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RESUMO
O tempo de pior caso para inserir uma chave no esquema clássico de hashing do cuco
é uma variável aleatória que pode assumir valores arbitrariamente grandes, devido à
probabilidade estritamente positiva de que uma sequência de rehashes sem fim aconteça.
Nossa primeira contribuição é uma variante do hashing do cuco em que o tempo de pior
caso de inserção é polinomial. Para conseguir isso, usamos duas ideias básicas. A primeira
é empregar um método de hashing perfeito em uma das tabelas quando um rehash for
necessário. A segunda ideia é fazer com que o número de tabelas hash subjacentes não seja
mais constante, mas uma função apropriada do número de chaves. O preço a pagar é um
tempo de busca maior, que não é mais constante na média, mas duplamente logarítimico.

Nossa segunda contribuição explora hashing de múltipla escolha para criar um esquema
de hashing concorrente com tempo de pior caso O(1) para operações de busca, inserção
e remoção, um hash map eventualmente consistente que não usa qualquer tipo de sin-
cronização para segurança de threads. Ele é muito bem-sucedido em cenários com um
único escritor e múltiplos leitores, superando os populares ConcurrentHashMap de Java e
o concurrent_hash_map do Intel TBB em C++. O preço a pagar é uma probabilidade de
que uma inserção possa falhar, a qual pode ser feita pequena o suficiente para atender a
aplicações práticas.

Palavras-chave: Hashing; complexidade computacional; estruturas de dados; hashing
concorrente; programação multicore.



ABSTRACT
The worst-case time to insert a key in the classic cuckoo hashing scheme is a random
variable that may assume arbitrarily big values, owing to a strictly positive probability
that an endless sequence of rehashes take place. Our first contribution is a cuckoo hashing
variant in which the worst-case insertion time is polynomial. To accomplish this, we use
two basic ideas. The first is to employ a perfect hashing method on one of the tables
whenever a rehash is called for. The second idea is to make it so that the number of
underlying hash tables is no longer constant, but rather an appropriate function of the
number of keys. The price to pay is a higher lookup time, which is no longer constant on
average, but doubly logarithmic.

Our second contribution exploits multiple-choice hashing to create a concurrent hashing
scheme with O(1) worst-case time for lookup, insert and remove operations, an eventually
consistent hash map that does not use any kind of synchronization for thread-safety. It
is particularly successful in scenarios with a single writer and multiple readers, where
it outperforms the popular Java’s ConcurrentHashMap and C++ Intel’s TBB concur-
rent_hash_map. The price to pay is a probability that an insertion may fail, which can
be made small enough to suit practical applications.

Keywords: Hashing; Computational complexity; Data structures; Concurrent hashing;
Multicore programming.
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1 INTRODUCTION

Hashing-based data structures have enormous importance in computing, starring
in a number of efficient algorithms for a variety of problems (1, 2, 3, 4, 5). The basic intent
consists of storing keys (unique identifiers), sometimes mapped to values, to be retrieved
at some later time. Dictionary operations are made efficient by determining the position
(bucket) in an underlying array (table) where the key (and its associated value object, if
any) will be stored as a function of the key itself.

Our work is based in multiple-choice hashing, where each key can be placed in
one of at least two distinct positions in the hash table. The performance of a hashing
scheme can be drastically improved when we allow each key to have alternative storing
places (6, 7).

Cuckoo hashing (8) is a variant of multiple-choice hashing, with constant worst-case
lookup time and constant amortized insertion time. Its drawback is its worst-case insertion
time, which is infinite.

Not too long ago, advances in computer hardware usually meant advances in
clock speed, so all existing software would speed up by itself over time. In recent times,
manufacturers have been leaning towards architectures with multiple communicating
processors, increasing the ability to execute parallel tasks first and foremost, with only
modest increases in clock speed. Those systems are called shared-memory multiprocessors,
or multicores (9), where multiple concurrent threads must coordinate their operations on
some shared memory.

This text is divided into two parts. In the first part, we create a cuckoo hashing
variant aiming at a scenario that prioritizes lookup performance and where a finite worst-
case insertion time is required. Our approach is mostly theoretical, comparing our variant
with well-known hashing schemes and with balanced search trees. In the second part,
we exploit multiple-choice hashing to create a simple, high-performance and eventually
consistent hashing scheme, one that does not use locks or any kind of synchronization.
Although this novel scheme has interesting theoretical aspects, our motivation is very
practical, using experiments to show it consistently outperforms popular solutions such
as Java’s ConcurrentHashMap and C++ Intel’s TBB concurrent_hash_map in relevant
scenarios.

In this text, we let n denote the number of stored keys, and we let [u] = {0, 1, . . . , u−
1} be the universe of keys, for some integer u ≥ n. For all intents and purposes, reading
and writing in an array takes O(1) time.
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1.1 A Cuckoo Hashing Variant
In cuckoo hashing, the worst-case insertion time is infinite: the probability that an

insertion executes in arbitrarily large amounts of time is strictly positive.

We tackle this boundless insertion time problem by proposing a new version of
the cuckoo hashing with perfect rehash (CHPR), first presented in (10). We introduce
the perfect rehash, a technique based on perfect hashing (11) that ensures a bounded
worst-case behavior. Preventing infinite worst-case times is not new in the literature,
e.g. a Las Vegas algorithm can be converted into a Monte Carlo algorithm to yield finite
predictable time (12).

Unlike balanced search trees, hashing schemes do not preserve the order of its
elements. Nevertheless, when using a balanced search tree instead of a hashing approach,
we are not necessarily wanting to traverse the elements in order, but we may be interested
in avoiding a linear-time worst-case performance. In that sense, we compare the theoretical
times of their basic operations to show the advantages of the CHPR.

The first version of the CHPR in (10) has its advantages when compared to other
hashing schemes, but as we shall see, it is outperformed by balanced search trees in
every aspect. The version proposed here, however, improves the average-case time of
all dictionary operations and the worst-case time of all those operations except for the
insertion which remains polynomial nonetheless.

1.2 A High-Performance, Thread-Safe Hash Table
In a scenario where a single writer thread and multiple reader threads share access

to a hash table, in the absence of mutual exclusion locks, some problems with non-atomic
operations arise (9). Locking a block of code means that threads wait for arbitrary amounts
of time, as will be seen in Section 4.2. Such waiting is unacceptable for certain applications
and systems, where a high-performance, wait-free solution is of interest (13).

In this context, we exploit multiple-choice hashing to create the monkey hashing
(MH), a hashing scheme that does not use locks or any kind of synchronization, where
every operation runs in O(1) worst-case time. The price to pay is a small probability that
an insertion might fail. As we shall see, we can make the upper bound on such probability
to be so small that it becomes negligible to all imaginable applications.

1.3 Objectives
Our two main objectives are the following:
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• to propose a cuckoo hashing variant that improves the worst-case insertion time of
cuckoo hashing, and that also improves some theoretical aspects of traditional data
structures;

• to present a novel concurrent hash map that does not require locks or synchronization
mechanisms and that outperforms widely used concurrent hash tables in 2 of the
top 4 most popular programming languages as of the writing of this thesis (Java
and C++) (14).

The general objectives can be decomposed in the following specific objectives:

• to expose our cuckoo hashing variant, the cuckoo hashing with perfect rehash;

• to obtain the time complexity of the insertion and lookup of this variant;

• to compare these complexities with those of balanced search trees, traditional chained
hashing, and classic cuckoo hashing;

• to design experiments that corroborate the time complexities;

• to introduce our concurrent hash map, the monkey hashing;

• to obtain an upper bound on its insertion failure probability and argue that it is
good enough in practice;

• to run experiments in Java and C++, comparing the monkey hashing with con-
current hashing solutions such as Java’s ConcurrentHashMap, C++ Intel’s concur-
rent_hash_map and the high-performance hash map by Laborde et al.
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2 HASHING

A hash function is a function h : S 7→M , which maps elements from a set S of n
keys into the integer range M = {0, 1, ...,m− 1}. The hash values from the codomain M
are in general associated with a structure to store data, like a list or an array.

Given a key x ∈ S, the hash function returns an address (index), i.e. an integer
in {0, 1, ...,m − 1} to store and retrieve x in the storage area, which we call hash table.
The computation of this function is performed in O(1) time under reasonable assumptions.
Figure 1 shows an example of a hashing scheme.

Figure 1 – An example of a hash table with m = 5 and with hash function h(x) = x mod 5.

Although we will be considering keys as positive integers, the domain of the
hash function can be, for example, a set of strings. Each symbol of the alphabet is thus
associated with a previously defined numerical value, making it possible to compute the
index associated with the string. We note that, in order to compute the hash function in
O(1) time, the domain must be bounded. In the case of a set of integers, each key has a
maximum size bounded by a constant (in general the number of bits used to represent
the integer in a programming language). In the case of a set of strings, we must set a
maximum size.

There exists the case where two different keys are mapped to the same index of
the table. We call this event a collision. A common way to resolve collisions is to create a
linked list of keys in each entry of the table (15). Thus, to access the data associated with
a key, it is necessary to compute its address in the table and to walk through the list, as
illustrated in Figure 2.

In the worst case, all keys collide, yielding a list of size n. In the average case, when
the hash function is uniform and the load of the table is suitable, looking up and inserting
a key takes O(1) time (15).

We define the load factor of the hash table as α = n/m.
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Figure 2 – Illustration of the hashing scheme that uses linked lists to resolve collisions.

Note that the memory allocated for the underlying array is given by a function of
the provided number of keys to be inserted and the intended load factor. In case the load
factor exceeds a settled maximum value, it is anyway necessary to reallocate the keys in a
larger underlying array, in a way to lower the load factor — and with it the complexity of
basic operations — to the desired level.

2.1 Universal Hash Functions
Hash functions may have high collision rates. We want to choose functions that

perform well for any set of keys S. It is convenient to assume the existence of random
functions mapping each key independently and uniformly to the range of hash table indexes
(and this is done for theoretical purposes). However, implementing this idea would require
an exponential number of bits (16).

