrained nature of the WSANs and prolonging their lifespan. 

Furthermore, by employing CoS virtualization, a set of virtual nodes (VNs) is made available to 

applications. The need to assign VNs to application requests in a timely and efficient way gives 

rise to the challenge of resource allocation in CoS. We describe the challenge of resource 

allocation in CoS in Section 1.2. 

1.2 The challenge of resource allocation in CoS 

The goal of resource allocation in CoS is to maximize the amount of application 

requirements properly met by the CoS infrastructure, while ensuring a target operational cost 

[41]. The resource allocation in CoS differs from the traditional cloud computing approach by 
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dealing with the specificities of CoS systems. For instance, in traditional cloud computing, the 

sharing of computational, storage and networking capabilities of cloud servers among cloud 

applications is the main goal. In contrast, in CoS, the sensor data acquisition and sharing 

among CoS applications is a more important goal than sharing the computational, storage and 

networking capabilities of devices from either sensors, edge or cloud tiers. Therefore, the CoS 

systems are specifically based on sensing data, and so we consider resource allocation in CoS 

under the prism of data provisioning [42], [43]. The philosophy behind data provisioning 

consists of abstracting, to users and applications, data acquisition/access, and allowing data 

sharing among applications, while meeting respective application requirements. Among the 

possible requirements stands out the data freshness, given its importance for distributed 

systems based on sensing data. There are several definitions of data freshness in literature 

[13]. Among these definitions, throughout this work we will adopt the one that quantifies the 

freshness of a given data based on the time elapsed since its acquisition. In our approach 

based on data provisioning, the resource allocation problem links the data provided by VNs, 

provided by the CoS virtualization model, and the data demanded by CoS applications. 

Hereafter, we describe the main aspects of VNs and CoS applications that we consider in the 

formulation of the problem of resource allocation in CoS.  

The concept of virtual nodes (VNs) denotes an abstract representation of (i) data, (ii) 

computation and (iii) communication capabilities of the CoS infrastructure. Such VNs are 

computational entities implemented as software instances that run on top of the edge or 

cloud tiers. Therefore, we consider that VNs are analogous to typical IoT resources [44], [76]. 

Each VN exposes a data provisioning service, which provides data in response to application 

requests. Moreover, since we adopt a virtualization approach based on information fusion, 

each VN represents an information fusion technique [40], [9]. Therefore, the VN is capable of 

coordinating the underlying CoS infrastructure for performing the sensing, processing or 

actuation necessary to accomplish the execution of the information fusion technique 

represented by it. The data provided by the data provisioning service of each VN is the output 

of its implemented information fusion technique. Such output data may comprise raw sensing 

data, processed sensing data or even control actions, in case of VNs that abstract actuation 

tasks. Moreover, the output data of VNs is of a single data type.  
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In our work, each data type is unique, and several VNs can provide data of the same 

data type. The CoS Infrastructure Providers (InPs) define and describe the data types available 

in the CoS system. For instance, in the context of a SHM application, a data type D can be a 

structural damage index calculated through a given damage detection technique [22]. In 

addition, InPs can also define the data types R1 and R2 as the raw data, obtained from two 

different civil structures (1 and 2, respectively), used in the calculation of D. Users define their 

applications based on the data types available in the CoS. Therefore, we consider the 

possibility of supporting users from all levels of expertise in application domains. The InPs are 

responsible for considering the desired level of expertise of their target users, when defining 

the data types. For instance, users from a higher level of expertise can be interested in building 

applications using D and R1, or D and R2. In other words, the VN that provides D can receive 

data from either VNs that provide R1 or R2. However, users from a lower level of expertise 

can be interested in building applications using a data types that abstract data acquisition. For 

instance, they might request data types D1 and D2, which represent a damage index 

calculated for civil structures 1 and 2, respectively.  

Regarding CoS applications, we inspire our application model in a workflow based 

approach, from the area of Web Services [30], [31]. Users model an application as a workflow 

that comprises several activities. In this work, we call each activity of an application workflow 

as a request. A request is a logical interface to the data provisioning service implemented by 

VNs. Therefore, requests do not hold any implementation of services. In addition, for each 

request, users define a set of requirements. We consider two categories of requirements: non-

negotiable, which must be completely fulfilled (100% fulfillment level), and negotiable, which 

allow any given level of partial fulfillment, under 100% [15].  

In our work, we consider the data type as a non-negotiable requirement. Several VNs 

that provide the same data type are alternatives to meet a request. We consider the data 

freshness as a negotiable requirement. Ideally, each VN should update its data upon its 

allocation to each application request, in order to meet all requests with best (zero) data 

freshness. However, data updates require the VN to coordinate the engagement of the 

underlying CoS infrastructure, thus incurring in a given processing load on it. Besides 

consuming energy/bandwidth resources, the execution of data update procedures generate 

a delay for meeting the request. To avoid the constant re-execution of processing loads by the 
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underlying CoS infrastructure, it is possible to meet requests by simply re-using data outputs 

stored locally within the VN. This data is stored from previous data updates and can be reused, 

provided that such data meets the data freshness requirement of the requests. Thus, only 

requests demanding fresher data than the one currently stored in a VN will require data 

updates, minimizing the system overhead. 

Therefore, to achieve its goal, the resource allocation process in CoS comprises three 

simultaneous decisions. The first one regards which VN should meet each request. The second 

decision regards when (in which moment in time) the VN should meet each request. The third 

decision regards if each VN should update its data to meet the request. This resource 

allocation process is a fundamental part of our three-tier CoS architecture, which also has 

several other components that perform functions required for the full operation of a CoS 

system.  

As in other works in literature [73], the problem of resource allocation in CoS falls 

within the typical class of mixed integer non-linear programming problems (MINPP) [17], [66]. 

To solve our MINPP in order to seek the optimal solution, there are a number of methods in 

the literature, such as the linear programming techniques and their variants [67]. However, 

our formulated MINPP is an NP-complete problem [46], so its explosive combinatorial nature 

hinders the quick search for optimal solutions when it grows, in terms of the number of VNs 

and applications. This aspect harms the typical delay-sensitive applications from the scenario 

of edge computing, which usually require strict response times, in the order of milliseconds to 

sub seconds [18]. In this sense, another challenge arises regarding how to solve, in polynomial 

time, practical instances of our MINPP with arbitrary sizes [78]. Because of NP-complete 

problems, an entire research area exists that deals with quick search of solutions, emphasizing 

heuristic techniques that produce near-optimal solutions, and also show low computation 

overhead [68], [77], [85]. Among the several classifications of heuristic techniques shown in 

[85], we chose to use constructive techniques for the following reasons. First, they do not 

require initial solutions, allowing the decision-making node that uses these constructive 

techniques to be more autonomous, in terms of requiring less inputs to make decisions, than 

other techniques shown in [85]. In addition, constructive techniques do not require the 

decision-making node to have information about the whole scenario to make decisions. 
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Instead, it can make localized decisions, with the information available locally, fostering 

decentralized decision-making. 

1.3 Research questions 

Based on the abovementioned challenges of (i) CoS virtualization and (ii) resource 

allocation in CoS, we investigate the following research questions in our work. 

Research question 1: In the context of the Cloud of Sensors paradigm, the concept of 

virtualization is built on the concepts of Resource Provisioning, Resource Allocation and Task 

Scheduling. 

To be fully accomplished, a WSAN virtualization scheme in CoS comprises at least three 

sub processes, each one for implementing Resource Provisioning, Resource Allocation and 

Task Scheduling. Typical approaches for these processes already exist in traditional areas 

related to the field of CoS, such as Cloud Computing [94][41], and WSAN [24]. In the field of 

CoS, new requirements arise for these three processes. For instance, the CoS is a typical 

distributed system based on sensing data, where data integration is an important issue. Thus, 

data freshness is an important requirement for the CoS. Therefore, in order to propose a CoS 

virtualization model, it is important to investigate solutions to these three processes that 

consider the specific requirements from the context of CoS. 

Research question 2: A CoS virtualization model that is based on information fusion is 

able to reduce data transmissions and, consequently, to save energy to the CoS system, 

extending the lifetime of WSANs. Due to decentralizing applications’ decision processes, such 

a CoS virtualization model is also able to reduce the response time of applications. 

There are several drawbacks to a centralized CoS virtualization approach. The first, 

communication overhead, compromises the WSAN lifespan, since the nodes of the WSAN 

have limited energy resources. An effective solution for maximizing the system lifespan is to 

process and reduce the sensed data locally, within the physical WSAN. Such data reduction 

consists of decreasing the amount of data (which reduces the corresponding transmissions) 

used by applications to make decisions. A possible approach for data reduction is to use 

information fusion, which consists of transforming/joining (fusing) two or more pieces of 

information (data) from different sources, resulting in other information.  

The second major drawback is that such a communication overhead imposes an 

additional delay on top of the response time of applications running within the CoS. 
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Application response time consists of the execution time of data acquisition, processing, 

decision, and actuation. In centralized CoS infrastructures, an application’s response time 

depends on several factors [6][3][8], such as (i) the formation of communication bottlenecks 

close to the sink nodes, (ii) the size (in hops) of the physical WSAN, (iii) the delay in routing 

data inside the cloud, (iv) the delay in processing and making decisions within the cloud, and 

(v) the delay in issuing an actuation message back to the physical WSAN.  

Although the data reduction approach helps lessen the time spent due to each of these 

factors, when transmitting the data via a sink node to the cloud for instantiating virtual nodes 

and data processing, the total response time still comprises all such factors. Such a situation 

impedes several applications that require fast response [10]. To overcome this restriction, a 

feasible approach is to decentralize applications’ decision processes—that is, perform 

application decision processes inside the physical sensor, leveraging the nodes’ in-network 

processing capabilities [11]. 

Research question 3: A hybrid and heuristic-based algorithm to perform resource 

allocation in CoS, which considers precedence relationships among application requests and 

shares the results of requests in common among applications, is (i) scalable, (ii) able to support 

delay-sensitive applications and (iii) able to save energy from WSANs, improving their lifetime. 

1.4 Objective 

This thesis has two distinct goals. Based on research questions 1 and 2, the first goal 

of this work is to propose a novel information fusion and decentralized CoS virtualization 

model, which we term Olympus. Olympus seeks to make the best use of both the Cloud and 

the physical WSAN environments, by finding a balance between two possible approaches for 

running services: (i) centrally, inside the Cloud and (ii) locally, within the physical sensors. 

Compared to the state of the art, the main distinct features of Olympus are: 

First, Olympus builds on the key concept of information fusion since each of the virtual 

nodes represents the execution of an information fusion technique. This ensures the system 

to provide data at a given abstraction level [9] during the information fusion process. 

Second, Olympus is a decentralized CoS virtualization model because physical nodes 

can perform locally the necessary procedures for creating and running the virtual node. The 

virtual node creation and operation management is not fully held centrally, within the Cloud. 
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Therefore, in Olympus, the decision processes of applications are performed partly within 

physical sensors and partly within the Cloud. 

Based on research question 3, the second goal of this work is to propose Zeus, a 

heuristic-based and hybrid algorithm to solve the MINPP for resource allocation in CoS. Zeus 

is designed to run on a CoS scenario grounded on the concepts of our proposed CoS 

virtualization model, Olympus. In such a CoS scenario of large dimensions and serving multiple 

applications, our algorithm has the following key features, which inherit the previously 

mentioned features of Olympus. 

First, in Zeus we adopted a heuristic approach for finding near-optimal solutions to 

maximize the data freshness provided to applications. In such a data freshness-based 

approach, Zeus is able to reuse data obtained in previous moments in time to meet current 

applications, considering their respective negotiable data-freshness requirements. To the best 

of our knowledge, there is no other work that proposes a formulation to the problem of 

resource allocation in CoS that considers the data freshness requirement. 

Second, Zeus is capable of performing requests in common for multiple applications 

only once, sharing the results of this single execution among these multiple applications. 

Therefore, besides reusing data obtained in different moments in time, as stated by the first 

feature, Zeus is also capable of reusing the same data to meet multiple applications 

simultaneously in time. 

Third, it considers the existence of precedence relationships (dependencies between 

data inputs and outputs) among the requests of a same application. Therefore, VNs must 

provide data in first place to the requests whose inputs are satisfied (all the preceding requests 

completed), and are free to start being processed. 

Fourth, we leverage the concept of edge computing in Zeus operation. By doing so, the 

resource allocation process is not limited to occur only in the cloud tier, as in two-tier CoS 

architectures [3]. Instead, our design allows Zeus to run at the edge tier, and considers that 

the instantiation of VNs occurs at the edge tier.  

Fifth, Zeus is designed as a hybrid (partly-decentralized) algorithm. In centralized 

resource allocation algorithms for CoS [71][46][49], the decision is taken by a centralized 

entity, and for a set of passive VNs, i.e. VNs do not partake in the decision process. Therefore, 

such algorithms are usually implemented fully within the cloud, considering the global view of 



26 
 

 
 

the CoS environment, i.e. considering all VNs in CoS. In turn, in decentralized algorithms [70], 

the resource allocation decision is taken cooperatively among VNs and independently from a 

centralized entity. Therefore, such algorithms are usually implemented fully within the VNs, 

which determine their allocations to requests based on their local views. In Zeus, we share 

characteristics of both centralized and decentralized algorithms. We combine a centralized 

decision phase, which runs in either cloud or edge tiers, and a decentralized decision phase, 

held fully within VNs. Therefore, the hybrid design of Zeus makes the most of the features of 

each computational tier of the CoS system. 

1.5 Contributions 

The major goals of this thesis regard proposing a novel CoS virtualization model, 

Olympus, along with a new algorithm to perform resource allocation in CoS, Zeus. In this 

Section, we point out and discuss the major contributions of our approach, derived from the 

key features of Zeus, which inherit the features of Olympus.  

As our first contribution, Zeus is scalable, both in terms of the number of VNs and the 

number of applications executed in the CoS. This contribution is a consequence of the hybrid 

approach of Zeus, which would not be possible without the support of a decentralized 

virtualization model as Olympus. Olympus contributes for enabling the decentralization of the 

WSAN virtualization process, and by supporting both centralized and decentralized 

applications simultaneously within the CoS infrastructure. 

As our second contribution, Zeus provides support to delay-sensitive applications. This 

contribution is achieved by leveraging edge tier, what allows supporting delay-sensitive 

applications (three-tier approach), in comparison to an approach using only the cloud tier 

(two-tier approach). Once again, Olympus plays a key role to achieve this contribution, since 

it considers the edge tier, allowing the design of Zeus for the three-tier CoS. This contribution 

is also a result of the use of both the use of information fusion and the decentralization of the 

WSAN virtualization process considered by Olympus, which reduce the response time of 

applications, by reducing communication overhead in CoS. Moreover, Zeus is capable of 

finding solutions in reduced computation time to the problem of resource allocation in CoS, 

also contributing to support delay-sensitive applications. 

As our third contribution, Zeus saves energy and consequently improves the lifetime 

of WSANs. This contribution is a direct consequence of using Zeus mechanism for identifying 
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tasks that are common for multiple applications, performing them only once and sharing the 

outcome among these multiple applications. Moreover, it is important to mention that this 

contribution would not be possible without considering the key features of Olympus that also 

contribute to the improvement of the lifetime of WSANs. In this case, the key features are the 

use of information fusion techniques for reducing data transmission, and the decentralization 

of WSAN virtualization procedures. We also explicited the trade-off between the quality of 

solutions found by Zeus and the respective amount of energy consumed by WSANs to achieve 

them. We showed how much energy can be saved for the WSANs when adopting the approach 

of reusing data obtained in different moments in time to meet applications, while considering 

their negotiable data freshness requirements. 

1.6 Organization 

Hereafter, we organize this thesis as follows. Chapter 2 discusses the CoS architecture 

and the integrated CoS virtualization model, also showing the state-of-the-art on resource 

allocation and task scheduling in CoS. Chapter 3 discusses virtualization in CoS, and describes 

our proposed CoS virtualization model, Olympus. Chapter 4 describes our approach to the 

resource allocation in CoS, presenting Zeus. Chapter 5 describes our experiments and results 

regarding the evaluation on Zeus. Chapter 6 discusses related work. Chapter 7 portrays the 

concluding remarks and discusses future research directions. 
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2 CoS architecture and the integrated virtualization model 

In this Chapter, we first detail the three-tier CoS architecture considered in this thesis 

(Section 2.1), and then describe the functions of a CoS virtualization model (Section 2.2). Next, 

we review the state-of-the-art on solutions for task scheduling and resource allocation 

(Sections 2.4 and 2.5, respectivelly), highlighting how each solution approaches the challenges 

involved in such activities. Before discussing these existing proposals, in Section 2.3 we 

describe the criteria to be used throughout the text to organize the solutions that will be 

presented. As task scheduling and resource allocation share several characteristics and 

objectives, the same criteria are used to analyze the proposals for both activities. We conclude 

with Section 2.6, in which we present a summary of the results of our review from the state-

of-the-art in task scheduling and resource allocation applied to CoS. 

2.1 The CoS architecture 

In this work, we consider the CoS architecture shown in Figure 1. Three tiers compose 

this architecture: sensors tier (ST), edge tier (ET) and cloud tier (CT). 
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Figure 1. The three-tier CoS architecture 

The sensors tier comprises the physical wireless sensor and actuator network 

infrastructures (WSANIs), each of which is owned and administered by an infrastructure 

provider (InP). Each WSANI comprises a set of physical sensor and actuator nodes (PSANs) 

deployed over a geographical area and connected by wireless links, so that every PSAN 

pertains to a single WSANI. Per Equation (1), we describe each PSAN in terms of processing 

speed PS, total memory TM, list of sensing units LS, list of actuation units LA, remaining energy 

EN, identification of the WSANI to which it pertains WI and information about its location 

coordinates LC. 

𝑝𝑠𝑎𝑛𝑖 = 〈𝑃𝑆, 𝑇𝑀, 𝐿𝑆, 𝐿𝐴, 𝐸𝑁, 𝑊𝐼, 𝐿𝐶〉 (1) 

In addition, we define that S_PSAN, in Equation (2), is the set of 𝛼 PSANs existing in 

the sensors tier. 

𝑆𝑃𝑆𝐴𝑁 = {𝑝𝑠𝑎𝑛𝑖 | 𝑖 ∈ ℕ0 𝑎𝑛𝑑 𝑖 < 𝛼 } (2) 
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The InPs define the physical and administrative (logical) boundaries of their respective 

WSANIs. In our architecture, we assume that the physical boundaries of WSANIs (defined by 

the geographical area of deployment) may overlap, without influencing the administrative 

boundaries (defined by InP logic). Thus, the administrative boundaries may differ to the 

underlying physical boundaries, whose management is not in the scope of our work. 

Moreover, each PSAN has the knowledge of a valid communication path to reach the sink 

node within the WSANI. These communication paths are defined by underlying networking 

protocols chosen by the InP, such as [28][29][89][90][91][92] and are not in the scope of this 

thesis. 

The edge tier comprises the edge nodes, which are typical physical edge devices. Such 

devices can be resource-poor devices such as access points, routers, switches, base stations, 

and smart sensors, or resource-rich micro-datacenters and machines, such as cloudlets [36]. 

Per Equation (3), we describe each edge node in terms of processing speed PS, total memory 

TM, bandwidth BW and its physical host identification HI. 

𝑒𝑛𝑖 = 〈𝑃𝑆, 𝑇𝑀, 𝐵𝑊, 𝐻𝐼〉 (3) 

In addition, we define that S_EN, in Equation (4), is the set of 𝛽 edge nodes existing in 

the edge tier. 

𝑆_𝐸𝑁 = {𝑒𝑛𝑖 | 𝑖 ∈ ℕ0 𝑎𝑛𝑑 𝑖 < 𝛽} (4) 

The cloud tier comprises the cloud nodes, which are multiple physical data centers 

(more powerful than physical edge devices) responsible for a global view of the CoS system. 

Cloud physical data centers are able to perform data-intensive computation, time-based data 

analysis and permanent storage of huge amounts of valuable data. The InPs can combine 

multiple physical data centers for providing services in the global scale, and each physical data 

center has a heterogeneous cost for providing its services. According to Equation (5), we 

describe each cloud node in terms of processing speed PS, total memory TM, bandwidth BW 

and its physical host identification HI. 

𝑐𝑛𝑖 = 〈𝑃𝑆, 𝑇𝑀, 𝐵𝑊, 𝐻𝐼〉 (5) 

Finally, we define that S_CN, in Equation (6), is the set of 𝛾 cloud nodes existing in the 

cloud tier. 
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𝑆_𝐶𝑁 = {𝑐𝑛𝑖  | 𝑖 ∈ ℕ0 𝑎𝑛𝑑 𝑖 < 𝛾} (6) 

In our CoS architecture, we consider the existence of three main entities, namely the 

PSANs at the sensors tier, the edge nodes at the edge tier and the cloud nodes at the cloud 

tier. In our work, we choose to model PSANs as being the physical devices of the sensors tier 

themselves, while we consider the edge and cloud nodes as being virtual instances hosted by 

the physical devices of edge and cloud tiers, respectively. This choice allows us to consider 

that the deployment of each edge and cloud node on their respective physical hosts is 

transparent to our CoS architecture, and is handled by typical cloud and edge computing 

virtualization models. In addition, each edge and cloud node has information about the 

physical device that hosts it, so that we can associate the physical location of an edge or cloud 

node to the location of its physical host. In Section 2.2 we discuss issues on CoS virtualization, 

which is performed over the CoS architecture considered in this Section. 

2.2 CoS virtualization 

The capabilities of the CoS architecture, described in Section 2.1, are provided to users 

and their applications through a CoS virtualization model. Several works such as 

[57][58][59][60][7] correlate the virtualization of physical devices in CoS to the resource 

allocation and task scheduling problems, suggesting that the design of solutions to these 

problems needs to be jointly investigated to enable the CoS virtualization itself. It is important 

to mention that by CoS virtualization, we mean the decoupling between the physical 

infrastructure of the WSAN and applications via an abstract representation of the former, with 

the main purpose of sharing the physical infrastructure of WSANs. In our point of view, a full 

CoS virtualization model comprises the instantiation of virtual nodes (VNs) and at least two 

sub processes, one for performing resource allocation and the other for task scheduling. 

Figure 2 summarizes the relation between both resource allocation and task scheduling in CoS.  

In the CoS paradigm, end users, with any given level of application domain expertise, 

define and implement applications. An application is similar to a workflow that describes 

interactions among the services provided by VNs. In addition, we call each activity of the 

application workflow as a request, because its main goal is to request (demand) the services 

of VNs. Thus, each application consists of a set of requests (activities of workflows) that 

demand the resources of the CoS infrastructure. A request is a set of abstract commands 
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defined by users, which represent the application functional requirements, thus denoting an 

abstract service. In addition, application requests have non-functional requirements. Among 

them, the data freshness is one of the most relevant in a distributed system based on sensing 

data, such as the CoS [13]. This importance increases particularly in the context of systems 

composed of a set of autonomous data sources, where the data integration with different 

freshness values can lead to semantic problems, hindering the execution of applications. 

There are several definitions of data freshness in literature [13]. Among these definitions 

stands out the one that quantifies the freshness of a given data based on the time elapsed 

since its acquisition. 

Applications typically access the CoS through the edge and/or cloud tiers. During the 

operation of the CoS, several applications access the CoS, probably simultaneously, posing 

their requests. To meet such requests, the CoS infrastructure must provide the outputs (data, 

in case of sensing, or controls, in case of actuation) as specified by the requests. Therefore, 

the CoS physical infrastructure has to perform tasks (generating a certain processing load on 

physical nodes) to provide such outputs with maximum data freshness. To avoid the re-

execution of processing loads by the physical infrastructure, it is possible to meet other future 

requests by simply re-using outputs from previous executions, if they meet the data freshness 

requirement of the request. Moreover, these outputs could be stored at different tiers of the 

CoS architecture (sensors, edge and cloud tiers). Therefore, it is necessary to make a first 

decision to meet a given request in the CoS environment: is it possible to meet the request 

using the data stored in the CoS environment (without engaging physical nodes), or is it 

necessary to dispatch tasks to run directly on the physical infrastructure? In the latter case, a 

second decision follows, regarding how to distribute the processing load among physical nodes 

that make up the CoS physical infrastructure. The first decision directly relates to the resource 

allocation process. Since this is a data acquisition process (either from real or virtual nodes), 

in our work we investigate it under the prism of data provisioning [42][43]. The philosophy 

behind data provisioning consists of abstracting, from applications, data acquisition/access, 

and allowing data sharing among applications, while meeting respective application 

requirements. The second one is a task scheduling decision. Traditional task scheduling 

algorithms in typical devices of the CoS [24] are responsible for selecting a group of physical 
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nodes that are suitable for the execution, in a given order, of the various tasks necessary to 

meet an application request. 

