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RESUMO

BARROS, Charles Figueredo de. A Public-Key Encryption Scheme Based on
Lattice Deformations. 2016. 73 f. Tese (Doutorado em Informática) - PPGI,
Instituto de Matemática, Instituto Tércio Pacitti de Aplicações e Pesquisas Com-
putacionais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

Neste trabalho, nós propomos a construção de um novo sistema de criptografia
de chave pública, apresentado em duas versões. A primeira é baseada em operações
com matrizes, enquanto a segunda é baseada em operações com polinômios, propor-
cionando chaves menores e operações mais rápidas de encriptação e decriptação. A
segurança do sistema é baseada em um novo tipo de problema matemático da teoria
de reticulados, que chamamos de problema da deformação de reticulados. A grosso
modo, este problema consiste em, dada uma base deformada de um reticulado (em
um sentido que será explicado em detalhes), encontrar a base original que sofreu a
deformação.

Palavras-chave: Criptografia de Chave Pública. Reticulados.



ABSTRACT

BARROS, Charles Figueredo de. A Public-Key Encryption Scheme Based on
Lattice Deformations. 2016. 73 f. Tese (Doutorado em Informática) - PPGI,
Instituto de Matemática, Instituto Tércio Pacitti, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, 2016.

We propose a new construction for a public-key cryptosystem, which is presented
in two versions. The first is based on matrix operations, while the second is based on
operations with polynomials, offering smaller keys, along with faster encryption and
decryption. The security of the cryptosystem is based on a new kind of mathematical
problem from the theory of lattices, which we call the Lattice Deformation Problem
(LDP). Roughly speaking, the goal of this problem consists of, given a deformed
lattice basis (in a sense that will be explained later in details), finding the original
lattice basis which was deformed.

Keywords: Public-Key Cryptography. Lattices.
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1 INTRODUCTION

“See the face of the shape of things to come.” (Virtual Six)

Public-key cryptography has come a long way since the seminal work of Diffie

and Hellman [1], whose research motivated Rivest, Shamir and Adleman to develop

the first practical proposal of a public-key cryptosystem [2]. RSA, as it became

known, changed the way secret information was transmitted over digital channels.

A public-key cryptosystem makes use of two different keys: one for encryption

and another for decryption. The second is private, being held by the receiver of

the secret communications; the first is derived from the private key and publicly

distributed, being shared among those who send secret messages to the receiver.

While the secret key is useless for encryption, the public key is useless for decryption.

Therefore, sharing it does not compromise the secrecy of the communications.

What makes this possible is the existence of trapdoor functions. Roughly

speaking, these are functions easy to compute but hard to invert without knowledge

of some special information, called trapdoor. The information necessary to evaluate

the function in its input domain can be derived from the trapdoor, but the reciprocal

is not true.

Therefore, a public-key cryptosystem can be obtained from a trapdoor func-

tion by simply associating the trapdoor to the secret key, and the information needed

to evaluate the function in its input domain to the public key. Encryption is equiva-

lent to evaluating the function, while decryption consists of its inversion (with the

aid of the trapdoor).



11

The security of a public-key cryptosystem is always based on some mathe-

matical problem. There must be a relation between the keys, such that recovering

the secret key from the public key should be equivalent to solving an instance of the

problem (see Figure 1.1). As a consequence, this underlying problem must be hard

to solve, otherwise it would be easy to retrieve the secret key from the public key,

which is obviously not acceptable.

Figure 1.1: Deriving the public key from the secret key is easy (1), but in order to
retrieve the secret key from the public key, one must solve an instance of a hard
problem (2).

The precise notion of hardness will be presented in the next chapter, but for

now it is sufficient to keep in mind that a problem is considered hard if no known

algorithm can solve it in reasonable time. For example, the underlying problem of

RSA is integer factorization. Taking into account that the best factoring algorithms

would take longer than the age of the Universe to factor a 4096 bit RSA key, it

becomes clear what we mean by reasonable.

In the mid ’90s, Shor [3] demonstrated how to efficiently solve the problem

of integer factorization (and discrete log computation). Fortunately, the task could

only be accomplished by a quantum computer, which was nothing but a theoretical

dream at that time. Consequently, the findings of Shor did not mean the death of

public-key cryptosystems.

Nevertheless, this potentially dangerous dream triggered the development of a
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whole new field of research known as post-quantum cryptography, which investigates

classical cryptographic constructions (in the sense that they do not make use of any

kind of quantum computing) that could resist, at least from a theoretical standpoint,

to attacks by quantum (and classic) computers.

There is, in fact, a myriad of cryptographic constructions that are considered

post-quantum, including those based on multivariate polynomials [4, 5, 6, 7], along

with hash-based [8, 9, 10], code-based [11, 12, 13] and lattice-based cryptography

[14, 15, 16, 17, 18, 19].

1.1 Lattice-Based Cryptography

Lattices have been used in a huge variety of cryptographic constructions,

not limited to traditional public-key encryption schemes, but also digital signa-

ture schemes, cryptographic hash functions, homomorphic encryption schemes and

authentication protocols.

It is safe to say that two main problems, or its variants, underlie all lattice-

based public-key cryptosystems: the shortest vector problem (SVP) and the closest

vector problem (CVP). This is true even for the modern constructions based on LWE

(Learning With Errors), since it can be shown that this problem is also related to

CVP.

This work goes in a slightly different direction by proposing a new kind of

problem which, at first sight, is not related to SVP or CVP at all. Nevertheless,

we establish a connection between our problem and that of finding relatively short

vectors in lattices, but not necessarily the shortest one.
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1.2 Thesis Roadmap

This thesis is structured as follows: in Chapter 2, the theoretical background

is provided. We present the basics on linear algebra, lattices and other topics that

will be necessary for the complete understanding of this work. Chapter 3 is where

we begin our contribution by introducing a new trapdoor function. In Chapter

4, a cryptosystem is built upon the trapdoor function which was presented in the

previous chapter. In Chapter 5, we assess the hardness of exposing the secret key

of the proposed cryptosystem, introducing a new mathematical problem from the

theory of lattices. A variant of the proposed cryptosystem is presented in Chapter

6. Finally, in Chapter 7, we present our final remarks and conclusions.
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2 THEORETICAL BACKGROUND

“Okay... we’re gonna have to do this the hard way then.” (Starbuck)

In this chapter, we review the basics on linear algebra, complexity theory

and lattices. We also establish notations and conventions that will be adopted in

the rest of this thesis.

2.1 Linear Algebra

Throughout this work, vectors will be considered as row vectors and repre-

sented by lowercase boldface letters, such as u. The entries will be represented by

uk, with k starting from 0. We also employ the symbol duc to denote the vector

in which each entry is the nearest integer to the corresponding entry of u. We are

going to use the special notation e(k) to represent the vector whose entry at position

k is 1, and all the other entries are 0. Concatenation of two vectors u and v will be

denoted by u||v.

Matrices will be represented by uppercase letters, such as A. Given a square

matrix A of dimension n, the element on row i and column j of A will be denoted

by Ai,j, for i, j ∈ {0, 1, · · · , n− 1}. For any 0 ≤ k ≤ n − 1, row k of A will be

represented by Ak. The notation A > 0 (conversely A < 0) implies that all the

entries of A are greater (or less) than 0. Finally, the determinant of A will be

denoted by det(A). In this work, we are interested in the following special classes

of matrices:
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Definition 2.1 An integer square matrix U is said to be unimodular if |det(U)| = 1.

Definition 2.2 A real square matrix S is said to be an M-matrix if it can be written

as S = γI +Q, where Q ≤ 0 and γ ≥ ρ(Q).1

A useful property of such M-matrices is known as inverse-positivity. We state

this property in the form of a theorem. For the proof, [20] can be consulted.

Theorem 2.1 If S = γI + Q is an M-matrix with γ > ρ(Q), then S−1 exists and

S−1 ≥ 0 (S is an inverse-positive matrix).

The following definition is nonstandard, but it will be helpful, since it sum-

marizes information on how an M-matrix is built.

Definition 2.3 Given two positive integers γ and τ , a real matrix S is said to be

an Mγ,τ -matrix if it is a nonsingular M-matrix and can be written as S = γI + Q,

with Qi,j ∈ {−τ,−τ + 1, · · · ,−1, 0}.

2.2 Complexity Theory

When dealing with algorithms, we are mostly interested in knowing how effi-

cient they are. In an ultimate analysis, we investigate the hardness of the problems

we are trying to solve by employing those algorithms. If, after extensive research,

no one could find a good algorithm to solve a specific problem, or the algorithms
1Here, ρ(Q) denotes the spectral radius of Q, i.e., ρ(Q) = max {|ξ1|, · · · , |ξn|}, where ξ1, · · · , ξn

are the eigenvalues of Q.
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which were found are not efficient, it is reasonable to conjecture that this problem

is computationally hard.

The main goal of Complexity Theory is to establish precise definitions of

what is hard and what is easy, what is efficient and what is inefficient.

Complexity theory investigates how much resources, such as time and me-

mory space, are required to solve certain computational problems. Although it

seems to be common sense that computers are powerful enough to solve any kind

of mathematical problem, as we will see, this is far from being true. While it is

true that some problems are easy to solve, there are a bunch of problems which

apparently cannot be efficiently solved even by the most powerful computers in the

world.

In order to analyse the complexity of problems, we must precisely define what

hard and easy mean from a computational standpoint. Typically, we measure the

complexity of an algorithm in terms of its input size, and this measure is expressed

as the running time of the algorithm. There are two ways of doing so:

1. Empirically, by actually running the algorithm and computing the time it takes

to run over a certain input.

2. Theoretically, by obtaining a mathematical expression of the algorithm’s run-

ning time as a function of its input size.

The second approach has the advantage of not depending on specific conditions,

such as processing resources, compilers and programming languages. However, it is

a much harder approach. In order to make it easier, we employ some simplifications,

such as discarding additive and multiplicative constants and considering only the
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asymptotic behaviour of the algorithms (when the input size is large enough).