To obtain hash functions that work well in practice, we use universal classes of
hash functions (17). A universal class guarantees that, when obtaining a hash function to
work with any set of keys S, it is good on average. In fact, such functions work as well as
idealized uniform hash functions on average (16).

We are interested in the universal hash function family of polynomials (17). Let
p be a prime number such that p > x for every x ∈ S. For a fixed d ≥ 2, we obtain
a0, . . . , ad−1 ∈ [p] and define our hash function as

h(x) =
(
(a0 + a1x+ . . .+ ad−1x

d−1) mod p
)

mod m.

The prime number may be informed beforehand, but may also be computed
efficiently using, for example, Rabin’s randomized algorithm for primality (18).

An example of hash function for S = {8, 14, 5, 10} and d = 3 is h(x) = ((14x2 + 7x+ 6) mod 17) mod 4.
Hence, the hash values are h(8) = 2, h(14) = 1, h(5) = 0, h(10) = 2. Once the values of m
and p are set, a function is obtained by choosing constants a0, a1, a2. Distinct constants
yield distinct hash functions from the same universal family.
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2.2 Perfect Hashing
When the set of keys we are storing is known beforehand, we may use a perfect

hashing method to find a function that does not yield collisions (11). Such injective function
is called a perfect hash function.

We are interested in two perfect hashing methods: the method of random hyper-
graphs (19) and a prime number method described in (20).

2.2.1 Random Hypergraphs Method

The random hypergraphs method uses the concept of generalized hypergraphs, or
r-graphs. Every edge of an r-graph is a set of r vertices. For every value assigned to r, we
have a different method. We thus have a family of random hypergraphs methods.

A 1-graph is equivalent to a simple graph with no edges. A 2-graph is equivalent to
a simple graph. For simplicity, we set r = 2 and work with simple graphs. We then refer
to the method as random graphs method. To study the entire family, see (19) and (11).

The algorithm is divided into two steps, where the first is randomized. The running
time is thus a random variable. The total expected running time is O(n).

The hash function computed by the algorithm is of the form

h(x) = (g(f1(x)) + g(f2(x))) mod m,

where f1 and f2 are functions that map the set of keys S into V = [ν] for some integer
ν > 0, and g maps V to M .

2.2.1.1 Mapping Step

The first step of the random graphs method is to map the n keys into an acyclic
graph of µ edges and ν vertices. The graph is constructed in an edge oriented fashion,
where µ = n and ν = 2.09µ (the choice of constant 2.09 is justified in (19)). Every key is
mapped to an edge {f1(x), f2(x)}.

The random graphs method is originally used in an universe of strings. Since the
universe we work with in this text is a set of positive integers, we use universal hashing
(seem in Section 2.1) to execute the mapping step, as suggested in (19).

The mapping step is a random search algorithm. We obtain the functions f1 and
f2 uniformly at random from an universal family of hash functions, in order to generate
the graph from the keys of S. If the graph is cyclic, we obtain new functions at random
from the family.
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In order to test if the graph is acyclic, we use a special case of the algorithm
described in (19). It runs in O(µ+ ν) = O(n) time. The graph can be represented by an
adjacency list.

Scan all vertices, each vertex only once. If vertex v has degree 1 then remove the
incident edge. When edge e is removed, check if the other vertex incident to it now has
degree 1. If so, remove the only edge incident to it. Repeat this until it is not possible
to remove (i.e. the other vertex incident to the removed edge does not have degree 1).
After all vertices are scanned, check if the graph contain edges. If so, the graph failed the
acyclicity test.

When the graph is acyclic, the reverse order in which the edges were removed are
necessary in the next step. A stack can be used to store each edge in the moment it is
removed.

2.2.1.2 Graph Assignment Step

The assignment problem is defined as follows. Let G = (V,E) be a graph with
|E| = µ, |V | = ν. Find the function g : V 7→ [µ] such that function h : E 7→ [µ] defined for
each e ∈ E, e = {v1, v2}, as

h : e 7→ (g(v1) + g(v2)) mod µ

is a bijection. In other words, we must find an assignment of values to vertices such that,
for each edge, the sum of the values associated to its vertices modulo the number of edges
is a unique integer in the range [µ].

To obtain a solution to this problem, we proceed as follows. Associate with each
edge a unique number h(e) ∈ [µ] in any order. Consider the edges in reverse order to the
order of deletion in the acyclic test; to that end, use the stack built in that step. Define
each vertex as yet unassigned. Each edge {v1, v2}, in the time it is considered, has at
least one incident unassigned vertex. When two vertices v1 and v2 are unassigned, set
g(v1) ← 0; then, set g(v2) ← (h(e) − g(v1)) mod µ. If one vertex v1 is already assigned,
set only g(v2)← (h(e)− g(v1)) mod µ.

The proof of correctness of this method is found in (19). Generating a minimal
perfect hash function is reduced to the graph assignment problem as follows. As each
edge e = {v1, v2} ∈ E uniquely corresponds to some key x (such that f1(x) = v1 and
f2(x) = v2), we set h(e) = i− 1 if x is the ith key of S. Then, the values of function g for
each v ∈ V are computed by the assignment step. Function h is a minimal perfect hash
function for S.
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2.2.1.3 An Example

Consider the set of keys S = {12, 67, 98, 3, 55, 112, 90, 84, 9, 44}. We want to obtain
a perfect hash function that maps the keys to the integer range [0, 9]. Since ν = 2.09µ and
µ = n = |S| = 10, we have ν = 20.

The first step is mapping. We obtain functions f1 and f2 from an universal family
of hash functions to compute the vertices of each edge. Hence, we have:

f1(12) = 17, f2(12) = 3;

f1(67) = 3, f2(67) = 0;

f1(98) = 0, f2(98) = 17.

Key 98 completes the cycle (17, 3, 0), introduced by the edges {17, 3}, {3, 0} and
{0, 17}. Thus, the graph fails the acyclicity test and new hash functions must be obtained.
The following generated graph is acyclic, and is shown in Figure 3. The image of f1 and of
f2 is as follows:

f1(12) = 4, f2(12) = 6;

f1(67) = 15, f2(67) = 0;

f1(98) = 16, f2(98) = 8;

f1(3) = 8, f2(3) = 15;

f1(55) = 10, f2(55) = 1;

f1(112) = 19, f2(112) = 11;

f1(90) = 5, f2(90) = 8;

f1(84) = 7, f2(84) = 9;

f1(9) = 1, f2(9) = 17;

f1(44) = 9, f2(44) = 18.

The stack of edges generated in the acyclicity test is (112, 9, 55, 44, 84, 98, 90, 12,
3, 67).

In the assignment step we choose distinct integers in range [0, 9] for each edge.
Table 1 shows this assignment.

The algorithm starts with edge 112, the edge in the top of the stack (112, 9, 55, 44,
84, 98, 90, 12, 3, 67). Hence, we have

g(11)← 0,
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Figure 3 – The graph generated by the mapping step.

Value 0 1 2 3 4 5 6 7 8 9
Edge 12 67 98 3 55 112 90 84 9 44

Table 1 – Assignment of integer values in range [0, 9] for each edge.

g(19)← (5− g(11)) mod 10 = 5.

The algorithm unstacks the edge and assigns the values to its vertices. It goes on
with edge 9:

g(17)← 0,

g(1)← (8− g(17)) mod 10 = 8,

g(10)← (4− g(1)) mod 10 = 6,

g(18)← 0,

g(9)← (9− g(18)) mod 10 = 9,

g(7)← (7− g(9)) mod 10 = 8,

g(16)← 0,

g(8)← (2− g(16)) mod 10 = 2,

g(5)← (6− g(8)) mod 10 = 4,
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g(4)← 0,

g(6)← (0− g(4)) mod 10 = 0,

g(15)← (3− g(8)) mod 10 = 1,

g(0)← (1− g(15)) mod 10 = 0.

All g(v) values, for v ∈ V incident to at least one edge, are now computed. The
isolated vertices are not used by the hash function, since they are not associated with any
key. Table 2 presents these values.

v 0 1 4 5 6 7 8 9 10 11 15 16 17 18 19
g(v) 0 8 0 4 0 8 2 9 6 0 1 0 0 0 5

Table 2 – The table of g(v) values, v ∈ V .

Now, in order to compute the address of key 112 in the hash table:

h(112) = (g(f1(112)) + g(f2(112))) mod 10 =

(g(11) + g(19)) mod 10 = (0 + 5) mod 10 = 5.

2.2.2 Prime Number Method

The perfect hashing method we denote as the prime number method is based on
the following result. Given a set S ⊆ [u] with size n, there exists a prime q < n2 log u such
that the function ζ : x 7→ x mod q is perfect (injective) for the set S (20).

We obtain a perfect hash function by computing q via exhaustive search as follows.
Set q = n (for lower values of q, there will be collision), and hash every key of S with the
hash function x mod q. If a collision occurs, increment q and try again. This goes on until
there are no collisions. It is guaranteed this algorithm halts before q = n2 log u.

As an example, let u = 11 and S = {5, 6, 9}. The algorithm starts with q = 3, and
key 9 collides with key 6. It then goes on with q = 4, and key 9 collides with key 5. When
q = 5, there are no collisions and ζ is a perfect hash function for S.

Since every iteration takes O(n) time, computing the perfect hash function takes
O(nq) = O(n3 log u) time. It is reasonable to neglect log u as a constant, so the prime
number method takes O(n3) time and O(n2) space in the worst case.

If memory turns out to be an issue, the reader can use this method to build a less
simple perfect hashing approach denoted as the FKS scheme, with O(n) space, as seen
in (20) and (11).
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2.3 Cuckoo Hashing
Cuckoo hashing is a hashing scheme with constant worst-case lookup time and

constant amortized insertion time (8). In general terms, it consists of d ≥ 2 tables with an
underlying hash function each.