 

Figure 2. Virtualization, resource allocation and task scheduling in CoS 

In line with the concept of WSAN virtualization [40], the CoS system comprises the 

several VNs created to represent the abstraction foreseen by data provisioning. Throughout 

this thesis we define the VN as a computational entity (a software instance). The VN has the 

main goal of abstracting to users not only the data, but also the computation and 

communication capabilities provided by a set of underlying nodes. Thus, as a single virtual 

entity, the VN simplifies the representation of its underlying infrastructure to users. The 

underlying nodes are abstracted as services that the VN provides to applications. In the CoS, 

such software services mediate the interaction between applications and physical entities. 

Services expose resources, defined as software components that provide data from or control 

the actuation on physical entities [44]. In addition, the VN has the secondary goal of 

coordinating the execution of tasks by the underlying nodes, required to perform its first main 

goal. Thus, the implementation, the scheduling and the execution of tasks in the physical 

infrastructure is the responsibility of VNs. 

Therefore, we consider that every VN has a VN program, whose objective is to perform 

a series of tasks on the PSANs to update the data further provided by the VN through its data 

provisioning service. We consider that a VN program does not change during the existence of 

the VN. Thus, in CoS, task scheduling refers to the process, performed by the VN, of scheduling 
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tasks of each VN program to a given set of nodes from the underlying physical infrastructure 

of the CoS. We consider the existence of a service at each VN that is responsible for running 

the task scheduling process. Moreover, we consider another service at each VN that 

implements the process of execution and supervision of the execution of the tasks, scheduled 

by the former process, on the underlying physical infrastructure. Similarly, a VN has a process 

for performing resource allocation and a process to execute applications requests on VNs 

allocated by the former process. 

Finally, a process to instantiate the virtual nodes is first necessary, in order to select 

and prepare the underlying physical infrastructure for use. In the context of CoS, resource 

provisioning refers to this process of instantiating virtual nodes. The term “provisioning” often 

refers to the action of equipping or preparation of an infrastructure for some purpose. As in 

traditional cloud computing systems, the process of resource provisioning [94] is responsible 

for managing the association of physical computational capacities to counterpart virtual 

entities. This association, in the CoS, must maximize the utilization of physical computational 

(and data) capacities to virtual nodes, while respecting the physical computational (and data) 

capacities constraints of the physical CoS infrastructure. Based on [94], proactive Resource 

Provisioning denotes the cases where the instantiation of a VN occurs before the allocation of 

the VN to an application request. VNs are instantiated by the infrastructure providers at a time 

prior to the execution of the CoS infrastructure and the arrival of applications. In case of 

reactive Resource Provisioning, the instantiation of a VN may also occur (in addition to the 

reuse of existing instances) in response to the need of its allocation to an application request 

(i.e. the requirements of a new VN are tailored to meet a specific allocation). Thus, VNs are 

instantiated on demand, by a dynamic (real-time) and automated resource provisioning 

algorithm. Generally, resource provisioning and adjustment according to demand should 

occur dynamically, in an elastic and transparent way. 

It is important to mention that in our previous work [12] we concluded that the best 

theoretical position for positioning VNs is the edge tier. Among PSANs, edge nodes and cloud 

nodes, we chose the edge nodes to run VNs for the following reasons. The edge nodes have 

greater computation and communication capabilities than PSANs, and thus are able to 

manage VNs instances more efficiently. Moreover, edge nodes are in the edge of the network, 

closer to WSANIs and to the end users than the cloud nodes. Thus, edge nodes are in a 
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privileged position, in relation to the cloud nodes, for linking PSANs from different WSANIs 

under the same VN, and for reducing the latency for time sensitive applications. In addition, 

the cloud nodes store the registries of existing VNs in the whole CoS. Thus, we consider that 

edge nodes are the possible hosts for the VNs instantiated by the resource provisioning 

process. 

We formally define the VNs and the set of VNs as follows. Per Equation (7), we describe 

each VN in terms of its list of underlying PSANs LU, services description SE and its host EN 

identification HI. 

𝑣𝑛𝑖 = 〈𝐿𝑈, 𝑆𝐸, 𝐻𝐼〉 (7) 

Per Equation (8), we define a set S_VN containing all the θ VN instantiated by 

Infrastructure Providers (InPs). 

𝑆_𝑉𝑁 = {𝑣𝑛𝑖  | 𝑖 ∈ ℕ0 𝑎𝑛𝑑 𝑖 < 𝜃} (8) 

Finally, designing solutions to the processes of task scheduling and resource allocation 

for CoS is still a challenge. The concepts of resource allocation and task scheduling are not new 

in the literature. Several areas of research closely correlated to CoS, such as IoT and WSANs, 

study these concepts with slight differences of context. Such differences relate mainly to the 

nature of the resources to be scheduled or allocated. In the following sections, we chose, 

mainly, to depict the works that pertain to our area of research, the CoS. However, since the 

area of CoS is recent, only few studies exist proposing task scheduling and resource allocation 

solutions. Therefore, we will discuss task scheduling and resource allocation solutions under 

a broader perspective, including the areas of IoT and WSAN. We choose the most recent 

solutions from other areas than the CoS that require little or no adaptation when applied to 

operate in the CoS. 

It is important to mention that several resource allocation and task scheduling 

solutions exist for the area of cloud computing [68], which is also closely related to CoS. Such 

solutions ignore the specificities of the CoS environment. In traditional cloud computing, the 

physical infrastructures contain several data centers with high computing capacity servers, 

where the most important is simply to provision their processing capabilities, storage and 

communication data. When operating in a CoS environment, the need for provisioning sensing 

and actuation, the heterogeneity and the computational resource constraint nature of devices 
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pose new challenges to perform the resource provisioning. However, the area of resource 

allocation and task scheduling for cloud computing [41][48] has already been extensively 

surveyed, and thus we excluded this area from our review of the state-of-the-art. 

Finally, based on the concepts of resource allocation and task scheduling presented in 

this Section, and that the best theoretical position for positioning VNs is the edge tier [12], our 

first macro criterion to classify proposals is to divide them into “proposals for task scheduling 

that can be applied at the sensors tier” and “proposals for resource allocation that can be 

applied at cloud and edge tiers”. Within these two macro categories, we identify and classify 

the existing proposals based on a set of additional criteria, described in the following Section. 

2.3 Classification criteria  

As a first criterion for classifying proposals for task scheduling and resource allocation, 

we consider the decentralization degree of solutions. In general, although centralized 

solutions are simpler to implement and have a global view of the network, they are well known 

as being more susceptible to failures and less scalable. In centralized task scheduling 

algorithms, a single VN placed at the sink node in the WSAN or a manager node in the cloud, 

is responsible for deciding how, when and where to perform the tasks. In turn, in decentralized 

task scheduling algorithms, multiple PSANs, known as the local schedulers, determine the 

scheduling. The local schedulers do not need to perform scheduling for all nodes, because 

different nodes may have different areas of interest, contributing to the scalability of the 

solution. Kapoor et al. [95] show that, among the several centralized and decentralized 

algorithms they proposed, the performance of the best-centralized algorithm is comparable 

to that of the best-decentralized algorithm for smaller systems. For medium and high system 

loads, the decentralized algorithms demonstrate a significantly higher performance in 

comparison to the centralized algorithms. Moreover, a hybrid approach can be adopted 

(partially decentralized), sharing characteristics of both centralized or decentralized solutions, 

sometimes combining two decision phases, one centralized and the other decentralized. 

As a second criterion to classify existing solutions, we consider the ability of 

considering priorities during the task scheduling or the resource allocation process. Priorities 

can be considered among different application requests, tasks of VN programs, VNs, or PSANs. 

In the context of resource allocation, there may be applications requests with higher priority, 

concerning their degree of criticality (response time). For instance, a HVAC application may be 
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less critical than a fire detection application. This priority can also concern the amount of 

resources provided to the applications (VNs and PSANs), compared with other applications 

that are sharing the physical infrastructure. Regardless the kind of priority, such information 

regarding priority, possibly provided by users, could be used to rank tasks, requests, VNs, and 

the PSANs, which should be assigned first during task scheduling or resource allocation. For 

instance, in resource allocation, if a more priority application arrives, the VN must stop the 

request currently running and queue the requests of the highest priority application according 

to its priority. 

As a third criterion to be used when analyzing and classifying existing proposals, we 

consider their ability to handle precedence relationships (dependencies between inputs and 

outputs) among requests and among tasks. Most works, such as [56], consider 

applications/VN programs that comprise a single request/task regarding data acquisition. This 

is a common approach, for instance, in task scheduling algorithms for traditional WSANs. In 

such algorithms, the VN programs have the interest on mere data acquisition (represented as 

a single data acquisition task), without considering the actuation, computation and 

communication capabilities of WSAN nodes. In traditional WSANs, the task scheduling 

algorithm decides only about which nodes will perform each single task, and at which time 

such execution will occur. Thus, since tasks have no precedence relationships, there is no need 

to model VN programs through, for instance, the usual representation of a Directed Acyclic 

Graph (DAG). However, in scenarios where VN programs consider multiple tasks (possibly 

mixing data acquisition, actuation, computation and communication tasks) with precedence 

relationships, it is very important to model such relationships, in order to make a proper 

decision. This applies to either task scheduling or resource allocation, because PSANs or VNs 

must perform first the requests or tasks whose inputs are satisfied, and are free to start being 

processed. It is important to mention that the representation of requests and tasks through a 

DAG, and handling the precedencies among them is a feature explored by few works. 

Moreover, it is one first step towards another feature not explored by any work so far, which 

is representing an application or VN program as a complex structure of standard information 

fusion procedures (each request or task as being an information fusion procedure). 

We consider the ability of sharing the results of execution among requests or tasks as 

a fourth criterion, which is relevant to analyze the proposals and their benefits. Some 
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solutions for task scheduling share the results of tasks that are common among multiple VN 

programs. These proposals perform the tasks in common (i.e., tasks that will serve different 

VN programs) only once, sharing the results to further improve the resource utilization of 

PSANs.  

As a fifth criterion for classifying proposals, we consider the adoption of what we call 

a full device virtualization model by these proposals. A full virtualization model is defined as a 

process to virtualize the data and computational/communication capabilities from PSANs 

through the instantiation of VNs, also comprising task scheduling and resource allocation 

procedures (mostly adopted by the proposals for the areas of CoS and IoT).  

As a sixth criterion, we consider the ability of supporting time-based (pull) and event-

based (push) applications (or VN programs) simultaneously. A time-based (TB) application is 

the one for which the application decides the exact moment in time for demanding the VN (or 

PSANs) resources. Thus, the pull model attends time-based applications (or VN programs). For 

instance, in the context of a pull model in resource allocation, a VN demands its underlying 

physical infrastructure and responds to the application at the time defined by the application. 

This is the most conventional type of application, and it is perfectly suited to the context of 

resource allocation due to the temporal aspect, i.e. VNs can have full control about the time 

duration of each request, and do not need to wait for events with random occurrence times 

in future (interrupts), to finish their processing. Thus, pull applications (VN programs) are 

supported by all resource allocation (task scheduling) proposals to be discussed in Sections 

2.4 and 2.5. An event-based (EB) application (VN program) is the one that demands the VN 

(PSAN) resources only when it detects the occurrence of a specific event of interest by the 

application (VN program). Thus, a push model attends event-based applications (VN 

programs). For instance, in the context of a push model in resource allocation, the VN 

demands its resources at a moment in time that is unknown, previously to the occurrence of 

the event of interest by the application. The push model is a typical publish-subscribe model, 

in which applications subscribe their interests to a VN, which, in turn, waits until an event 

occurs to publish its results respective to this event. The ability to support both models 

simultaneously makes the approach for resource allocation or task scheduling more general, 

thus fitting well in a high-scale deployment of a CoS infrastructure, meeting a broader range 

of applications.  
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As a seventh criterion, we classify proposals according to the characteristics of the 

optimization problem formulated to meet the resource allocation and task scheduling 

objectives. There are several methods in the literature that can be used to mathematically 

formulate the resource allocation and task scheduling problems [17], [66]. In most cases, the 

optimization problem is referred as an integer program, in which the decision variable (with 

respect, for instance, to which PSAN will be allocated to which task) is a binary variable. Some 

other real-valued criteria may also be of use, and thus could be included in the problem 

formulation, such as when defining the start times of tasks. When including real-valued 

decision variables the optimization problem is referred as a linear program. Another 

commonly used option is to formulate the problem as a multi-objective optimization problem 

[66]. In contrast to the previous cases of single goal problems, the multiple goals conflict with 

each other, i.e., to maximize the attendance to application requirements results in an 

increased consumption of resources, and vice versa. That is, it is not possible to find a single 

solution that minimizes an objective and maximizes another simultaneously. In the multi-

objective approach, it is obtained an optimal solution-set (Pareto-optimal solutions) with 

numerous solutions indifferent to each other, according to some pre-established criteria, 

leaving the analyst to decide which solution to use, according to its own established criteria. 

As an eighth criterion, we classify proposals according to the characteristics of the 

algorithm/heuristic used to solve the formulated optimization problem. To solve optimization 

problems in order to seek the optimal solution, there are a number of methods in the 

literature [67][66]. One example is the linear programming and its variants [67]. However, 

when considering the typical approach of representing requests and tasks as DAGs, the 

optimization problem becomes more difficult as the size of the DAG increases. In fact, finding 

a schedule of minimal length for a given DAG is, in its general form, an NP-hard problem 

[63][17], i.e. problems whose explosive combinatorial nature hinder the quick search for 

optimal solutions when they grow [53]. That is, an optimal solution cannot be found in 

polynomial time (unless NP = P). Because of this kind of problem, an entire area emerged that 

deals with quick search of solutions, ranging from the theoretical analysis to heuristics and 

approximation techniques that produce near optimal solutions. Thus, the problems tackled in 

resource allocation and task scheduling fit the class of NP-hard problems, justifying the 

application of heuristic techniques. 
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Heuristic techniques approach the optimal solution, solving the problem by obtaining 

sub-optimal solutions in reduced computation time, once the search for the optimal solution 

is much more computationally intensive. Heuristic based proposals can follow, for instance, 

traditional graph theory, evolutionary, game/auction, greedy, machine learning, Voronoi 

diagrams or probabilistic approaches [68]. Evolutionary algorithms are typically used to 

provide good approximate solutions to problems that cannot be easily solved using other 

techniques. Due to its random nature, it is not guaranteed that evolutionary algorithms find 

an optimal solution to the problem, but they will often find a good solution, if any. Genetic 

algorithms have proven to be a successful way to produce satisfactory solutions to many 

problem formulations. Finally, Game theory is increasingly being used as a modeling and 

design framework in decentralized algorithms. A distributed game-theoretic approach to task 

allocation provides autonomy to sensor nodes, which can decide the best scheduling in actual 

neighboring context. In solutions following such approach, communications are made only 

between certain sensors in a neighborhood, which is a potentially energy efficient and scalable 

solution. 

As a ninth criterion, we consider the presence of the edge tier in the proposed 

architectures [4]. In such proposals, the devices in the edge tier (edge nodes, sinks, gateways, 

for instance) play an active role in the resource allocation or task scheduling process, allowing 

solving the problem in a distributed way.  

Finally, the tenth criterion regards considering physical devices (sensors / things) as 

active resource providers, providing to applications (VN programs) computing and actuation 

capabilities, and not being mere passive sensing data sources. 

2.4 State-of-the-art on task scheduling at the sensors tier  

In this Section, we describe relevant works found in literature that represent the state-

of-the-art on task scheduling at the sensors tier of the CoS architecture. The described works 

present proposals either tailored for the specific field of CoS [105][4][106][107], or for the 

broader field of IoT [109][117][118][108][110], or for the more traditional field of WSAN 

[54][24][116][113][95][115][56][114][111][112][51]. 

Among the works that propose task scheduling for CoS, Zhu et al. [105] is an example 

of a centralized solution. In their work, the authors analyze the characteristics of task 

scheduling with respect to integrating cloud computing and WSANs, proposing two novel task 
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scheduling algorithms. Their algorithms follow a heuristic, greedy based approach, and are 

able to handle priorities among tasks. In their algorithms, the main goal is to divide tasks into 

two groups: tasks to be performed in the WSAN (G1) and tasks to be performed in cloud (G2). 

For all tasks submitted in group G1, with higher priority, the algorithm uses a set of rules to 

decide (based on the costs of using the resources available) for the best schedule. After, the 

same procedure is performed for group G2, with lower priority. 

Phan et al. [4] is another example of a centralized solution. They proposed a cloud-

integrated WSAN architecture, and studied the optimization of a push-pull communication 

scheme among the three layers of their architecture using a genetic algorithm. Therefore, they 

are among the proposals that can support both time-based and event-based applications, 

which guarantees they cover a broad spectrum of application domains. In addition, in this 

proposal the devices in the edge tier (edge nodes, sinks, gateways, for instance) play an active 

role in the task scheduling process. Moreover, their proposal includes a full device 

virtualization model. At the sensor layer, several heterogeneous WSANs embedded in the 

physical environment exist, using a tree topology. Nodes periodically read sensors and push 

data to the sink node. The edge layer is a collection of sink nodes, each of which participates 

in a certain sensor network and stores incoming sensor data in its memory, pushing them 

periodically to the cloud layer. Sink nodes maintain the mappings between physical sensors 

and virtual nodes. In addition, each sink receives a “pull” request from a virtual node when 

the virtual node does not have the data that an application requires. If the sink node has the 

requested data in its memory, it returns that data. Otherwise, it issues a pull request to a 

sensor node that is responsible for the requested data. The cloud layer operates on one or 

more clouds to host end-user applications and management services for the applications. 

Applications are operated on virtual machines in clouds, and always access physical sensors 

through virtual nodes. Users are assumed to place continuous sensor data queries on virtual 

nodes via cloud applications in order to monitor the physical environment. If a virtual node 

already has data that an application queries, it returns that data. If a query does not match, 

the virtual node issues a pull request and sends it to a sink node. Phan et al. focus on two 

services in their virtualization model. The first is the sensor manager, which virtualizes physical 

heterogeneous sensors in a unified way by abstracting away their low level operational details. 

The second is the communication manager, responsible for push-pull hybrid communication 
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between different layers. The key component in the communication manager is the 

communication optimizer, which solves an optimization problem to seek the optimal data 

transmission rates for sensor and sink nodes with respect to multiple optimization objectives 

(maximize sensor data yield for applications, minimize bandwidth consumption between the 

cloud and edge layers and minimize energy consumption in the sensors layer). 

Dalvi [106] proposed a centralized task scheduling scheme to minimize energy 

consumption in CoS, which is based on TDMA, spatial correlation and on the Voronoi diagram. 

The Voronoi diagram is used for representing WSANs in a CoS. In the diagram, a rectangular 

region represents the area from which the user needs data. The area covered by the WSAN is 

divided into small cells that are centered at points. Each point in the cell represents a wireless 

sensor in a WSAN. The edges of each cell are formed by connecting perpendicular bisectors of 

the segments joining all neighboring points. The sensor located at the center of a cell can sense 

data for the area covered by cell. This data is more accurate as compared to the data sensed 

by other sensors for that region. This Voronoi diagram is built when WSN is initialized. A 

calculation is performed to find the minimum number of nodes required to cover the area 

selected by the user. The allocation scheme is based on the concept that sensors in densely 

deployed zones will have more number of neighbors compared to sparsely deployed zones 

and hence more number of edges in Voronoi diagram. As the previously discussed work [4], 

the solution presented in [106] also supports both pull and push communication models, and 

includes a full device virtualization model, similar to the one in [4]. In the virtualization model 

proposed by Dalvi, there are three layers: client centric, middleware, and sensor centric. The 

client centric layer connects end users to the CoS, managing a user’s membership, session, 

and GUI. Middleware is the heart of the CoS, managing virtual nodes with help from 

components such as provision management, image life-cycle management, and billing 

management. The sensor centric layer connects the middleware to the physical WSNs. It also 

registers participating WSNs, maintains participating WSNs, and collects data.  

Yao et al. [107] proposed a centralized and adaptive task scheduling mechanism to 

schedule optimally the transmission opportunities of devices, considering multimedia 

distortion reduction, hidden node problem, transmission interference, and signal coverage. 

Their proposed mechanism adopts a heuristic-based, greedy approach for performing the task 

scheduling.  
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Among the works that propose task scheduling solutions for IoT, Kim & Ko [117] 

present a centralized task scheduling approach based on genetic algorithm to minimize the 

amount of data transmissions between mobile devices in IoT. They transformed the task 

scheduling problem into a variant of the degree-constrained minimum spanning tree problem 

and applied a genetic algorithm to reduce the time needed to produce a near-optimal 

solution. 

Li et al. [109], Li et al. [108] and Billet et al. [110] are also examples of centralized 

solutions for task scheduling in IoT. Li et al. [109] proposed a genetic algorithm based on a 

teaching and learning technique for scheduling tasks with multiple restrictions of relations in 

processing sequences in IoT. In their genetic algorithm specification, the crossover operator is 

used in the swarm intelligent algorithms to learn information from other solutions, thus 

converging to the optimal search space faster. Li et al. [108] proposed a QoS scheduling model 

for IoT, which explores optimal QoS-aware services composition at application layer, 

heterogeneous network environment at network layer, and the information acquisition for 

different services at sensing layer. Billet et al. [110] proposed a binary programming problem 

formulation for task scheduling for IoT, along with an efficient heuristic for solving it, based 

on location, capabilities and QoS constraints. 

Among the works that propose task scheduling solutions for WSANs, Farias et al. [54] 

proposed a framework for Shared Sensor and Actuator Networks (SSAN), including an energy-

efficient centralized task scheduling algorithm. A major feature of their work is that the 

algorithm performs tasks in common to multiple applications only once. In other research, Li 

et al. [24], introduce a task scheduling algorithm exploiting the fact that different applications 

may share the same sensing data with common QoS requirements, as well as spatial and 

temporal characteristics. Both proposals promote the cost-effective utilization of the 

resources available in the shared infrastructure, aiming to increase the ROI (return of the 

investment) for the owners. They support different priorities and precedence relationships 

among tasks. Furthermore, both support time-based (pull) and event-based (push) 

applications simultaneously. Also in the context of SSANs, Bhattacharya et al. [112] proposed 

an integrated application deployment system that performs task scheduling based on their 

Quality of Monitoring (QoM) of physical phenomena due to the close coupling of the cyber 

and physical aspects of distributed sensing applications. Therefore, the task scheduling 
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algorithm deals with the inter-node Quality of Monitoring (QoM) dependencies, typical in 

cyber-physical applications. The QoM of a distributed sensing application usually depends on 

the set of nodes allocated to it. Moreover, the measurements of different sensors are often 

highly correlated resulting in inter-node dependency, i.e., the QoM contributed by a node to 

an application is dependent on the other nodes allocated to the same application. Since the 

SSAN paradigm aims at fully exploiting the deployed sensing infrastructure for executing 

multiple applications with distinct requirements, it is a desirable feature that all possible 

communication patterns are support. Therefore, the work described in [112] schedules both 

time-based and event-based applications. However, the authors do not mention the handling 

of different priorities, which is another desirable feature for SSNs.  

Our research group, in [54] and [24], proposed centralized algorithms for scheduling 

tasks in WSANs. These algorithms, in addition to being concerned about saving energy by 

choosing the best node for a particular task, also perform tasks in common for different 

applications only once, sharing the results of these applications to improve the use of the 

limited resources of physical nodes. This sharing takes advantage of the fact that the same 

physical infrastructure is used by multiple applications, as is the case in virtualized 

environments. These tasks in common are identified by preprocessing the DAGs of 

applications, before starting the task scheduling process. These two works also include a full 

device virtualization model, in which the sensors play an important role as service providers. 