2.2.1 Asymptotic Notation

Asymptotic notations capture the simplifications adopted throughout theo-

retical complexity analysis. They serve as a powerful tool to measure the efficiency

of algorithms. From now on, let f and g be non-negative real functions of a natural

variable n.

Definition 2.4 We say that f = O(g) if there is a positive integer n0 and a positive

real constant c such that

f(n) ≤ cg(n) (2.1)

for all n > n0.

In other words, f is asymptotically limited by g, which means that, for a sufficiently

large n, the growth rate of f does not exceed the growth rate of g except by a

constant factor. In an entirely analogous way, we define the following asymptotic

notations:

Definition 2.5 We say that f = Ω(g) if there is a positive integer n0 and a positive

real constant c such that

f(n) ≥ cg(n) (2.2)

for all n > n0.

Definition 2.6 We say that f = θ(g) if f = O(g) and g = O(f).
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While the O-notation is used for upper bounds, the Ω-notation applies to

lower bounds, and the θ-notation is adopted to express tight bounds. As we have

already mentioned, these notations capture simplifications such as discarding cons-

tants and considering only asymptotic behavior. Hence, we can say that n3 + 3n2 =

O(n3), as well as 3000n3 − 230n = O(n3). Similarly, 2n + 3000n10 = O(2n) and

30log n + 20000 = O(log n). Given a function f , the following asymptotic bounds

are the most widely used:

1. Constant: f = O(1).

2. Logarithmic: f = O(log n).

3. Linear: f = O(n).

4. Quadratic: f = O(n2).

5. Cubic: f = O(n3).

6. Exponential: f = O(2n).

More generally, we may refer to nc, for c > 0, as a polynomial bound. Another

commonly used asymptotic bound is O(nlog n), which represents an intermediate

between linear and quadratic complexities. Figure 2.1 shows a comparative analysis

of these growth rates.

Algorithms with constant, logarithmic or polynomial complexity are consi-

dered efficient, while exponentially bounded algorithms are said to be inefficient.

Conversely, the problems for which logarithmic or polynomial algorithms are known

can be considered easy (efficiently solvable), but problems for which the best known

algorithms are exponential can be considered hard.
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Figure 2.1: Asymptotic bounds comparative.

It is important to keep in mind that this analysis does not take into account

the specific nature of the input, implying in a series of simplifications. Even an

instance of a hard problem can be easy to solve. For example, it is easy to factor

a 10 bit integer. Conversely, a polynomial-time algorithm may take really long to

run over a large input, maybe due to the large degree of the polynomial, or even

discarded multiplicative constants that can affect the running time of the algorithm

in practical scenarios. Nevertheless, the asymptotic analysis is an extremely helpful

tool to measure algorithmic complexity and theoretical hardness.

2.2.2 Complexity Classes

Computational problems can be categorized according to their theoretical

hardness. A complexity class is a set of problems whose complexities are somehow

related. This categorization is based on some kind of resource, typically time and

space. The complexity class reflects how the requirement in resources grow as the

input size increases.
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Complexity classes are typically related to decision problems. We may think

of a decision problem as a question which admits one of two answers: yes or no. For

example, given two graphs, decide if they are isomorphic. The class P contains all

decision problems that can be solved in polynomial time. These are the problems

considered tractable or efficiently solvable. On the other hand, the class NP contains

all decision problems for which the “yes” instances can be efficiently verified. In other

words, given a “yes” instance, we can verify in polynomial time that it is, in fact, a

“yes” instance.

In order to compare the hardness of different problems, we use the concept

of reduction. Roughly speaking, a reduction consists of transforming one problem

into another. This method is widely used to prove that a certain problem is at least

as hard (or as easy) as another. If the transformation can be made in polynomial

time, we say that it is a polynomial reduction.

Put into more formal terms, let A and B be two decision problems, with input

domains A and B respectively. A polynomial reduction from A to B is a polynomial-

time function σ : A −→ B such that a ∈ A is a “yes” instance if σ(a) ∈ B is a “yes”

instance.

We denote a polynomial-time reduction from A to B by A ∝ B. Reducing A

to B allows us to solve A by solving B. As already mentioned, reductions are useful

tools to prove that a problem is as hard/easy as another.

Assume that A is a hard problem. In order to prove that B is at least as

hard as A, we reduce A to B and show that, if we can solve B, we can solve A. On

the other hand, if A is an easy problem (for which a polynomial-time algorithm is

known), we can solve B by reducing B to A.
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A decision problem A is said to be NP-complete if A ∈ NP and every problem

of NP reduces to A. If the latter is true, but we cannot prove that A ∈ NP , then A
is said to be NP-hard. NP-complete problems are considered the hardest problems

of the class NP, because an efficient solution for any of them would imply a solution

for all NP problems. In fact, a polynomial-time solution for one single NP-complete

problem would give a definitive answer for the long standing open question as to

whether P = NP, and it would be “yes”.

2.3 Lattices

Lattices play an essential role in the design of various post-quantum crypto-

graphic constructions. Algebraically speaking, a lattice is a discrete additive sub-

group of Rn.

Definition 2.7 Let n be a positive integer. Given a real n×n matrix A, the lattice

generated by A is the set

L(A) = {uA : u ∈ Zn} . (2.3)

In other words, the set L(A) corresponds to all the integer linear combinations of the

rows of A. In particular, if A is an integer matrix, we say that L(A) is an integral

lattice. The matrix A is said to be a basis of the lattice. Like a vector space, a

lattice admits infinitely many bases (see Figure 2.2).

Definition 2.8 Given two real matrices A,B, we say that L(A) is a sublattice of

L(B) if there exists an integer matrix R such that A = RB.
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Figure 2.2: The same lattice from the standpoint of four different bases.

In particular, if R is unimodular, it can be proven that L(A) = L(B). As a

matter of fact, L(A) = L(B) iff there is a unimodular matrix U such that A = UB.

Theorem 2.2 Let A and B be two n × n real matrices. Then, L(A) = L(B) iff

there is a unimodular matrix U such that A = UB.

Proof: Assume that there is a unimodular matrix U such that A = UB, and let

u ∈ L(A). Hence, u = wA, for some w ∈ Zn and, consequently, u = wUB. Since

wU ∈ Zn, we have that u ∈ L(B). On the other hand, consider u ∈ L(B). Hence,

u = wB, for some w ∈ Zn and, consequently, u = wU−1A. Since U−1 is integer,

we have that wU−1 ∈ Zn and, therefore, u ∈ L(A).

Now assume that L(A) = L(B). Hence, every vector of A can be written as

a linear combination with integer coefficients of the vectors from B, which gives us

an integer coefficient matrix U such that A = UB. Reciprocally, every vector of B
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can be written as a linear combination with integer coefficients of the vectors from

A, which gives us the relation B = U−1A. Since U−1 must be an integer matrix and

det(U−1) = 1/det(U), we conclude that det(U) = ±1. �

As already mentioned, the mainstream of lattice-based cryptographic cons-

tructions is based upon two problems: the shortest vector problem (SVP) and the

closest vector problem (CVP). The first one asks for the shortest nonzero vector of a

given lattice, while the second consists of, given a lattice and an arbitrary point, fin-

ding the lattice vector which is closest to that point. Both problems are considered

hard. As a matter of fact, SVP is known to be NP-hard for randomized reductions

[21].

It is worth mentioning that whenever we say that we are given a lattice, we

mean a lattice basis. Although solving SVP exactly is a hard task, some techniques

allow us to obtain an approximation of the shortest vector. These techniques are

known as lattice reduction methods, but their approximation power is not unlimited.

In [22], it was demonstrated that approximating the shortest vector within a factor

less than
√

2 is also NP-hard for randomized reductions.

CVP can be solved by the rounding technique, provided that we know a good

basis for the lattice. A basis is considered good if its vectors are short and form

large angles (close to 90 degrees) among each other. Consequently, a bad basis has

large vectors with small angles among each other (see Figure 2.3).

Any CVP instance is a vector of the form

c = u + r (2.4)
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Figure 2.3: A good basis (A) and a bad basis (B).

where u is the lattice point we would like to find. Given a good lattice basis B, we

may write u = xB for some x ∈ Zn. Hence,

cB−1 = x + rB−1. (2.5)

Rounding to the nearest integer, we obtain

dcB−1c = x + drB−1c. (2.6)

If r is a sufficiently short vector (if u is the lattice vector closest to c, then r must be

sufficiently short) and B is a good basis, then drB−1c = 0. In other words, rounding

cB−1 gives us the coefficient vector of u in the basis B and, consequently, the vector

u itself.

This technique is due to Babai [23] and is at the core of the GGH [24] de-

cryption procedure.
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3 BUILDING A NEW TRAPDOOR FUNCTION

“Out of the box is where I live.” (Starbuck)

We begin this chapter by reviewing the basic concept of trapdoor functions,

which play an essential role in the design of public-key cryptosystems. We also

introduce the nonstandard concepts of evaluation set and trapdoor set for a given

trapdoor function.

Definition 3.1 A function f is a trapdoor function if it can be efficiently evalu-

ated on its input domain, but its inversion requires the knowledge of some special

information, called the trapdoor.

Definition 3.2 An evaluation set for a trapdoor function f is a set E of public

parameters, required for the evaluation of f on its input domain. In this case, we

use the notation fE to represent the function f with evaluation set E.

Definition 3.3 A trapdoor set for the inverse of a trapdoor function f is a set T
of secret parameters, required for the evaluation of f−1 on its input domain. In this

case, we use the notation f−1T to represent the inverse function f−1 with trapdoor

set T .
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3.1 Construction and Evaluation

From now on, for any positive integers a, b such that a ≤ b, we define the sets

Za = {−a,−a+ 1, · · · ,−1, 0}, Zb = {0, 1, · · · , b} and Zba = Za ∪ Zb. We describe

below the construction of our trapdoor function:

• Select a positive integer n, which is the security parameter.