We define Ti, 1 ≤ i ≤ d as our cuckoo tables and hi as each of their underlying
hash functions. Every key x is stored in Tk[hk(x)] for k ∈ {1, . . . , d}, but never in more
than one table. To lookup a key, we simply check Tk[hk(x)] for all k ∈ {1, . . . , d}. The
lookup algorithm is found in Figure 2.1.

CuckooLookup (x)
1. for i = 1, 2, . . . , d
2. if Ti[hi(x)] = x
3. return true
4. return false

Algorithm 2.1 – The cuckoo hashing lookup algorithm.

2.3.1 Insertion

When inserting a new key, the keys dislodge one another until they are all accom-
modated in the tables. In (8) we find Figure 4, which illustrates the insertion in a cuckoo
scheme with two tables.

Figure 4 – The insertion of key x in the cuckoo scheme with two tables.

We are interested in a random walk approach. The insertion algorithm first looks
up the key to be inserted to avoid duplicates. In the main loop, it picks a random table
and insert the current evicted key there, thus evicting another key that was found in the
same position. The algorithm ends when no key is evicted.
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Figure 5 – Infinite loop when inserting key x.

The insertion may enter in an infinite loop, as illustrated in Figure 5, found in (8).
Hence, we set c log n as the maximum number of iterations, for a suitable chosen c. After
that, we declare the insertion a failure and rehash the entire scheme. The c log n as the
maximum number of iterations is a good rehash criterion when the load of the scheme is
low enough (8, 21). We then obtain a new hash function for every table and attempt to
accommodate all keys, including the evicted one, in this new setting.

The insertion algorithm is found in Figure 2.2, where random(d) returns a random
value in {1, . . . , d} and ⊥ denotes an empty position.

CuckooInsertion (x)
1. if CuckooLookup(x)
2. return
3. repeat c log n times
4. k ← random(d)
5. temp ← Tk[hk(x)]
6. Tk[hk(x)]← x
7. x← temp
8. if x = ⊥
9. return
10. rehash()
11. CuckooInsertion(x)

Algorithm 2.2 – The cuckoo hashing insertion algorithm.

It is possible that two or more rehashes take place consecutively since, after a
rehash, the new hash functions might fail to accommodate all keys.
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2.3.2 Load Thresholds

In order for the insertion algorithm to perform well, the load of the table must be
sufficiently bellow a threshold. As the number of keys approaches em for some constant e,
where m is the size of the cuckoo hashing scheme (summing the sizes of all tables), the
probability of failure (infinite loop) increases. When above em, the cuckoo hashing will
fail with high probability (22).

Different number of tables d ≥ 2 yields different load thresholds. When d = 2, at
most half of the cuckoo hashing scheme can be filled in order to successfully accommodate
the keys. That is, the load threshold is e = 1/2 (23).

As first studied in (24), the memory usage highly improves as we increase d. The
load threshold for d = 3 is approximately 0.917; for d = 4, it is approximately 0.976 and
for d = 5, it is approximately 0.992 (25). Therefore, we can attain high loads and minimize
the waste of space of our cuckoo hashing scheme by choosing a suitable value for d.

2.3.3 Time Complexity

The hash functions are assumed to be independent and uniformly random, and the
load of the scheme is assumed to be bellow the threshold for d.

The worst-case lookup time is trivially O(1). The probability a insertion might
fail and a rehash is required is known to be O(1/n2), so the expected amortized cost of a
rehash is O(1/n) (8, 24). The expected time of the random walk insertion algorithm is
O(1), as shown in (24, 26).

In certain scenarios, such as in the context of router hardware, where hashing
is used for a variety of operations, the amortized performance is not good enough. An
alternative is the use of de-amortizing techniques, as seen in (27, 28). The idea is to reduce
the probability of inserting in Ω(log n) time.

2.3.3.1 Worst-Case Insertion Time

In order to study the worst case of the insertion, we focus on the rehash step, after
the insertion fails.

When the first rehash occurs, there is a strictly positive probability that the new
functions will not accommodate all keys. Then, another rehash is required during the first
rehash. This second rehash may also yield failure and another rehash is required, and so
on. There is a possibility an endless sequence of rehashes takes place during one insertion;
thus, the worst-case time of the insertion algorithm is infinite.

The cuckoo hashing scheme that we propose in this text has finite worst-case
insertion time — that is, O (n3/(log log n)3).



26

3 CUCKOO HASHING WITH PERFECT
REHASH

The cuckoo hashing variant proposed in this text seeks to avoid an arbitrary large
insertion time, therefore drastically reducing the worst-case insertion time at the cost of
a more expensive lookup, which is still very close to constant time in practice. The first
version of the cuckoo hashing with perfect rehash was proposed in (10) (see the differences
in Section 3.3).

The cuckoo hashing with perfect rehash runs an insertion in O (n3/(log log n)3)
time in the worst case, which means the insertion becomes controlled, without the risk
of entering in an infinite loop. However, the lookup time is now O(log log n) in the worst
case.

Our cuckoo hashing variant employs δ(n) = blog2 log2 nc+ 3 tables, each of them
associated with a hash function. The size of each table is d(1 + ε)n/δ(n)e, for some small
ε > 0. The rationale for enforcing that δ(n) ≥ 4 (for n ≥ 4) is based on theoretical and
empirical results and aims at optimal memory usage, as discussed in Section 2.3.2.

To look up a key x, we still check all its candidate locations (one per table). The
lookup algorithm is found in Figure 3.1.

CHPRLookup (x)
1. for i = 1, 2, . . . , δ(n)
2. if Ti[hi(x)] = x
3. return true
4. return false

Algorithm 3.1 – The cuckoo hashing with perfect rehash lookup algorithm.

To insert a key x, we first look it up to avoid duplicates, and then we use the
random walk approach. We pick a table Tj uniformly at random, 1 ≤ j ≤ δ(n), among
those having at least one empty slot, and insert x at position hj(x) in Tj . If another key is
found in hj(x), that pre-existing key is evicted. In this case, we pick another random table
and repeat the insert-and-evict procedure until no key is evicted or a predefined limit of
iterations is exceeded. In the latter case, a rehash is performed on a single table, namely
the one where the latest dislodged key came from. Since the keys to be (re-)inserted are all
known, we compute a perfect hash function (11), so the rehash itself is always successful,
with no two keys disputing the same spot. We call this operation a perfect rehash.
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The CHPR insertion algorithm is summarized in Figure 3.2, where random(δ(n))
returns a value in {1, . . . , δ(n)} and ⊥ denotes an empty space.

CHPRInsertion (x)
1. if CHPRLookup(x)
2. return
3. repeat c log n times
4. j ← random(δ(n))
5. temp ← Tj[hj(x)]
6. Tj[hj(x)]← x
7. x← temp
8. if x = ⊥
9. return
10. PerfectRehash(x, j)

Algorithm 3.2 – The cuckoo hashing with perfect rehash insertion algorithm.

3.1 Perfect Rehash
Whenever the keys to be inserted in a hash table are known beforehand, a perfect

hashing method can be applied to avoid collisions (11). That is precisely the case when
rehashing the r = O(n/ log log n) keys that resided in one of the tables constituting our
cuckoo scheme plus the key evicted last (waiting to be reinserted in that same table).

We are particularly interested in the random hypergraphs perfect hashing method (19),
seen in Section 2.2.1, with linear expected time. It so happens that the mapping step is a
random search algorithm: an auxiliary graph is randomly generated, repeatedly, until it
contains no cycle. Since such a subprocedure has an infinite worst-case time, we impose
a maximum number cr2 of repetitions, for some c > 0, so that the maximum time spent
running the random hypergraphs method is cr2 times the O(r) cost of the acyclicity test
in each repetition, yielding an O(r3) time in the worst case.

If ever our limit is exceeded, we fallback to the deterministic method from Section
2.2.2. So, we have an O(r3) worst-case time for the deterministic phase as well. Consequently,
the two phases of the perfect rehash procedure combined run in O(r3) = O (n3/(log log n)3)
time in the worst case. The drawback of requiring such a deterministic fallback phase
is that the size of the hash table undergoing a perfect rehash may have to grow from
Θ (n/ log log n) to O (n2/(log log n)2), as possibly required by the deterministic perfect
hashing method (20) depending on the value of q. As discussed in Section 2.2.2, one may
use the prime number method to build the FKS scheme with O(r) space.
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3.1.1 Modified Lookup

Note that, because of perfect rehashing, the lookup procedure must be modified
so we look up a key in a table using its underlying hash function and, if not found, its
underlying perfect hash function as well. Indeed, we do not want to replace the original
hash function with the perfect hash function because, while the latter function is perfect
for the keys that were already there when we last rehashed that table, it is not guaranteed
to be universal—which is important for new keys that may still be added. Moreover,
because the current universal hash function proved to be unable to accommodate all keys
in the table being rehashed, we take the time to obtain a new universal hash function for
that table, anticipating possible attempts of accommodating that same set of keys in that
very table (e.g, after some keys have been evicted/deleted and reinserted).

The pseudo-code in Figure 3.3 implements the modified lookup. The perfect hash
functions are denoted as h′i for i = 1, . . . , δ(n).

CHPRModifiedLookup (x)
1. for i = 1, 2, . . . , δ(n)
2. if Ti[hi(x)] = x or Ti[h′i(x)] = x
3. return true
4. return false

Algorithm 3.3 – The cuckoo hashing with perfect rehash modified lookup algorithm. The
underlying perfect hash function of the i-th table is denoted as h′i.

3.1.2 Perfect Rehash Amortized Cost

We now argue that the amortized cost of a (perfect) rehash is negligible in the
grand scheme of things, as is the case in traditional cuckoo hashing (8, 24, 21, 26).

Let again r = O(n/ log log n) denote the number of keys we are performing a
perfect rehash on. Note that our perfect rehash procedure may either run entirely via
the random hypergraphs method, whose expected time would already be O(r) even if
we were not to interrupt it after cr2 iterations (as explained in Section 3.1), or require a
deterministic, cubic-time phase if that cr2 limit is reached.