In their virtualization model, three major elements exist, namely web server, sink nodes and 

sensor nodes, organized in a hierarchical manner. The web server acts as a frontier to handle 

arrivals of applications and performing task scheduling. Final users, through applications, 

request different services from the system and the web server acts as a service provider to 

reply those requests. After receiving requests from the web server, the sink node of each WSN 

schedules these tasks to individual sensor nodes. Sensor nodes send the descriptions of their 

services to sink nodes, which keep them in a repository. 

Dai et al. [116] propose a multi-objective algorithm for centralized task scheduling in 

WSANs, seeking to optimize the total make span of tasks, but meanwhile, also paying 

attention to the probability of node failure (related to unsuccessful task performing) and the 

lifetime of network.  
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Hu et al. [114] propose three different greedy-based centralized algorithms to optimize 

data fusion parameters in the WSAN task scheduling problem, modeled as an Integer Linear 

programming problem. Their proposal includes a full device virtualization model. In their 

model, a given virtual sensor is instantiated and cannot change during a given time slot. They 

assume a common sensing period, with each sensor generating samples and making a local 

decision as to whether an interesting event occurred. Event arrival times are independent and 

their distribution is known in advance. The events of interest are, in theory, detectable by the 

available physical sensors. Their virtualization model comprises two pre-deployment 

independent functions: a function for forming information fusion rules, and a function for 

assigning optimal virtual sensors and their scheduling. Fusion rules are formulated through 

either synthetic or experimental data. The intuition is that the fusion rules define the optimal 

set of sensors for each event as well as the algorithm to combine the sensor readings. 

Rowaihy et al. [56] proposed centralized and decentralized energy-aware solutions to 

the problem of optimally scheduling multiple missions to WSANs, in which each mission uses 

its specific and exclusive subset of sensor nodes. The problem of mission-sensor scheduling is 

modeled as a weighted bipartite graph to optimally schedule the sensors for missions. Their 

proposed solutions build on traditional graph theory and are able to handle priorities among 

missions, relating priority with mission profit, i.e. these solutions schedule missions that have 

higher profit first than other missions (missions are sorted in order of decreasing profit). In 

the proposed weighted bipartite graph, the vertex sets consist of sensors and tasks. A 

positively weighted edge means that a sensor is applicable to a task. The weight of the edge 

indicates the utility that the sensor could contribute to the task. The authors seek a semi-

matching of sensors to tasks, so that (ideally) each task is satisfied. Their proposed solutions 

perform graph manipulation to represent different problem variants, with different 

constraints. Moreover, they propose several greedy algorithms, jointly with the graph theory 

approach. One of their greedy algorithms considers tasks in decreasing order of profit. For 

each task, the algorithm assigns available sensors in decreasing order of offered utility, until 

the mission is satisfied. 

Li et al. [51] and Edalat et al. [111] are examples of hybrid approaches, meaning that 

they inherit features of both centralized and decentralized solutions. In Li et al. [51] the 

authors proposed a heuristic-based three-phase algorithm for allocating tasks to multiple 
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clusters in hierarchical WSANs, seeking to minimize the overall energy consumption and 

balancing the workload of the system while meeting the applications deadlines. The task 

scheduling problem is referred as an integer program and solved as a multi-objective problem. 

The proposal considers tasks with different priorities and dependencies among the data input 

and outputs of tasks, represented through DAGs. Moreover, the sensors are considered as 

active resource providers, instead of being mere passive data sources. Edalat et al. [111] 

proposed a heuristic two-phase winner determination protocol to solve the task scheduling 

problem modeled as a distributed reverse combinatorial auction, seeking to maximize WSAN 

lifetime while enhancing the overall application QoS, in terms of deadlines.  They also consider 

tasks with different priorities and dependencies among the data input and outputs of tasks, 

represented through DAGs. 

In terms of distributed solutions, Wu et al. [113], present a distributed game-theoretic 

approach for task scheduling in SSANs based on the correlation among sensor readings from 

different nodes. Their approach supports time-based and event-based communications. 
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TABLE 1. CLASSIFICATION OF TASK SCHEDULING PROPOSALS 
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[112]  X       X X X       X       

[54] X    X X X X X     X   X       

[24] X   X X X X X X    X X   X      X 
[108] X   X   X X   X      X       

[109]  X    X   X       X   X      

[110]  X    X   X X X X      X       
[107]  X       X         X       

[105] X   X    X         X       

[114]  X      X X  X       X       
[4] X      X X X    X  X       X  

[116]  X       X     X  X         

[106]  X      X X X          X     
[117]  X       X      X X         

[111]   X  X X X  X X X      X        
[51]  X  X X   X  X X  X X   X      X 

[56]   X X    X  X X   X   X       

[113]    X     X X X      X        
[95]   X     X         X       

[115]    X X X   X         X       

[118]    X X    X X       X        

                        

Wang et al. [115], propose a cluster-based task scheduling algorithm based on a greedy 

approach that balances the node energy consumptions, where the sensor nodes are classified 

into different ranking domains, and that supports requirements of real-time, heterogeneity, 

flexibility and scalability. Different priorities among application tasks are supported and the 

precedence relationships of tasks are considered in their scheduling decisions.  

Kim [118] proposed a task scheduling solution to optimize bandwidth in IoT based on 

a cooperative game and on the concept of Shapley value. They adopt a fully decentralized 

approach and leverage the collaboration among the devices to achieve the application goals. 

Their approach is able to handle tasks with different priorities. 

Finally, besides comparing proposals for task scheduling regarding their 

decentralization degree, Kapoor et al. [95] proposed their own greedy-based decentralized 

task scheduling algorithms. They proposed the Random Allocation algorithm, which does not 

use any information about the application or the network while making a scheduling decision. 

They proposed the CPU Load Balanced Allocation and Data Load Balanced Allocation 

algorithms, which schedule tasks making decisions to balance the CPU usage and data 

transmissions, respectively, among nodes. They also proposed the Balanced Metric Allocation 
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algorithm, which aims to balance the energy consumption, both due to the CPU component 

and the radio component amongst all the sensor nodes. Finally, they also proposed the 

Maximum Energy First algorithm, which selects first, from the set of available nodes, the 

sensor nodes that have the highest available energy, for execution of the tasks. 

Table 1 presents a summary with the task scheduling proposals classified according to 

the 10 criteria considered in this Chapter. In the following section, we present the state-of-

the-art on resource allocation at edge and cloud tiers, and we classify the respective proposals 

according to the criteria used in this section. 

2.5 State-of-the-art on resource allocation at edge and cloud tiers 

In this Section, we describe relevant works found in literature that represent the state-

of-the-art on resource allocation at the edge and cloud tiers of the CoS architecture. The 

described proposals were developed either for the field of CoS [119][46][120][49] or IoT 

[71][70][73][121][122][75][123][124]. We will analyze the proposals in the light of the same 

criteria used for task scheduling solutions. Almost all works, with a single exception, propose 

centralized solutions for the resource allocation problem. 

Among the works that propose resource allocation in CoS, Delgado et al. [46][119] 

proposed an heuristic algorithm and optimization framework to perform resource allocation, 

seeking to maximize the number of applications sharing the CoS, while accounting for the 

limited storage, processing power, bandwidth, and energy consumption requirements of 

sensors tier. Their resource allocation algorithm follows a traditional linear programing 

technique. 

Misra et al. [120] present a mathematical formulation of CoS, with a thorough 

evaluation of the cost effectiveness of CoS by examining the costs of sensor nodes due to 

deployment, maintenance, and rent by users, as well as the profits in terms of the service 

acquired from the sensed data, always from the perspective of every user of the CoS. In the 

full device virtualization model used by Misra et al., there are three-tiers (users/applications, 

virtual nodes and sensors). The communication interface of a user is primarily a Web interface 

running at the site of the cloud service provider. It is a Web portal, through which the user 

requests the CoS. The user is kept abstracted from the underlying complex processing logic 

required due to perform resource allocation, application-specific aggregation, and 

virtualization. Moreover, sensor nodes are heterogeneous, thus the sensor nodes are 
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standardized using a Sensor Modeling Language. Every physical sensor node reports its sensed 

data to the CoS storage. Within the cloud environment, the sensed data are aggregated in real 

time.  

Dinh et al. [49] propose an interactive model for the CoS to provide on-demand sensing 

services for multiple applications with different requirements, designed for both the cloud and 

sensor nodes to optimize the resource consumption of physical sensors, as well as the 

bandwidth consumption of sensing traffic. Dinh et al. consider requests in common in their 

solution. Their approach formulates a unique DAG of requests, merging requests in common 

for multiple applications. In their approach, requests in common are merged by considering 

the more restrictive application requirements. 

Among the works that propose resource allocation in IoT, Narman et al. [71] propose 

a dedicated server allocation for heterogeneous and homogeneous systems, to provide 

efficiently the desired services by considering priorities of applications requests. Yu et al. [70] 

proposed a cloud-based vehicular network managed by a strategy based on game theory to 

optimally allocate resources, together with virtual machine migration. Both proposals include 

a full device virtualization model. The first work [71] also includes mechanisms to handle 

priorities among application requests, using this priority value to decide the next request to 

be served and allocate the amount of resources for each request. 

Angelakis et al. [121] presented a mathematical formulation of assigning services to 

interfaces with heterogeneous resources in one or more rounds, and developed two 

algorithms to approximate the optimal solution for big instance sizes. 

Zeng et al. [73] proposed an edge computing supported software-defined embedded 

system, together with the formulation of a resource allocation problem as a mixed-integer 

nonlinear programming problem, and a computation-efficient solution. Vögler et al. [122] 

propose an infrastructure that provides elastic provisioning of application components on 

resource-constrained and heterogeneous edge devices in large-scale IoT deployments, which 

supports push-based as well as pull-based deployments. Moreover, their infrastructure also 

manages time precedence restrictions among application tasks. Aazam et al. [75], in their 

proposed methodology for resource estimation and management through edge computing, 

formulate resource management based on the fluctuating relinquish probability of the 

customer, service type, service price, and variance of the relinquish probability. In their paper, 
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they extended their previous model to include a customer probabilistic resource estimation 

model, to manage the resources for IoT devices. Different priorities among application tasks 

are considered in their solution. Abedin et al. [124] provide an efficient IoT node pairing 

scheme between the same domains of IoT nodes in edge paradigm, based on the Irving’s 

matching algorithm, and model the problem as a one sided stable matching game with quota. 

All these works ([73][122][75][124]) consider the presence of the edge tier in their proposed 

architectures.  

Aazam et al. [123] present a service oriented resource management model for IoT 

devices, using edge computing. Their work is mainly focused on considering different types 

customer and device based resource estimation and pricing, even in presence of mobility. In 

their proposed model, sensors, IoT nodes, devices, and cloud service customers (CSCs) contact 

the edge to acquire the required service(s) at best price. CSCs perform the negotiation and 

service level agreement (SLA) tasks with the edge. The edge is in charge of estimating the 

consumption of resources, so that they can be allocated in advance.  

Only the work described in [70] proposed a decentralized approach to resource 

allocation. The authors proposed to integrate cloud computing into vehicular networks such 

that the vehicles can share computation resources, storage resources, and bandwidth 

resources. Their proposal includes a full device virtualization model, including a vehicular 

cloud, a roadside cloud, and a central cloud. The authors study resource allocation and virtual 

machine migration for effective resource management in this cloud-based vehicular network. 

A game-theoretical approach is presented to optimally allocate cloud resources. Virtual 

machine migration due to vehicle mobility is solved based on a resource reservation scheme.  
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TABLE 2. CLASSIFICATION OF RESOURCE ALLOCATION PROPOSALS 
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[71] X   X   X X         X       

[121]  X      X X  X X      X      X 

[119]  X       X  X X         X    

[46] X       X  X X         X    

[120]  X      X X                
[122]  X    X  X X X             X X 

[73] X       X  X  X        X  X  

[75] X   X    X             X X X 
[123]  X   X    X             X  X 

[124]  X       X        X      X X 

[49]  X     X X X   X         X    
[70]   X    X X        X        

                        

Table 2 presents a summary with the resource allocation proposals classified according 

to the 10 criteria considered in this Section. In Section 2.6, we present a summary of both the 

state-of-the-art on resource allocation and task scheduling. We present a macro classification 

of all works reviewed in this Section, under the criteria described in Section 2.3, and highlight 

the open issues in the state-of-the-art in task scheduling and resource allocation applied to 

CoS based on this classification. 

2.6 Open issues  

In this Section, we present a summary of the results of our review from the state-of-

the-art on task scheduling and resource allocation applied to CoS. We categorized all the 

relevant proposals found in literature by their key differentials. We present this categorization 

in Table 3. 
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TABLE 3. CRITERIA FOR CLASSIFYING PROPOSALS 

Criteria 
Works on task 

scheduling 
Works on resource 

allocation 

1 

Degree of 
decentralization 

1.1 Centralized 

[112][54][24][108][109] 

[110][107][105][114] 
[4][116][106][117]  

[71][121][119][46] 

[120][122][73][75] 
[123][124][49] 

1.2 Hybrid [111][51]  

1.3 Decentralized [56][113][95][115][118] [70] 

2 Handles priorities 
[51][56][115][105][108] 

[111][24][118] 

[71][123][75] 

3 Handles precedencies 
[111][51][54][24][109] 

[110][115] 

[122] 

4 Shares requests/tasks in common [111][54][24] [49] 

5 Full device virtualization model 
[54][24][108][114][4] 
[106] 

[71][121][119][46][120] 
[122][70][49] 

6 

Type of 

application 

6.1 Time based 

[111][112][51][54][24] 

[56][113][108][109] 

[110][107][105][114][4] 

[116][106][117][95] 

[115][118] 

[71][121][119][46][120] 

[122][73][75][123][124] 

[49] 

6.2 Event based 
[111][112][54][24][113] 
[110][4][106][118] 

[122] 

7 
Optimization 

problem 

formulation 

7.1 Integer 
[111][112][51][56][113] 

[110][114] 

[121][119][46][73] 

7.2 Linear [51][56][108][110] [121][119][46][49] 

7.3 Non-linear  [73] 

7.4 Multi-objective [51][24][4][116]  

8 
Approach of 

the algorithm 

proposed/used 
to solve the 

problem 

8.1 Graph theory [51][54][24][56][117]  

8.2 Evolutionary [109][4][116][117]  

8.3 Game / auction [111][113][118] [124][70] 

8.4 Greedy 
[112][51][54][24][56] 
[108][110][107][105] 

[114][95][115] 

[71][121] 

8.5 Machine learning [109]  

8.6 Voronoi Diagram [106]  

8.7 Lin. programming  [119][46][73][49] 

8.8 Probabilistic  [75][123] 

9 Considers the edge tier [4] [122][73][75][124] 

10 Devices as active resource providers [51][24] [121][122][75][123][124] 

   

Regarding task scheduling, we can notice some open issues in existing works. First, 

despite the inherently distributed nature of CoS, IoT and WSN, more than half of the proposals 

for task scheduling are centralized. Although decentralized scheduling algorithms have been 

proposed, they still lack an important feature that is to promote the sharing of common tasks 

among the VN programs. We believe this is a key requirement to achieve an efficient solution 

mainly in large-scale deployments. In addition, besides sharing the tasks of VN programs, we 

claim that efficient and suitable solutions for CoS must take into account the priorities and 

precedencies among tasks, representing tasks and their precedencies through a DAG. Other 

relevant issue that is still poorly exploited in existing works is the proposal of a full device 

virtualization model, considering devices as active resource providers, other than passive data 

sources.  

Regarding proposals for resource allocation, only one work found in the current 

literature proposed a decentralized solution, while all the others are centralized approaches. 

Moreover, only one proposal [49] was found on resource allocation for CoS that shares the 
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results of tasks in common among multiple applications. We identify only one proposal that 

considers time precedence restrictions among applications tasks [122], which is also the only 

one supporting time-based (pull) and event-based (push) applications simultaneously [122]. 

Three proposals [71][123][75] manage priorities among applications tasks, so this is also an 

underexploited feature in resource allocation. We believe this issue requires further 

investigations, since in a CoS scenario of large dimension and serving multiple applications, it 

is crucial to assure that more critical applications receive their required resources with some 

priority. As expected, a fair number of proposals consider the edge tier in their architectures 

[122][73][75][124]. Based on all the benefits such tier can bring, we believe this will be a trend, 

mainly for time critical applications and for scenarios with mobile devices. Finally, five 

proposals ([121][122][75][123][124]) consider the physical devices as actively engaging as the 

resource providers, instead of being mere passive data sources. We claim that fully utilizing 

the resources provided by the sensors tier is the best strategy to build cost-effective CoS 

systems. However, this feature is still poorly exploited in the proposals. 

Regarding all task scheduling and resource allocation proposals, it is important to 

mention that most solutions are either fully static, or handle partially the dynamic 

characteristic of the CoS environment when running the scheduling decision in cycles. In such 

partially dynamic approaches, the state of the system (acquired at the beginning of each cycle 

and used for making the scheduling/allocation decision) is assumed to remain the same during 

the entire duration of that cycle. This is not adequate when considering applications that 

handle continuous data streams [110]. To support this kind of application, it is necessary to 

model the state of each resource as a function that varies in time, thus fully handling the 

dynamic characteristic of the CoS environment, as in [110]. 

2.7 Conclusion 

In this chapter, we described the works from the state-of-the-art on resource 

allocation and task scheduling in CoS. By classifying such works, we raised several open issues 

in the current literature not fully addressed by any of the proposals. Thus, this chapter 

contributes by showing the deepening in the investigation of research question 1 of this thesis, 

being the first result achieved. From this result, we selected the following open issues to 

address in this thesis, related with the investigation of research questions 2 and 3. 
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Regarding research question 2, respective to the proposal of a CoS virtualization 

model, we identify that there is a lack of a decentralized full device virtualization model, with 

devices playing an active role as resource providers and considering the edge tier in its 

architecture. In addition, this virtualization model should support effective, fast and 

lightweight algorithms to perform resource allocation and task scheduling. Finally, this 

virtualization model should present an application model which is able to model priorities and 

precedencies among requests and tasks, and the sharing of requests and tasks in common 

among multiple applications and VN programs. This virtualization model should also support 

both time-based (pull) and event-based (push) applications simultaneously. 

It is important to mention that, in this thesis, we do not present an approach to task 

scheduling, due to the restriction of time to propose such a complex solution. However this is 

still an open issue that we suggest investigating, as future work. We suggest investigating fully 

decentralized proposals of task scheduling algorithms, such as the ones based on game theory 

[23][24][54]. In this thesis, we consider that such kind of algorithm is used to obtain data from 

within WSANs. In this thesis, we emphasize a deeper investigation on the proposal of a 

resource allocation algorithm, respective to research question 3. 

Regarding research question 3, respective to the proposal of an algorithm to perform 

resource allocation in CoS, we identified the lack of formulations of the problem of resource 

allocation as a mixed integer non-linear problem, considering the maximization of the 

freshness of the data provided to applications. We also identified the lack of hybrid and 

heuristic algorithms, which are fast and lightweight, to find near optimal solutions to the 

problem of resource allocation. Moreover, a resource allocation algorithm should handle 

precedencies among requests and tasks, and the sharing of requests and tasks in common 

among multiple applications. We consider that such an algorithm must support at least time-

based applications and a proactive resource provisioning processes. 

It is important to mention that the following open issues in resource allocation will not 

be addressed by our proposal for a resource allocation algorithm in this thesis, and thus should 

be investigated as future work: (i) supporting both event-based and time-based applications 

simultaneously, (ii) supporting both proactive and reactive resource provisioning processes, 

(iii) handling priorities among applications. 



55 
 

 
 

In Chapter 3, we investigate research question 2, and present an overview of our own 

approach of a full device virtualization model, to support both resource allocation and task 

scheduling in CoS. This approach is called Olympus [40]. In Chapter 4, we investigate research 

question 3, and present our specific algorithm to perform resource allocation in CoS, called 

Zeus. 
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3 Virtualization in the Cloud of Sensors 

In this thesis, our research started by studying CoS virtualization models and proposing 

our own approach, called Olympus [40]. The virtual nodes (VNs) provided by Olympus are built 

as an overlay on top of the three-tier CoS infrastructure described in Section 2.1. In the three-

tier CoS infrastructure, both edge and cloud are typically virtualized, thus edge nodes (ENs) 

and cloud nodes (CNs) are considered as virtual entities, hosted by the physical devices of the 

edge tier and cloud tier, respectively. The ENs and CNs’ deployment on their respective 

physical hosts is transparent to the CoS virtualization model, and should be handled by typical 

cloud and edge computing virtualization models, whose properties we do not discuss in detail 

here. We follow the principle of overlay virtualization [60], respective to building VNs in an 

overlay layer, over either PSANs or readily available ENs and CNs (see Figure 3). By being 

distributed, lacking central control and allowing resource sharing, overlays are ideal 

candidates for CoS virtualization [60]. In this overlay, application entry points (AEPs) receive 

applications arriving at the CoS system, which will be served by VNs. A CoS virtualization 

model, such as Olympus, defines how to provide applications with the resources/services 

offered by PSANs, ENs and CNs, through VNs. 

 

Figure 3. The CoS infrastructure served to applications through an overlay network 
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In this Chapter, we describe the main aspects of Olympus, to be used as part of an 

integrated solution for resource allocation in CoS. In Section 3.1, we present an overview of 

the Olympus virtualization model. More details on Olympus are found in [40]. In Section 3.2, 

we propose the application model considered in Olympus. Finally, in Section 3.3, we describe 

a detailed and concrete architecture to put into practice the concepts behind Olympus. 

3.1 Overview of Olympus 

Olympus is a decentralized virtualization model for CoS. It seeks to make the best use 

of the cloud and the physical WSAN environments by finding a balance between two possible 

approaches for executing services: centrally, inside the cloud, and locally, within the physical 

sensors. Olympus leverages the use of information fusion to ensure that the system will 

provide data at a given abstraction level more adequate to user applications. Olympus is a 

decentralized virtualization model since the physical nodes can locally perform the necessary 

procedures for creating and running the virtual sensor. Therefore, in Olympus, application 

decision processes are performed partly within physical sensors and partly within the cloud. 

Olympus abstracts the physical world, by abstracting issues regarding the spatial/geographical 

distribution of each sensor at the physical layer. Over the physical layer, there is the 

information fusion layer, based on the information fusion levels according to the 

classifications of the data-feature-decision (DFD) information fusion model [9]. 

In Olympus, we make use of the Data-Feature-Decision (DFD) model that provides a 

classification for information fusion techniques according to the abstraction of the input and 

output data. In Data In-Data Out (DAI-DAO), information fusion deals with measurement level 

data as input and output. In Data In-Feature Out (DAI-FEO), information fusion uses data at 

the measurement level as input to extract attributes or characteristics that describe more 

summarized information for a given monitored area. In the Feature In-Feature Out (FEI-FEO) 

category, information fusion works on a set of features to improve or refine an existing 

characteristic or attribute, or to extract new ones. In the Feature In-Decision Out (FEI-DEO) 

category, information fusion uses a number of features extracted for generating a symbolic 

representation (or a decision). In the Decision In-Decision Out (DEI-DEO) category, decisions 

can be merged to obtain new decisions. Finally, in the Data In-Decision Out (DAI-DEO), either 

a decision is made directly over raw data, as an atomic procedure, or the information fusion 
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process under this category can be broken into several atomic parts pertaining to other 

categories. 

In Olympus, an application is considered as a set of services that must be performed 

to accomplish the application goals. Each application has a finite lifespan and it is interested 

in a particular geographical area. An application defines a set of QoS requirements, described 

in terms of maximum end-to-end delay, maximum percentage of packet loss, and energy 

consumption. Moreover, applications require a set of services provided by the physical WSAN 

nodes that are described in terms of the following provided services: (i) Data collection, (ii) 

Processing, (iii) Decision, (iv) Routing, and (v) Actuation. Such capabilities must be published 

within the cloud in a central repository through a publish/subscribe mechanism. However, 

physical sensors connected to the CoS must have the minimal capability of locally (in its 

physical location) providing continuous raw data at a periodic rate. This premise is less 

restrictive than the works proposing centralized CoS infrastructures support, in which the 

physical nodes must provide such raw data directly to the sink node.  