• Pick up positive integers α, β, γ, δ, τ, σ, ω and positive real numbers ε1, ε2. A

heuristic choice for these parameters will be discussed later.

• Build an integer n × n matrix E, with Ei,j randomly and uniformly selected

from Zβα , for all 0 ≤ i, j < n.

• Build a random n × n unimodular matrix U = RT ′TC, where T ′ is lower

triangular, T is upper triangular, R and C are random permutation matrices.

The diagonal entries of T and T ′ must be randomly and uniformly chosen

from the set {−1, 1}, while the other entries should be selected uniformly at

random from the set Zωω .

• Build an n×n Mγ,τ -matrix S = γI+Q, with Qi,j selected uniformly at random

from the set Zτ . The inverse of S must satisfy the following conditions:

1

γ
< S−1j,j <

1 + ε1
γ

, for all j = 0, · · · , n− 1 (3.1)

and

0 < S−1i,j <
τ(1 + ε2)

γ2
, for all i 6= j. (3.2)

• Build the matrix P = US + E.

• Choose integer numbers θ1, θ2, µ1, µ2 satisfying the following conditions:

θ2 > θ1 > nσα > 0, (3.3)
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µ1 < µ2 < −nσβ < 0, (3.4)

θ1 > γδ + nσα− τ(n− 1)(µ1 − nσα)(1 + ε2)

γ
, (3.5)

θ2 <
γ2(2δ + 1)

2(γ(1 + ε1) + τ(n− 1)(1 + ε2))
− nσβ, (3.6)

µ1 >
−γ2(2δ + 1)

2(γ(1 + ε1) + τ(n− 1)(1 + ε2))
+ nσα (3.7)

and

µ2 < −γδ − nσβ −
τ(n− 1)(θ2 + nσβ)(1 + ε2)

γ
. (3.8)

A reasonable justification for all these conditions will be presented shortly. For

now, it is sufficient to say that they ensure that the inversion algorithm for

our trapdoor function works properly.

We fix E = {P, n, σ, θ1, θ2, µ1, µ2} as the evaluation set of our trapdoor func-

tion. Define the non-deterministic mapping

G : N× Z4 −→ Zn (3.9)

which, on input n, θ1, θ2, µ1, µ2, outputs a vector r ∈ Zn as follows:

• For all k = 0, 1, · · · , n− 1, it generates a random bit bk;

• If bk = 0, then rk is a random integer uniformly chosen from the interval

[θ1, θ2];

• If bk = 1, then rk is a random integer uniformly chosen from the interval

[µ1, µ2].

Our function takes as input a vector x ∈ Zn, with entries from the set Zσ,
and outputs

fE(x) = r + xP, (3.10)

where r = G(n, θ1, θ2, µ1, µ2).
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3.2 Inversion

The next step consists of establishing a proper inversion algorithm, making

use of the trapdoor set T = {U−1, S−1, δ}. From now on, let c = fE(x) = r + xP .

Define the message residue vector

v = r + xE, (3.11)

which represents, roughly speaking, the portion of c which we would like to get rid

of in order to retrieve x. Note that c = u + v, where u = xUS ∈ L(S). Our goal is

to figure out a way of retrieving the coefficient vector (relatively to the basis S) of

the lattice point u, namely xU . Define the inversion error vector

e = (r + xE)S−1 = vS−1. (3.12)

Provided that c is a perturbation over a vector of L(S), the most natural decoding

method consists of rounding to the nearest lattice point, using the technique dis-

cussed at the end of Chapter 2. However, since the perturbation v is not small, the

rounding does not lead us back to the vector u, and dec represents this rounding

error. As will be demonstrated shortly, each entry of this error vector lies in a quite

narrow interval.

Lemma 3.1 For all j = 0, 1, · · · , n− 1, the following holds:

µ1 − nσα < vj < θ2 + nσβ. (3.13)

Proof: Note that

vj = rj +
n−1∑
i=0

xiEi,j, (3.14)

for all j = 0, 1, · · · , n − 1. The inequalities in (3.13) follow immediately from the

fact that µ1 < rj < θ2, 0 ≤ xj ≤ σ and −α ≤ Ei,j ≤ β. �
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Lemma 3.2 Let 0 ≤ j ≤ n− 1. If θ1 < rj < θ2, then

θ1 − nσα < vj < θ2 + nσβ. (3.15)

On the other hand, if µ1 < rj < µ2, then

µ1 − nσα < vj < µ2 + nσβ. (3.16)

Proof: The proof is similar to the previous lemma, taking into account the new

bounds for rj. �

The following two lemmas show that the inversion error vector is controlled

by the vector r, and its entries lie in a quite narrow interval.

Lemma 3.3 Let 0 ≤ j ≤ n− 1. If θ1 < rj < θ2 and conditions (3.1) to (3.8) hold,

then

δ < ej < δ +
1

2
. (3.17)

Proof: From the definition of the inversion error vector in (3.12), we have

ej = vjS
−1
j,j +

∑
i 6=j

viS
−1
i,j , (3.18)

which yields

ej ≥ vjS
−1
j,j + (n− 1)min

i 6=j
{vi}max

i 6=j

{
S−1i,j

}
. (3.19)

Note that we combined the lower bound for vi with the upper bound of S−1i,j , because

S−1i,j > 0 for all 0 ≤ i, j ≤ n−1 and the lower bound for vi, when i 6= j, is a negative

number by Lemma 1. Hence, using (3.1), (3.2), (3.13) and (3.15), we obtain

ej >
θ1 − nσα

γ
+
τ(n− 1)(µ1 − nσα)(1 + ε2)

γ2
. (3.20)
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Applying condition (3.5) above yields exactly ej > δ. On the other hand, by (3.18)

we have that

ej ≤ vjS
−1
j,j + (n− 1)max

i 6=j
{vi}max

i 6=j

{
S−1i,j

}
. (3.21)

By (3.1), (3.2), (3.13) and (3.15), we get

ej < (θ2 + nσβ)

(
1 + ε1
γ

+
τ(n− 1)(1 + ε2)

γ2

)
. (3.22)

Using (3.6), we obtain ej < δ + 1/2. �

Lemma 3.4 Let 0 ≤ j ≤ n− 1. If µ1 < rj < µ2 and conditions (3.1) to (3.8) hold,

then

− δ − 1

2
< ej < −δ. (3.23)

Proof: We keep (3.21) in mind. Using (3.1), (3.2), (3.13) and (3.16), we obtain

ej <
µ2 + nσβ

γ
+
τ(n− 1)(θ2 + nσβ)(1 + ε2)

γ2
. (3.24)

Using (3.8), we get ej < −δ. Finally, using the lower bound for ej given by (3.19)

and taking into account that vj < 0, we obtain

ej > (µ1 − nσα)

(
1 + ε1
γ

+
τ(n− 1)(1 + ε2)

γ2

)
. (3.25)

Combined with condition (3.7), the inequality above yields ej > −δ − 1/2. �

Lemmas 3 and 4 provide us with crucial information: the entries of e always

round to either δ or −δ. Unfortunately, it is determined by r, which is not known.

Initially, it appears to be a drawback on our intentions to use vector e to build an

inverse to our trapdoor function. However, as will be shown in the next lemma,

the rounded entries of e can still be determined, even with no prior knowledge of r.

Recall that c = fE(x) = r + xP . Define the rounding difference vector as follows:

d = cS−1 − dcS−1c. (3.26)
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Essentially, this vector allows us to determine which entries of e round to δ and

which entries round to −δ.

Lemma 3.5 For any 0 ≤ j ≤ n− 1, the following hold:

1. dj < 0 iff dejc = −δ;

2. dj > 0 iff dejc = δ.

Proof: Indeed,

d = (r + xP )S−1 − d(r + xP )S−1c. (3.27)

Replacing P by US + E, we obtain

d = (r + xE)S−1 + xU − d(r + xE)S−1 + xUc. (3.28)

Since xU is an integer vector, we have that

d(r + xE)S−1 + xUc = d(r + xE)S−1c+ xU. (3.29)

Hence,

d = (r + xE)S−1 − d(r + xE)S−1c = e− dec. (3.30)

We already know that either δ < ej < δ + 1/2 or −δ − 1/2 < ej < −δ, for

all j = 0, · · · , n − 1. If dj > 0, then ej > dejc, which only is possible when

δ < ej < δ + 1/2. On the other hand, if dj < 0, we have that ej < dejc, which
only occurs when −δ − 1/2 < ej < −δ. The reciprocal of these implications is

straightforward. Hence, we conclude that dj > 0 if and only if dejc = δ. Similarly,

dj < 0 iff dejc = −δ. �

Provided with the previous results, we can build an inversion algorithm for

our function, using the trapdoor set T = {U−1, S−1, δ}, as follows:
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1. On input c ∈ Zn, compute d = cS−1 − dcS−1c;

2. Initialize a vector e′ ∈ Zn with zeros. For j = 0, 1, · · · , n− 1:

(a) If dj > 0, set e′j = δ;

(b) Otherwise, set e′j = −δ;

3. Output the vector

y = (dcS−1c − e′)U−1. (3.31)

In the next proposition, we show that the procedure above actually inverts the

function fE . In other words, we prove that y = f−1T (fE(x)) = x, for all x on the

input domain of fE .

Proposition 3.1 Let c = fE(x), with x on the input domain of fE , and y as defined

in the procedure above. The following holds:

y = f−1T (fE(x)) = x. (3.32)

Proof: Replacing c by r + xP , we obtain

y = (d(r + xP )S−1c − e′)U−1, (3.33)

which yields, after replacing P by US + E,

y = (d(r + xE)S−1 + xUc − e′)U−1. (3.34)

Using the fact that xU is an integer vector, we may write the previous identity as

follows:

y = (d(r + xE)S−1c+ xU − e′)U−1. (3.35)

By construction, we have that e′ = dec. Therefore, we finally obtain

y = (d(r + xE)S−1c+ xU − d(r + xE)S−1c)U−1 = x, (3.36)
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for all x in the domain of fE . Therefore, y = f−1T (fE(x)). �

It is worth mentioning that, even though there is a random component in our

trapdoor function (the vector r), the inversion algorithm is deterministic. In other

words, the same input x can be mapped to different values, but all these values are

mapped back to the same vector x by the inversion algorithm.