Let B denote the number of iterations that would be run had we not imposed any
limit. Since the expectation E[B] = O(1) (please refer to (19)), by employing the Markov
inequality we obtain

Pr[B > cr2] ≤ E[B]
cr2 = O

( 1
r2

)
,

an upper bound to the probability that we require the deterministic fallback during a
perfect rehash. The amortized time of the deterministic method (which can be regarded as
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an average of its execution times taken over all executions of the perfect rehash procedure)
is therefore O(1/r2) ·O(r3) = O(r).

Summing up the contributions of those distinct phases (random hypergraphs
and deterministic), we still obtain O(r) = O(n/ log log n) as the expected time overall
for a perfect rehash. Now, since the probability that a rehash is required is O(1/n2)
(see (8, 24)), its amortized time becomes O(n/ log log n) · O(1/n2) = O (1/(n log log n),
which is dominated by the average O(log log n) complexity of the (necessary) lookup that
precedes each insertion—hence negligible.

3.2 Insertion and Lookup Analysis
For the lookup operation, the average-case time for present keys is

Θ
 1

log log n

log log n∑
i=1

i

 = Θ
(

log log n+ 1
2

)
= Θ(log log n),

and the overall worst-case time, as well as the average-case time for absent keys, is clearly
linear on the number of tables, hence also Θ(log log n).

For the insertion operation, we must first state that the probability of a rehash
is no bigger in our scheme, where a single hash function is replaced when a rehash is
performed, than the O(1/n2) rehash probability of standard cuckoo schemes (8, 24), where
all hash functions are replaced during a rehash (since all tables are rehashed). However
intuitive that may be, we present computational experiments which corroborate that in
Section 6.1. Note also that even a weaker bound such as O(1/n) for the rehash probability
would suffice in our analysis.

The expected insertion time in the standard, multiple-table cuckoo hash schemes
using a random walk approach is known to be O(1), and it does not increase asymptotically
when more tables are employed (26). Because those schemes execute a rehash in expected
Ω(n) time with a O(1/n2) probability (8), and our perfect rehash solution rehashes in
expected O(n/ log log n) time with the same probability, the expected time for the whole
insertion in the CHPR scheme is also O(1), plus the cost of the initial lookup (to avoid
duplicates), which is no longer O(1) in our scheme. The initial lookup, in the CHPR
scheme, runs in Θ(log log n) time on average, therefore yielding an overall Θ(log log n)
average-case insertion time.

The worst-case insertion time is O (n3/(log log n)3), corresponding to the case where
a perfect rehash exhausted all allowed repetitions of the random hypergraphs phase and
resorted to the deterministic phase, as seen in Section 3.1.

Table 3 compares our construct with other relevant data structures. The chained
hashing is a hash table with linked lists for collision resolution; its analysis, as well as that
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of balanced binary search trees, can be found in (15).

Worst case Average case
Lookup Insertion Lookup Insertion

BST Θ(log n) Θ(log n) Θ(log n) Θ(log n)
CH Θ(n) Θ(n) O(1) O(1)
CCH O(1) ∞ O(1) O(1)
CHPR Θ(log log n) Θ

(
n3

(log log n)3

)
Θ(log log n) Θ(log log n)

Table 3 – The time complexity of basic operations for Balanced Search Trees (BST), the
traditional Chained Hashing scheme (CH), the Classic Cuckoo Hashing (CCH),
and our CHPR.

Note that our variant is outperformed by balanced search trees only in the worst-
case insertion time. Comparing to known hashing schemes, it improves the worst-case
insertion time of the traditional cuckoo hashing and the worst-case lookup time of the
chained hashing.

3.3 Preliminary Work: The First Version
In my master’s thesis (10) we find preliminary work on our variant. In it, the

CHPR employs
√
n tables and improves the classic cuckoo hashing worst-case insertion

time and the chained hashing worst-case lookup time. Table 4 is adapted from (10) to
include balanced search trees, which outperforms the CHPR in every aspect. Moreover, a
deterministic perfect rehash was performed using a method that required every pair of
keys to be relatively prime, thus restricting the keys used in the worst-case insertion.

Worst case Average case
Lookup Insertion Lookup Insertion

BST Θ(log n) Θ(log n) Θ(log n) Θ(log n)
CH Θ(n) Θ(n) O(1) O(1)
CCH O(1) ∞ O(1) O(1)
CHPR Θ(

√
n) Θ(n log n) Θ(

√
n) Θ(

√
n)

Table 4 – The time complexity of basic operations for Balanced Search Trees (BST), the
traditional Chained Hashing scheme (CH), the Classic Cuckoo Hashing (CCH),
and the preliminary CHPR.

3.4 The Cuckoo Tree: An Open Problem
To reduce the lookup time from O(δ(n)) to O(log δ(n)), we introduce an improve-

ment we call the cuckoo tree, a binary tree where each node has a split key, a table and a
hash function. The split key comes from the generalized binary split trees (29), and is used
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to determine the keys that will compose the left and right sub-trees of the current node. If
we are interested in a worst-case lookup time of O(log log n), then δ(n) = log n suffices.

The tables may be allocated as a tree from the start with pre-defined split keys.
Another option is to allocate tables on demand, as keys are inserted and evicted. The
current evicted key can be used as the split key of the new table, and the tree may be
built as a balanced search tree. Operations like rotations, however, will force some keys
to be reallocated among tables to preserve the properties of the tree, which affects the
performance of the insertion.

The cuckoo tree is illustrated in Figure 6. The split keys are represented at the
first position of each table.

Figure 6 – A cuckoo tree where the first key of each table is a split key.

To lookup a key x, we start by looking it up in the root node with its underlying
hash function. If x is not in the computed index, we compare it with the split key: if lower,
we proceed to the left sub-tree; else, we proceed to the right sub-tree. This goes on until
we find the key or reach a leaf node, in which case the lookup fails. As an example, when
looking up key 45 in the cuckoo tree of Figure 6, we first look it up in the root node with
its underlying hash function. Then, we compare it with 50 and proceed to the left sub-tree,
where it is not found. Next, we compare 45 with 25 and proceed to the right sub-tree,
where we find the key.

The insertion starts in the root node. If key y is evicted, we compare it with the
split key to know if we proceed to the left sub-tree or to the right sub-tree, and then we
continue this insert-and-evict procedure in the current node. When a key from a leaf node
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is evicted, the next iteration is in the root node. Figure 7 illustrates the insertion of a key.

Figure 7 – Inserting key 40 in the cuckoo tree.

In order to preserve the properties of the tree, we can no longer choose an arbitrary
table to perform a perfect rehash on: a key in a right (left) sub-tree must be higher (lower)
than the parent split key. A simple solution is to pick a table in a walk through the tree,
with the evicted key, to perform a perfect rehash on, and resize it if necessary (in case
all available tables are full). However, in the worst case, all keys are placed in one path
from the root node to some leaf — and hence the cuckoo tree degenerates to our regular
CHPR approach without a random-walk insertion algorithm. The worst case scenario of
the cuckoo tree is illustrated in Figure 8. Thus, insertions would take Θ (n3/(log log n)3)
time in the worst case, because the log log n tables in the aforementioned path would resize
from Θ(n/ log n) to Θ(n/ log log n) to accommodate all our keys.

It remains an open problem to perform a perfect rehash that does not increase the
size of tables of the cuckoo tree, if it is actually possible.
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Figure 8 – An illustration of the worst case scenario of a cuckoo tree.
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4 CONCURRENT HASHING

The advent of multicore machines brought the design of software where multiple
concurrent threads manipulate shared objects, variables and data structures. It is fairly
common, in parallel computing, that distinct threads share access to some hash table. The
traditional way to provide an atomic behavior in software, so that only one thread at a time
accesses the shared structure, is by using mutual exclusion locks. The mutual exclusion
problem is one of the classic coordination problems in multiprocessor programming (9, 30,
31). It was first described and solved by Dijkstra in (32). Of course that does not come for
free, as those traditional synchronization methods take a toll on performance.

4.1 Shared Data and Synchronization
To illustrate the problems we encounter in coordinating multiple threads in accessing

shared data, we find the following example in (9).

Let us solve the problem of finding all primes in an integer range using multiple
threads. Our approach is to assign each thread one integer at a time. When a thread is
done testing an integer, it asks for another integer via a function that increments a global
shared counter variable and returns its prior value to the caller. We call this variable
counter, which is shared by all threads. Figure 4.1 shows an implementation of function
ReturnAndIncrement() in pseudo-code.

ReturnAndIncrement ()
1. temp← counter
2. counter← temp + 1
3. return temp

Algorithm 4.1 – An implementation of a function that increments a shared counter variable
and returns its prior value.

Using the counter variable like this works well for a single thread, but it fails with
multiple threads. The variable temp is a local variable to each thread, while the counter
variable is shared among all threads. If both threadsA andB call the ReturnAndIncrement()
function at about the same time, they might simultaneously read 1 from the counter,
set their local temp variables to 1, counter to 2, and both return 1. So, concurrent calls
to ReturnAndIncrement() return the same value, but we expect them to return distinct
values.
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The problem is that incrementing the counter variable requires two distinct opera-
tions on it: reading its value into a temporary variable and writing its new value back to
it. It is not an atomic (indivisible) hardware step.

4.1.1 Shared Hash Table Issues

In this Section, we examine some problems with non-atomic operations for tradi-
tional chained hashing and cuckoo hashing in a scenario with a single writer thread and
multiple reader threads.

In traditional chained hashing, a concurrency issue arises when the writer is
removing a key. When the reader is iterating through the list of synonyms of the key it is
looking up, and computes the address of the next key x, the writer might be removing
it from the list. Then, when reading the key from that memory cell, that memory space
might be on use by another process; or, while comparing x with the searched key, the
pointer to the next item might be nullified so that the operating system can reclaim those
memory positions (via the garbage collector of the programming language, if present, or
upon an explicit dealocation instruction in the program). Consequently the reader might
fail the lookup of a key that is present.