For connecting applications to physical WSAN nodes, one or more virtual WSAN must 

be created. A virtual WSAN is composed by providing logical connectivity among the physical 

nodes. Such physical nodes are grouped into different virtual WSANs based on the 

phenomenon being monitored or the service being provided. A virtual WSAN node in Olympus 

is an abstraction of a set of physical nodes, from which the virtual node obtains data. Such a 

virtual node is considered a computational entity capable of performing a set of information 

fusion techniques at a given level of DFD model, as shown in Figure 4. Virtual nodes may also 

form Logical Neighborhoods. In contrast with physical neighborhoods, usually defined in 

terms of radio ranges, the nodes included in a logical neighborhood are specified by the 

application based on specific requirements. 

In Olympus there is a computational entity, which we term the Virtualization Manager. 

This entity runs within the cloud and has several responsibilities regarding the model 

execution management. Our model is said to be partly decentralized because the services 

allocated by this entity will run within the physical nodes.  
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Figure 4. Linking VNs and data abstraction levels of information fusion in Olympus 

Each VN in Olympus represents the implementation of an information fusion 

procedure, which can be reused by several applications. In Olympus, the VNs depend not only 

on the information fusion level of the input/output data, but also on the source of such data 

within the physical network. Olympus supports traditional (i) one-to-one, (ii) one-to-many, 

and (iii) many-to-one virtualization schemes. Moreover, it supports primary virtualization (a 

virtualization performed when a first VN is instantiated directly from a PSAN), as well as 

composed virtualizations (in which the virtual sensors are created from another VN). 

Olympus operation model comprises both sequential phases: (i) VN creation 

(instantiation) and (ii) VN operation. In the first phase, Olympus considers a publish/subscribe 

mechanism to choose the proper PSANs that meet the requirements of the applications 

requesting the creation of the VN. The software instance of the VN is responsible to read the 

application requirements (through subscriptions) and the PSAN capabilities published in 

cloud, for deciding if a new instance of a VN should be created, or an existing instance should 

be reused. The PSANs, on receiving any request (sent by the Virtualization Manager) to start 

the instantiation of a VN, are elected as leaders. It is the responsibility of such leader nodes 

(elected by the Virtualization Manager) to search for and establish routes for communicating 

with other physical sensors (possibly in other separate physical WSAN) required by a given 

virtual sensor to be created. Leader nodes will be the reference nodes for the software 

instance of the VN to communicate with when retrieving data or performing procedures for 
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VN creation and operation management. Leader nodes are the ones that perform the 

information fusion techniques at the highest level required by the instantiated VN. Therefore, 

VN creation is performed partly within the cloud and partly within the PSANs. 

When the second phase starts, all PSANs are ready for performing any application 

request allocated to the respective VNs. In this phase, the software instance of the VN 

allocates the execution of the application requests within the PSANs (service allocation). 

During operation, if an undesired state is detected, the software instance of the VN will issue 

warnings to the application users through push communication. However, every physical 

sensor must be ready to perform pull communication during the virtual sensor operation 

management. This is because the application users may want to stay up to date with the 

current execution status of the allocated services. Olympus supports both time-based (pull 

model) and event-based (push model) applications simultaneously. If any PSAN pertains to a 

separate WSANI, then the routing among the PSANs must go through the sink nodes of both 

WSANIs to enable passage through the cloud. One first approach to resolve this issue in 

Olympus is to treat the issue as a routing problem. The second possibility is equivalent to the 

approach of a centralized CoS virtualization model. That is to say, that the PSANs send data to 

the cloud through the sink nodes, and the VN creation takes place only within the cloud. 

Finally, the VN operation is more prone to run within PSANs than VN instantiation. VN may 

even operate without any communication with the cloud. However, there are still procedures 

of VN operation that may be performed partly within the cloud, such as the case of many-to-

one virtualization comprising nodes physically separated in different WSANs. In face of the 

presented discussions, Olympus is considered a hybrid (partly decentralized) CoS virtualization 

model. 

3.2 Application Model 

In this Section, we describe in more details applications and requests, mentioned in 

Section 1.2. According to Equation (5), we describe each request in terms of the list of 

predecessor requests (PE), type of request (TY) and lists of non-negotiable and negotiable 

requirements (NNRR and NRR). Per Equation (6), users describe each application in terms of 

the time (within the timespan τ) at which an application arrives in its AEP (TI), the value of 

priority for the application (PI) and the list of requests of the application (LRQ). 
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𝑅𝑄 = 〈𝑃𝐸, 𝑇𝑌, 𝑁𝑁𝑅𝑅, 𝑁𝑅𝑅〉 (9) 

𝐴𝑃𝑃 = 〈𝑇𝐼, 𝑃𝐼, 𝐿𝑅𝑄〉  

(𝑇𝐼 ∈ ℝ+ | 𝑇𝐼 ≤ 𝜏) 𝑎𝑛𝑑 (𝑃𝐼 ∈ ℝ) 

(10) 

We model precedence relationships among requests of the same application in terms 

of the data dependence among requests. Therefore, users must define the list of predecessors 

(PE) for a request. This list stores the identifiers of other requests from the same application 

that must run to completion before starting the current request. Based on such information, 

we model the requests of an application as vertices connected by directed edges without 

loops, thus forming a directed acyclic graph (DAG) [51]. Figure 5 shows an example of an 

application with eight requests modeled as a DAG. 

 

Figure 5. Application modeled as a DAG of requests 

In Olympus, we consider both event and time-based applications [12][25]. A time-

based application defines the exact moment in time for demanding data from the VN. Thus, 

the pull model attends time-based applications. In the pull model, a VN coordinates the 

operation of its underlying infrastructure, to respond to the application, at the time defined 

by the application. Thus, for each request, we also define TY = {periodic, aperiodic, root, tree} 

as the type of request. In case of a time-based application, can be periodic or aperiodic, and, 

in case of an event based application, can be root or tree [12][25]. Aperiodic requests are 

performed when arriving at the VN and are performed only once. Periodic requests are 

maintained by a limited number of periods (defined by users) in the VN, since they will be 

reactivated from time to time. An aperiodic request cannot succeed a periodic request. All the 

successors of a periodic request are also periodic. Both root and tree requests will wait 

standby in the VN for a given time t, chosen by the user. Root requests are in the base of the 

DAG of requests of the event-based application, and are performed always when the VN 

reports the event expected (through the data provisioning service) within the time t. The Tree 
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requests also standby in their VNs for the same time t, but Tree requests are the ones from 

event-based applications that have predecessor requests. They do not wait for events for 

being performed, just for the output data of predecessor request. 

Finally, each request includes lists of non-negotiable and negotiable requirements that 

must be fulfilled by an allocated VN. Thus, NNRR and NRR are lists that describe such 

requirements. In case of NRR, the list includes the respective fulfillment level of the 

requirement. This level is expressed through a percentage, respective to how much the 

provided data must meet the requirement expectation. In this work, the data freshness is 

within the list of NRR, and the data type is within the list of NNRR.  

Considering that the CoS operates for a given timespan τ>0, an application must arrive 

at a given AEP at a time TI within this timespan. Upon arrival, an application may be fully 

performed within the timespan τ. Finally, some applications can be more priority than others 

can. Therefore, applications have a priority value PI, so that the higher the value of PI is, the 

application is more priority than others (thus its requests are more priority to be served by 

the VNs than requests from other applications). 

As mentioned in Section 2.7, although task scheduling is one of the challenges raised 

in this thesis proposing a WSAN task scheduling and execution algorithm for performing the 

engagement of the underlying CoS infrastructure is not in the scope of our current work. 

Several algorithms, such as [23][24][54], can be used as solutions to this problem. In this work, 

we consider that the SAM has a fixed delay for returning its data, which we call the data update 

time (DUpTm).  

3.3 The CoS system architecture: applying the concepts behind Olympus 

In this Section, we present the architecture (Figure 6) proposed to put into practice the 

concepts behind Olympus [40]. Our architecture comprises four subsystems: the CoS Manager 

Subsystem (CMS), the Application Manager Subsystem (AMS), the Virtualization Subsystem 

(VS) and the Virtual Node Subsystem (VNS). We consider that CoS virtualization is held within 

the cloud and edge tiers, thus the VS components are distributed among such tiers. The VS 

supports the instantiation and execution of multiple VNs, each one running a VNS. 
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Figure 6. The proposed CoS system architecture 

The CMS provides an Application Programming Interface (API) that allows InPs to 

manage the CoS system. This API allows describing and storing the data types (along with their 

dependencies and information fusion techniques) handled by the CoS. InPs must consider a 

desired level of target users’ expertise in an application domain, when defining a data type. 

Finally, the API allows provisioning VN instances proactively (as well as deleting and 

reconfiguring VNs), according to InPs’ criteria. 

The AMS has the main functionality of supporting users in the development of 

applications. It provides an API that allows users to express their requests for the data types 

existing in the CoS, stored in the CMS. Since the specification of this subsystem is extensive 

and there are several approaches for developing sensing-based applications, it is out of the 

scope of our work. Therefore, we suggest methods existing in literature for implementing its 

main functionality. For discovering and selecting the available data types in the CoS, we 

suggest using typical service discovery methods [15]. To express and manage application 

workflows, we suggest using domain specific languages (DSL) or semantic queries [101]. Users 
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can submit their developed workflows through this API to be performed by the CoS, which will 

return a final data. 

In Section 3.3.1 we describe the VS. In Section 3.3.2, we describe the VNS. In Section 

3.3.3, we discuss the key design choices for the CoS system implementation. In Section 3.3.4, 

we describe the operational sequence of the CoS system. 

3.3.1 Virtualization Subsystem 

Considering the VS, it comprises six components to support the management of VNs: 

Virtualization Subsystem Manager (VSM), VN Instances Repository (VNIR), Registries 

Repository (RR), Centralized Resource Allocation Manager (CRAM), Centralized Resource 

Provisioning Manager (CRPM) and Application Entry Point (AEP). The VSM is the main 

component of the VS architecture, and its goal is to coordinate the actions of the other VS’ 

components. When the VS boots, the VSM starts these components. It is a distributed 

component and runs on both ENs and CNs. 

During CoS operation, applications arrive in the CoS through AEPs. An application may 

arrive, for instance, either through the internet or from a user device (such as a PC or 

smartphone) connected directly to an EN. Either the CNs or ENs are possible candidates to 

hold AEPs. The AEP has the goal of handling the arrivals of applications in the CoS, immediately 

transmitting them to the CRAM. The CRAM and CRPM perform the centralized parts of, 

respectively, the chosen resource allocation and resource provisioning algorithms. The CRAM 

is responsible for assigning VNs to application requests. The CRPM is responsible for handling 

the instantiation and management of VNs. 

The VS also comprises the RR, for storing the registries and locations of PSANs and VNs 

existing in the CoS. The RR can be implemented either in a centralized manner in a CN, or 

distributed among several CNs and/or ENs. In the latter case, the RR of each EN comprises 

registries of VNs and PSANs that are within the scope of the local region of the respective EN. 

Such approach thus, takes advantage of the location-awareness capability of the edge tier, 

and it is more energy efficient. In the former case, the CN comprises a broader neighborhood 

area, possibly comprising registries of all existing VNs and PSANs. Regardless, upon receiving 

a registry from either a VN or a PSAN, the RR decides about disseminating this registry among 

other nodes implementing the RR. Moreover, the VNIR stores various VN instances locally. 

Thus, several VNs run within each VNIR. 
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3.3.2 Virtual Node Subsystem 

The VNS comprises six components: the VN Manager (VNM), the Decentralized 

Resource Provisioning Manager (DRPM), the Decentralized Resource Allocation Manager 

(DRAM), the Data Provisioning Manager (DPM), the Data Storage Manager (DSM) and the 

Sensing and Actuation Manager (SAM). The VNM is the first VNS’ component to boot, and 

coordinates the execution of all the other components of a VN. Moreover, it handles the data 

communication among VNs, forming a virtual network [60], so that VNs can exchange their 

data among themselves to accomplish the application workflows.  

The DRAM and DRPM perform the decentralized parts of, respectively, the resource 

allocation and resource provisioning algorithms. Moreover, the DRPM boots along with the 

VNM, and performs the initialization of the VN, storing its configurations. It is also responsible 

to publish, proactively, and keep updated VN’s information in the local RR. 

The DPM provides data in response to application requests, also providing values to 

the negotiable and non-negotiable application requirements, in order to fulfill them. In 

addition, the DPM provides information regarding the description of its data provisioning 

service. In a practical situation, we assume the need of using a standard for describing such 

information, independently on the details of underlying and heterogeneous devices, protocols 

and formats. Since this standardization is not in the scope of our work, we suggest well-

established solutions for it such as the Sensor Modeling Language (SensorML) [19]. 

The DPM implements the data provisioning service, and can perform a resource 

allocation decision, accessing either the DSM or SAM for service completion. The DSM 

manages the local memory of the VN. It provides functions for accessing this local memory 

and inserting/retrieving historical data from it. The SAM implements the functions of the VN 

program for performing data updates, and store the recently updated data directly into the 

DSM. In the next Section we discuss some key design choices to be made, in order to 

concretize the CoS as a real software system. 

3.3.3 Key design choices for the CoS system implementation 

Two decisions are fundamental to define the CoS system’s operational sequence, 

implementation and consequently energy consumption. The first decision concerns choosing 

the degree of decentralization of the resource allocation technique used by the CoS system 

[97]. Centralized techniques are usually more accurate in decision-making (achieving optimal 
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solutions) than decentralized techniques. However, they tend to impose a greater 

communication/energy overhead on the CoS system, since the central decision-making node 

must obtain information from all the subordinated VNs. As an attempt to balance this trade-

off as best as possible, ensuring a greener CoS system design, we suggest using a hybrid 

algorithm. 

Hybrid algorithms comprise centralized and decentralized decision phases. By 

leveraging the edge tier, it becomes possible to perform the centralized decision phase within 

an EN, for a localized vicinity of VNs under its scope. Meanwhile, the decentralized decision 

phase is performed within VNs. Moreover, to further reduce the computation time (and 

energy) used to make decisions in both decentralized and centralized decision phases, we 

suggest using heuristic approaches. They are known for being able to achieve near-optimal 

solutions in reduced computation time for NP-complete problems. 

The second decision regards choosing the tier to host and run VNs, and for such we 

chose the ET. ENs have greater computation and communication capabilities than PSANs, to 

better manage VNs. Moreover, ENs are in a privileged position, in relation to the CNs, for 

linking PSANs from different WSANIs under the same VN. Finally, hosting VNs in the same tier 

of the decision-making ENs shortens the distances between such nodes, saving energy for the 

CoS by reducing the communication overhead. 

Therefore, only ENs will host the VS and the VNS. The CMS and AMS are able to run 

fully in the CT. They may take advantage of centralized data storages in the cloud to perform 

their functions. Finally, an application may arrive at an AEP either through the Internet or from 

a user device (such as a PC or smartphone) connected directly to an EN. In next Section, we 

describe the operation sequence respective to our design choices. 

3.3.4 Operational Sequence of the CoS System 

After the development of a hypothetical application workflow, users submit it to the 

CoS. The AMS will communicate with the AEPs which are close to VNs (or PSANs) that provide 

the data types required by the application. We assume the adoption of an algorithm, whose 

specification is out of the scope of this work, to select the best AEP, according to criteria 

chosen by InPs. The specification of this algorithm, which can be [103] for instance, is out of 

the scope of this work. Then, the workflow arrives in the selected AEP, which redirects the 

application to the CRAM at the same EN. 
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The CRAM makes decisions periodically over a buffered set of applications. When the 

current buffering period expires, the centralized phase of the resource allocation technique 

runs. A new VN may need to be instantiated, to serve one of the application requests. In this 

case, the CRAM calls the CRPM, within the same EN, to perform the centralized part of 

resource provisioning. The CRPM calls the VNIR (either local or at another EN), to instantiate 

the VN. The VNIR starts the VNM of the respective VN, and the DRPM also starts its execution 

in this moment. Then, the VNIR returns the control to the CRPM, which calls the DRPM. The 

DRPM may perform a decentralized part of resource provisioning, and then start the other 

VN’s components. Finally, the DRPM registers the VN instance, calling the RR locally. Then, it 

returns the control to the CRAM. 

When every request has a selected VN, the CRAM calls the DRAM of each selected VN. 

If no VN is available to meet a request (and no new VNs can be created), the respective request 

is refused and the information regarding this refusal is returned to the original AEP. Upon 

arriving at the DRAM of the respective selected VN, the request is queued, waiting to be 

served serially by the DPM. The request waits for the arrival of any input data (through the 

VNM), to free its precedence restrictions. When the request is removed from queue, the DPM 

is called.  

According to the decisions made by the CRAM/DRAM (forwarded along with the 

request), the DPM may perform a data update or return historical data. In the first case, it 

accesses the SAM, which will perform the data update and store the fresh data into the DSM. 

In the second case, the DPM will access the DSM directly, to retrieve the most recent data. 

Then, the request is met by the DPM and the control flow is returned to the DRAM. If the 

request has a successor request in its application workflow, its data is transmitted to the VN 

that was allocated to the successor request. The DRAM passes the control to the VNM, which 

forwards the message to the VNM of the next VN, who calls the respective DRAM. In other 

words, this transmission occurs between the DRAM of both VNs. Otherwise, this is the last 

request of the application workflow, so its data is transmitted back to the original AEP. In this 

case, the DRAM of the VN that performed the last request of the workflow transmits a 

message to the CRAM of the VS that hosts the AEP, then the CRAM forwards the message to 

the AEP. Finally, the data is delivered to the application user through the AEP. 
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3.4 Conclusion 

In this chapter, we described our proposal of an information fusion and decentralized 

CoS virtualization model, which we term Olympus. Thus proposal contributes by achieving the 

first goal of this thesis, related to the research question 2. 

As mentioned in Section 2.7, Olympus addresses the research gap regading the lack of 

a decentralized full device virtualization model, with devices playing an active role as resource 

providers and considering the edge tier in its architecture. In addition, Olympus supports 

effective, fast and lightweight algorithms to perform resource allocation and task scheduling. 

Finally, Olympus presents an application model which is able to model priorities and 

precedencies among requests and tasks, and the sharing of requests and tasks in common 

among multiple applications and VN programs. Olympus also supports both time-based (pull) 

and event-based (push) applications simultaneously. 

In Chapter 4, we investigate research question 3, and present our specific algorithm to 

perform resource allocation in CoS, called Zeus. 
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4 Resource allocation in the Cloud of Sensors 

In this Chapter, we discuss our approach for resource allocation in CoS. As in other 

works in literature [73], the problem of resource allocation in CoS falls within the typical class 

of mixed integer non-linear programming problems (MINPP) [17], [66]. In this chapter we 

describe the formulation of our MINPP for resource allocation in CoS. Section 4.1 introduces 

all the sets and decision variables used in the MINPP formulation. Section 4.2 presents the 

objective function and constraints of our MINPP. 

To solve our MINPP in order to seek the optimal solution, there are a number of 

methods in the literature, such as the linear programming techniques and their variants [67]. 

However, our formulated MINPP is an NP-complete problem [46]. The proof of NP-

completeness of our MINPP is presented in Section 4.3. To solve, in polynomial time, practical 

instances of our MINPP with arbitrary sizes [78], we propose a hybrid and heuristic based 

algorithm, called Zeus. Therefore, Section 4.4 presents Zeus, our proposed algorithm to solve 

the MINPP for resource allocation in CoS. 

4.1 Parameters and variables design 

Among the MINPP input parameters, we define the sets in Table 4, and the remaining 

parameters in Table 5. In addition, we define the sets 𝑆𝑃𝑆𝐴𝑁, comprising the PSANs, and 

𝑆𝐸𝐶𝑁, comprising the hosts of VNs (ENs and CNs). 

TABLE 4. SUMMARY OF SETS 

Definition Description 
Subscript 

Indexes 

𝑆𝑃𝑆𝐴𝑁 = {𝑘|𝑘 ∈ ℕ0, 𝑘 < 𝐾} Set of K PSANs k 

𝑆𝐸𝐶𝑁 = {ℎ|ℎ ∈ ℕ0, ℎ < 𝐻} Set of H hosts (EN or CN) of VNs h 

𝑆𝑉𝑁 = {𝑖|𝑖 ∈ ℕ0, 𝑖 < 𝐼} Set of I VNs i, c 

𝑆𝑅𝑄 = {𝑗|𝑗 ∈ ℕ0, 𝑗 < 𝐽} Set of J requests j, a, b 

𝑆𝑃𝑅𝐸 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ 𝑆𝑅𝑄, 𝑎 ≠ 𝑏} Set of precedencies (a precedes b) (a,b) 

𝑆𝑃 = {𝑝|𝑝 ∈ ℕ0, 𝑝 < 𝑃} 
𝑆𝑃1 = {𝑝|𝑝 ∈ ℕ, 𝑝 < 𝑃} 

Set of all P periods, and set of periods 

starting from p=1 
p, q 

   

Moreover, we model a resource provisioning function per Equation (11), implemented 

by a proactive resource provisioning process, as mentioned in Section 2.2. This resource 

provisioning function maps the sets SPSAN and SECN to the set SVN, which comprises the VNs 

defined in Section 2.2. This function also outputs the matrixes of VN x PSAN mapping (𝑉𝑃𝑀𝑖𝑘) 

and VN x host mapping (𝑉𝐸𝐶𝑀𝑖ℎ). The 𝑉𝐸𝐶𝑀𝑖ℎ  matrix stores the usage levels (0-100%) of 
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each host by each VN. The 𝑉𝑃𝑀𝑖𝑘 matrix stores the usage levels (0-100%) of each PSAN by 

each VN. Such matrixes are also input parameters to our MINPP. 

𝑓𝑝ℎ𝑦→𝑣𝑖𝑟(𝑆𝑃𝑆𝐴𝑁, 𝑆𝐸𝐶𝑁) = 𝑆𝑉𝑁, 𝑉𝑃𝑀𝑖𝑘, 𝑉𝐸𝐶𝑀𝑖ℎ (11) 

In addition, we represent the applications in terms of a digraph 𝐺 = (𝑆𝑅𝑄, 𝑆𝑃𝑅𝐸) 

where  (𝑎, 𝑏) ∈ 𝑆𝑃𝑅𝐸 represents that request 𝑎 must be met before request 𝑏. We assume 

the digraph 𝐺 only contains immediate precedence relationships, that is, if 𝑆𝑅𝑄 =

{1,2,3} and {(1,2), (2,3)} ⊂ 𝑆𝑃𝑅𝐸, then (1,3) ∉ 𝑆𝑃𝑅𝐸.  

TABLE 5. SUMMARY OF REMAINING PARAMETERS 

Definition Description Definition Description 

𝐵𝑊𝑖𝑐 Bandwidth between VNs i 

and c 
𝑊𝐸𝑉𝑅𝐴𝑖 limit of energy reserved for the 

window in VN i 

𝑇𝐿𝑜𝑖 Transmission Load of VN i 𝑊𝐸𝑃𝑘 limit of energy reserved for the 

window in PSAN k 

𝑃𝐿𝑜𝑖 Processing Load of VN i 𝑊𝐸𝑉𝐷𝑈𝑖 limit of energy reserved for the 

window in VN i 

𝐿𝐷𝑈𝑃𝑊𝑖 Last data update time of 

VN i achieved during 

previous decision window  

𝑉𝑠𝑢𝑝𝑘 Sensing supply voltage of PSAN k 

𝐷𝑈𝑝𝑇𝑚𝑖 Data update time of VN i 𝐼𝑠𝑒𝑛𝑠𝑘 total current required for sensing 

activity of PSAN k 

𝑃𝑃𝑤𝑖 Processing power of VN i 𝜉𝑠𝑒𝑛𝑠𝑘 time duration for sensing component 

to collect data of PSAN k 

𝑃𝑃𝑤ℎ Processing power of the 

host h (EN or CN) 
𝐸𝑒𝑙𝑒𝑐𝑘 radio energy dissipation of PSAN k 

𝐷𝐹𝑇𝑗 Data Freshness Threshold 

of request j 
𝜀𝑎𝑚𝑝𝑘 amplifier energy dissipation of PSAN 

k 

𝑉𝐸𝐶𝑀𝑖ℎ VN i x host h mapping 𝑑𝑖𝑘 Distance between PSAN k and VN i 

𝑃𝑚𝑎𝑥ℎ Maximum power 

dissipated by host h 
[𝐶 × 𝑉𝑑𝑑

2

+ 𝑓]
𝑘
 

Processing constant of PSAN k 

𝑏𝑖𝑘 Amount of bytes requested 

by VN i to PSAN k 
𝑛𝑖𝑘 Number of actuations of PSAN k to 

VN i 

𝐸𝑇𝑀𝐷𝑊 End Time of the Decision 

Window 
𝐸𝑎𝑐𝑡𝑘 Energy spent for each actuation by VN 

k 

    

In our MINPP formulation, we consider a time-based decision window, defined by a 

fixed value of duration (𝐸𝑇𝑀𝐷𝑊, in Table 5). The resource allocation decision, achieved by 

solving the MINPP, is valid for the duration of this decision window. Such a decision must be 

reviewed whenever any of the sets defined in Table 4 changes (for instance, due to application 

arrivals), or when the execution of the current resource allocation decision is completed 

(when the decision window ends). We consider partitioning the decision window into P 

periods, so that it is possible to allocate VNs to requests within these periods. We refer to such 

periods through the set SP. Each VN considers the same amount P of periods, and every period 
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p has a start time, an end time and a duration. However, the times and duration vary among 

VNs. For instance, a given period p could have different start times, end times and durations 

in VN 1 and VN 2. 