Some questions remain open and will be answered later on this thesis. One of

the most important is whether it is possible to choose parameters satisfying condi-

tions (3.1) to (3.8). In this section, we simply required these conditions to hold, but

no guarantees were given as for the existence of parameters fulfilling these require-

ments. In the next chapter, we present possible choices of parameters satisfying the

aforementioned conditions.
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4 FROM A TRAPDOOR FUNCTION TO A CRYP-
TOSYSTEM

“So the fate of the entire human race depends upon my wild guess.”
(Dr. Gaius Baltar)

We build an encryption scheme from our trapdoor function in the canoni-

cal way, using the evaluation set as public key and the trapdoor set as the secret

key. A full cryptosystem from our function requires procedures for key generation,

encryption and decryption. Key generation involves the following algorithms:

• PARAMETERS: takes as input the values of n, α, β, γ, δ, τ , σ, ω, ε1, ε2 and

outputs the parameters θ1, θ2, µ1, µ2, which must satisfy conditions (3.3) to

(3.8).

• M_MATRIX: on input n, γ, τ, ε1, ε2, outputs an Mγ,τ -matrix S of dimension n,

satisfying conditions (3.1) and (3.2).

• UNIMODULAR: on input n, ω, outputs a random n-dimensional unimodular ma-

trix U , as described in the previous chapter.

• RANDOM_MATRIX: on input n, α, β, outputs an n-dimensional matrix E whose

entries are uniformly chosen from the set Zβα .

An instance of a secret key is given by the set SK = {S−1, U−1, δ}, while the corres-

ponding public key is the set PK = {P, n, σ, θ1, θ2, µ1, µ2}, where P = US + E.

Encryption consists of computing the trapdoor function of the previous chap-

ter on the input x, where the vector x must encode the plaintext. The following
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procedures are required:

• ENCODE: takes as input a binary stream b and outputs x ∈ Zn, with entries in

Zσ, which encodes b. An example of an encoding procedure is shown later in

this chapter.

• EPHEMERAL_KEY: outputs r = G(n, θ1, θ2, µ1, µ2), whereG is the non-deterministic

mapping defined in (3.9). This vector plays the role of an ephemeral key.

• ENCRYPT: takes as input the vector x, generated by ENCODE, and outputs c =

r + xP , where r is the output of EPHEMERAL_KEY.

Finally, we describe the decryption procedure, split into the following algo-

rithms:

• ERROR_VECTOR: builds the rounding difference vector d defined in (3.26) and

outputs the vector e′ as follows: for all j = 0, · · · , n−1, if dj > 0, then e′j = δ,

otherwise e′j = −δ. As already mentioned in the previous chapter, e′ = dec.

• DECRYPT: computes x = (dc′S−1c − e′)U−1.

• DECODE decodes the vector x in order to retrieve the original binary message.

The correctness of the decryption procedure comes immediately from the correctness

of the inversion procedure for our trapdoor function.

Note that the secret key consists of three parts: S−1, U−1 and δ. Apparently,

neither of these parts isolated allows full decryption of a ciphertext. For example, if

the value of δ leaks to an attacker, he will still not be able to decrypt any ciphertext.

The same is true if one of the secret matrices leak. Hence, our cryptosystem seems to
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be suitable for scenarios of secret sharing, where the secret key must be distributed

amongst a group of participants, in such a way that individual parts of the secret

key are of no use on their own.

We also note that our encryption scheme resembles GGH [16], in the sense

that a message is encoded into a lattice point and perturbed by a random vector (see

Figure 4.1).

Figure 4.1: GGH encryption: the lattice point encoding the message is the closest
to the ciphertext.

However, in our case the lattice vector into which the message is encoded,

namely xP , is not supposed to be the vector of L(P ) closest to the ciphertext c (see

Figure 4.2).

Figure 4.2: Our encryption: the lattice point encoding the message is not the closest
to the ciphertext.
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4.1 Implementation Remarks

Matrix inversion is a crucial part of the cryptosystem presented in this chap-

ter, but it may also lead to round-off errors, which could cause a ciphertext to be

incorrectly decrypted. In order to avoid these errors, we implemented decryption in

a slightly different way. Before we proceed, let us present some useful results.

Theorem 4.1 (Cramer’s Rule) Consider the linear system xA = b, where A is

a nonsingular real matrix. Then, for all k = 0, 1, · · · , n− 1, the following holds:

xk =
det(Ab

k )

det(A)
, (4.1)

where Ab
k is the matrix obtained by replacing row Ak by the vector b.

The proof of theorem 4.1 can be found in [25].

Lemma 4.1 Let A be a nonsingular n×n integer matrix. There is a unique integer

matrix A′ such that AA′ = A′A = det(A)In, where In is the identity matrix of order

n. A′ is said to be the integer inverse of A.

Proof: Since A is an integer matrix, by Cramer’s rule, each entry of A−1 is a rational

number of the form ki,j/det(A), where ki,j ∈ Z. Hence, the matrix A′ = det(A)A−1

has integer entries, and A′A = AA′ = det(A)In.

�

The previous lemma allows us to invert an integer matrix without having

to deal with floating point numbers. Although we pay the price of storing the
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determinant, this strategy avoids round-off errors. We present below a modified

version of the decryption algorithm, using integer inverses of the secret matrices.

Recall that the ciphertext is given by c = r + xP .

• Compute

d′ = cS ′ − det(S)d 1

det(S)
cS ′c. (4.2)

Note that d′ = det(S)(cS−1 − dcS−1c) = det(S)d, where d is the rounding

difference vector defined in (3.26).

• Build the vector e′′ such that
d′j

det(S)
> 0⇒ e′′j = δ (4.3)

and
d′j

det(S)
< 0⇒ e′′j = −δ. (4.4)

Note that e′′ = e′ = dec, which is the rounded inversion error vector defined

in (3.12).

• Since S ′ = det(S)S−1, the final step of the decryption procedure consists of

computing the vector(
d 1

det(S)
cS ′c − e′′

)
U ′ = det(U)

(
dcS−1c − dec

)
U−1 = det(U)x. (4.5)

With this modification, the secret key is the set {U ′, det(U), S ′, det(S), δ}.
As already mentioned, we pay the price of storing the determinants, but since one

of them is ±1, this is an acceptable cost in order to avoid decryption errors.

Closing this section, we propose a straightforward encoding procedure that

can be adopted in our cryptosystem. Recall that the binary message is encoded into

the vector x, and each entry of x lies in the set Zσ. We consider as input a binary

string b.
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1. Split b into blocks of nblog2σc bits each. Each block yields a vector x, which

will be encrypted separately. Apply some padding procedure to the last block,

if necessary. It is convenient to choose σ as a power of 2.

2. Given each block from the previous item, split it into n parts of blog2σc bits
each, denoted by b0, b1, · · · , bn−1.

3. Set xj as the integer whose binary representation is given by bj, for all j =

0, 1, · · · , n− 1.

4.2 Common Attacks

In this section, we assess the security of the proposed cryptosystem against

common attacks, establishing the countermeasures that must be taken in order to

avoid them.

4.2.1 Exhaustive Search

The first and most straightforward attack we consider is exhaustive search

on the key space, in which the attacker literally tries to guess the secret key. We

conceive a threat model in which the adversary has access to the values of the

parameters γ, τ, α, β. Although these parameters are not public, the ranges from

which their values are chosen will be eventually known by an attacker. Hence, such

threat model is reasonable.

In order to measure the hardness of this attack, we must compute the size

of the search space for each of the secret matrices, taking into account that the

attacker only needs to guess two of them.
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For each γ, the search space for the matrix S = γI +Q is equal to the search

space for the matrix Q, whose size is given by (τ + 1)n
2 . For the matrix E, the

size of the search space is given by (α + β + 1)n
2 . Finally, for the matrix U , we

must take into account the search spaces for the matrices T and T ′, whose sizes are

2n(2ω+ 1)n
2/2−n each, and the search spaces for R and C, which have sizes equal to

n! each. Thus, the attacker has the following possibilities:

• Guess U and S: the total size of the search space is given by

2n(n!)2(τ + 1)n
2

(2ω + 1)n
2−2n. (4.6)

• Guess S and E: the total size of the search space is given by

(τ + 1)n
2

(α + β + 1)n
2

. (4.7)

• Guess U and E: the total size of the search space is given by

2n(n!)2(α + β + 1)n
2

(2ω + 1)n
2−2n. (4.8)

In any of the three cases above, the size of the search space is polynomial in

the parameters α, β, τ, ω, while exponential or factorial in n. Hence, the better way

to avoid exhaustive search attacks consists of (as we intuitively already expected)

choosing a sufficiently large dimension n.

Also note that we did not consider the parameter δ, which is also part of the

secret key. As will be shown in the next section, the search space for this parameter

is quite small, when compared to the search space for the secret matrices. However,

in a real world scenario, it would have to be taken into account.
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4.2.2 Lattice reduction

As we already mentioned, the encryption method of our cryptosystem is

similar to the GGH scheme. Hence, we must consider the idea of applying Babai’s

algorithm [26] to the ciphertext c = r + xP . The attack works as follows:

• The attacker applies some lattice reduction technique, such as LLL [27] or

BKZ [28], to the public matrix P , obtaining a reduced basis P ′ = U ′P , where

U ′ is a unimodular matrix;

• The attacker computes dcP ′−1c = drP ′−1c+ xU ′−1;

• If the vector r is sufficiently short, the attacker may expect that the vector

above is equal to xU ′−1. Multiplying by P ′, he obtains xP and solves a linear

system to obtain x.