An insertion is consistent in the case of a single writer. Nevertheless, in the optimized
version of chained hashing, such as Java’s HashMap1, after the number of items in a
bucket is above a pre-set threshold, the bucket is reorganized as a balanced search tree
(a red-black tree in the case of HashMap). Thus, during an insertion in a bucket that is
a tree, a lookup of a key from a reader might fail during a rotation (or during a node
splitting, in the case such a tree is a B-tree), even if the key is present in the bucket.

In cuckoo hashing, after a key is evicted, it becomes temporary unavailable while
it has not been reinserted in a different table. A reader thread may fail a lookup while
the key is nowhere to be found. Also, during a lookup, the writer thread might place the
current evicted key in a position that was already verified, and then the lookup fails.

4.2 Mutual Exclusion
In order to avoid problems with a non-atomic sequence of operations on shared

memory, we transform the sequence into a critical section: a block of code that can be
executed by only one thread at a time. This property is called mutual exclusion, and the
standard way to approach it is through the use of locks (9).

We say a thread acquires the lock when it executes a lock() function call, and
releases the lock when it executes an unlock() function call. Figure 4.2 shows a thread-safe
1 The source code is available in http://hg.openjdk.java.net/jdk8/jdk8/jdk.
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implementation of the ReturnAndIncrement() function, now with mutual exclusion. The
operations in lines 2 and 3 are in the critical section.

ReturnAndIncrementMutualExclusion ()
1. lock()
2. temp← counter
3. counter← temp + 1
4. unlock()
5. return temp

Algorithm 4.2 – A thread-safe implementation of a function that increments a shared
counter variable and returns its prior value using mutual exclusion.

Figure 9 illustrates the use of critical sections. When thread B executes the lock()
function, it is trying to enter the critical section, and must wait for thread A to release
the lock. Thread C executes the lock() function and also waits. After thread A releases
the lock, thread B enters the critical section and thread C waits until B releases the lock.

Figure 9 – Illustration of mutual exclusion, where threads A, B and C run concurrently.
The straight horizontal arrows represent time. Thread B waits between times
t1 and t3, and thread C waits between times t2 and t4.

We may want to associate different locks with different critical sections. In pro-
gramming languages, a lock is normally encapsulated as a structure variable or as an
object, and the functions or methods are called for individual locks.

The Java ConcurrentHashMap (33) is a lock-based hash map. It splits the hash
table into segments and uses one lock per segment. Using one lock for the entire structure
is an inefficient solution, because only one thread at a time is allowed to access the map.
We want to maximize the code that can be executed concurrently.

4.2.1 Mutual Exclusion Overhead

Mutual exclusion synchronization takes time to be executed. For example, the
operations of locking and unlocking, when executed many times, produces a relevant time
overhead. To illustrate this, we designed a simple experiment in Java2.
2 The experiment is found in https://github.com/judismar/sync-overhead.
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In our experiment, a variable was incremented in a loop that was repeated
1,000,000,000 times. We measured the total time it took to execute the loop, which
was 65 milliseconds. We repeated this experiment by declaring the line of code that incre-
ments the variable as a Java synchronized block of code, and it took 27,000 milliseconds
to execute the loop. We also used a lock variable to define the line of code that increments
the variable as a critical section (locking before and unlocking after), and it took 22,000
milliseconds to execute the loop.

4.2.2 Deadlock and Starvation

When designing algorithms with mutual exclusion, we are mostly interested in
progress guarantees. We may want our lock-based algorithms to be deadlock-free and
starvation-free (9).

A deadlock occurs when all threads are waiting for locks to be released and neither
of them is able to make progress, because the progress of one thread would require another
thread to release a lock, while that thread (as well as all the others) is in the same situation.

A simple example is as follows. We have an object or data structure, and threads
A and B are going to operate on it at about the same time. Thread A runs an operation
that acquires lock 1, thread B runs another operation that acquires lock 2. While running
the same operation, thread A eventually acquires lock 2, and thread B, before releasing
lock 2, acquires lock 1. This yields a deadlock, because thread A is waiting for thread B to
release lock 2 and thread B is waiting for thread A to release lock 1. Hence, both threads
fail to progress.

Deadlock-freedom is a property that states that if one thread wants to enter the
critical section, it eventually succeeds; if more than one threads want to enter the critical
section, then eventually at least one of them succeeds.

Starvation occurs when a thread is unable to gain regular access to a critical section,
and hence is unable to make progress. This happens when other threads block the shared
data for long periods of time. As a simple example, thread A invokes an operation that
locks a shared data for a very long time (say, for one billion instructions), and it invokes
this operation very often. Thread B also wants synchronized access to the shared data, but
the operation it runs locks the data for only 4 instructions. Hence, thread B will starve as
it rarely gains access to the shared data.

The formal definition of starvation-freedom, however, requires that every thread
that wants to enter a critical section will eventually succeed. In our example, thread B
will eventually gain access to the shared data. This formal definition is important in the
design of mutual exclusion solutions. For example, Dijkstra’s first solution to mutual
exclusion (32) is deadlock-free, but not starvation-free. When multiple threads want to
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enter the critical section, one will eventually succeed. However, the thread that succeeds
is arbitrary, meaning that some thread could wait forever and never gain access to the
critical section. Modern solutions to the mutual exclusion problem are deadlock-free and
starvation-free, as seen in (9).

The formal definition is also important in the case where a thread acquires a lock
but never releases it, mostly due to a bug in the code. All other threads acquiring the
same lock will starve.

4.3 Non-blocking Algorithms
The lock-based implementation in Figure 4.2 is called blocking: an unexpected

delay by one thread can prevent others from making progress. Blocking implementations
are poorly suited for certain systems (13). Non-blocking algorithms are also of interest,
where threads synchronize their operations without the use of mutual exclusion.

A simple example is as follows. Suppose we are in a scenario with a single writer
thread and multiple reader threads, and the writer thread keeps updating the value of
two shared variables that are read by the reader threads. One variable could be a student
name, where the other variable is the student’s grade. When the writer thread is updating
the variables, it writes a student name to the first variable and their corresponding grade
to the second one. Because we are not using mutual exclusion to update both variables
atomically, the reader thread might read a student name and a grade that corresponds
to another student — an inconsistency we want to avoid. A simple solution, based on a
solution implemented by the optimistic cuckoo hashing (34) (seen in Section 4.5.4), is to
add a shared variable that works as version counter.

The version counter variable starts with 0. Before the writer thread begins to
update the shared variables’ values, it increments the shared version counter. When it
finishes updating the variables, it increments the shared counter again. Figure 4.3 shows
an algorithm that implements this idea.

UpdateValues (a, b)
1. version-counter← version-counter + 1
2. x← a
3. y ← b
4. version-counter← version-counter + 1

Algorithm 4.3 – A thread-safe implementation of a function that updates the values of the
shared global variables x and y, which respectively stores the student’s
name and their grade, using a shared global version counter variable.

Before reading the two variables, the reader thread snapshots the value stored in
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the shared counter. If the value is odd, the writer thread is updating the variables’ values
and thus the reader thread may perform other tasks and return later to retry. Otherwise, it
proceeds to reading the variables. After it is done, the reader thread snapshots the shared
counter again. It then compares its new version with the old version: if they differ, the
writer thread performed an update on the variables and the reader thread should retry its
reading operation.

This simple synchronization solution guarantees that the reader threads will read
a grade that corresponds to the student’s name without the use of mutual exclusion.

4.3.1 Lock-Freedom and Wait-Freedom

When designing concurrent algorithms, we may be interested in some progress
guarantees. Lock-freedom and wait-freedom are examples of non-blocking progress condi-
tions (9).

A function or method is lock-free if it guarantees that infinitely often some call
finishes its execution in a finite number of steps. A function or method is wait-free if it
guarantees that every call finishes its execution in a finite number of steps. This means
that an arbitrary delay by one thread does not necessarily prevents other threads from
making progress.

An alternative definition of lock-freedom and wait-freedom is found in (35). An
object or shared data structure is lock-free if it always guarantees that some thread
completes an operation within a finite number of steps. An object or shared data structure
is wait-free if it guarantees that each thread completes an operation within a finite number
of steps.

Our solution to the students’ grade problem is lock-free: the writer thread updates
without any delay, at any time. However, it is not wait-free. A reader thread might attempt
to read the shared variables and always read an odd version from the version counter,
meaning that the writer thread is updating the variables. Thus, it might retry over and
over again.

Figure 10, adapted from (36), compares all the progress conditions we have seen in
this text.

4.4 Consistency
In sequential programming, we concern ourselves with the correctness property

of safety (that is, some “bad thing” never happens during the execution of a program).
The correctness of a multicore program is more complex: we are concerned about liveness
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Figure 10 – A table that compares blocking and non-blocking progress conditions.

properties (such as lock-freedom and wait-freedom, seen in Section 4.3.1) and with safety
(consistency) properties, which we study in this Section.

We study two safety conditions. The weaker condition of quiescent consistency and
the stronger condition of linearizability.

4.4.1 Quiescent Consistency

The notion of quiescent consistency was introduced by (37) and (38).

A method or function call is the interval that starts with an invocation event and
ends with a response event. A call is pending if the invocation event has occurred, but its
response event has not.

An object or data structure is quiescent if it has no pending method or function
calls. Two principles define the quiescent consistency (9): (1) method or function calls
should appear to happen in a one-at-a-time, sequential order; and (2) method or function
calls separated by a period of quiescence should appear to take effect in their real-time
order.

In other words, quiescent consistency requires that the methods and functions that
are called after a quiescent interval take effect after the ones that were called before this
interval. When the calls overlap in an interval that is not quiescent, any order of their
effects satisfies the quiescent consistency condition. Figure 11 helps illustrating quiescent
consistency.