TABLE 6. DECISION VARIABLES 

Definition Description 

𝑥𝑖𝑗
𝑝

∈ {0,1} 

∀𝑖, 𝑗, 𝑝 ∈ 𝑆𝑉𝑁, 𝑆𝑅𝑄, 𝑆𝑃 
Whether VN I is allocated to request j in period p 

𝑦𝑖
𝑝

∈ {0,1} 

∀𝑖, 𝑝 ∈ 𝑆𝑉𝑁, 𝑆𝑃 
Whether VN i updates its data in period p 

𝑆𝑇𝑀𝑖
𝑝

∈ ℝ 

∀𝑖, 𝑝 ∈ 𝑆𝑉𝑁, 𝑆𝑃 
Start time of period p in VN i 

Moreover, our MINPP employs three decision variables shown in Table 6: 𝑥𝑖𝑗
𝑝 , 𝑦𝑖

𝑝 

and 𝑆𝑇𝑀𝑖
𝑝. The resource allocation decision comprises feasible values of such variables. We 

define 𝑥𝑖𝑗
𝑝  as binary values to indicate whether to allocate VN i to request j in period p. A 

request is always fully processed during a single period. When assigning 𝑥𝑖𝑗
𝑝 = 1 at any given 

period p, for a given VN i and request j, the values of 𝑥𝑖𝑗
𝑝  for every period p’>p must also be 

equal to one, for the same values of i and j. Thus, whenever an allocation occurs, it cannot be 

undone or re-done during the remainder of the decision window. In addition, the binary 

variables 𝑦𝑖
𝑝

 indicate whether VN i performs a data update in period p. Finally, the real-valued 

decision variable 𝑆𝑇𝑀𝑖
𝑝 indicates the start time of each period p in a VN i.  

4.2 MINPP Formulation for resource allocation in CoS 

In this Section, we describe the objective function of our problem, defined per 

Equation (12). We also describe the constraints of our problem, defined per Equations (22) to 

(34). 

max ∑ ∑ ∑ 𝑥𝑎𝑖𝑗
𝑝

∗ 𝑢𝑖𝑗
𝑝

𝑝∈SP1𝑖∈S𝑉𝑁𝑗∈S𝑅𝑄

  (12) 

Where:   

𝑥𝑎𝑖𝑗
𝑝

= 𝑥𝑖𝑗
𝑝

− 𝑥𝑖𝑗
𝑝−1

 

∀𝑖 ∈ S𝑉𝑁 

∀𝑗 ∈ S𝑅𝑄 

∀𝑝 ∈ SP1 
(13) 

𝐸𝑇𝑀𝑖
𝑝

= 𝑇𝑇𝑀𝑖
𝑝

+ 𝑃𝑇𝑀𝑖
𝑝

+ 𝑈𝑇𝑀𝑖
𝑝

+ 𝑆𝑇𝑀𝑖
𝑝
 

∀𝑖 ∈ 𝑆𝑉𝑁 

∀𝑝 ∈ 𝑆𝑃 
(14) 

𝑈𝑇𝑀𝑖
𝑝

=  𝐷𝑈𝑝𝑇𝑚𝑖 × 𝑦𝑖
𝑝

 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀𝑝 ∈ 𝑆𝑃 
(15) 

𝑃𝑃𝑤𝑖 = ∑ 𝑉𝐸𝐶𝑀𝑖ℎ × 𝑃𝑃𝑤ℎ

ℎ∈𝑆𝐸𝐶𝑁

 ∀𝑖 ∈ 𝑆𝑉𝑁 (16) 
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𝑃𝑇𝑀𝑖
𝑝

= {
 
𝑃𝐿𝑜𝑖

𝑃𝑃𝑤𝑖
∑ 𝑥𝑎𝑖𝑗

𝑝

𝑗∈𝑆𝑅𝑄

    𝑝 > 0

0                               𝑝 = 0

 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀𝑝 ∈ 𝑆𝑃 
(17) 

𝑇𝑇𝑀𝑖
𝑝

= ∑ ∑ ∑ 𝑥𝑎𝑖𝑎
𝑝

×
𝑇𝐿𝑜𝑖

𝐵𝑊𝑖𝑐
× 𝑥𝑎𝑐𝑏

𝑞
 

𝑃

𝑞=1
𝑞≠𝑝

𝑐∈𝑆𝑉𝑁
𝑐≠𝑖

(𝑎,𝑏)∈
𝑆𝑃𝑅𝐸

 ∀𝑖 ∈ 𝑆𝑉𝑁 

∀𝑝 ∈ 𝑆𝑃 
(18) 

𝐿𝐷𝑈𝑖
𝑝

= 𝑚𝑎𝑥({𝑦𝑖
𝑞

× 𝑆𝑇𝑀𝑖
𝑞

+ 𝑈𝑇𝑀𝑖
𝑞

+ 𝐿𝐷𝑈𝑃𝑊𝑖 × (𝑦𝑖
𝑞

− 1)|𝑞 ∈ [0. . 𝑝]}) 

∀𝑖 ∈ 𝑆𝑉𝑁 

∀𝑝 ∈ SP1 
(19) 

𝐷𝐹𝑖
𝑝

= 𝑆𝑇𝑀𝑖
𝑝

+ 𝑈𝑇𝑀𝑖
𝑝

− 𝐿𝐷𝑈𝑖
𝑝
 

∀𝑖 ∈ 𝑆𝑉𝑁 

∀𝑝 ∈ SP1 
(20) 

𝑢𝑖𝑗
𝑝

= {

0         (𝐷𝐹𝑖
𝑝

> 𝐷𝐹𝑇𝑗)

1 −
𝐷𝐹𝑖

𝑝

𝐷𝐹𝑇𝑗
   (𝐷𝐹𝑇𝑗 ≥ 𝐷𝐹𝑖

𝑝
≥ 0)

 

∀𝑖 ∈ S𝑉𝑁 

∀𝑗 ∈ S𝑅𝑄 

∀𝑝 ∈ SP1 
(21) 

Subject to:   

𝑥𝑎𝑖𝑗
𝑝

≥ 0 

∀𝑖 ∈ S𝑉𝑁 

∀𝑗 ∈ S𝑅𝑄 

∀𝑝 ∈ SP1 

(22) 

𝑥𝑖𝑗
0 = 0 

∀𝑖 ∈ S𝑉𝑁 

∀𝑗 ∈ S𝑅𝑄 
(23) 

𝑦𝑖
0 = 0 ∀𝑖 ∈ S𝑉𝑁 (24) 

𝑆𝑇𝑀𝑖
0 = 0 ∀𝑖 ∈ S𝑉𝑁 (25) 

∑ ∑ 𝑥𝑎𝑖𝑗
𝑝

𝑝∈SP1𝑖∈S𝑉𝑁

≤ 1 ∀𝑗 ∈ S𝑅𝑄 (26) 

∑ 𝑥𝑎𝑖𝑗
𝑝

𝑝∈SP1

≤ 𝐹𝑅𝑅𝑖𝑗 
∀𝑖 ∈ S𝑉𝑁 

∀𝑗 ∈ S𝑅𝑄 

(27) 

∑ ∑ (𝑥𝑖𝑎
𝑝

− 𝑥𝑖𝑏
𝑝

)

𝑝∈SP1𝑖∈S𝑉𝑁

≥ 1 
∀(𝑎, 𝑏) 

∈ S𝑃𝑅𝐸 
(28) 

𝑆𝑇𝑀𝑖
𝑝

≥ 𝑚𝑎𝑥({𝑥𝑎𝑖𝑏
𝑝

× 𝑆𝑇𝑀𝑐
𝑞

× 𝑥𝑎𝑐𝑎
𝑞

|(𝑎, 𝑏) ∈ 𝑆𝑃𝑅𝐸, 𝑐

∈ 𝑆𝑉𝑁, 𝑞 ∈ 𝑆𝑃, 𝑞 ≠ 𝑝}) 

∀𝑖 ∈ S𝑉𝑁 

∀𝑝 ∈ SP1 
(29) 

𝐸𝑇𝑀𝑖
𝑝

≤ 𝐸𝑇𝑀𝐷𝑊 

∀𝑖 ∈ S𝑉𝑁 

𝑝 = 𝑃 − 1 
(30) 

𝑆𝑇𝑀𝑖
𝑝

≥ 𝐸𝑇𝑀𝑖
𝑝−1

 

∀𝑖 ∈ S𝑉𝑁 

∀𝑝 ∈ SP1 
(31) 

∑ 𝐸𝑅𝐴𝑖ℎ

ℎ∈𝑆𝐸𝐶𝑁

≤ 𝑊𝐸𝑉𝑅𝐴𝑖 ∀𝑖 ∈ S𝑉𝑁 (32) 
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∑ [𝐸𝐷𝑈𝑖𝑘 × 𝑉𝑃𝑀𝑖𝑘 × ∑ 𝑦𝑖
𝑝

𝑝∈SP1

]

𝑖∈S𝑉𝑁

≤ 𝑊𝐸𝑃𝑘 
∀𝑘 

∈ S𝑃𝑆𝐴𝑁 
(33) 

∑ [𝐸𝐷𝑈𝑖𝑘 × 𝑉𝑃𝑀𝑖𝑘 × ∑ 𝑦𝑖
𝑝

𝑝∈SP1

]
𝑘∈

S𝑃𝑆𝐴𝑁

≤ 𝑊𝐸𝑉𝐷𝑈𝑖 ∀𝑖 ∈ S𝑉𝑁 (34) 

   

To define our objective function, we define 𝑥𝑎𝑖𝑗
𝑝  as an auxiliary expression per Equation 

(13). When we multiply 𝑢𝑖𝑗
𝑝  by the value of 𝑥𝑎𝑖𝑗

𝑝  the result is the amount of utility obtained by 

allocating VN i to request j at period p. As expressed by Equation (12), we want to maximize 

the sum of all utilities obtained by each allocation. Thus, we make the following considerations 

regarding our way for calculating utility. First, in our formulation, we obtain values of utility 

for each period, and as a function of time, which affects data freshness directly. Thus, we 

consider, for each period p of a VN, besides its start time (𝑆𝑇𝑀𝑖
𝑝), its end time (𝐸𝑇𝑀𝑖

𝑝), defined 

per Equation (14), and its duration. 

We define the time spent for updating data (𝑈𝑇𝑀𝑖
𝑝) per Equation (15). If a decision is 

made for updating data of VN i at period p, this time is equal to the 𝐷𝑈𝑝𝑇𝑚𝑖. The time spent 

for processing (𝑃𝑇𝑀𝑖
𝑝

) defined per Equation (17), is the time necessary for a VN i to perform 

its internal procedures in order to meet a request j. Each allocation of VN i to a request j 

generates the standard processing load in the VN i (𝑃𝐿𝑜𝑖). In addition, the VN i has a processing 

power (𝑃𝑃𝑤𝑖), which is defined per Equation (16). It is a fraction of the processing power of 

the host (𝑃𝑃𝑤ℎ), defined by 𝑉𝐸𝐶𝑀𝑖ℎ. It is important to mention that no processing occurs in 

period zero, since no allocation is possible in this period. Finally, per Equation (18) we define 

time spent for transmission (𝑇𝑇𝑀𝑖
𝑝). When VN i is allocated to request “a”, the output data 

must be transmitted to all VNs c that are allocated to the successors b of request “a”. Each of 

such output data transmissions takes the time equal to the rate between 𝑇𝐿𝑜𝑖 and 𝐵𝑊𝑖𝑐. 

Equation (18) calculates, for a VN i, the sum of the times spent for each transmission. 

Moreover, we calculate the moment in time of the last data update of a VN i at a given 

period p (𝐿𝐷𝑈𝑖
𝑝) per Equation (19). This is the highest time value, among the current period p 

and previous periods of the current decision window, at which a VN i performed a data update. 

If no data update decision happens during the current decision window, the moment of the 

last data update considered will be the one occurred in the previous window (𝐿𝐷𝑈𝑃𝑊𝑖), which 
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is provided as input parameter for the problem. Then, we formally define data freshness per 

Equation (20). The data freshness of a given VN i in period p is the difference between two 

moments in time. The first is the moment during current period p in which a request will be 

served by VN i, and the second is 𝐿𝐷𝑈𝑖
𝑝. In the best case, the data has just been updated in 

VN i during current period p, thus both moments are equal and data freshness is the best 

(zero).  

Finally, we formally define utility per Equation (21). We assume that the utility 

decreases linearly and has the maximum and minimum values of 100% and 0%, respectively. 

We define that, whenever the data freshness (𝐷𝐹𝑖
𝑝) of a given VN i, in a given period p, is zero, 

the utility is maximum (100%), i.e. a data update happened in such a period. We assume that 

values of 𝐷𝐹𝑖
𝑝 that are higher than the data freshness threshold of request j (𝐷𝐹𝑇𝑗) are useless, 

thus utility is minimum (0%) in this case.  

By the constraint defined per Equation (22), once an allocation of a VN to a request 

occurs, it cannot be undone or re-done during the remainder of the decision window. 

Moreover, since our objective function has a recursive term, it is necessary to consider period 

zero as a dummy period. In period zero, we disallow allocations and data updates by VNs. In 

addition, the start time of period zero is set to the start time of the current decision window, 

which is time zero (a relative time). We express such statements by constraints, respectively 

defined per Equations (23), (24) and (25). Per Equation (26) we ensure that requests are 

performed only once and by a single VN i during the decision window. Per Equation (27) we 

ensure the allocation of VNs to requests only when VNs match the defined non-negotiable 

requirements of the requests. The matrix of non-negotiable requirements (𝐹𝑅𝑅𝑖𝑗) has the 

value of one set at each position where a VN i meets the non-negotiable requirements of 

request j, and zero otherwise. Per Equation (28) we ensure that whenever a VN is allocated to 

a request b in a given period, all the “a” predecessors of b must also have VNs allocated, at 

previous periods. Finally, the constraint defined per Equation (29) ensures that a request b 

should never start at a time prior to the start of its predecessor request “a”. By Equation (30) 

we ensure that the end time of the last period of each VN is smaller than the end time of the 

decision window (𝐸𝑇𝑀𝐷𝑊). By Equation (31) we ensure values of start times so that two 

consecutive periods will never overlap. In addition, the successor period will never happen at 

a prior moment in time, in relation to a predecessor period.  
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Finally, constraints in Equations (32), (33) and (34) regard the energy costs of allocating 

each VN to requests. Such energy is fully consumed by the ENs/CNs that host each VN. Thus, 

we need a model for energy consumption at edge/cloud tiers. It is important to mention that 

our MINPP is agnostic to any specific energy model. In this paper, we adopted the same energy 

model used in our previous work, which targets the edge and cloud paradigms [12]. We 

described this energy model in detail in Appendix A. Moreover, we implemented our MINPP 

for resource allocation in CoS, considering the energy model used in this thesis, in the CPLEX 

software [100]. 

4.3 Proof of NP-completeness 

In this Section, we present a theorem formulated as the statement: “The MINPP for 

resource allocation in CoS is NP-complete”. It is important to prove this theorem in order to 

justify the elaboration of strategies based on heuristics for solving our problem. We prove the 

NP-completeness of our MINPP by restriction, thus showing that it contains a known NP-

complete problem as a special case [53]. We consider the well-known multiple knapsack 

problem (MKP), which is known to be NP-complete [46], as the reference special case, and 

describe it as follows. 

In combinatorial optimization, the traditional MKP considers a set N of items and a set 

M of knapsacks. Each item j ∈ N has an associated profit (or utility) pj and weight (or cost) wj. 

Each knapsack i ∈ M has an associated capacity Wi. The objective of the MKP is to maximize 

the total profit of allocating items to knapsacks, according to the objective function in 

Equation (35), while the total weight of the chosen items at each knapsack does not exceed 

the knapsack capacity Wi, according to Equation (37). The decision variable xij is used to 

represent the allocation of item j to knapsack i, and is binary, according to constraint in 

Equation (36). 

   

max ∑ ∑ 𝑥𝑖𝑗𝑝𝑗

𝑖∈𝑀𝑗∈𝑁

  (35) 

Subject to:   

∑ 𝑥𝑖𝑗

𝑖∈𝑀

≤ 1 ∀𝑗 ∈ N (36) 

∑ 𝑤𝑗𝑥𝑖𝑗

𝑗∈𝑁

≤ 𝑊𝑖  ∀𝑖 ∈ M (37) 
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To prove our theorem, we specify additional restrictions to the MINPP, reducing it to 

the MKP. Let us consider the particular instance of the MINPP characterized by the following 

setting:  

1) Requests have no precedencies, i.e., every application comprises a single request. 

In other words, we consider 𝑆𝑃𝑅𝐸 = {∅}. As a consequence, 𝑇𝑇𝑀𝑖
𝑝 = 0 (∀𝑖, 𝑝 ∈ 𝑆𝑉𝑁, 𝑆𝑃) 

from Equation (18). In addition, decisions become able to be taken for a decision window 

comprising a single period p. Then the index p can be dropped from our problem, and our 

decision variable 𝑥𝑎𝑖𝑗
𝑝  can be reduced to 𝑥𝑎𝑖𝑗, representing allocations of this single period. 

Constraint from Equation (26) comes to the form of Equation (39), analogous to Equation (36). 

2) Decisions of data update follow the same pattern of 𝑥𝑎𝑖𝑗, i.e. 𝑦𝑖 = 𝑥𝑎𝑖𝑗. Thus, 𝐷𝐹𝑖  

is zero for every VN, and utility is always maximum for every request. This allows us to drop 

index i from utility. Therefore, our objective function from Equation (12) comes to the form of 

Equation (38), analogous to Equation (35). 

3) Besides the aforementioned restrictions, we consider L=1 (so that SECN has only 

one EN or CN) and that all VNs are allocated to this EN or CN, and that this EN or CN has 𝑃𝑖𝑙 =

1. Thus, constraint from Equation (32) comes to the form of Equation (40), analogous to 

Equation (37). 

4) The remainder constraints from our MINP are discarded by considering the 

aforementioned restrictions, along with the following ones. Every VN attends to the non-

negotiable requirements of every request (only one data type exists in CoS), 𝐸𝑇𝑀𝐷𝑊 → ∞, 

𝐷𝑈𝑝𝑇𝑚𝑖 = 0 (∀𝑖 ∈ 𝑆𝑉𝑁), and 𝑆𝑃𝑆𝐴𝑁 = {∅}. 

   

max ∑ ∑ 𝑥𝑎𝑖𝑗 ∗ 𝑢𝑗

𝑖∈S𝑉𝑁𝑗∈S𝑅𝑄

  (38) 

Subject to:   

∑ 𝑥𝑎𝑖𝑗

𝑖∈S𝑉𝑁

≤ 1 ∀𝑗 ∈ S𝑅𝑄 (39) 

∑
𝑃𝐿𝑜𝑖

𝑃𝑃𝑤𝑖
× 𝑥𝑎𝑖𝑗

𝑗∈𝑅𝑄

≤ 𝑊𝐸𝑉𝑅𝐴𝑖 ∀𝑖 ∈ S𝑉𝑁 (40) 
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Therefore, the restricted MINPP matches the NP-complete MKP. By restriction, also 

our MINPP must be NP-complete, having the implications that follow. Traditional centralized 

linear programing algorithms, such as the simplex algorithm, are able to solve our MINPP 

optimally, after some linearization transformations [79]. A possible approach is to implement 

such centralized algorithms in the cloud tier, with a global view of all VNs and requests. 

However, due to the NP-completeness, we cannot expect to be able to solve optimally, and in 

polynomial time [78], practical instances of our MINPP with arbitrary sizes. Depending on the 

size of an instance of our MINPP or the available CPU speed, we will often have to be satisfied 

with computing approximate solutions through heuristic algorithms. 

4.4 Zeus 

This Section describes Zeus, our hybrid and heuristic-based algorithm to solve the 

MINPP for resource allocation in CoS. Zeus can be implemented either in the edge or in the 

cloud tier. Thus, the scope of the resource allocation can be either more global (when 

implementad at the cloud) or more localized (implemented at the edge), affecting the size of 

the MINPP in terms of the amount of entities considered. Depending on the size of an instance 

of the MINPP and the available CPU speed, the time required to find optimal can be 

prohibitive, especially for delay-sensitive applications. This justifies the elaboration of Zeus as 

an heuristic algorithm, to find sub-optimal solutions in polynomial time for our problem. 

In Zeus, decisions regarding 𝑥𝑖𝑗
𝑝 , 𝑦𝑖

𝑝 and 𝑆𝑇𝑀𝑖
𝑝 are taken separately for each request at 

a time, and are valid for the moment in which they are taken. Therefore, in Zeus formulation 

we do not consider the decision window mentioned in Section 4.1. Moreover, the fast 

execution of Zeus (in polynomial time) allows it to run as an online solution for resource 

allocation. Therefore, Zeus operation is interlaced with the execution of application requests. 

Finally, Zeus is a hybrid algorithm, and, thus, comprises two phases. The first phase is 

centralized and can be implemented in the AEPs. The function denoting this phase is 𝑓𝑐𝑒𝑛, 

(Table 7). In this phase, the decision regarding 𝑥𝑖𝑗
𝑝  is taken. The second phase is decentralized 

and implemented in each VN. The respective function is 𝑓𝑑𝑒𝑐, shown in Table 8. In this phase, 

decisions regarding 𝑦𝑖
𝑝 and 𝑆𝑇𝑀𝑖

𝑝 are taken. We describe the first phase of Zeus in Section 

4.4.1, and the second phase in Section 4.4.2. Finally, Section 4.4.3 provides an assessment of 

the computational complexity of Zeus. 
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4.4.1 First phase 

The first phase of Zeus, in Table 7, starts by defining the empty unique DAG (UDAG) 

structure (line 2) and running a timer (line 3), whose time buff_tm is provided as a parameter 

to 𝑓𝑐𝑒𝑛. The 𝑓𝑐𝑒𝑛 runs periodically, and each cycle is described by the block between lines 4 

and 40. In summary, 𝑓𝑐𝑒𝑛 waits for a time duration (fixed for all cycles) for buffering the arriving 

applications. Simultaneously, requests in common of buffered applications are merged 

according to their requirements. From lines 6 to 23, we describe our UDAG formation 

algorithm, which is inspired by [54]. The main difference is that we consider building a UDAG 

of requests, which differ from tasks as considered in [54]. Another difference is that we 

consider negotiable (data freshness) and non-negotiable (data type) requirements in the 

UDAG formation. 
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TABLE 7. FIRST PHASE OF ZEUS 

Input: buff_tm, SVN, rule_fcen, rule_fdec 
Output: decision x 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

def fcen(rule_fcen, buff_tm, SVN): // 1st PHASE 
  UDAG ← {Ø}; 
  buffering_timer.start(buff_tm); 
  while True: 
    // Begin UDAG formation 
    for each app in new_apps_arriving(): 
      for each rq in app.getDAGnodes(): 
        related_urq_found ← False; 
        for each urq in UDAG: 
          if cmp_non_neg_rr(rq, urq): 
            urq.update_more_restr_neg_rr(rq); 
            urq.add_related_rq(rq, rq.app_id); 
            rq.set_related_urq(urq); 
            related_urq_found ← True; 
        if !related_urq_found: UDAG.addurq(rq); 
      for each pr in app.getDAGedges(): 
        related_upr_found ← False; 
        for each upr in UDAG: 
          pre_found ← (pr.DAGPre == upr.pre); 
          pos_found ← (pr.DAGPos == upr.pos); 
          if !(pre_found and pos_found): 
            related_upr_found ← True; 
        if !related_upr_found: UDAG.addupr(pr); 
    // End UDAG formation 
 
    if buffering_timer.expired(): 
      // Begin deciding xijp 
      pairs ← {Ø}; 
      for each urq in UDAG: 
        for each v in SVN: 
          if eval_non_negotiable_rr(urq,v): 
            pairs += {(urq,v)}; 
      x ← choose_best_pairs(pairs, rule_fcen); 
      // End deciding xijp 
      for each urq in UDAG(): urq.fill_tVN(x); 
      for each urq in UDAG(): 
        urq.fill_suc_tVN(UDAG); 
        dispatch(urq); 
      UDAG ← {Ø}; 
      buffering_timer.reset(); 

  

In line 6, the AEP accesses all applications arriving on it at the beginning of the current 

cycle of 𝑓𝑐𝑒𝑛. The AEP iterates for each request (rq) of each application (line 7), to assess if 

either it should generate a new unique request (urq) in the UDAG (line 15), or it should merge 

the rq to an existing urq (lines 10-14). The function cmp_non_neg_rr (line 10) returns true if 

the non-negotiable requirements of rq and urq are the same. In line 11, the function 

update_more_restr_neg_rr chooses the values of negotiable requirements that are more 

restrictive between the urq and the rq being merged. We use the max function, thus the new 

data freshness of the urq is always the highest value between the rq and urq. In line 12, the 
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urq stores the identifier and information of the rq that is being merged to it. Moreover, in line 

13 the rq keeps track of which urq it was merged to. Next, the AEP iterates for each 

precedence relationship (edge) pr in the graph of each application (line 16), similarly to the 

procedure of adding urqs to the UDAG. The AEP iterates through the existing upr in the UDAG 

(line 18), and if no existing edge is found in the UDAG, the AEP adds a new upr to it (line 23). 