This attack may work whenever r is a sufficiently short vector with respect to L(P ),

so that c becomes sufficiently close to the lattice point xP . Our experiments suggest

that, in order to prevent xP from being the lattice vector closest to c, it is sufficient

to choose r with length greater than the length of the shortest vector in P . This

conjecture was confirmed for all sets of parameters (described in the next section).

As a matter of fact, even this lower bound can be considered loose, because lattice

reduction attacks failed in some cases where r was smaller than the shortest vector

in P . We emphasize that the choice of this lower bound for the length of the vector

r was heuristic, based on purely empirical results.
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4.2.3 Shortening the Perturbation Vector

The previous attack does not work basically because the vector r is too large,

which means that the vector c is not close to xP . However, an attacker may try to

shorten the vector r, in order to obtain a vector which is closer to xP .

In fact, let c = r + xP be the ciphertext, and consider an integer vector s,

with entries in [µ1, µ2] ∪ [θ1, θ2], such that rjsj > 0 for all j = 0, · · · , n − 1. It is

clear that the vector r′ = r − s has smaller entries than the vector r. The attack

consists of applying Babai’s algorithm to the vector c − s, which is closer to the

vector xP than c.

This attack will succeed if the positive (respectively negative) entries of s

match the positive (respectively negative) entries of r, which gives the attacker

O(2n) possibilities to try.

We raise a natural question: how does the attacker know whether the right

vector s was chosen? After applying Babai’s algorithm to c−s, one expects to obtain
the vector x. Therefore, one may check whether the answer is a vector with integer

entries in the set Zσ. Our experiments suggest that this attack yields a unique

vector with entries in the range [0, σ]. Curiously, if a random integer matrix is used

instead of the unimodular U to build the public matrix P , this attack produces more

than one vector with entries within this range. The attacker has no way of knowing

which one of them is the right one, because the encryption is randomized.
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4.3 Performance Analysis

In this section, we prove the existence of parameters satisfying conditions

(3.1) to (3.8) by presenting four possible sets of such parameters. We provide an

analysis of the key size and the hardness of the aforementioned attacks for each one

of these sets. All values suggested here were tested using the NTL C++ Library

[29], running on Linux Mint 17 (64 bits) with an AMD E-350 1600MHz processor

and 4GB of RAM.

The choices for σ, δ, γ, τ, α, β, ω, ε1, ε2 were heuristically determined in order to

produce suitable values for µ1, µ2, θ1, θ2 and generate valid Mγ,τ -matrices satisfying

conditions (3.1) and (3.2). There must be a fine tuning between the parameters.

Bad choices may result in:

1. InvalidMγ,τ -matrices (whose inverses do not satisfy conditions (3.1) and (3.2));

2. Incorrect values for µ1, µ2, θ1, θ2 (with θ1 > θ2, for example);

3. Ciphertexts vulnerable to lattice reduction attacks (if the vector r is too short).

From now on, let rand(x) be a function that outputs a random integer from

the interval [0, x[. The values of the parameters µ1, µ2, θ1, θ2 were computed as

follows:

• µ1 = d −γ2(2δ + 1)

2(γ(1 + ε1) + τ(n− 1)(1 + ε2))
e+ nσα + rand(64).

• θ1 = γδ + nσα− bτ(n− 1)(µ1 − nσα)(1 + ε2)

γ
c+ rand(64).

• θ2 = b γ2(2δ + 1)

2(γ(1 + ε1) + τ(n− 1)(1 + ε2))
c − nσβ − rand(64).
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• µ2 = −γδ − nσβ − dτ(n− 1)(θ2 + nσβ)(1 + ε2)

γ
e − rand(64).

In tables 4.1 and 4.2 we present four possible sets of parameters. In all cases,

we adopted δ = 256 + rand(256) and ω = 2. In all sets, the vector r is large enough

to avoid the lattice reduction attack described in the previous section.

Set 1 Set 2
Parameter Value Parameter Value

α 2 α 2
β 3 β 3
γ n3 + rand(n) γ n4 + rand(n)
τ 1 τ 1
σ 256 σ 256
ε1 10−4 ε1 10−3

ε2 10−2 ε2 10−2

Table 4.1: Sets of parameters 1 and 2.

Set 3 Set 4
Parameter Value Parameter Value

α n+ rand(n+ 1) α n+ rand(n+ 1)
β α + rand(n+ 1) β α + rand(n+ 1)
γ n4 + rand(n2) γ n5 + rand(n3)
τ n/2 + rand(n/2 + 1) τ n/2 + rand(n/2 + 1)
σ 256 σ 256
ε1 10−5 ε1 10−6

ε2 10−4 ε2 10−4

Table 4.2: Sets of parameters 3 and 4.

Sets 1 and 2 yield a search space of size Ω(2O(n
2)), while for sets 3 and 4 the

search space size is Ω(nO(n
2)2O(n)). We suggest 128 as the minimum value for the

security parameter n. The maximum value we tested was n = 256.

Table 4.3 shows the public key size, table 4.4 shows the average key generation

time (in seconds), table 4.5 shows the average encryption time (in seconds) and
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table 4.6 shows the average decryption time (in seconds) for each parameter set,

considering the minimum and maximum security parameter.

Public key size
Dimension (n) Set 1 Set 2 Set 3 Set 4

128 54 KB 65 KB 65 KB 78 KB
256 249 KB 311 KB 312 KB 375 KB

Table 4.3: Public key sizes (in kB) for each one of the parameter sets, considering
the minimum and maximum security parameter.

Key generation time
Dimension (n) Set 1 Set 2 Set 3 Set 4

128 8.09s 10.43s 11.48s 14.29s
256 123.04s 169.21s 187.58s 241.72s

Table 4.4: Key generation time (in seconds) for each one of the parameter sets,
considering the minimum and maximum security parameter.

Encryption time
Dimension (n) Set 1 Set 2 Set 3 Set 4

128 0.00378s 0.00388s 0.00382s 0.00386s
256 0.01497s 0.01611s 0.01598s 0.01492s

Table 4.5: Encryption time (in seconds) for each one of the parameter sets, consi-
dering the minimum and maximum security parameter.

Decryption time
Dimension (n) Set 1 Set 2 Set 3 Set 4

128 0.02074s 0.02474s 0.02479s 0.03095s
256 0.15116s 0.19747s 0.19911s 0.33761s

Table 4.6: Decryption time (in seconds) for each one of the parameter sets, consi-
dering the minimum and maximum security parameter.
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5 LATTICE DEFORMATIONS

“I want the pain. It’s how I learn.” (Caprica-Six)

In this chapter, we introduce the problem of lattice deformations, which

comes from a geometrical approach to the problem of exposing the secret key of our

cryptosystem.

Problem 5.1 (Lattice Deformation Problem - LDP) We take as parameters

of the problem three subsets A,B, C ⊆ Zn×n. The input consists of a lattice basis P .

The goal is to find R ∈ A and S ∈ B such that P −RS ∈ C.

Consider three subsets A,B, C ⊆ Zn×n. Given a lattice basis S ∈ B, an

A, C-deformation of S consists of two steps:

1. Obtain a basis for a sublattice of L(S) given by RS, where R ∈ A;

2. Add a deformation matrix E ∈ C, obtaining a basis P = RS + E.

In other words, the goal of LDP is to find a lattice basis S and a matrix R such that P

is the result of an A, C-deformation of S. The term deformation was chosen because,

from a geometrical standpoint, the grid of points that constitute the sublattice of

L(S) has its shape changed (deformed) by the vectors that are added to the basis

of this sublattice (see Figure 5.1).
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Figure 5.1: Lattice deformation.

An instance of LDP with parameters A,B, C and input P is denoted by

LDPA,B,C(P ). A pair of integer matrices (R, S) is a solution for LDPA,B,C(P ) if

R ∈ A, S ∈ B and P − RS ∈ C. We say that P is a viable input if such a solution

exists.

Note that the formulation of LDP immediately yields a decision version,

which we denote by dLDP and state as follows:

Problem 5.2 (Decisional Lattice Deformation Problem - dLDP) We take as

parameters of the problem three subsets A,B, C ⊆ Zn×n. The input consists of a lat-

tice basis P . The goal is to decide whether there is an integer matrix R ∈ A and a

lattice basis S ∈ B such that P −RS ∈ C.

Obviously, a solution for LDP is a certificate for a YES instance of dLDP. We employ

the following special notation, for a given positive integer n:

• I will denote the set of integer n× n matrices;
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• Mτ
γ will denote the set of all n× n Mγ,τ -matrices;

• U will denote the set of all n-dimensional unimodular matrices;

• Eβα will represent the set of all integer n×n matrices with entries chosen from

the set Zβα , for given positive integers α, β.

In order to analyze our cryptosystem, we consider instances of LDPA,B,C withA = U ,
B = Mτ

γ and C = Eβα . As already mentioned in the previous chapter, we work

under the assumption that the adversary has access to the values of the parameters

γ, τ, α, β. Our goal is to establish the equivalence between exposing the secret key

of our cryptosystem and solving LDP. For simplicity, we denote the problem of

exposing the secret key by ESK.

1. LDPU ,M
τ
γ ,E

β
α ∝ ESK

(a) Let P be any viable input of LDPU ,M
τ
γ ,E

β
α . We map this input to a public

matrix of our cryptosystem. In fact, P itself is a public matrix for some

instance of a public key.

(b) Assume the existence of an oracle that, given a public matrix and the

parameters γ, τ, α, β, returns the secret matrices U and S.

(c) Feed the oracle with P and get the secret matrices U, S.

(d) The pair (U, S) is a solution for LDPU ,M
τ
γ ,E

β
α(P ).

2. ESK ∝ LDPU ,M
τ
γ ,E

β
α

(a) Let P be a public matrix from a generic instance of a public key. We

map P to a viable input of LDPU ,M
τ
γ ,E

β
α . Because of the way P is built,

it is also one such viable input.

(b) Assume the existence of an oracle that solves LDPU ,M
τ
γ ,E

β
α , for any viable

input.
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(c) Feed the oracle with P and get a solution pair (U, S).