In Figure 11, the method or function call before the first rectangle takes effect
before the ones after the first rectangle. The calls between the first and second rectangles
may take effect in any order among themselves. The calls after the second rectangle take
effect after the calls that are before the second rectangle. The two calls between the second
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Figure 11 – Illustration of quiescent periods, where threads A, B and C run concurrently.
The straight horizontal arrows represent time. The thick segments represent
method or function calls, and the red rectangles delimit the quiescent periods.

and third rectangles may take effect in any order among themselves. Finally, the call after
the third rectangle is the last one to take effect.

4.4.2 Linearizability

The notion of linearizability was introduced in (39).

Two principles define the property of linearizability (9): (1) method or function
calls should appear to happen in a one-at-a-time, sequential order; and (2) each method
or function call should appear to take effect instantaneously at some moment between its
invocation and response.

The method or function call appears to take effect in a linearization point. The
usual way to show that a concurrent object or data structure is linearizable is to identify,
for each method or function, its linearization points. For lock-based implementations, each
critical section can serve as a linearization point. For non-blocking implementations, the
linearization point is typically a single step where the effect of the method or function call
becomes visible to other method or function calls.

For a linearizable object, the method or function calls that overlap in time may
take effect in any order. However, if a call ended with its response event, we are sure it
already took effect. Figure 12 helps illustrating a linearizable object.

In Figure 12, assuming all calls come from a linearizable object: call 2 takes effect
before call 1, which takes effect before call 3 (notice that there is no quiescent period
between them). Then, call 4 takes effect, followed by call 5. Call 6 takes effect before call 7.

A formal, mathematical definition of linearizability is given in Appendix A.

4.4.3 Eventual Consistency

Eventual consistency guarantees that, if no additional updates are done to a given
data item, all readers will eventually read the latest written data (40). Even though it
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Figure 12 – Illustration of a concurrent execution of operations, where threads A, B and
C run concurrently. The straight horizontal arrows represent time. The thick
black segments represent method or function calls. The vertical red lines
represent the linearization points of each call in this particular execution. The
calls are numbered after their invocation time.

provides but a few guarantees, eventual consistency is inherent to many modern solutions,
from distributed databases to event stores to the Internet Domain Name System (DNS).

The concept of eventual consistency was originated in the context of distributed
computing (41). The theorem known as CAP theorem (42) states that it is impossible
to achieve data consistency (linearizability) and system availability in the presence of
tolerance to network partition. Thus, the designers of distributed systems sought weaker
consistency models. Eventual consistency was a solid alternative to linearizability.

While eventually consistent systems do not guarantee safety, there is evidence that
they work well in practice. There are quantitative metrics used to measure consistency,
and studies have shown that eventual consistency is often strongly consistent, as seen
in (40). Thus, sacrificing safety guarantees for the sake of high performance and simplicity
of design is worth it in many cases.

4.5 Some Concurrent Hashing Schemes

4.5.1 Java ConcurrentHashMap

Java’s ConcurrentHashMap (33) is a hashing scheme that uses lists to resolve
collisions. Its first version used a small number of locks and was designed to optimize lookups.
For simplicity, we first study an adapted version of the original ConcurrentHashMap found
in (9). Then, we study the current version (since 2014) of Java’s ConcurrentHashMap by
explaining the most relevant changes and improvements.

4.5.1.1 The Adapted Version

Instead of using a single lock to synchronize the entire hash table, we split the
table into independently synchronized pieces. The hash table is initialized with an array
of L locks and a table with N = L entries.
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Although the array of locks and the hash table are initially of the same capacity,
the table will grow when required, but the array of locks will not. When the table is
resized, we double the capacity N. Thus, lock i covers table entry j, where j mod L = i.
Figure 13, found in (9), illustrates this hashing scheme.

Figure 13 – An instance of the adapted version of Java’s ConcurrentHashMap with N = 16
and L = 8. Each lock covers 2N/L entries.

Figure 4.4 shows the lookup algorithm. We first acquire the lock in the position
h(x) mod L of the array of locks. Then, we look up the key in the bucket of the position
h(x) of the table, and then release the lock.

CHMLookup (x)
1. locks[h(x) mod L].lock()
2. result← table[h(x)].listLookup(x)
3. locks[h(x) mod L].unlock()
4. return result

Algorithm 4.4 – The lookup algorithm of the adapted version of Java’s Concurren-
tHashMap.

The insertion algorithm is found in Figure 4.5. We first acquire the lock in the
position h(x) mod L of the array of locks. Then, we attempt to insert the key in the bucket
of the position h(x) of the table (line 2). The listInsert method call returns true if the
key is successfully inserted, or false if it was already present. Before releasing the lock, we
increment variable size (which starts with 0) if the key was successfully inserted (lines 3
and 4). Before returning the result of the insertion, we check if the average bucket size
exceeds 4, in which case we double the capacity of the table (lines 6 and 7). Details on the
resize procedure is found in (9).
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CHMInsert (x)
1. locks[h(x) mod L].lock()
2. result← table[h(x)].listInsert(x)
3. if result
4. size← size + 1
5. locks[h(x) mod L].unlock()
6. if size/table.length > 4
7. resize()
8. return result

Algorithm 4.5 – The insertion algorithm of the adapted version of Java’s Concurren-
tHashMap.

A resize operation halts all other concurrent operations. It acquires every lock in
the array of locks in ascending order. A resize() call cannot deadlock with another resize()
call because they both start without holding any locks, and acquire the locks in the same
order. When a thread starts to resize the table, it stores the current table capacity. After
it is done acquiring every lock, if it then discovers that another thread has updated the
table capacity, then it releases the locks and gives up.

4.5.1.2 The Current Version

Java’s ConcurrentHashMap last update was introduced in 2014 and its code can
be found in http://hg.openjdk.java.net/jdk8/jdk8.

The initial capacity and the intended load factor can be informed as arguments
of the constructor. The table is thus pre-allocated to accommodate a given number of
elements. For compatibility with previous versions, you can also inform the concurrency
level, which is used, in the current version, as an additional hint for internal sizing. In the
original version, the expected concurrency level was used to split the table into segments,
where each segment was synchronized independently (like seen in the adapted version). For
example, a concurrency level of 16 would yield 16 independently synchronized segments.

The most relevant change introduced in the current version is the absence of
segments. Now, each bucket is synchronized independently using a Java synchronized block.
This means that the “concurrency level” grows with the table size, and each entry of the
hash table is synchronized independently.

The read operations are generally executed without blocking, so they can overlap
with write operations.

The most common case of the insertion algorithm is when the bucket is empty. In
this case, the first node is allocated without blocking. When the bucket is not empty, the
insertion is performed in a Java synchronized block, using the first node of the linked list
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as the monitor object. This means that concurrent insertions, updates and removals in the
same bucket will have to wait.

With the exception of insertions that do not incur rehashes, all other write opera-
tions rely on blocking.

4.5.2 TBB concurrent_hash_map

Intel’s TBB concurrent_hash_map is explained in (43). It is a popular concurrent
hash map for C++.

The hash table consists of an array of buckets, where each bucket consists of a list
of nodes and a read-write lock (which is explained in the following paragraphs) to control
concurrent access by multiple threads. Elements are placed in the bucket located at the
table position obtained from the computed hash value. Figure 14, found in (43), illustrates
the hash map.

Figure 14 – The TBB concurrent_hash_map.

A lookup (the find operation) computes the hash value and acquires the read
lock of the corresponding bucket. The read lock guarantees that there is no concurrent
modifications to the bucket while it is being read by multiple reader threads. Inside the
bucket, the lookup is performed by executing a linear search through the list of nodes.

The insert operation first allocates a new node. It then computes the hash value of
the key to find the corresponding bucket, and acquires its write lock — which locks both
readers and writers. The new node is then linked to the list of nodes and the write lock is
released.
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4.5.3 Hopscotch Hashing

The hopscotch hashing (44) was created for sequential and concurrent use, with
O(1) worst-case lookup time. Like cuckoo hashing, an insertion might fail and a full rehash
is required.

We have a single hash function h and a single table. A key x will be found either
in position h(x), or in one of the next H − 1 positions, where H is a constant that the
authors set to 32. Thus, a bucket has fixed size and overlaps with the next H − 1 buckets.
Each entry includes a hop-information bitmap of H bits. It indicates which of the next
H − 1 entries contains keys that hashed to the current entry’s bucket. A lookup can thus
be performed by looking at the bitmap to see which entries belong to the bucket, and then
checking the constant number of entries.

When inserting a key, the H positions of the bucket might be occupied. The idea
is to "move the empty slot towards the desired bucket". The insertion algorithm works
as follows, where h(x) = i. Starting at i, look for the first empty entry of the table. If
the empty entry’s index j is within H − 1 of i, place x there and return. Otherwise, j is
too far from i. To create an empty entry closer to i, find a key y whose hash value lies
between i and j, but within H − 1 of j, and whose entry lies bellow j. Displacing y to
j creates a new empty slot closer to i. Repeat. If no such key exists, or if the bucket i
already contains H keys, resize and rehash the table.

Figures 15 and 16, found in (44), show an example execution of the hopscotch
insertion algorithm with H = 4. The blank entries are empty, and the others are occupied.
In Figure 15, we are inserting key v with hash value 6. We look for the first empty entry,
which is entry 13. Because 13 is more than 4 entries away from 6, we look for an earlier
entry to swap with 13. The first place to look is H − 1 = 3 entries before, at entry 10.
That entry’s hop-information bitmap indicates that key w at entry 11 can be displaced
to 13, which we do. Entry 11 is still too far from entry 6, so we examine entry 8. The
hop-information bitmap indicates that key z at entry 9 can be moved to entry 11. Finally,
key x at entry 6 is moved to entry 9. Then, key v can be inserted in entry 6, as shown in
Figure 16.

Figure 15 – The hopscotch insertion algorithm looks for a sequence of displacements of
keys.
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Figure 16 – The hopscotch insertion algorithm after the keys were displaced to create an
empty entry for key v.

The concurrent version of the hopscotch algorithm splits the table into segments,
where each segment is protected by a lock, in a manner similar to (33). The lookup
algorithm is wait-free, it ignores locks, while the insert and remove algorithms acquire
locks before modifying the data. The pseudo-code that implements the lookup, insert and
remove algorithms is found in (44).