In our work, edges have no requirements to be merged. Moreover, since the AEP stores, in 

the rq, the information about its related urqs, the comparisons performed in lines 19, 20, 21 

are trivial. 

After buffering all arriving applications in the current cycle, the AEP checks if its timer 

has expired, starting a new cycle otherwise. If the timer has expired, the AEP starts making its 

decision regarding variable 𝑥𝑖𝑗
𝑝  (between lines 28 and 33). From lines 28 to 32, pairs of rqs and 

VNs are formed. In line 31, function eval_non_negotiable_rr filters all the pairs of rqs and VNs, 

to comprise only the pairs which meet the non-negotiable requirements. Line 33 calls the 

function choose_best_pairs, which considers a given rule (parameter rule_fcen), to decide 

which pairs of rqs and VNs will be in fact performed. The result of this decision is stored in 

variable x (analogous to 𝑥𝑖𝑗
𝑝 ). For instance, we can consider two rules. The first is the energy 

balancing rule (EBR), which consists of allocating VNs with the highest remaining energy values 

to each rq. The second is the queue time reduction rule (QTRR), which consists of allocating 

VNs with the shortest queues to each rq. Among the several rules that could be formulated 

for deciding x, we chose EBR and QTRR for the following reasons. First, in the context of 

WSANs applications, due to the energy constrained nature of the nodes [89][90][91][92], a 

main concern arises regarding how to extend the WSAN lifetime. We covered this by 

formulating the EBR rule. Second, in the context of edge applications, which require strict 

response times [39], the main concern regards reducing the response time of applications. 

Since this response time is mainly influenced by queues formed in the CoS system, we 

formulated the QTRR. 

Line 35 fills each urq with the information regarding the VN allocated to it. Lines 36 

and 37 fill each urq with information regarding the VNs allocated to the successors of the urq. 

The procedure of line 38 transmits the urq to its VN, where it will be handled by 𝑓𝑑𝑒𝑐. We 

assume that all requests have at least one feasible pair of rq and VN. Thus, line 39 erases the 
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UDAG, and resets the buffering timer in line 40. Section 4.4.2 describes the second phase of 

Zeus. 

4.4.2 Second phase 

The second phase of Zeus is shown in Table 8. It starts by obtaining the reference to 

the data provisioning service of the VN (line 2), where the data provisioning service is started. 

This service is able to provide data to one request at a time. In line 3, the queue of unique 

requests of the VN is started, empty. The algorithm of 𝑓𝑑𝑒𝑐 runs periodically, and each cycle is 

described by the block between lines 4 and 15. 

TABLE 8. SECOND PHASE OF ZEUS 

INPUT: BUFF_TM, SVN, RULE_FCEN, RULE_FDEC 

OUTPUT: DECISIONS Y AND STM 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

def fdec(rule_fdec): // 2nd PHASE 
  dp = data_provisioning_service(); 
  queue ← {Ø}; 
  while True: 
    for each urq in new_urqs_arriving(): 
      add_to_queue(urq); 
    if dp.completed(): 
      transmit_data_to_suc_VNs(dp.cmpl_urq); 
      dp.is_idle = True; 
    if (dp.is_idle) and (queue.len > 0): 
      // Begin deciding yip and STMip 
      pri_urq = queue.get_top(); 
      y ← decides_for_dupd(urq, rule_fdec); 
      pri_urq.stm = now(); 
      dp.provide_data(urq, y); 

  

The VN iterates for each urq arriving from different AEPs in line 5. Line 6 adds each urq 

to the VN queue, which is a first in–first out (FIFO) queue of unlimited size in this work. When 

removing an urq from the queue, the VN considers the precedence restrictions among urqs. 

Thus, it is avoided that the next urq to be removed from queue with a precedence restriction 

(not able to be performed) blocks the execution of another urq in the middle of the queue 

and without precedence restrictions. If the data provisioning service of the VN has finished 

providing data to an urq (line 7), the VN transmits the output data to all the VNs allocated to 

the successors of current urq (line 8). Due to such procedure, data incoming from other VNs 

(input data of an urq in the queue) may also arrive in the current VN. Therefore, the VN fills 

the respective urq with the incoming data and removes the corresponding precedence 

restriction. If the urq has no successor, the VN transmits data back to the AEPs from which the 

applications respective to the urq arrived. In line 9, the data provisioning service is set to idle. 
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Next, the VN checks if the data provisioning service is idle, and the queue is not empty (line 

10). Then, per line 12, the VN obtains the next urq from the queue with no precedence 

restrictions. Then, the VN decides if it should perform a data update (line 13), considering a 

given rule (parameter rule_fdec). For instance, we consider two rules. First, the avoid negative 

utility rule (ANUR) updates data whenever the current data freshness provided by the VN is 

greater than the data freshness threshold of the urq. Second, the maximum utility rule (MUR) 

consists of always performing the data update. Among the several rules that could be 

formulated for deciding y (analogous to 𝑦𝑖
𝑝), we chose ANUR and MUR for the following 

reason. These two rules represent two extremes of all possible decisions regarding utility. 

MUR allows obtaining the maximum possible utility for all applications, while ANUR ensures 

obtaining at least the minimum acceptable utility for all applications. 

Next, line 14 sets the start time of the urq to the current time of the VN. In line 15, the 

function provide_data starts processing the urq, setting the value is_idle of the data 

provisioning service to False. Finally, it is important to mention that our proposal is based on 

a set of user-configurable rules (rule_fcen and rule_fdec) for making decisions. Therefore, the 

user may dynamically change the rules during the CoS operation, disseminating new rules to 

AEPs and VNs. 

4.4.3 Computational complexity of Zeus 

Let A be the number of applications provided as input to Zeus. Moreover, let R and P 

be, respectively, the number of requests and precedencies per application. Similarly, let U and 

Y be, respectively, the number of unique requests and unique precedencies existing in the 

UDAG. In the worst case (when the UDAG formation algorithm does not merge any request), 

the maximum values of U and Y are U=A*R and Y=A*P. Finally, let V be the number of VNs 

provided as input to Zeus. 

Zeus algorithm is solvable in polynomial time if its running time is upper bounded by a 

polynomial expression such as Equation (43), which is built as a function of the size of the data 

inputs required by Zeus. In other words, Z(A,R,P,U,Y,V) is built as a function of the number of 

basic operation required by each of the phases of Zeus. We assume that every sentence of 

Zeus that does not depend on the size of the input data takes a unit (one) computational step. 

We assume the worst cases when necessary during the calculation of Zeus computational 

complexity. For instance, we assume that all if statements always result in true, so that their 
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nested blocks of instructions are always performed. We assume that U and Y are static and 

equal to their maximum values during the whole execution of the algorithm, although they 

start at zero and are incremented at each iteration by the loops during the UDAG formation 

algorithm in reality. Moreover, we assume that more efficient search and sort algorithms 

could be used for replacing blocks 8-15 and 17-23, which would be performed in complexity 

O(n*log(n)), such as the binary search, instead of O(n*n). 

We formulate 𝑍𝑓𝑐𝑒𝑛 as follows. Block 1 (lines 9 to 14) costs U*6. Block 2 (lines 7 to 15) 

comprises Block 1 and costs R * (1 + 1 + (U * 6) + 2). Block 3 (lines 18 to 22) costs Y * 5. Block 

4 (lines 16 to 23), which comprises Block 3, costs P * (1 + Y * 5 + 3). Therefore, for each cycle 

of the algorithm, the UDAG formation procedure (Block 5, from lines 6 to 23, and comprising 

Blocks 2 and 4) costs A * [(R * 4 + U * R * 6) + (P * 4 + P * Y * 5)].  

Block 6 (lines 29 to 32) costs U * V * 4. Line 33 costs U * V * 3. Line 35 costs U * U * 2. 

Block 7 (lines 36 to 38) costs U * Y * 3. Therefore, Block 8 (lines 26 to 40), comprising Blocks 6 

and 7, and lines 33 and 35, costs 4 + U * V * 7 + U * U * 2 + U * Y * 3. Finally, 𝑍𝑓𝑐𝑒𝑛, shown in 

Equation (41), is the sum of the costs of Blocks 5 and 8, plus the cost of lines 1, 2 and 3, which 

run once in every case of Zeus execution. 

We formulate 𝑍𝑓𝑑𝑒𝑐  as follows. Lines 43, 44 and 45 cost 3. In the worst case, 𝑍𝑓𝑐𝑒𝑛 

allocated the same VN for all urqs, and a typical sort algorithm (such as insertion sort) is used 

to set up the queue. Thus, Lines 46 and 47 cost U * U. Block 9 (lines 48 to 56) considers the 

worst case in which every urq has Y successors, thus line 49 iterates for every precedence. In 

addition, Block 9 considers that the rule to decide 𝑓𝑑𝑒𝑐 iterates for all U. Therefore, Block 9 

costs (6 + Y + U). Finally, 𝑍𝑓𝑑𝑒𝑐, shown in Equation (42), is the sum of the costs of Lines 42 to 

47 and Block 9. 

𝑍𝑓𝑐𝑒𝑛 = A[(4𝑅 + 6𝑈𝑅) + (4𝑃 + 5𝑃𝑌)] + (4 + 7𝑈𝑉 + 2𝑈𝑈 + 3𝑈𝑌) + 3 (41) 

𝑍𝑓𝑑𝑒𝑐 = 9 + 𝑈𝑈 + 𝑌 + 𝑈 (42) 

𝑍(𝐴, 𝑅, 𝑃, 𝑈, 𝑌, 𝑉) =  𝑍𝑓𝑐𝑒𝑛 + 𝑍𝑓𝑑𝑒𝑐 (43) 

𝑍(𝑛) = 17𝑛4 + 7𝑛3 + 10𝑛2 + 16 (44) 
If we consider that U=A*R and Y=A*P, and that the amount of applications, VNs, 

requests per application and precedencies per application are the same i.e. A=V=R=P=n, we 

simplify Equation (43) to Equation (44). Therefore, we assume, in the worst case, the 

complexity O(n4) for Zeus. We also estimated the complexity in the best case (all requests are 

merged, U=R and Y=P), which is O(n²). Thus, Zeus is solvable in polynomial time. Polynomial 
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time algorithms are said to be “fast”, in relation to several other classes of algorithms [78]. 

Therefore, Zeus is able to run as an online solution which makes use of the edge tier. Such 

characteristics enable Zeus to support delay-sensitive applications. 

4.5 Conclusion 

In this Chapter we achieved the second goal of this thesis, related to the research 

question 3. We proposed a formulation to the problem of resource allocation in CoS, along 

with a heuristic and hybrid algorithm for solving it, which we named Zeus. We modeled the 

problem of resource allocation in CoS as a typical mixed integer non-linear programming 

problem (MINPP). 

As mentioned in Section 2.7, our proposal addresses the research gap regading the 

lack of formulations to the problem of resource allocation as a MINPP, considering the 

maximization of the freshness of the data provided to applications. Zeus addresses the lack of 

hybrid and heuristic algorithms, which are fast and lightweight, to find near optimal solutions 

to the problem of resource allocation. Moreover, Zeus handles precedencies among requests 

and tasks, and the sharing of requests and tasks in common among multiple applications. 

Finally, Zeus supports time-based applications and a proactive resource provisioning process. 

The next step in our research is to evaluate Zeus, with respect to assessing the 

contributions of Olympus and Zeus mentioned in Section 1.5. In Chapter 6 we describe the 

evaluation on Zeus. 
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5 Evaluation 

In this Chapter we describe the experimental evaluation performed to assess our work 

and show that it properly achieves the intended goals. To help understanding our proposal 

and supporting the scenario used in our evaluation, we present an illustrative and hypothetical 

example in the application domain of SHM for smart buildings (Section 5.1). In Section 5.2 we 

describe the metrics used for assessing the performance of Zeus in our experiments. Four 

experiments were performed with the goal to ascertain whether the contributions intended 

with the adoption of Zeus were effectively achieved. The first experiment (described in Section 

5.3.1) aims at assessing Zeus scalability, both in terms of the number of VNs and the number 

of applications executed in the CoS. The second experiment (Section 5.3.2) assesses how the 

use of the edge tier in Zeus allows supporting delay-sensitive applications, in comparison to 

an approach using only the cloud tier. Moreover, Zeus identifies tasks that are common for 

multiple applications, performing them only once and sharing the outcome among these 

multiple applications. Such a feature contributes for improving the WSANs lifetime, and this 

is assessed in a third experiment (described in Section 5.3.3). The fourth experiment evaluates 

the quality of the solutions of our MINPP found by Zeus, and shows how much energy it can 

save for the WSANs when reusing data among multiple applications (Section 5.3.4). Finally, in 

Section 5.4 we made some considerations on the implementation of the CoS as a real software 

system, using the FIWARE platform [104]. 

5.1 Illustrative example 

The goal of this illustrative example, based on [22], is to implement a CoS system for 

monitoring the structural health of buildings in a smart city. Among the requirements of a 

smart building, assuring the safety of its residents is a key issue, especially considering seismic 

events. In cities prone to frequent seismic tremors, managers close buildings for months to 

undergo a detailed manual inspection, to ensure the safety of people. Such an approach is 

inefficient, resulting in frequent inoperative periods of the building, and consequent economic 

losses. 
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5.1.1 CoS infrastructure deployment 

In this hypothetical scenario (Figure 7), let us consider a smart building composed of 

four floors, covering a rectangular area of 50x50 meters and with three meters of height 

between the floors. The smart building has six PSANs deployed on each floor. All the PSANs 

are MICAz motes [80][98], whose radio supports 2.40-2.48 GHz band and 250 kbps data rate. 

MICAz motes include the main board, with processor, radio, memory and batteries. Per floor, 

five PSANs are connected to a MTS400 board equipped with accelerometer, barometric 

pressure, ambient light, relative humidity and temperature sensing units. Finally, the 

remaining PSAN per floor has no sensing units, and is connected to an actuator, a stoplight-

style signal. It must have its values set according to the current structural soundness. The 

common energy source of MICAz motes (two AA batteries) provides up to 16 kJ of energy in a 

real situation [62]. All the PSANs deployed in the smart building pertain to the same WSANI. 

Other relevant parameters regarding the sensors tier are summarized in Table 9. Most values 

in Table 9 were retrieved from our previous works [12][22] and adapted to the current 

scenario when necessary. 

 

Figure 7. Deployment of the three-tier CoS infrastructure in the smart building 

In our hypothetical scenario, the PSANs are programmed in NesC language, under the 

TinyOS development environment [82], version 2.1. Further information on the configurations 
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used in the physical and MAC layers can be found in [22]. The InP deploys the PSANs in key 

locations where the shock response of the structure is the highest. We randomly define such 

key locations according to the following procedure, also used in [12]. Given the coordinates 

of the centre of a floor, the “PSAN deployment radius” parameter in Table 9 defines a circle 

area, centred at the floor centre, within which all the PSANs of the floor are randomly (uniform 

probability) positioned. 

TABLE 9. PARAMETERS OF THE COS INFRASTRUCTURE 

Parameter Value Source 

Sensors Tier 

𝑉𝑠𝑢𝑝𝑘 1.0 V 

[12], [22] 

𝐼𝑠𝑒𝑛𝑠𝑘 1 mA 
𝜉𝑠𝑒𝑛𝑠𝑘 0.5 sec 
𝐸𝑒𝑙𝑒𝑐𝑘 50.0/(10**9) 
𝜀𝑎𝑚𝑝𝑘 10.0/(10**12) 

[𝐶 × 𝑉𝑑𝑑
2 + 𝑓]

𝑘
 7.310e-10 J/bit 

𝑛𝑖𝑘 1 actuation 
𝐸𝑎𝑐𝑡𝑘 0.02 J 

PSAN deployment radius 25m 

Edge Tier 
EN core speed 𝑃𝑃𝑤ℎ 3 x 10^6 cycles/sec 

[12] 
Number of cores of each EN 4 cores 

Average bandwidth of ENs 𝐵𝑊𝑑𝑖𝑐 (10.0**6) bps 

𝑃𝑚𝑎𝑥ℎ 20.0 W 
Transmission delay lambda 0.2 sec 

Cloud Tier 
CN core speed 𝑃𝑃𝑤ℎ 6 x 10^6 cycles/sec 

[12] 
Number of cores of each CN 128 cores 

Average bandwidth of CNs 𝐵𝑊𝑑𝑖𝑐 (10.0**6) bps 
𝑃𝑚𝑎𝑥ℎ 100.0 W  

Transmission delay lambda 0.2 sec 

   

Besides PSANs, we consider the deployment of gateway nodes of the WSANI in the 

same corner of each floor, each one attached to a local desktop, composing the ENs (one per 

floor). Each PSAN is directly connected to the EN of its floor with one-hop distance. The ENs 

connect all floors through the building Local Area Network (LAN), and to the Internet by using 

existing broadband internet connections (for instance, ADSL, VDSL, Satellite) in the building, 

thus being able to reach the CN. 

5.1.2 VNs description 

In our example, we consider nine data types (numbered as 1 to 9), and nine VNs, one 

VN to provide (and numbered respectively to) each data type. In the simulations, we choose 
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the edge tier as the best location in our three-tier CoS architecture to run the VNs, according 

to the properties of this tier assessed in our previous work [12]. The ENs are in a privileged 

position, in relation to the CNs, for linking PSANs from different WSANIs under the same VN, 

and for reducing the latency for time sensitive applications. Relevant parameters of VNs are 

shown in Table 10. 

In line with a proactive resource provisioning process (see Section 2.2), the InP 

instantiates VN 1, 2, 3 and 4 (Figure 7), one per floor, that provide to applications the 

cooperative damage coefficients (CDCs) of the respective floor. The CDC [22] is a 

representation of local decisions made by each PSAN. For each floor the CDC is calculated by 

the five PSANs with sensing units, in their respective positions, each one performing 

procedures as described in [22], and coordinated by the VN. Thus, the respective VN stores all 

the CDCs of a floor. As in [22], we consider a 10-bit CDC for each PSAN. Thus, the data types 

1, 2, 3 and 4 are, each, a list of tuples. This list contains one tuple per PSAN with sensing units 

in the floor, of the format <CDC_value, location_in_floor>. 

TABLE 10. PARAMETERS OF COS VIRTUALIZATION OBTAINED FROM [22] 

Parameter Value 

𝐷𝑈𝑝𝑇𝑚𝑖 (data type 5) 0.025 sec 

𝐷𝑈𝑝𝑇𝑚𝑖 (data types 6-9) 0.125 sec 

𝐷𝑈𝑝𝑇𝑚𝑖 (data types 1-4) 0.500 sec 

𝑏𝑖𝑘 (data type 5) 0 bytes 

𝑏𝑖𝑘 (data types 6-9) 1 byte 

𝑏𝑖𝑘 (data types 1-4) 1024 bytes 

Output data size (data type 5) 1 byte 

Output data size (data types 6-9) 1 byte 

Output data size (data types 1-4) 10 bit * 5 PSAN with sensing unit 

  

In addition, the InP implements a VN for providing data type 5, which is the output of 

the information fusion techinque for deciding about the existence of damage in the building, 

described in [22]. Data type 5 uses data types 1, 2, 3 and 4 as input. The VN5 has no 

subordinated PSANs, and is able to perform its function fully within its host EN. Data type 5 

has the format of a Boolean variable. Moreover, the InP implements VNs for providing data 

types 6, 7, 8 and 9, and performing actuation on each floor, depending on data type 5. Such 

data types consist of actuation feedback (i.e. actuation acknowledgement and logs) retrieved 

from the physical actuator, in the floor respective to the VN. The InP defines that, when the 

VN performs a data update, the occurrence of an actuation on the physical environment is 

implicit. This physical actuation is part of the information fusion technique implemented by 
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the InP within the VN. Therefore, if several requests access simultaneously this VN, the VN 

only needs to physically actuate once, and provide the same “actuation feedback” data to all 

the simultaneous requests. 

Finally, we consider that every PSAN is dedicated exclusively to an assigned VN (the 

𝑉𝑃𝑀𝑖𝑘 matrix has only 0 and 1 values, and no sharing of a PSAN by VNs occurs). In addition, 

whenever a host EN or CN is shared among VNs, the matrix 𝑉𝐸𝐶𝑀𝑖𝑙 is filled with equal portions 

of capacity of the host for each VN sharing it. 

5.1.3 Applications description 

In our illustrative example, we consider the arrivals of several applications that can be 

described by the same workflow structure, based on [22]. In Table 11, we show relevant 

parameters of the applications. Each application has nine requests, each one requesting one 

of the data types 1-9, and numbered according to the requested data type. The arrival time of 

applications is randomly and uniformly distributed in between the start time of simulation 

(simulation time = 0) and the total simulation time (duration). When the application arrives in 

the CoS, it is immediately assigned to its AEP. 

TABLE 11 RELEVANT PARAMETERS OF APPLICATIONS 

Parameter Value Source of data 

Total simulation time 180 sec 

Current work 
Deadline margin 20% (1.2) 

Buffering time of AEPs 1.0 sec 

𝐷𝐹𝑇𝑗 lambda 1.0 sec 

Request size 320 bytes [84] 

   

Moreover, each application has an expected deadline to be completed. This deadline 

is computed as the sum of all the data update times in the application critical path. Thus, the 

application deadline is the sum of the data update times of requests in the critical path of the 

application DAG, i.e. the sum of 𝐷𝑈𝑝𝑇𝑚𝑖 for data types 1-4, 6-9 and 5, as shown in Table 10, 

considering a deadline margin shown in Table 11. For generating the data freshness threshold 

of applications, we used an exponential distribution with a lambda parameter. Choosing a 

High lambda parameter (>= 1.0) means a denser probability closer to zero, thus we have 

applications which are more restrictive in their data freshness requirement. When choosing 

lower lambda (<= 1.0) the applications are more permissive in terms of data freshness 

threshold. In Section 5.2 we present the evaluation metrics used in our evaluation. 
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5.2 Metrics 

Table 12 summarizes the metrics used in the performed evaluations. TECST is the sum 

of the energy consumption of the PSANs during simulation. TECET is the sum of the energy 

consumption of the edge nodes during simulation, for running the VNs and AEPs. The 

definition of TECCT is similar to the definition of TECET, but for the cloud tier. Considering that, 

usually, replaceable batteries are the energy source of a PSAN, we infer that a particular PSAN 

will be the first one to have its battery depleted. This one is the PSAN with the maximum 

energy consumption among all PSANs in the sensors tier (MECST). Based on that, we define 

LTST as the time until the first node dies in the sensors tier. We also assume that a common 

energy source of a PSAN is two AA batteries, capable of providing 16 kJ during the lifetime of 

the PSAN, resulting in the formula LTST = 16 kJ / (MECST / simulation time). 