(d) This solution pair serves as a pair of secret matrices. The parameter δ

can be found by exhaustive search (since the space of all possible choices

for δ will eventually be publicly known as well).

Hence, by assuming the hardness of LDPU ,M
τ
γ ,E

β
α , we may conclude that finding the

secret matrices from the public matrix is a hard task. But we must find a connection

between LDP and some other problem, which is already known to be hard.

Let A be an n-dimensional lattice basis. According to Minkowski’s convex

body theorem [30], any convex symmetric body of volume greater than 2n|det(A)|
contains a non-zero lattice point. If we consider the n-dimensional sphere S, centered
at the origin, of radius

√
n|det(A)|1/n, we see that it contains the cube

C = [−|det(A)|1/n, |det(A)|1/n]n, (5.1)

which means that vol(S) > vol(C) = 2n|det(A)|. Hence, S contains a non-zero

lattice point. Denoting by λ1(L(A)) the length of the shortest vector in L(A), we

conclude that

λ1(L(A)) ≤
√
n|det(A)|

1
n . (5.2)

Using the exact formula for the volume of S, we obtain a tighter bound, which is

better only by a constant factor, given by

λ1(L(A)) ≤
√

n

πe
|det(A)|

1
n . (5.3)

It is known that the upper bound given by (5.3) can be arbitrarily loose. For

instance, consider the lattice generated by the matrix(
ε 0
0 1/ε

)
, (5.4)

for some small ε > 0. Minkowski’s bound yields
√

2/πe, however the vector (ε, 0)

can be arbitrarily smaller than that. On the other hand, for all n > 0, there is an
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n-dimensional lattice L such that λ1(L) > c
√
n|det(L)| 1n for some constant c > 0

[31]. As a consequence, O(
√
n)|det(L)| 1n is the best upper bound for the length of

the shortest vector of any n-dimensional lattice. In other words, Minkowski’s bound

cannot be improved beyond small constant factors.

Given a lattice, if its Minkowski’s bound is sufficiently tight, then no vectors

but the shortest one lie within it (see Figure 5.2).

Figure 5.2: Tight Minkowski’s bound. In this case, only the shortest lattice vectors
(green points) lie within this bound.

On the other hand, if this bound is loose, then even a vector within it can

be larger than the shortest lattice vector (see Figure 5.3). Therefore, in the general

case, finding a vector within Minkowski’s bound does not mean finding the shortest

vector in the lattice. Nevertheless, there is no known efficient algorithm which can

always find a vector within Minkowski’s bound [32].

Under the assumption that finding a vector within Minkowski’s bound is hard

in the general case, we show that it is unlikely to exist a universal algorithm for

LDP, i.e., an efficient algorithm that solves LDP for any family of subsets {A,B, C}.
If such algorithm exists, then we have an efficient method to find vectors within

Minkowski’s bound. In fact, assume we have access to an oracle that solves LDP

for any family of three subsets of integer matrices.
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Figure 5.3: Lattice with loose Minkowski’s bound. There are vectors within this
bound (red points) which are larger than the shortest lattice vectors (green points).

1. Let P be an n-dimensional lattice basis.

2. We consider P as the input for an instance of LDPA,B,C, where A = U , C is

the set that contains only the null matrix and

B =
{
S ∈ Zn×n | ||S0|| ≤

√
n/πe|det(P )|

1
n

}
(5.5)

where S0 is the first row of S. We claim that P is a viable input. In fact,

since L(P ) contains a vector within Minkowski’s bound, we may choose other

n − 1 linearly independent vectors of L(P ) and obtain a basis S such that

P = US for some unimodular matrix U , where S0 (possibly after reordering

the vectors) satisfies Minkowski’s bound.

3. Given access to the oracle that solves LDP, we find a basis S ′ ∈ B and a matrix

U ∈ U such that P = US. In other words, we find a basis for L(P ) which

contains a vector within Minkowski’s bound.

Although we have shown the unlikelihood of an efficient universal algorithm for LDP,

the question remains open as to whether there is an efficient algorithm to solve LDP

for a particular family of subsets {A,B, C}. Under the general assumption that

solving LDP is hard, we conclude that exposing the secret matrices of the proposed

cryptosystem is also a hard task.
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6 A VARIANT WITH BETTER KEY SIZES

“All the pieces are falling into place.” (Virtual Six)

Although the cryptosystem proposed in Chapter 4 offers good levels of secu-

rity against known attacks, it is not optimal in terms of the key size, mostly due to

the parameter γ, which is O(n3) in the best case. In this chapter, we introduce a

variant of our cryptosystem, which offers much smaller keys by working with poly-

nomials instead of matrices. As a consequence, encryption and decryption are also

sped up.

Before we proceed, we present a brief review on the theory of polynomials

and resultants. For an in-depth treatise on the subject, [33] can be consulted.

6.1 Polynomials Over The Integers

Let Z be the ring of integers. A polynomial in a single variable over Z is a

sum of the form

a(x) =
d∑
j=0

ajx
j, (6.1)

where aj ∈ Z for all j and ad 6= 0. The integers aj are the coefficients of the

polynomial, and ad is its leading coefficient. The number d is the degree of the

polynomial, denoted by deg(a). Constant polynomials have degree 0, except for the

null polynomial, which has no degree. If the leader coefficient is 1, we say that a(x)

is monic. As usual, the ring of polynomials with integer coefficients will be denoted

by Z[x].
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To avoid ambiguity, the coefficients will always be represented by the same

letter that represents the polynomial, subscripted from 0 to its degree. For example,

if a(x) is a polynomial of degree n, there should be no doubt that its leading coef-

ficient is an. Furthermore, whenever it is clear that a(x) is a polynomial, we shall

denote it simply by a.

Let q ∈ Z[x] be a monic polynomial of degree n. For all a ∈ Z[x] there is a

unique pair of polynomials t, b ∈ Z[x] such that

a = tq + b, (6.2)

where 0 ≤ deg(b) < n or b = 0.

Let q ∈ Z[x] be a monic polynomial of degree n. Define the relation ≡q, for
all a, b ∈ Z[x], as follows:

a ≡q b⇔ a− b = tq, for some t ∈ Z[x]. (6.3)

We observe that ≡q is an equivalence relation. In fact:

1. ≡q is reflexive, because a− a = 0 = 0 · q, with t = 0;

2. ≡q is symmetric, because whenever a− b = tq, we have b− a = −tq;

3. Finally, if a − b = t1q and b − c = t2q, then a − c = (t1 + t2)q, which shows

that ≡q is transitive.

Whenever a ≡q b, it is usual to write a ≡ b (mod q). Essentially, it means that a

and b leave the same remainder when divided by q. In particular, if deg(b) < deg(q),

then b is itself the remainder from the division of a by q, which will be denoted by

a mod q.
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The equivalence class of a ∈ Z[x] under ≡q is the set

a = {b ∈ Z[x] | a ≡ b (mod q)} . (6.4)

The set of all equivalence classes under ≡q is the quotient ring Z[x]/(q). By (6.2),

for all a ∈ Z[x] there is a unique polynomial b ∈ Z[x] of degree less than n such

that a ≡ b (mod q). Hence, Z[x]/(q) is fully represented by the equivalence clas-

ses of polynomials with degree less than n, together with the equivalence class of

the null polynomial. Consequently, the elements of Z[x]/(q) are in a one-to-one

correspondence with the elements of the set

{b ∈ Z[x] | 0 ≤ deg(b) < n} ∪ {0} , (6.5)

which are in a one-to-one correspondence with the elements of Zn. In fact, for all

a in the set defined in (6.5), there is a unique vector in Zn, denoted by [a], such

that [a]k = ak, for all k = 0, 1, · · · , n− 1. In a more general way, to any polynomial

a ∈ Z[x] of degree d corresponds a vector [a] ∈ Zk, for any k > d, such that [a]j = aj,

for j ≤ d, and [a]j = 0 for all j > d. For example, if a = 2−3x, then [a] = (2,−3) in

Z2, and [a] = (2,−3, 0, 0) in Z4. The vector [a] is said to be the coefficient vector

of a.

6.1.1 Resultants

Given two polynomials a, b ∈ Z[x], with deg(a) = m and deg(b) = n, the

resultant of a and b is given by

Res(a, b) = anmb
m
n

∏
i,j

(αi − βj), (6.6)

where αi and βj are the roots (over C) of a and b respectively. We note that the

resultant is zero iff a and b have a common root. Also note that, if a and b are both

monic, then we may write

Res(a, b) =
∏
i,j

(αi − βj). (6.7)
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Taking into account that

a(x) =
m∏
i=1

(x− αi) (6.8)

and

b(x) =
n∏
j=1

(x− βj), (6.9)

we see that

Res(a, b) =
m∏
i=1

b(αi) = (−1)mn
n∏
j=1

a(βj). (6.10)

We may compute the resultant as a function of the coefficients of a and b,

without having to directly compute all the roots of these polynomials.

Definition 6.1 Given two polynomials a, b ∈ Z[x] of degrees m and n respectively,

the Sylvester Matrix of a and b is given by

Sa,b =



a0 a1 · · · · · · · · · am
a0 a1 · · · · · · · · · am
· · ·

a0 a1 · · · · · · · · · am
b0 b1 · · · · · · · · · bn

b0 b1 · · · · · · · · · bn
· · ·

· · ·
b0 b1 · · · · · · bn


(6.11)

Its first n rows contain the coefficients of a, and its m last rows contain the coeffi-

cients of b.

Lemma 6.1 Given two polynomials a, b ∈ Z[x] of degrees m and n respectively, the

following holds:

Res(a, b) = det(Sa,b). (6.12)
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Proof: We know that Res(a, b) = 0 iff a and b have a common root, i.e, iff they have

a nontrivial g.c.d.. In other words, iff there are polynomials h, f, g such that a = fh

and b = gh, with deg(f) ≤ m − 1 and deg(g) ≤ n − 1. In this case, ga − fb = 0.