4.5.4 Optimistic Cuckoo Hashing

The optimistic cuckoo hashing (34) maintains high memory efficiency. It is designed
for scenarios where lookups dominate, where only one writer is allowed at a time. In other
words, it is tailor-built for the very scenario with a single writer and multiple readers that
our proposed monkey hashing scheme is especially well-suited for.

This scheme uses two hash functions. The hash table consists of an array of buckets,
each having 4 slots. Each slot contains a tag and a pointer to the key-value object. A null
pointer indicates that this slot is not used. The use of a pointer to store the key-value pair
outside of the table is to support keys of variable length. Figure 17, adapted from (34),
illustrates the hash table.

Figure 17 – The optimistic cuckoo hash table.

Each key is mapped to two random buckets, so the lookup algorithm checks all 8
slots. The maximum number of iterations of the insertion algorithm is set to 500. When
inserting key x into the table, if either of the two buckets has an empty slot, it is then
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inserted in that bucket. If neither bucket has an empty slot, the algorithm selects a random
key y from one candidate bucket and displaces it to its alternate location. Displacing key
y might also require dislodging another existing key z, so this insert-and-evict procedure
might repeat until an empty slot is found, or until the maximum number of iterations is
reached — in which case a rehash and a resize are performed.

4.5.4.1 Tags

The tag is a short hash of the keys and is used to implement the lookup and
insertion operations. The lookup algorithm first compares the tag, then retrieves the full
key only if the tag matches — thus avoiding unnecessary pointer dereferences.

It is possible to have false positives when looking up a key, due to two different
keys having the same tag, so the retrieved full key is further verified to ensure it was
indeed the correct one. With a 1-byte tag, the probability of tag collision is 1/28 = 0.39%.

The insertion can operate using tags and never have to retrieve keys. This hashing
scheme computes the two candidate buckets for key x by b1 = h(x) (based on the entire
key) and b2 = b1 ⊕ h(tag) (based on b1 and tag of x).

Using the same formula, b1 can be computed from b2 and tag. This property ensures
that to displace a key originally in bucket b (whether it is b1 or b2) it is possible to
calculate its alternate bucket b’ from bucket index b and the tag stored in bucket b by
b′ = b⊕ h(tag).

4.5.4.2 Insertion

As discussed in Section 4.1.1, when the writer thread is performing an insertion, a
reader thread may fail to lookup a key that is present. To eliminate this concurrency issue,
the optimistic cuckoo hashing changes the order of the cuckoo hashing insertion. First, it
discovers the cuckoo path to an empty slot. Then, it moves the keys backwards along the
cuckoo path. Thus, we ensure that there is never a key that is temporary unavailable, a
key that would otherwise be evicted out of its slot.

The cuckoo hashing traditional insertion algorithm dislodges keys along the cuckoo
path until an empty slot is found. Figure 18, adapted from (34), illustrates a cuckoo path.
The optimistic cuckoo hashing first discovers the path. Then, key c is displaced to the
empty slot in bucket 3, followed by relocating key b to the original slot of c in bucket 1
and so on, until key x can be inserted in the newly created empty slot in bucket 6.

4.5.4.3 Lookup

To synchronize the insertion and the lookups, we assign a version counter for each
key. We update its version when displacing the key during an insertion, and we look for a
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Figure 18 – A cuckoo path, where ∅ represents an empty slot.

version change during a lookup to detect any concurrent displacement.

We create an array of 8192 counters. Each counter is shared among multiple keys
by hashing (e.g. the i-th counter is shared by all keys whose hash value is i). All counters
are initialized to 0.

Before displacing a key, an insertion first increments the counter, indicating to the
reader threads an on-going update for this key. After the key is moved to its new location,
the counter is again incremented to indicate the completion. As a result, the key version is
increased by 2 after each displacement.

Before reading the two buckets for a given key, the lookup algorithm first snapshots
the version stored in the key’s counter: if this version is odd, the writer thread must be
working on the same key (or another key sharing the same counter), and thus the reader
thread should wait and retry; otherwise it proceeds to the two buckets. After it finishes
reading both buckets, it snapshots the counter again and compares its new version with
the old version. If they differ, the writer thread must have modified this key, and the
reader thread should retry.

More details on the optimistic cuckoo hashing are found in (34).

4.5.5 A Wait-Free Hashing Scheme

The first wait-free hash map was proposed in (45). It is a high-performance,
linearizable multi-level array that avoids global resize by allocating new arrays when
necessary.

Figure 19, found in (45), shows the structure of the scheme. It is similar to a tree,
and each position can hold an array of nodes or a single node.

A position that holds a single node is called a data node. It stores the hashed key
and the value associated with that key. An array node is a position that holds an array of
nodes.

Similarly to a tree, this construct keeps a pointer to the root, which is an array
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Figure 19 – An illustration of the wait-free hashing scheme.

node of unique length, whereas every other array node has uniform length. The maximum
depth of the tree is the maximum number of array nodes that must be followed to reach
any node.

The hashed key is expressed as a list of indices, where each index has the same
size of the array length (e.g. A − B − C −D, where A is the first index, B is the next
index and so on; these represent positions on different array nodes).

This hashing scheme requires all lists of indices to be distinct, that is, it lacks the
freedom to choose a hash function — like in a direct addressing solution. An example of
implementation (found in the authors’ code) is the use of strings as keys: a hashed key
is a list of integer values, where each value corresponds to a symbol of the string. Thus,
because the strings are distinct, the hash values are distinct.

The maximum depth is calculated as the ceiling of the division of the number
of bits in the key with the number of bits needed to represent the length of each array.
For example, with keys of 32 bits and an array length of 64, we have a maximum depth
of 6, because d32/ log2 64e = 6. The time complexity of every operation is bounded by
the maximum depth, and are therefore constant. This is only possible because the hash
function is, in practice, the key itself.

4.5.5.1 Traversing the Multi-Level Array

When traversing the multi-level array, we start at the right-most index of the list
of indices of the hashed key. We then examine that position on the current array node (the
root node). If the pointer stores the address of an array node, we continue the traversal
procedure in this next node with the next index of the list. This goes on until a data node
is reached.

Figure 20, found in (45), illustrates this process. In this example, the array nodes
have a length of four, except for the root node which has a larger size than every other
array node. The hashed key is expressed as a list of indices, e.g. A−B − C, where C is
the first index, B is the second index and so on. These indices are positions of array nodes
at various depths. Empty data nodes are represented as null values.
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Figure 20 – An example of hashed keys stored in the wait-free hash map.

As an example of lookup, if we need to find key 42 in the hash map shown in Figure
20, we first hash the key. We assume that this operation yields 2-3-1. To find 2-3-1 we
first take the right-most index, 1, and go to that position on the root node. It is an array
node, so we take the next index, 3, and examine position 3 on this node. This position is
also an array node, so we take the next index, 2, and examine that position on this node.
That position is a data node, so we compare its hashed key to the hashed key that we are
searching for, and thus we successfully finish the lookup.

4.5.5.2 Insertion

The insertion algorithm traverses the hash map until it finds a position that is
empty to insert the new element. When it reaches a data node that is not empty, the
collision is resolved by allocating a new array node with this data node in it, and the
algorithm continues its traversal from the new array node.

The implementing details of every operation are found in (45).

4.5.5.3 Disadvantages

This hashing scheme has some disadvantages that are worth discussing.

Because the hash function cannot be chosen arbitrarily and its behavior is known
by the programmer, the malicious adversary may choose keys that will lead all operations
to their worst case (bigger multiplicative factors, that is, but still within constant time),
where the tree reaches its maximum depth. The number of collisions may also happen
to be (intentionally) maximized so that Θ(n) arrays are allocated, yielding high memory
overhead.

This scheme cannot be pre-allocated to accommodate a given number of keys — it
would use as much memory as a direct-addressing solution.

The worst-case performance of all basic operations is affected when larger keys are
used — the maximum depth of the tree increases with the size of the key (the worst-case
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time is still constant, with bigger multiplicative factors).

The authors’ code3 has a segmentation fault bug that had to be fixed in order to
execute the experiments in Section 6.2.

4.5.6 Other Concurrent Hashing Schemes

The hash table in (46) is a high-performance, lock-free scheme that resolves collisions
via linked lists. It can perform resizes when needed, to grow and shrink the table size.
However, after a resize is performed, the average time complexity of the operations is no
longer constant (47).

The work in (47) presents another high-performance, lock-free hash table that
maintains the average constant time complexity of operations after a resize.

A lock-based concurrent cuckoo hashing is found in (9). It improves concurrency
by trading space; thus, its space overhead is higher than the basic cuckoo hashing (34).

The optimistic cuckoo hashing was later improved by (48) to allow multiple writers,
using the concurrent writer approach from the concurrent cuckoo hashing in (9).

The work in (49) presents a hashing scheme that is wait-free when the hash table
is not resized. The wait-freedom is violated only when a resize is performed.

3 https://github.com/AgamAgarwal/wait-free-extensible-hash-map
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5 MONKEY HASHING

Monkey hashing (MH) is a thread-safe hashing scheme that does not use locks
or any other kind of synchronization, requiring only that single-word read and write
operations are atomic. It consists of a single hash table and k ≥ 1 hash functions, meaning
multiple alternative locations for each key in the same table. Unlike cuckoo hashing,
elements will never be evicted from where they first landed, so new keys being inserted
must always find an unoccupied spot to call their own.1

Like the concurrent cuckoo hashing in (34), our hashing scheme is specially tailored
for scenarios with a single writer and multiple reader threads, though it certainly works
just fine even in single-thread applications.

The monkey hashing can be implemented as a hash map, that is, it can store
key-value pairs, even though a pair consists of two memory words and cannot be read
atomically. Of course it can also be implemented as a hash set, where only keys are stored.