TABLE 12. METRICS AND ACRONYMS 

Metric Acronym 

total energy consumption by the sensors tier TECST 

total energy consumption by the edge tier TECET 

total energy consumption by the cloud tier TECCT 

lifetime of sensors tier LTST 

average makespan of applications AMSA 

percentage of late applications PLA 

percentage of applications completed PAC 

total utility obtained for applications TUTOB 

  

We also define AMSA, as follows. We consider that the makespan of a single 

application is computed as the total time, since the application arrival, until its last request is 

processed by an allocated VN. Then, AMSA is calculated as the average makespan for all 

applications in simulation. Moreover, some applications may not be completed within the 

simulation time for two reasons. The first, and less frequent, is that application arrival was 

randomly set too close to the end of simulation. The second is that the system can be 

overloaded, and may not be able process all the requests in queues within the simulation time. 

Therefore, we count the amount of applications completed through PAC. In addition, 

considering that delay-sensitive applications often have a strict makespan deadline (defined 

in Section 5.1.3), we define the PLA. The PLA is calculated only among the applications 

successfully completed. Finally, we define the TUTOB metric as the total utility obtained for 

applications. Utility is measured in our work for each request as a number between 0 and 

100%, and is used in our objective function according to Equation (12). When running a 

simulation for a given number of requests, the maximum amount of utility that is possible to 
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achieve is equal to the number of requests times 100%. TUTOB is, therefore, a relative value 

(between 0% and 100%) that represents the percentage of this maximum amount of utility 

that was obtained for applications when running a simulation. 

5.3 Design and Analysis of Experiments 

To execute the four envisioned experiments (E1, E2, E3 and E4), we designed a discrete 

event simulation using SimPy [81], a process-based discrete-event simulation framework 

written in standard Python programming language (version 2.7.11) [81]. We used a desktop 

computer (Intel Core 2 Duo 2.80 GHz processor and 4 GB RAM) to run the simulations in a 

controlled environment within the Federal University of Rio de Janeiro. Each experiment was 

performed under 30 repetitions, what provided a reasonable confidence interval of 95% for 

the results. In this work, we focus on the evaluation of the allocation of VNs to requests in 

CoS. Therefore, our simulation uses the high-level events to collect the results, rather than 

implementing all the lower network level details. In this Section, we describe the design of E1, 

E2 and E3, along with the analysis of the achieved results.  

5.3.1 Experiment E1 

We designed E1 to assess the scalability of Zeus in terms of the number of VNs and the 

number of applications, in the most adverse configuration. Such a configuration consists of (i) 

not sharing the results of requests in common for multiple applications (i.e. not using our 

UDAG formation algorithm) and (ii) using the EBR and MUR rules as the parameters rule_fcen 

and rule_fdec, respectively. Considering this configuration, we vary (i) the number of 

applications and (ii) the number of VNs. Regarding the number of applications, we performed 

10 variations, adding 200 new applications in the scenario at each variation. As for the number 

of VNs, we in fact considered incrementing the number of VNs per data type, one by one and 

from one to five. When performing such a variation, every new VN added is a replica of an 

existing VN in the base scenario with nine VNs described in Section 5.1. For instance, we first 

increment the number of VNs per data type by one, having two VNs per data type and thus a 

total of 18 VNs. For three VNs per data type, we have 27 VNs in total, and so on. We consider 

the elastic capacity of the edge, so that every new VN can be instantiated to run on the same 

host EN of its original replica, and have the same amount of computational resources as its 

original replica. In addition, new VNs are created along with a new and exclusive set of PSANs 
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(configured as the other PSANs described in Section 5.1.1), when necessary. Although the 

physical network density increases when we use this strategy, we consider no interference 

among underlying PSANs of different VNs. Therefore, we are increasing the capacity of the 

CoS infrastructure to provide data to an also increasing number of applications. Figure 8 shows 

the results of E1. 

In Figure 8a, the TECST metric achieves the maximum value for 400 applications and 

one VN per data type (DT). This is the saturation point for one VN per data type. Since we use 

the MUR rule in E1, the VNs always perform data updates to meet requests. Therefore, 400 

applications are enough to minimize the time between every two successive data updates for 

any given VN. Therefore, for any number of applications greater than the saturation point, the 

VNs are said to be saturated. For two, three, four and five VNs per DT, the saturation points 

are, respectively, 800, 1200, 1600 and 2000 applications. In Figure 8b, the LTST metric is 

higher, as higher is the number of VNs per data type (more than a month for five VNs per data 

type and 200 applications). The EBR rule balances the load of requests among all available 

VNs, avoiding overloading the same VN and thus improving the LTST, as the number of VNs 

per DT increases. In addition, the LTST converges to five days as the number of applications 

increases, for any amount of VNs per DT. In Figure 8c, the TECET metric increases for 

processing a number of applications greater than the saturation point, for each amount of VNs 

per DT. For 2000 applications, the TECET ranges from 6 KJ (one VN per DT) to 10 KJ (five VNs 

per DT). Since we did not use a cloud node in this experiment, the TECCT is zero. 
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Figure 8. Results of experiment E1 

In Figure 8d, the values for AMSA metric grow slower, as the number of VNs per DT 

increases. The value of AMSA for one VN per DT is close to 1 second for 200 applications, 

growing to nearly 80 seconds for 2000 applications. This is due to the larger VN queues formed 

when the number of applications increases. The use of the MUR rule, along with not 

considering the UDAG formation algorithm, makes VNs always perform a data update for each 

request individually. This contributes to form such queues, causing delays to applications and 

increasing their makespan. In addition, when increasing the number of VNs per DT from one 

to five, the AMSA drops, respectively, from 80 to 20 seconds, for 2000 applications. This is due 

to the distribution of the load of applications, mainly respective to data updates, through the 

EBR rule. In Figure 8e, the PAC metric decreases slower as the number of VNs per DT increases. 

Using five VNs per DT, we achieved the best PAC curve, with a value greater than 80% for 1800 

applications. In Figure 8f, the PLA grows slower as the number of VNs per DT increases. For 

five VNs per DT and 1200 applications, we still find a PLA lower than 100%. Therefore, 

considering more VNs per DT allows more applications to be completed in simulation time 

(higher PAC) and within their deadlines (lower PLA). 
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To prove that our algorithm is scalable in our scenario, we consider the definition of 

scalability from the area of distributed systems, as follows. Scalability is the capability of a 

system, network, or process to handle a growing amount of work [102]. In addition, the 

authors in [93] state that scalability is inherently about concurrency; it is about doing more 

work at the same time. Therefore, to prove that our algorithm is scalable, in the scenario used 

in E1 (where the DAG of requests allows the concurrency of requests a priori), we must prove 

the following statement. When increasing the number of VNs (to process more 

work/requests), the algorithm can perform more requests (work) simultaneously 

(concurrently), and without a clear maximum limit in both the number of VNs and requests 

[93]. In our work, we can prove this by assessing the results obtained for the PAC and PLA 

metrics. With the increase in the number of VNs per DT, our algorithm can reach higher 

percentages of applications completed and in time (punctual), without a clear limit. In 

addition, the saturation point grows linearly as the number of VNs per DT grows. And the 

values of AMSA grow as a sigmoid curve, as the number of VNs per DT grows. Thus, both 

metrics do not show an exponential or combinatorial (explosive) growth, which would hinder 

the scalability of Zeus. 

Besides proving that Zeus is scalable, it is important to assess the cost of adding a new 

VN per DT in Zeus, in order to process growing loads, i.e. proving that such scalability is worth 

in terms of resources spent to achieve it. Adding a new VN per DT has a positive effect on the 

LTST, because the workload of requests is better distributed (balanced) among VNs. The LTST 

raises from around 9 to 33 days when we vary the number of VNs per DT from 1 to 5, 

respectively. In addition, the TECST and TECET grow linearly, at a constant rate, with the 

increasing amount of applications, also denoting a non-explosive growth. 

Finally, in every aspect assessed in E1, the hybrid approach of Zeus succeeded in 

handling a growing load (in terms of an increasing number of applications), and in scaling (in 

terms of an increasing number of VNs) to accommodate such a growing load. Thus, the hybrid 

approach of Zeus is scalable. 

5.3.2 Experiment E2 

We designed E2 to assess how the use of the edge tier in Zeus allows supporting delay 

sensitive applications, in comparison to an approach using the cloud tier only. In E2, we 

considered four smart buildings (replicating four times the base scenario of Section 5.1). In 
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addition, we used five VNs per data type, considering the better results achieved for this 

configuration in E1. However, we consider that each building is independent, having its 

exclusive set of data types. Moreover, we designed applications, each for one of the four 

buildings, with the same DAG structure, but with the exclusive data types of the respective 

building. In addition, we used our UDAG formation algorithm during E2, and considered the 

QTRR and ANUR rules as the parameters rule_fdec and rule_fcen, respectively. In E2, we vary 

(i) the use of two distinct scenarios of configurations, one with the edge tier and the other one 

without it, and (ii) the number of applications. In the configuration using the edge tier, each 

building has its AEP, which makes local decisions for the building (AEPs in ENs). In the 

configuration without the edge (AEP in CN), the AEP makes the resource allocation decision 

for all the four smart buildings together, in the CN. Regarding the number of applications, we 

performed 10 variations, adding 200 new applications per building (800 in total) in each 

variation. Figure 9 shows the results of E2. 
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Figure 9. Results of experiment E2 

In Figure 9a, the AMSA metric decreases as the number of applications grows, for the 

configuration with a single AEP in CN. A decreasing behaviour in the values of AMSA is also 

shown by the configuration of multiple AEPs in ENs. The decreasing behaviour of each curve, 

separately, occurs because of a higher efficiency achieved by the identification of requests in 

common for a greater amount of applications, in comparison to using such a mechanism on 

few applications. Thus, more applications will be able to share the same data, avoiding delays 

due to data updates, and consequently reducing the makespan of applications, in average. In 

addition, for 8000 applications, the AMSA is higher (around 1.18 seconds) in the configuration 

with one AEP in CN, in comparison to the configuration with multiple AEPs in ENs (around 0.97 

seconds). We explain this result by the additional time required for communication between 

the cloud, where the decision is taken, and the edge, which holds VNs. The PAC and PLA values 

achieved are 100% for every configuration in this experiment. In Figure 9b, the TECCT metric 

grows to around 12 KJ for 8000 applications, in the configuration with one AEP in CN, and 

drops to zero when using multiple AEPs in ENs. In Figure 9c, the TECET metric grows to around 

3.7 KJ for 8000 applications, in the configuration with one AEP in CN. The TECET is 

insignificantly greater when using multiple AEPs (less than 1% difference between both 

curves). This result occurs exclusively due to the need for additional processing in the edge 

tier, a less time and energy intensive task than communication. 

We conclude that leveraging the use of the edge tier is a better option for saving 

energy and reducing the makespan of applications, because applications take additional time 

for being communicated between the CT and the ET. The physical proximity of AEPs, VNs and 

their PSANs is better explored as an intrinsic characteristic of the edge, speeding up 

communications among such entities in comparison to any approach hosting some of these 

entities in the cloud. When using the CT to make decisions in the performed experiments, the 

CN uses an unnecessary amount of energy for processing applications insignificantly faster 

than the ENs. At some point, the cloud would be more efficient in terms of energy, but only 

when considering a far more computationally intensive scenario (greater than 8000 

applications). Finally, according to Bonomi et al. [39], the delay-sensitive applications require 

strict response times, in the order of milliseconds to sub seconds (less than one second, which 

we consider as our baseline). When leveraging the use of the edge tier, we achieved an 
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application makespan (time for acquiring, deciding and actuating over the acquired data) of 

less than one second, in average (for 8000 applications). The response time of applications 

(time for only deciding and actuating over the acquired data) is, consequently, lower than one 

second, which is a good result in comparison to our baseline. Therefore, Zeus is more suitable 

for delay sensitive applications, with restrictive response times, when leveraging the use of 

the edge tier, in comparison to a typical two-tier CoS architecture that faces the delay 

communication with the cloud, such as [3]. Finally, this is a contribution of our work 

specifically to improve the area of CoS systems. 

5.3.3 Experiment E3 

We designed E3 to show how the UDAG formation algorithm used in Zeus contributes 

for saving resources from the nodes, consequently improving the WSANs lifetime. We used 

the EBR and MUR rules as the parameters rule_fcen and rule_fdec, respectively. Moreover, 

we considered the same scenario as E1, however with a fixed number of five VNs per data 

type, considering the better results achieved for this configuration. In E3 we vary the number 

of applications using the same method as in E1. In addition, unlike E1, we used two distinct 

scenarios of configurations, one with the UDAG formation algorithm and the other without it. 

Figure 10 shows the results of E3. 

In Figure 10a, the TECST metric grows linearly until the saturation point of five VNs per 

data type (2000 applications), when not using the UDAG formation algorithm, as in E1. When 

using the algorithm, the TECST drops to a nearly constant curve, assuming a value around 90 

J for any number of applications. For 2000 applications, TECST drops by 86% when using the 

algorithm. More importantly, when more applications are used, the possibility of finding 

common requests among them increases. Thus, the proposed UDAG formation algorithm is 

able to fully utilize the unique requests to reduce the value of TECST. In Figure 10b, the LTST 

metric is shown for both configurations (with and without the UDAG formation algorithm). 

LTST without using the UDAG formation algorithm is the same as in E1. When using the 

algorithm, LTST is better in comparison to when not using such algorithm, for any given 

number of applications. For 2000 applications, LTST increases from around 5 to around 38 

days when we use the UDAG formation algorithm. The peak lifetime is around 2 months, for 

200 applications, when using the UDAG formation algorithm. In Figure 10c, the TECET metric 

shows curves with shapes similar to the TECST curves, however there is a difference of 
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proportions between them. The edge tier consumes around 1 KJ for 2000 applications when 

using the UDAG formation algorithm. The energy saving in the edge tier, when using the UDAG 

formation algorithm, is explained by the reduced number of requests communicated between 

the AEPs and VNs, both running on ENs. 

 

Figure 10. Results of experiment E3 

Finally, Zeus allows identifying tasks that are common for multiple applications, 

performing them only once and sharing the outcome among the applications. Therefore, Zeus 

reduces the energy consumption of the ST and consequently extends the lifetime of WSANs. 

5.3.4 Experiment E4 

We designed E4 to assess the quality of the solutions calculated by Zeus, and show 

how much energy it can save for the WSANs when reusing data among multiple applications. 
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To assess the quality of solutions provided by Zeus, we used the well-known strategy of 

comparing the solutions obtained by Zeus with a baseline [99]. It is important to mention that 

running a traditional optimization algorithm to obtain optimum solutions to use as a baseline 

takes a prohibitive amount of time and computational resources to run, due to the NP-

completeness and combinatorial growth nature of our MINPP. For instance, we implemented 

a small instance of our problem in the CPLEX [100] software, consisting of 18 VNs (two VNs 

per DT), 36 requests (4 applications), 4 periods, 45 PSANs (5 PSANs per VN) and 4 edge nodes. 

The remaining parameters received the same values mentioned in Section 5.1. This small 

instance took more than one hour running in CPLEX, and could not run to end since it 

consumed all the RAM memory available in a typical personal laptop configuration (4 GB RAM, 

Intel Core i5 processor, running windows 10). Therefore, we used a baseline estimated by us, 

representing an expected optimum solution. Since we know the number of requests in every 

scenario, and that the maximum utility that can be obtained for each request is 100%, by 

multiplying both values we can reach a reliable maximum baseline for utility. Moreover, using 

the MUR as the parameter rule_fdec in Zeus generates the baselines for comparison (utility is 

maximized with this rule). Therefore, we consider that the implementation of Zeus using the 

MUR rule is our baseline. We can compare results obtained by Zeus when using the ANUR rule 

as the parameter rule_fdec to this baseline for utility. Thus, we can have a reliable 

understanding of how good are the solutions provided by Zeus when considering the reuse of 

data, sharing such data among multiple applications (respecting their data freshness 

requirements and reducing utility obtained). The results obtained by using these two rules 

(MUR and ANUR) are worth comparing, due to their conflicting nature. Besides utility, in E4 

we also assessed the energy consumption for achieving each solution, and how much energy 

can be saved in our comparison with the baseline (MUR). Although the MUR rule maximizes 

utility, this rule also imposes a greater energy overhead due to data updates on the sensors 

tier, in comparison to the ANUR rule. 

In E4, we used two distinct configurations, one with the MUR rule as the parameter 

rule_fdec and the other with the ANUR rule. Moreover, we vary the number of applications 

using the same method as in E1. Besides such variations, we considered as fixed the following 

parameters: (i) using the UDAG formation algorithm, (ii) using the EBR rule as the parameter 

rule_fcen and (iii) using five VNs per data type. Figure 11 shows the results of E4. 
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Figure 11. Results of experiment E4 

In Figure 11a, the TUTOB metric shows a constant curve at 100% when using the MUR 

rule, as expected. When using the ANUR rule, the TUTOB metric drops from around 96% for 

200 applications to around 80% for 2000 applications. This is because when the number of 

applications increase, more opportunities of reusing data to meet applications occur. In these 

opportunities, applications are met with values of the data freshness requirement that are 

greater than zero, thus obtaining values of utility that are lower than 100%. 

In Figure 11b, the TECST metric grows until nearly 71J for 2000 applications when using 

the MUR, because every VN is performing the maximum number of data updates in the 

available simulation time. When using the ANUR rule, the TECST is lower in comparison to 
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when using the MUR. For 2000 applications, the TECST is reduced from 71J to 60J. This 

represents around 15% of energy saving for the sensors tier.  

In Figure 11c, the LTST metric is shown for both configurations (using the MUR and 

ANUR rules). The LTST is greater when using the ANUR rule in comparison to when using the 

MUR, as expected, since less energy is spent in the sensors tier using ANUR. For 2000 

applications, the LTST raises to around 50 days when using the ANUR rule, in comparison to 

42 days, when using the MUR rule. 

Finally, the approach of Zeus is based on sharing the data provisioned by VNs among 

multiple applications, considering the data freshness requirement of applications. This 

approach is reflected by the algorithm using the ANUR rule. In comparison to the algorithm 

using the MUR rule, which was used as a baseline, the approach proposed in our work is 

capable of achieving near-optimal solutions, in the worst case, of values around 80% of the 

optimal solution. Moreover, by using the ANUR rule, we can save around 15% of energy for 

the sensors tier, in comparison to the baseline algorithm using the MUR rule. 

5.4 On the implementation of the CoS using the FIWARE platform 

In this Section we present a brief and initial discussion on how to implement a CoS 

system based on the set of CoS system components presented in Section 3.3 in an existing 

platform called FIWARE [104]. The FIWARE project provides an ecosystem that facilitates the 

development of smart applications in multiple domains. FIWARE is organized in seven 

technical parts: (i) Cloud Hosting, (ii) Data/Context Management, (iii) IoT Services Enablement, 

(iv) Security, (v) Applications, Services and Data Delivery, (vi) Interface to Networks and 

Devices Architecture, and (vii) Advanced Web-based User Interface. To the best of our 

knowledge, FIWARE is the first initiative that provides all the features required to implement 

our proposed architecture. Firstly, FIWARE follows the paradigm of integrating smart things 

to the cloud. Moreover, it introduces an innovative infrastructure composed of public, 

reusable and generic building blocks, software components called Generic Enablers (GEs). 

Each GE provides well-defined APIs and interoperable interfaces that comply with the 

specifications published for that GE, easing application development. GE’s open-source 

reference implementations are publicly available [104]. Furthermore, FIWARE is based on 

lightweight virtualization, using docker containers to run GEs [104]. 
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In our implementation (Figure 12), the FIWARE GEs described in parts (ii) and (iii) 

encompass our cloud and edge tiers. However, some GEs are implementations originally 

centralized at the cloud. To fit the requirements of our architecture, we modified some of 

these GEs to execute in a decentralized way. Chapter (iii) provides GEs to allow the interaction 

of FIWARE-based applications with real-world objects. These GEs are spread over two 

different domains namely IoT Backend and IoT Edge. IoT Backend comprises the GEs hosted 

in the cloud that provide functionalities such as device managing, device composition and 

discovery. IoT Edge encompasses infrastructure elements required to connect physical devices 

to FIWARE applications. It is worth mentioning that we do not implement a cloud. We only 

depict the typical CoS services that run on the cloud tier. Hence, we discarded chapter (i), 

whose components are designed to implement a cloud environment. Table 13 describes the 

GEs that supply the storage and communication infrastructure of the CoS. Our cloud tier is 

directly related to FIWARE’s IoT Backend tier, while FIWARE’s IoT Edge is related to our edge 

and sensor tiers. In the sensors tier, PSANs can implement FIWARE’s NGSI9/10 protocol, or a 

conversion can be performed by the IoT Agent GE (based on HTTP/MQTT), running within a 

VN. Moreover, to communicate directly with FIWARE’s GEs, all the components in our 

architecture communicate through interfaces that comply with FIWARE’s NGSI9/10. In 

addition, the NGSI Gateway GE implements our EN, and the VS runs on top of it. 
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Figure 12. Implementing CoS systems using FIWARE GEs 

In the VNS, the SAM component uses the DSM, the Data Handling (DHge) and IoT Agent 

GEs. The DSM uses the Orion Context Broker GE (CBge), which provides context information 

(e.g., room temperature, citizen name/sur-name, a bus location) to the DPM, besides 

performing local storage within a VN using a Mongo database [104]. Besides broker functions, 

the DSM has an internal structure for implementing the data model used to store historical 

data, and database queries to retrieve data. The implementation of task scheduling and 

execution is specific, and thus performed by the SAM with no direct mapping in FIWARE. The 
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DHge, composed of Cepheus Broker and Cepheus CEP, is used to implement information 

fusion procedures. The Cepheus Broker is a lightweight broker used for communication 

between devices and the DSM. The Cepheus CEP is used to process queries on PSANs’ data 

and generate higher-level aggregated events defined by the InPs. 

TABLE 13 MAPPING BETWEEN COS COMPONENTS AND FIWARE GES. 

CoS Elements FIWARE GE Description 

PSANs 
NGSI9/10, 

IoT Agent 

Communication between the ST and ET. FIWARE 

NGSI is a RESTFul/HTTP API. NGSI9 is used to 

exchange information about the availability of 

context information whereas the purpose of 

NGSI10 is to exchange context information. The 

IoT Agent is the software module handling IoT 

Specific protocols. 

Sensing and actuator 

Manager (SAM) 
Data Handling 

Addresses the need for filtering, aggregating and 

merging real-time data from different sources. It 

includes a Broker and a CEP component. 

Data Storage Manager 

(DSM) 
Orion Context Broker 

Publish/Subscribe Broker, which allows 

applications to interchange heterogeneous events 

following a standard pub– sub paradigm. 

Registries Repository 

(RR) 
IoT Discovery 

A service discovery mechanism that allows Context 

Producers (e.g., IoT Agents and Data Handling) to 

register sensors, actuators, and Things. Also, it 

enables Context consumers to discover the former 

registered elements. 

Centralized Resource 

Provisioning Manager 

(CRPM) 

IoT Backend Device 

Management 

Enables creation and configuration of IoT Agents 

that connect to sensor networks. 

- IoT Broker 

It is an IoT Backend enabler that serves as a 

middleware which enables fast and easy access to 

information about devices and their attributes. 

Application Manager 

Subsystem (AMS) 
- API for users to request sensing data 

CoS Manager 

Subsystem (CMS) 
- API to manage the CoS system 

Decentralized 

Resource Allocation 

Manager (DRAM) & 

Centralized Resource 

Allocation Manager 

(CRAM) 

- Execute the orchestration and distribution of data. 

Decentralized 

Resource Provisioning 

Manager (DRPM) 

- 

Carries out the decentralized parts of resource 

provisioning algorithms besides executing the VN 

boot. 

   

The DRAM/CRAM has the goal of performing the orchestration and distribution of data 

provided by the DHge, to meet application requests [104], similarly to the IoT Broker’s goal. 