This yields a linear system with m+n homogeneous equations, where the unknowns

are the coefficients of f and g. The matrix of this system is exactly Sa,b, and it has

a nontrivial solution iff the determinant vanishes.

On the other hand, by (6.11), Res(a, b) is an expression of degree n in the

ai’s and m in the bj’s, and so is det(Sa,b). Viewing the coefficients as functions

of the roots in the expression of the determinant, we conclude that every factor

of the resultant is also a factor of the determinant. Provided that each factor of

the resultant has multiplicity 1, it must be equal to the determinant up to some

constant. But looking at the term an0b
m
n from (6.6), we conclude that this constant

must be 1. �

Assume that q ∈ Z[x] is monic of degree n, and a ∈ Z[x] has degree m < n.

Instead of computing a determinant of order m + n, we may simply compute a

determinant of order n to obtain the resultant of a and q. Before we proceed, we

present the following result.

Lemma 6.2 Let q ∈ Z[x] be a monic polynomial of degree n. Given any a ∈ Z[x]

such that deg(a) = m < n, there is a unique a′ ∈ Z[x], of degree less than n, such

that aa′ ≡ Res(a, q) (mod q). The polynomial a′ is said to be the integer inverse of

a modulo q.

Proof: Consider the equation ra + sq = 1 over Q[x], where the unknowns are the

coefficients of r and s, with deg(r) ≤ n − 1 and deg(s) ≤ m − 1. This yields the

linear system

uSa,q = e(0), (6.13)
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where u ∈ Qm+n is the vector whose first n entries represent the coefficients of r,

and the last m entries represent the coefficients of s. If Sa,q is nonsingular, Cramer’s

Rule guarantees that the system has a unique solution such that uj = kj/det(Sa,q),

with kj ∈ Z for all j. Hence, there is a vector u′ = det(Sa,q)u ∈ Zm+n such that

u′Sa,q = Res(a, q)e(0). (6.14)

Let us denote the concatenation of vectors by the symbol ||. By construction,

u′ = [a′]||[q′], where a′ and q′ are integer polynomials such that a′a+q′q = Res(a, q),

with deg(a′) ≤ n− 1 and deg(q′) ≤ m− 1. Therefore, aa′ ≡ Res(a, q) (mod q).

On the other hand, if Res(a, q) = 0, then a and q have a nontrivial g.c.d..

In other words, there are integer polynomials f, g, h such that a = fh and q = gh,

with deg(g) < n. Hence, ga− fq = 0, and we see that a′ = g. �

Definition 6.2 Let q ∈ Z[x] be monic of degree n, and a ∈ Z[x]. The Characte-

ristic Matrix of a modulo q is the n × n integer matrix Ca,q such that each row

(Ca,q)k is the coefficient vector of xka mod q, for all k = 0, 1, · · · , n− 1.

For example, consider q(x) = 1 + 2x + x2 and a(x) = 2 − x. Then we have that

xa ≡ 1 + 4x (mod q), and the characteristic matrix of a modulo q is given by

Ca,q =

(
2 −1
1 4

)
. (6.15)

The following lemma establishes the relation between the resultant and the

determinant of characteristic matrices. It is a key result that will allow us to build

an efficient variant of the cryptosystem presented in Chapter 4.

Lemma 6.3 Let q ∈ Z[x] be monic of degree n, and a ∈ Z[x] of degree m < n.
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Then

Res(a, q) = det(Ca,q). (6.16)

Proof: By performing elementary row operations, we are going to obtain Ca,q as a

submatrix of Sa,q and show that their determinants are equal. This proof will be

illustrated by an example, in order to make it easier to visualize the step-by-step

procedure. In our example, we are going to consider q(x) = 2 − x + x2 + 2x3 + x4

and a(x) = 1 + 2x− x2 + x3. Hence, we have

Sa,q =



1 2 −1 1 0 0 0
0 1 2 −1 1 0 0
0 0 1 2 −1 1 0
0 0 0 1 2 −1 1
2 −1 1 2 1 0 0
0 2 −1 1 2 1 0
0 0 2 −1 1 2 1


(6.17)

Before we proceed, we make some remarks on the structure of Sa,q:

1. Since q is monic, the m×m rightmost lower square of Sa,q is a lower triangular

matrix with unitary diagonal;

2. For each k = 0, · · · , n − 1, the first n rows of Sa,q correspond to [xka] over

Zm+n;

3. For each k = 0, · · · ,m − 1, the last m rows of Sa,q correspond to [xkq] over

Zm+n.

By (6.2), for all k = 0, · · · , n − 1, there is a pair of polynomials tk, rk such that

xka = tkq+ rk, where 0 ≤ deg(rk) < n. Because deg(xka) ≤ m+n− 1, we conclude

that deg(tk) < m. Hence, tkq is a linear combination of q, xq, x2q, · · · , xm−1q and,

consequently, [tkq] is a linear combination of the last m rows of Sa,q. This means
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that each [rk] consists of row (Sa,q)k plus a linear combination of the last m rows of

Sa,q.

Hence, we may employ the following procedure: for each k = 0, · · · , n − 1,

replace the row (Sa,q)k by itself minus the linear combination of the last m rows

corresponding to [tkq]. Let us see what happens in our example:

1. a(x) = 0 · q(x) + (1 + 2x− x2 + x3), hence row (Sa,q)0 remains unchanged;

2. xa(x) = 1 · q(x) + (−2 + 2x+ x2− 3x3), hence row (Sa,q)1 row will be replaced

by itself minus row (Sa,q)4;

3. x2a(x) = (−3+x)q(x)+(6−5x+5x2+7x3), hence row (Sa,q)2 will be replaced

by itself plus 3 times row (Sa,q)4 minus row (Sa,q)5, which is equivalent to

replacing it by [6− 5x+ 5x2 + 7x3];

4. Finally, x3a(x) = (7 − 3x + x2)q(x) + (−14 + 13x − 12x2 − 9x3). Therefore,

row (Sa,q)3 will be replaced by itself minus 7 times row (Sa,q)4, plus 3 times

row (Sa,q)5 minus row (Sa,q)6, i.e., by [−14 + 13x− 12x2 − 9x3].

After these row operations, we obtain the matrix

S ′ =



1 2 −1 1 0 0 0
−2 2 1 −3 0 0 0
6 −5 5 7 0 0 0
−14 13 −12 −9 0 0 0

2 −1 1 2 1 0 0
0 2 −1 1 2 1 0
0 0 2 −1 1 2 1


(6.18)

whose determinant is equal to det(Sa,q). Note that, in the general case, because

each rk has degree less than n, each one of the first n rows of S ′ corresponds to [rk]

over Zn followed by m zeros. In other words, the n× n leftmost upper square of S ′

corresponds to Ca,q.
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Now observe that each one of the last m rows of S ′ ends with a 1 followed by

0’s (except for the last row), and each of these 1’s has only 0’s above it. Dividing

the matrix in blocks, as shown below,

S ′ =



1 2 −1 1 0 0 0
−2 2 1 −3 0 0 0
6 −5 5 7 0 0 0
−14 13 −12 −9 0 0 0

2 −1 1 2 1 0 0
0 2 −1 1 2 1 0
0 0 2 −1 1 2 1


(6.19)

and provided that S ′ is a block lower triangular matrix [25], its determinant is given

by the product of the determinants of the upper leftmost block, which is det(Ca,q),

and the lower rightmost block, which is 1. Hence, we obtain det(S ′) = det(Ca,q). �

Note that Ca,q is fully determined by a and q. Characteristic matrices have

the following properties, for all monic polynomial q ∈ Z[x] of degree n and a, b ∈ Z[x]

of degrees less than n:

Proposition 6.1 Ca,q ± Cb,q = Ca±b,q.

Proof: By construction, (Ca,q)j ± (Cb,q)j is given by [xja mod q] ± [xjb mod q] =

[xj(a± b) mod q], for all j = 0, 1, · · · , n− 1. This is exactly the row (Ca±b,q)j. �

Proposition 6.2 Ca,qCb,q = Cab,q.

Proof: Observe that

[xk]Cb,q = [xkb mod q], (6.20)
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for all k = 0, · · · , n−1. Since every polynomial of degree less than n may be written

as a linear combination of these xk, we conclude that

[a]Cb,q = [ab mod q], (6.21)

for all a ∈ Z[x] of degree less than n. In particular,

[xka mod q]Cb,q = [xkab mod q]. (6.22)

But [xka mod q] is the row (Ca,q)k, and [xkab mod q] the row (Cab,q)k. Hence, we

conclude that Ca,qCb,q = Cab,q. �

Corollary 6.1 Ca,qCa′,q = det(Ca,q)In, where In is the identity matrix of dimension

n and a′ is the integer inverse of a modulo q.

Proof: This is a particular case of Proposition 2. In fact,

Ca,qCa′,q = Caa′,q. (6.23)

As we have shown in Lemma 3, aa′ ≡ Res(a, q) (mod q) and, by Lemma 4, Res(a, q) =

det(Ca,q). �

Note that matrix Ca′,q from Corollary 1 is the integer inverse of Ca,q. The

examples below illustrate the properties of characteristic matrices, for a(x) = 1+2x

and b(x) = 2− x, with q(x) = 1− x+ x2:

Ca,q =

(
1 2
−2 3

)
, Cb,q =

(
2 −1
1 1

)
(6.24)

We have that a+ b ≡ 3 + x (mod q), and

Ca+b,q =

(
3 1
−1 4

)
= Ca,q + Cb,q. (6.25)
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On the other hand, we have that ab ≡ 4 + x (mod q), and

Cab,q =

(
4 1
−1 5

)
= Ca,qCb,q. (6.26)

Finally we have that a′(x) = 3− 2x and

Ca,qCa′,q =

(
7 0
0 7

)
= 7I2 = det(Ca,q)I2. (6.27)

We note that operations involving characteristic matrices are equivalent to opera-

tions involving polynomials modulo q. This fact will be at the centre of our cons-

truction for the variant of the proposed cryptosystem, as will be shown in the next

subsection.