The DRAM/CRAM performs part of these functions, but using a hybrid resource allocation 

technique, not implemented by any GE. 
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The CRPM and IoT Backend Device Management GE (BDMge) have the same goals: 

enabling creation/configuration of IoT Agents that connect to PSANs. The CRPM can use the 

BDMge in part, since it concentrates the APIs to manage PSANs. However, it is necessary to 

move the BDMge to run on the edge tier. Similarly, the DRPM could use part of the BDMge in 

its implementation. However, the GE should be decentralized. Moreover, the DRPM has the 

goal of performing the VN boot, thus it should be implemented based on docker-compose 

scripts. 

The RR can be implemented using the IoT Discovery GE. However, this GE is originally 

centralized, and runs in the cloud. It is necessary to decentralize its procedures to run at the 

edge. 

Currently, there is no API in FIWARE to perform CMS’ functions, such as creating the 

data model used within VNs to export data or creating SQLs to perform information fusion 

within the CEP environment. In the first case, the activity is performed by the InP, using JSON. 

The created model is then provided to the Context Broker using an HTTP POST. In the second 

case, an interface provided by the CEP is used. Furthermore, the AMS does not have support 

on the FIWARE to perform its specific functions. 

The remainder components have no direct correlation and support from FIWARE, and 

should be implemented from scratch. The VNM and VSM provide management functions that 

are particular of our proposal. The DPM implements a particular service of our architecture. 

The VNIR hosts VNs, and can be implemented as a data structure in ENs’ memory. Finally, the 

AEP, which can be implemented as a gateway, handling communication between the CT and 

ET. 

Finally, we discussed how FIWARE can support our system implementation, providing 

the necessary GEs, with little effort for making changes, mainly regarding the decentralization 

of components. We are currently starting to perform the required changes in FIWARE to 

generate a full-fledged implementation of our architecture, thus there is no implementation 

available. 
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6 Related Work 

In this Chapter, we describe relevant works found in literature on resource allocation 

for the specific research field of CoS. The research on CoS is recent, with most existing 

proposals focusing on virtualization models, instead of the formulation of resource allocation 

mechanisms. Thus, in our discussion, we also considered works from the IoT field 

[54][70][71][73][75][86][87][88], which could be adapted to CoS.  

From the field of CoS, Delgado et al. [46] formulated a mixed integer and linear 

programming problem and proposed a centralized heuristic algorithm based on linear 

programming to perform resource allocation. Their problem seeks to maximize the number of 

applications sharing the CoS, while considering constraints related to storage, processing 

power, bandwidth, and energy consumption requirements of sensors tier. Dinh et al. [49] 

proposed a centralized model for the CoS to provide on-demand sensing services for multiple 

applications with generic requirements, such as the data-sensing interval. The authors also 

designed a request aggregation scheme that considers the more restrictive data-sensing 

interval among the aggregated requests. Therefore, their scheme performs only once the 

requests with data sensing intervals in common and shares the results of the consolidated 

request among the aggregated requests. In addition, the authors formulate a linear problem 

for minimizing the energy consumption of physical sensors, as well as the bandwidth 

consumption of sensing traffic. 

In the IoT field, Narman et al. [71] propose a generic model, with a greedy algorithm, 

to perform server allocation to IoT requests dynamically. Moreover, they consider a priority-

based queuing of IoT requests. Zeng et al. [73] formulated a mixed integer non-linear 

programming problem to perform resource allocation in the edge tier. They aim at minimizing 

the completion time of requests, influenced by computation, I/O interrupts and transmissions, 

while considering load balancing on both client side and edge side. Moreover, they propose a 

three-stage algorithm for solving their formulated problem, based on the linear programming 

relaxation method and a greedy approach. Yu et al. [70] proposed a game-theoretical 

approach to allocate resources to requests optimally, using virtual machines (VMs) in a cloud-

based vehicular network. Their approach is decentralized, such that each VM competes for 

resources with other VMs based on its local view. The authors aim to meet the QoS 
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requirements of VMs while ensuring the usage levels of computation and storage resources 

from the physical infrastructure. Aazam et al. [75], proposed a probabilistic model for resource 

allocation in the cloud of things using the edge tier to decide what type of data to upload to 

the cloud tier, avoiding burdening the core network and the cloud. Their approach considers 

that users and their application requests have an unpredictable probability of stop using 

resources from the physical infrastructure at any moment. The authors call this a relinquish 

probability and centre on it the design of their probabilistic model. Moreover, their model also 

considers as parameters the service type, service price, and variance of the relinquish 

probability. Farias et al. [54] proposed a framework for Shared Sensor and Actuator Networks 

(SSAN), including an energy-efficient centralized task scheduling algorithm. A major feature of 

their work is that the algorithm performs tasks in common to multiple applications only once. 

Their framework also handles precedencies among requests of the same application when 

making scheduling decisions. As a major drawback in comparison to our work, their work does 

not consider the cloud and edge tiers, thus not supporting CoS applications which demand, 

respectively, high processing capacity for analytics and strict response times. Ekmen et al [88] 

proposed an energy efficient multi-copy and multi-path WSAN routing strategy. Their basic 

idea behind multi-copying is to duplicate only the WSAN-generated data that passes through 

some central nodes, instead of duplicating all the WSAN-generated data, as a precaution 

against WSAN malfunctioning. A limited number of nodes with higher data transmission rates 

are determined as central, considering WSAN lifetime maximization objective. As a major 

strength of this paper, the authors formulate a mixed integer programming problem to 

determine optimal routing. Moreover, a heuristic algorithm for finding good solutions for large 

problem instances in reasonable times is proposed. As a drawback, Ekmen et al. do not 

consider the edge tier in their proposal, with all the potential for supporting WSAN data 

storage, processing and analytics that such tier can bring, besides the management 

capabilities and delay-sensitive application support. Xu et al. [86] propose Zenith, a centralized 

edge computing resource allocation model. Their model allows service providers to establish 

resource sharing contracts with edge infrastructure providers. Based on the established 

contracts, service providers employ a latency-aware resource allocation algorithm that 

enables delay-sensitive requests to run to completion, having their requirements considered 

in such decision. Their algorithm is auction-based and ensures truthfulness and utility-
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maximization for both the Edge Computing Infrastructure Providers and Service Providers. 

Wang et al. [87] present the Edge NOde Resource Management (ENORM) framework, to 

address the resource management challenge in the edge tier. In ENORM, provisioning enables 

cloud servers to offload workloads on to edge nodes. Auto-scaling takes resource availability 

on the edge node into account and allocates/de-allocates resources provided to a workload. 

ENORM was able to reduce the latency of applications between 20%-80% and data transfer 

and communication frequency between the edge node and the cloud by up to 95%. Wang et 

al. consider the edge tier clearly in their proposal, and their provisioning and auto-scaling 

mechanisms are designed as centralized solutions. As drawbacks, their work does not consider 

precedencies among requests of the same application, and requests in common among 

multiple applications. 

Our work differs from all previous proposals mainly because of its hybrid approach. 

Despite the inherently distributed nature of CoS and IoT, only in [70] a fully decentralized 

solution is proposed, while all the others are fully centralized approaches. In our hybrid 

approach, we combine and make the most of the features of both centralized and 

decentralized solutions. As in decentralized approaches, Zeus is scalable in terms of the 

number of VNs and applications. As in centralized approaches, each AEP running on the ET has 

information about a set of local VNs, and centralizes resource allocation decisions for this 

whole set. Moreover, considering the edge tier in the CoS architecture is another differential 

of our work, in comparison to [54][46][49], allowing to support delay-sensitive applications. 

Our work also differs from all related proposals in the formulation of our optimization 

problem and solution algorithm. We formulate a MINPP based on the application 

requirements of data freshness and data type, and our constraints consider the precedencies 

among requests and the energy consumption of the CoS infrastructure. Thus, Zeus is able to 

save resources from the CoS infrastructure by reusing data, while improving the data 

freshness provided to applications. Moreover, heuristic algorithms, such as Zeus, are well 

known for their low computation overhead. Thus, the computation overhead and time spent 

for making resource allocation decisions is reduced, allowing the hybrid and online approach 

of our work. 

TABLE 14 SUMMARY OF STRENGTHS OF RELATED WORK AND 

RESEARCH GAP 
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Farias et al. [54] X   X X  

Yu et al. [70]   X    

Narman et al. [71]  X      

Delgado et al. [46] X      

Zeng et al. [73]  X     X 

Dinh et al. [49] X    X  

Aazam et al. [75] X     X 

Xu et al. [86] X     X 

Wang et al. [87] X     X 

Ekmen et al. [88] X      

Zeus  X  X X X 

       

Moreover, our work differs from [70][71][46][73][49][75][86][87][88] by handling 

precedencies among requests and from [70][71][46][73][75][86][87][88] by performing 

requests in common among multiple applications only once, and sharing the result among 

multiple applications. Dinh et al. [49] also consider requests in common in their solution, 

although their strategy is different. Our approach for handling requests in common among 

applications is similar to the one of Farias et al. [54]. Both approaches formulate a unique DAG 

of requests, rearranging their precedence relationships through a similar algorithm. Our 

approach differs from both works of Dinh et al. and Farias et al. by considering requests in 

common based on their negotiable requirement of data freshness, and the non-negotiable 

requirement of data type. Finally, each one of the aforementioned contributions is not 

exclusive to our work. Other works also contribute on each feature separately such as 

considering the edge tier, and supporting delay-sensitive applications. However, no algorithm 

found in literature supports simultaneously all the four features of, namely, being a hybrid 

algorithm, handling precedencies among requests, sharing requests in common among 

multiple applications and considering the edge tier. Such four features are, each, specifically 

important to the area of CoS for the reasons above-mentioned. Put together, they constitute 

the research gap that we investigate in our work, which is summarized in Table 14. 
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7 Final remarks and future directions 

In this thesis we tackled challenges posed by the novel paradigm of CoS. The major 

goals of this thesis regard proposing a novel CoS virtualization model, Olympus, along with a 

new algorithm to perform resource allocation in CoS, Zeus. 

Olympus is a partly decentralized WSAN virtualization model based on information 

fusion that allows (i) extending physical WSAN lifetime, (ii) reducing response time for 

applications, and (iii) supporting several centralized and decentralized applications. Olympus 

is built with the key concept of information fusion because each of the virtual sensors 

represents the execution of an information fusion technique. This ensures the system to 

provide data at a given abstraction level of the manipulated data during the information fusion 

process. Olympus is to be considered a decentralized CoS virtualization model because 

physical nodes can perform locally the necessary procedures for creating and running the 

virtual sensor. The virtual sensor creation and operation management is not fully held 

centrally, within the Cloud. Therefore, in Olympus, the decision processes of applications are 

performed partly within physical sensors and partly within the Cloud. 

Zeus is a hybrid and heuristic-based algorithm to obtain near-optimal solutions in 

reduced computation time to the MINPP for resource allocation in Clouds of Sensors. The main 

distinct features of Zeus are as follows: (i) Zeus can perform requests in common for multiple 

applications only once, sharing the results of this single execution among these multiple 

applications. (ii) Zeus considers the existence of precedence relationships (dependencies 

between data inputs and outputs) among the requests of a same application. (iii) Zeus 

leverages the concept of edge computing in its operation. (iv) Zeus has characteristics of both 

centralized and decentralized algorithms. Therefore, the partly-decentralized design of Zeus 

makes the most of the features of each computational tier of the CoS system. 

The key features of Zeus inherit the key features of Olympus, and both provide the 

major contributions of our approach. As our first contribution, Zeus is scalable, both in terms 

of the number of VNs and the number of applications executed in the CoS. This contribution 

is a consequence of the hybrid approach of Zeus, which would not be possible without the 

support of a decentralized virtualization model as Olympus. Olympus contributes for enabling 

the decentralization of the WSAN virtualization process, and by supporting both centralized 
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and decentralized applications simultaneously within the CoS infrastructure. We assessed the 

scalability of Zeus in the most adverse configuration. In the performed evaluation, the energy 

consumption of the sensors and edge tiers grow linearly with the increasing amount of 

applications (ranging from 200 to 2000) running in the CoS system. Moreover, the values of 

makespan of applications grow as a sigmoid curve, as the number of VNs per data type grows 

(from 1 to 5). Therefore, in every aspect assessed in our experiments, Zeus succeeded in 

handling a growing load (in terms of an increasing number of applications), and in scaling (in 

terms of an increasing number of VNs) to accommodate such a growing load. Thus, the hybrid 

approach of Zeus achieved a good scalability. 

As our second contribution, Zeus provides support to delay-sensitive applications. This 

contribution is achieved by leveraging edge tier, what allows supporting delay-sensitive 

applications (three-tier approach), in comparison to an approach using only the cloud tier 

(two-tier approach). Once again, Olympus plays a key role to achieve this contribution, since 

it considers the edge tier, allowing the design of Zeus for the three-tier CoS. This contribution 

is also a result of the use of both the use of information fusion and the decentralization of the 

WSAN virtualization process considered by Olympus, which reduce the response time of 

applications, by reducing communication overhead in CoS. Moreover, Zeus is capable of 

finding solutions in reduced computation time to the problem of resource allocation in CoS, 

also contributing to support delay-sensitive applications. In the performed experiments, Zeus 

achieved an application makespan (time for acquiring, deciding and actuating over the 

acquired data) of less than one second, in average (for 8000 applications). The response time 

of applications (time for only deciding and actuating over the acquired data) is, consequently, 

lower than one second. Therefore, Zeus is more suitable for delay sensitive applications, with 

restrictive response times, when leveraging the use of the edge tier, in comparison to a typical 

two-tier CoS architecture. 

As our third contribution, Zeus saves energy and consequently improves the lifetime 

of WSANs. This contribution is a direct consequence of using Zeus mechanism for identifying 

tasks that are common for multiple applications, performing them only once and sharing the 

outcome among these multiple applications. When using the UDAG formation algorithm, and 

for 2000 applications running in the CoS, the energy consumption of the sensors tier is 

reduced by 86%. Also, for 2000 applications, the lifetime of the sensors tier increases from 
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around 5 to around 38 days when we use the UDAG formation algorithm. Consequently, Zeus 

contributes for saving energy and extends the lifetime of WSANs. It is important to mention 

that this contribution would not be possible without considering the key features of Olympus 

that also contribute to the improvement of the lifetime of WSANs. In this case, the key 

features are the use of information fusion techniques for reducing data transmission, and the 

decentralization of WSAN virtualization procedures. We also explicited the trade-off between 

the quality of solutions found by Zeus and the respective amount of energy consumed by 

WSANs to achieve them. We showed how much energy can be saved for the WSANs when 

adopting the approach of reusing data obtained in different moments in time to meet 

applications, while considering their negotiable data freshness requirements. This approach 

is reflected by the algorithm using the ANUR rule. In comparison to the algorithm using the 

MUR rule, which was used as a baseline, the approach proposed in our work is capable of 

achieving near-optimal solutions, in the worst case, of values around 80% of the optimal 

solution. Moreover, by using the ANUR rule, we can save around 15% of energy for the sensors 

tier, in comparison to the baseline algorithm using the MUR rule. 

7.1 Future work 

There are several research directions that deserve further investigation. One of them 

is proposing new rules for Zeus, so that its behaviour can be tailored to different QoS 

requirements and/or application domains. Designing a reactive resource provisioning 

mechanism, and comparing its performance with the proactive strategy used in Zeus is 

another avenue we intend to pursue. We also aim at providing support to event-based 

applications. In addition, we suggest investigating different types of heuristics for solving the 

MINPP of resource allocation. Such new heuristics could be compared to Zeus using the MUR 

and ANUR rules, in terms of the quality of solutions obtained, using the same baseline of our 

current work. Finally, designing a fully autonomous and self-adaptive algorithm, which 

operates based on a set of rules and policies, and whose adaptation is based on learning 

techniques, is a final and ambitious goal that we believe will contribute to the fully realization 

of the potentials of a 3-tier CoS architecture. 
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Appendix A – Energy models 

This appendix (A) consists of the detailed energy model used in our experiments to 

evaluate Zeus. This appendix is referred in Section 4.2, and thus complements the formulation 

of our MINPP for resource allocation in CoS, providing further detail on it. 

The constraint defined per Equation (32), in Section 4.2, concerns the total energy 

consumption of a VN i during the decision window (comprising all periods p). It considers the 

energy consumption by all hosts h of VN i (𝐸𝑅𝐴𝑖ℎ). The value of the sum of 𝐸𝑅𝐴𝑖ℎ must be 

smaller than the limit 𝑊𝐸𝑉𝑅𝐴𝑖. The 𝐸𝑅𝐴𝑖ℎ is defined per Equation (45). It is divided into two 

portions of energy consumption by host h. The first is used for communication of the output 

data of VN i (𝐸𝐶𝑀𝑖ℎ). The second is used for processing the request inside VN i (𝐸𝑃𝑅𝑖ℎ). The 

(𝐸𝐶𝑀𝑖ℎ) is defined by Equation (49) in terms of the fraction of power of host h that is allocated 

to be dissipated in response to running VN i (𝑃𝑖ℎ) and the sum of all times spent for 

communication (𝑇𝑇𝑀𝑖
𝑝) of the VN i in all periods p. The 𝐸𝑃𝑅𝑖ℎ is defined per Equation (50) 

similarly to 𝐸𝐶𝑀𝑖ℎ, but using the processing times (𝑃𝑇𝑀𝑖
𝑝). Thus, we describe 𝑃𝑖ℎ through 

Equations (46), (47) and (48). 

As in [12], we use the hypothetical linear power model [96], which describes the power 

consumption in a host per Equation (46). Equation (46) is divided into two parts: static and 

dynamic power. Static power 𝑃𝑠 is consumed even if the host is idle. The dynamic power 

(𝑃𝑚𝑎𝑥 − 𝑃𝑠) × 𝑈 is proportional to the utilization U of the host, where 𝑃𝑚𝑎𝑥  is the maximum 

power the host can dissipate. We consider that the value of Linear Deviation Ratio (LDR) is 

zero, thus we have an ideal power model. We also ignore the static power consumption, 

because it does not vary with the allocation of VNs to requests, reducing the model reduced 

to Equation (47). Finally, based on Equation (47), Equation (48) describes the fraction of the 

power allocated by each host h to a VN i in our work. 

𝐸𝑅𝐴𝑖ℎ = 𝐸𝐶𝑀𝑖ℎ + 𝐸𝑃𝑅𝑖ℎ 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀ℎ ∈ 𝑆𝐸𝐶𝑁 
(45) 

𝑃(𝑈) = (1 + 𝐿𝐷𝑅) ∗ [𝑃𝑠 + (𝑃𝑚𝑎𝑥 − 𝑃𝑠) × 𝑈]  (46) 

𝑃(𝑈) = (𝑃𝑚𝑎𝑥) × 𝑈  (47) 

𝑃𝑖ℎ = (𝑃𝑚𝑎𝑥ℎ) × 𝑉𝐸𝐶𝑀𝑖ℎ ∀𝑖 ∈ 𝑆𝑉𝑁 (48) 
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∀ℎ ∈ 𝑆𝐸𝐶𝑁 

𝐸𝐶𝑀𝑖ℎ = 𝑃𝑖ℎ × ∑ 𝑇𝑇𝑀𝑖
𝑝

𝑃

𝑝=1

 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀ℎ ∈ 𝑆𝐸𝐶𝑁 
(49) 

𝐸𝑃𝑅𝑖ℎ = 𝑃𝑖ℎ × ∑ 𝑃𝑇𝑀𝑖
𝑝

𝑃

𝑝=1

 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀ℎ ∈ 𝑆𝐸𝐶𝑁 
(50) 

The constraint defined in Equation (33), in Section 4.2, regards the total energy 

consumption of a PSAN k during the decision window, respective to data updates. Such an 

energy consumption must be smaller than the limit 𝑊𝐸𝑃𝑘. The sum of 𝑦𝑖
𝑝 is the number of 

data updates of VN i during the decision window. Every data update consumes the same 

amount of energy of the same PSANs. According to [12], the energy spent by a PSAN k in 

response for a data update of VN i (𝐸𝐷𝑈𝑖𝑘) is defined per Equation (51). 

𝐸𝐷𝑈𝑖𝑘 = 𝐸𝑆𝐸𝑖𝑘 + 𝐸𝑇𝑋𝑖𝑘 + 𝐸𝑅𝑋𝑖𝑘 + 𝐸𝑃𝑅𝑖𝑘 + 𝐸𝐴𝐶𝑖𝑘  
∀𝑖 ∈ 𝑆𝑉𝑁 

∀k ∈ 𝑆𝑃𝑆𝐴𝑁 
(51) 

𝐸𝑆𝐸𝑖𝑘 = 𝑏𝑖𝑘 × 𝑉𝑠𝑢𝑝𝑘 × 𝐼𝑠𝑒𝑛𝑠𝑘 × 𝜉𝑠𝑒𝑛𝑠𝑘 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀k ∈ 𝑆𝑃𝑆𝐴𝑁 
(52) 

𝐸𝑇𝑋𝑖𝑘 = 𝑏𝑖𝑘 × (𝐸𝑒𝑙𝑒𝑐𝑘 + 𝜀𝑎𝑚𝑝𝑘 × (𝑑𝑖𝑘)2) 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀k ∈ 𝑆𝑃𝑆𝐴𝑁 
(53) 

𝐸𝑅𝑋𝑖𝑘 = 𝑏𝑖𝑘 × 𝐸𝑒𝑙𝑒𝑐𝑘 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀k ∈ 𝑆𝑃𝑆𝐴𝑁 
(54) 

𝐸𝑃𝑅𝑖𝑘 = 𝑏𝑖𝑘 × [𝐶 × 𝑉𝑑𝑑
2 + 𝑓]𝑘 

∀𝑖 ∈ 𝑆𝑉𝑁 

∀k ∈ 𝑆𝑃𝑆𝐴𝑁 
(55) 

𝐸𝐴𝐶𝑖𝑘 =  𝑛𝑖𝑘 × 𝐸𝑎𝑐𝑡𝑘 
∀𝑖 ∈ 𝑆𝑉𝑁 

∀k ∈ 𝑆𝑃𝑆𝐴𝑁 
(56) 

The energy consumption of PSANs is composed of four major components: sensing, 

computation, communication and actuation components. Equations (52), (53), (54), (55) and 

(56) are adapted from our previous work [12] to represent the energy consumption of PSANs. 

In Equation (52), let 𝐼𝑠𝑒𝑛𝑠𝑘and 𝑉𝑠𝑢𝑝𝑘be, respectively, the total current and supply voltage 

required for sensing activity, while 𝜉𝑠𝑒𝑛𝑠𝑘 is the time duration for sensing data from the PSAN 

and 𝑏𝑖𝑘 is number of bits collected by the sensing activity. Moreover, we distinguish the energy 

spent for transmission (𝐸𝑇𝑋𝑖𝑘) and for reception (𝐸𝑅𝑋𝑖𝑘) per Equations (53) and (54). The size 
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of the transmitted/received data is 𝑏𝑖𝑘 and 𝑑𝑖𝑘 represents the distance between transmitter 

and receiver. The 𝐸𝑒𝑙𝑒𝑐𝑘 and 𝜀𝑎𝑚𝑝𝑘 denote energy dissipation of radio and transmission 

amplifier, respectively. The energy consumption for processing all 𝑏𝑖𝑘 bits of data (𝐸𝑃𝑅𝑖𝑘) is 

given by Equation (55), where 𝑉𝑑𝑑
2  denotes the thermal voltage of the processor and 𝐶 and 𝑓 

are processor-dependent parameters. The last part of energy consumption for a device is 

actuation (𝐸𝐴𝐶𝑖𝑘). This part is hard to estimate because it is highly dependent on the specific 

actuation task. Equation (56) describes the energy consumption for actuation, where 𝑛𝑖𝑘 is 

the number of actuations, each consuming a fixed amount of energy 𝐸𝑎𝑐𝑡𝑘. For instance, an 

actuation regarding driving a fan with two motors (possibly in response to temperature 

variations), then 𝑛𝑖𝑘 = 2. 

Finally, we must constraint the energy spent by PSANs also from the perspective of 

VNs, so that a single VN will not preemptively deplete the batteries of several PSANs 

subordinated to it. Simply by changing the sum (from index i to index k) in Equation (33), we 

reach to Equation (34), which regards the total energy consumption of a VN i during the 

decision window, respective to data updates. This value must be smaller than the limit 

𝑊𝐸𝑉𝐷𝑈𝑖. For the sake of simplicity, we index this consumption for VNs, although the PSANs 

are the ones that effectively consume the energy. 