6.2 An Efficient Variant of the Proposed Cryptosystem

In this section, we take everything we have seen so far, put it all together

and build an efficient variant of the cryptosystem previously proposed. The core

idea consists of using characteristic matrices to generate the keys. Since all the

operations involving such matrices are equivalent to operations with polynomials,

we will be able not only to reduce the key sizes, by storing polynomials instead

of matrices, but also to speed up encryption and decryption, since operations with

polynomials are much faster than those involving matrices.

For key generation, we employ the following steps:

• Select a positive integer n, which is the security parameter.

• Pick up positive integers α, β, γ, δ, τ, σ, ω and positive real numbers ε1, ε2.

• Choose a sparse random monic polynomial q ∈ Z[x] of degree n.
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• Choose random polynomials f, h ∈ Z[x] of degree n − 1, with coefficients

randomly and uniformly chosen from the sets Zωω and Zβα , respectively.

• Choose a random polynomial g ∈ Z[x] of degree n−1 such that γ−τ ≤ g0 ≤ γ

and −τ ≤ gj ≤ 0 for all j > 0. Make sure that Cg,q is an Mγ,τ -matrix whose

inverse satisfies (3.1) and (3.2).

• Consider the matrix P = Cf,qCg,q +Ch,q. From the properties of characteristic

matrices seen in the previous section, we have that P = Cfg+h,q. Hence, we

build the polynomial

p = fg + h (mod q). (6.28)

• Choose integer numbers θ1, θ2, µ1, µ2 satisfying conditions (3.3) to (3.8).

We set P = Cp,q as the public matrix. However, it is not necessary to store

this matrix itself, as it is fully determined by the polynomials (6.28) and q. Hence,

the public key in this variant is the set {p, q, n, σ, θ1, θ2, µ1, µ2}, where p is given by

(6.28). For the encryption procedure, we would have

c = xP + r, (6.29)

where x and r are built exactly as described in the previous chapters. However, x

may be viewed as the coefficient vector of some polynomial a ∈ Z[x] of degree n−1.

Hence, as observed in Proposition 2, we have

xP = [a]Cp,q = [ap mod q]. (6.30)

Because r may also be viewed as the coefficient vector of some polynomial b ∈ Z[x]

of degree n− 1, we may compute the ciphertext in terms of polynomials instead of

matrices as follows:

c = ap+ b (mod q), (6.31)

where a encodes the message, and the coefficients of b are obtained by the procedure

EPHEMERAL_KEY described in Chapter 4.
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Provided that we have the equivalence between the resultant and the cha-

racteristic matrix determinant, we are able to translate the decryption procedure

described in the end of Chapter 4, in order to employ only polynomials. The cipher-

text will be a polynomial c given by (6.31), and its decryption follows the steps

below:

• Compute the rounding difference polynomial given by

d =

(
cg′ − Res(g, q)d 1

Res(g, q)
cg′c

)
mod q. (6.32)

Recall that g′ is the polynomial such that gg′ ≡ Res(g, q) (mod q). Also note

that this polynomial is in correspondence with the modified rounding difference

vector presented in (4.2).

• Consider the polynomial

e =
1

Res(g, q)
((ah+ b)g′ mod q), (6.33)

which is in correspondence with the inversion error vector defined in (3.12).

Applying the same procedure presented in Chapter 4, build the polynomial

dec such that
dj

Res(g, q)
> 0⇒ decj = δ (6.34)

and
dj

Res(g, q)
< 0⇒ decj = −δ. (6.35)

• Compute the polynomial(
d 1

Res(g, q)
cg′c − dec

)
f ′ mod q. (6.36)

We claim that the factor within the parenthesis is equivalent to af (mod q).

In fact,

cg′ ≡ (ap+ b)g′ (mod q). (6.37)
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Hence, we have

cg′ ≡ (a(fg + h) + b)g′ (mod q), (6.38)

which yields

cg′ ≡ afRes(g, q) + (ah+ b)g′ (mod q). (6.39)

Thus, by (6.33),

cg′ ≡ Res(g, q)(af + e) (mod q). (6.40)

Dividing by Res(g, q) and rounding yields

d 1

Res(g, q)
cg′c ≡ af + dec (mod q). (6.41)

Therefore, the expression in (6.36) yields

aff ′ (mod q) = Res(f, q)a (mod q). (6.42)

Since a is a polynomial with degree less than n, the expression above is exactly

equal to Res(f, q)a. The last step of decryption consists of dividing by Res(f, q)

to obtain a.

This is clearly a particular case of the cryptosystem proposed in Chapter 4,

with U = Cf,q, S = Cg,q and E = Ch,q. We should make some remarks at this point.

The first one is that we do not require Cf,q to be unimodular. As a matter of fact,

this would be particularly difficult, because we would have to generate a polynomial

f such that Res(f, q) = ±1. In our tests, we came to the conclusion that U does not

need to be unimodular. Using a matrix with determinant different from ±1 has the

effect that attacks based on lattice reduction tend to find shorter vectors. In order

to mitigate such attacks, we must choose f such that Cf,q has small determinant

(otherwise, even the short vectors of L(Cf,qCg,q) may be too large, which could make

lattice reduction easier). We achieved this experimentally by choosing ω = 2.

The other remark concerns the polynomial g, which must be chosen in such

a way that Cg,q is an Mγ,τ -matrix. This can be tricky, because once the polynomial
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is chosen, the coefficients of the other rows of Cg,q can grow really fast. In order

to increase the chances that Cg,q will be in fact an Mγ,τ -matrix, g must have small

coefficients in absolute value and q must be sparse. We chose q(x) = −1+q1x+q2x
2+

· · ·+qn−1x
n−1 +xn, where each qk, for k = 1, 2, · · · , n−1, is −1 with probability 1%

and 0 with probability 99%. The coefficients of g were selected uniformly at random

from the set {−1, 0}, except for g0, which was selected from {γ − 1, γ}.

In our experiments, we chose set 4 of parameters, described in Chapter 4,

with ω = 2 and δ = 256 + rand(256).

6.3 Security and Performance Analysis

All the attacks shown in Chapter 4 can be performed against this variant,

and the use of structured matrices does not seem to affect the security of the scheme.

However, we should make some remarks on the search space for the exhaustive search

attack.

As in the previous case, the attacker only needs to try guessing two polyno-

mials, for example f and g, and then he has to check whether (p − fg) mod q has

coefficients in the set Zβα .

For each γ, the size of the search space for g is 2n. For h, the size of the search

space is given by (α+ β + 1)n. Assuming that all the coefficients are uniformly and

independently chosen, the total size of the search space for the secret polynomials

g and h is given by 2n(α + β + 1)n.

The search space for f depends on the bounds for its coefficients, which is

given by the parameter ω. Since we choose ω = 2, the search space has size 5n
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(because the coefficients will range from −2 to 2). Hence, if the attacker tries to

guess f and g, for example, the size of the search space is given by 10n.

Because of the reduction in the search space for exhaustive search, we recom-

mend n = 256 as the minimum security parameter. Table 6.1 shows public key sizes

(in Kbytes) for some of the recommended values of n.

Table 6.1: Public key sizes (in kB) for several dimensions.

Dimension (n) Public Key Size (kB)
256 1.4
300 1.6
400 2.2
512 2.8

Table 6.2 shows the average time (in seconds) for key generation, encryption

and decryption.

Table 6.2: Time (in seconds) for key generation, encryption and decryption.

Dimension (n) Key generation Encryption Decryption
256 1.54054 0.00523 0.159355
300 2.44964 0.00702 0.400786
400 5.41614 0.013441 0.627673
512 11.5926 0.022812 0.970239

As for the hardness of exposing the secret polynomials, it is still related to

the problem of lattice deformations, since this variant can be reduced to its matrix

version, where we can replace each polynomial by the corresponding characteristic

matrix.
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7 CONCLUSIONS AND FINAL REMARKS

“Spins and turns, angles and curves. The shape of dreams, half remembered. Slip the

surly bonds of earth and touch the face of perfection - a perfect face, perfect lace.”

(Anders)

In this work, we proposed a new trapdoor function from a different kind

of lattice problem, related to what we called lattice deformations. Based on that

trapdoor function, we showed how to build an encryption scheme, for which an

efficient variant was proposed, based on the relation between characteristic matrices

and polynomials.

There are some open questions regarding the Lattice Deformation Problem.

Are there triplets of subsets {A,B, C} for which dLDPA,B,C is NP-complete or NP-

hard? Is dLDP NP-complete or NP-hard for the triplets of subsets used to build

the keys of the proposed cryptosystem?

Nevertheless, the reduction presented in this thesis has its value, as it shows

that it seems to be infeasible to solve LDP in the general case (for any triplet of

subsets), unless there is an efficient algorithm that always finds vectors within Min-

kowski’s bound for any given lattice. As already mentioned, no known algorithms

can always find vectors within this bound in the general case.

Attacks on the ciphertext may involve techniques other than the ones pre-

sented in this work. However, to the best of our knowledge, there seem to be no

efficient methods to retrieve the message vector from the ciphertext, provided that

all conditions described in Chapter 3 are fulfilled. Trying to “shorten” the pertur-



69

bation vector r turns out to be a brute force attack, since the adversary must guess

the signs of the entries of r.

The choices of parameters were essentially heuristic, being the result of an

exhaustive process of trying and error. We are not aware of any other suitable set

of values. The parameter γ slightly affects key size, and we could not find a set of

parameters with γ less than O(n3).

As for the variant based on polynomials, the only remark is regarding the

choice of the polynomial f , which corresponds to a characteristic matrix that is not

unimodular. Although this does not affect the security of the scheme, it would be

interesting to have a method for obtaining unimodular characteristic matrices. We

are not aware of the existence of such a method.

There is also an open question as to whether it is possible to build a digital

signature scheme based on lattice deformations. We could not figure out what kind

of information could only be generated by the holder of the secret key, in such a way

that it could be verified by applying the public key. Further research on this, and

all the other open questions, is highly encouraged.
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