It is required that one knows beforehand the maximum number of entries that may
ever coexist in the map (i.e., its maximum capacity), since memory is pre-allocated to
enforce the intended load factor without the need of rehashes.2

The k hash functions may be obtained from a universal class (17). Such functions
work as well as idealized uniform hash functions do on average (16).

To look up some key x, we follow the sequence of positions h1(x), h2(x), . . . , hk′ in
the underlying array T (i.e., the table) until we have either found x or reached the maximum
number of hash functions that were actually called for by any insert operation, denoted by
k′. Such a maximum in use value k′ is dynamically kept track of. The pseudo-code of the
lookup algorithm is shown in Figure 5.1.

Lookup(x)
1. for i = 1, 2, . . . , k′
2. if T [hi(x)] = x
3. return true
4. return false

Algorithm 5.1 – The monkey hashing lookup algorithm.

1 The name stems from the analogy to a monkey that jumps along branches of a tree until it finds a
vacant one to rest. Some cultures even have popular sayings in the likes of “every monkey to their own
branch”, meaning “every jack to his trade”.

2 In the experiments of Section 6.2, Java’s ConcurrentHashMap and Intel’s TBB concurrent_hash_map
are also pre-allocated to avoid resizes (something they do support), thus ensuring a fair comparison.
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If we intend on prioritizing the insertions, in a scenario with fewer reads, we may
give up of the k′ variable and of all of its control mechanisms. It would not change the
performance of the operations that iterate through all entries, and every read and write
operations would still perform in constant time.

When a key x is inserted, we insert x in the first position in the hash table that
is not occupied along that same sequence h1(x), h2(x), . . . , up to hk(x), where k is the
aforementioned number of available hash functions, i.e., the maximum allowed number
of insertion attempts for a given key. The insertion fails if all k positions are occupied.
The pseudo-code in Figure 5.2 shows the insertion algorithm, where an empty position is
denoted by ⊥. Note that we use a mapping A of all positive integers i ∈ [1, k′] onto the
number of keys that required i hash functions during its insertion. Such a mapping will
also be updated by the remove operation, and is used ultimately to keep track of k′ ≤ k.

Insert(x)
1. if Lookup(x)
2. return
3. for i = 1, 2, . . . , k
4. if T [hi(x)] = ⊥
5. A[i]← A[i] + 1 // one more key requiring i functions
6. k′ ← max{k′, i} // k′ may have changed
7. T [hi(x)]← x
8. return
9. fail

Algorithm 5.2 – The monkey hashing insertion algorithm.

The insertion algorithm may also be implemented with unlimited k; hence, the
insertion time would become a random variable, as well as the time of every other basic
operation (with ω(1) worst-case time). This would remove the chance of failure, while the
operation that iterates through all entries would maintain its efficiency.

To remove a key, we first look it up in the MH structure. If it is found, then,
along with removing it from the table, we also make sure to remove its contribution to
the mapping A of hash function counts. Figure 5.3 gives the pseudo-code for the remove
operation.

Since there are no keys ever being moved and no collision lists to maintain, the
threads accessing a MH structure are free to execute all basic operations without any kind
of synchronization. Hence, for a constant number k of hash functions, the operations are
all wait-free, bounded by O(k) = O(1) steps.

We can iterate through the entries in thread-safe fashion by traversing the underlying
array while skipping empty positions. Insertions and deletions done while an iteration is
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Remove(x)
1. for i = 1, 2, . . . , k′
2. p← hi(x)
3. if T [p] = x
4. T [p]← ⊥
5. A[i]← A[i]− 1 // one less key requiring i functions
6. if A[i] = 0 and k′ = i // must update k′
7. for j = i− 1, i− 2, . . . , 1
8. if A[j] > 0
9. k′ ← j
10. return
11. k′ ← 0 // empty table
12. fail // not found

Algorithm 5.3 – The monkey hashing removal algorithm.

taking place might not be immediately seen, as discussed in Section 5.1, something usually
referred to as eventual consistency (seen in Section 4.4.3), which is inherent to—and all
the most tolerable by—most multi-threaded applications.

5.1 Thread-Safety and Eventual Consistency
The writer thread and the reader threads execute their operations concurrently, as

if they were isolated in a sequential scenario. This is possible because the monkey hashing
does not require any kind of synchronization.

An entry with key x that has just been inserted may not be seen immediately
thereafter by all reading threads. A reading thread might have started to look it up before
it was inserted, and may have just checked position hj(x). Then, the writer thread inserts
the entry in that same position and the reader thread resumes its operation from position
hj+1(x) and fails to find the key. After it is first seen, though, never (again) should it
fail to be successfully retrieved by each reading thread. Such a behavior—when no more
updates are done, all readers will eventually read the latest written data—is commonly
referred to as eventual consistency, which we studied in Section 4.4.3.

Deleting a key does not cause any trouble to the lookup operations in the reader
threads: it takes a single atomic step to erase the key, be it of a primitive data type or an
object reference (setting it to a null value). In the latter case, if the reference was already
retrieved, and then removed shortly thereafter, that object will still be accessible to the
reader, even if the writer replaces that reference with a null or some other reference.

When using MH to implement maps, the value, in each key-value pair, should
be written first (and deleted last) to avoid the retrieval of a key without the intended
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corresponding value. Moreover, when storing key-value pairs, a mapped value that is
changed may not be immediately seen by all reading threads. Indeed, a reader thread
might have just retrieved the reference of a value, when the writer thread replaces it with
a reference to another value. Hence, the reader thread will actually have accessed the
previous value. This is an expected, harmless race condition, and the outcome would have
been the same had the update operation started after the completion of the read operation.
Note, though, that reading partially updated entries must be avoided by enforcing that
the data types of both key and value have atomic writes (which is the case, for example,
in modern Java, for pointers and wrappers of primitive types).

Note that key-value pairs will probably be implemented as objects allocated in the
random-access memory. Each position in the underlying array (i.e., the table) stores a
reference to one of those objects (see Figures 21a and 21b). To improve performance, we
may want to reuse the referenced object when removing a key-value pair. This avoids the
overhead of dynamically freeing and (re-)allocating memory for new entries, as well as
reducing the garbage collection burden, when applicable. We can achieve that by logically
erasing both the key and the value of the existing entry without actually freeing the
key-value object. However, after a reader thread retrieves an entry, the writer thread
might overwrite the fields in that reused key-value object pair (after, say, a logical deletion
followed by an insertion), and thus the reader thread might end up reading the value
associated with the new key. When the key can be inferred from the value object (say,
the key is some user id and the value is some User object, containing, among other data
attributes, the user id itself), we can avoid this concurrency issue altogether by checking
that the retrieved value does indeed correspond to the informed key. This can be done by
providing MH with a function that, given a value object, returns its (unique) key. If the
key obtained from the value does not correspond to the search key, then a deletion surely
took place in the meantime and a null would be returned instead; otherwise return the
retrieved, verified value object. In case such a verification function is not provided, the
MH scheme will still work, albeit not reusing key-value objects, therefore actually freeing
such objects during deletions, and reallocating a new key-value object from scratch at
every insertion.

In case only keys are stored in the scheme (i.e., when implementing sets, not maps),
keys (or, alternatively, references to key objects) may be written directly to the underlying
array (see Figures 21c and 21d).

5.2 Insertion Failure Probability
The insertion method is strictly speaking a randomized algorithm with a probability

of failure. We can make such a probability be so small that the MH would work just as
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(a) (b) (c) (d)

Figure 21 – Some possible setups using MHM: (a) hash map for objects; (b) hash map for
primitive types; (c) hash set for objects; (d) hash set for primitive types. K,
V, UA and KVOP indicate, respectively, the stored key, the mapped value,
the underlying array (table), and the key-value object pair.

reliably as any deterministic algorithm would, in practice.

The upper bound on the probability that an insertion might fail decreases expo-
nentially with the predefined maximum number of hash functions. Say we set 50 as the
maximum number of hash functions, as we did in the tests depicted in Section 6.1, and
m = 2n as the size of the hash table, where n is the maximum number of entries stored
at any given time. Because the load factor never exceeds 1/2, when inserting key x the
probability that position hi(x) is occupied is at most 1/2 for all i ∈ {1, ..., 50}. Thus, the
probability that the insertion of x fails is at most 2−50. The number of insertions until the
first failure occurs is a geometric random variable with expectation at least 250, which is
more than one quadrillion. If we perform one million insertions (and one million deletions,
keeping the table at its maximum capacity) every second, non-stop, this means we would
expect to see our first failure in 35.7 years.3 If we increase the number of functions very
slightly, from 50 to just 52, the expected time before the first failure occurs increases to
nearly one and a half century.

5.2.1 Working with Different Load Factors

It is not required that the load factor is set to 1/2. The failure probability ρ of
an insertion is at most αk, where α is our load factor. For example, with α = 0.95 and
k = 90, we obtain ρ ≈ 0.0099.

The user of our monkey hashing might want to set the failure probability they are
willing to work with, and compute α and k from there.

5.3 Resizable Monkey Hashing
By default, hashing schemes in both sequential and concurrent scenarios are

implemented in a way that allows the table to grow and shrink when necessary. If we aim
3 To keep things in perspective, Twitter worldwide usually registers an average of 5,700 new tweets per

second, with a registered peak of 143,199 tweets per second in August, 2020 (50).
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for a load factor of 1/2, as soon as the number of items in the table is above n = m/2,
the size of the table is usually doubled and it is rehashed, because the old hash function
(or hash functions, depending on the scheme) would work for a table of size m, not 2m.
When the number of items is bellow n = m/4, we may want to avoid wasting space and
hence halve the table size, rehashing all items. Both operations clearly take O(n) time,
because all present items will be reorganized.

The monkey hashing can be implemented as a resizable hash table without losing
its thread-safety and eventual consistency. When the load factor is above the desired value,
instead of resizing our array, we allocate a new one with the double of its original size.
We then obtain k new hash functions and begin a process of copying all items from the
old array to the new array. When this process is completed, we update the pointer or
reference of the hash table to the newly allocated array. Even as items are inserted into
and removed from the new hash table, concurrent reader threads that were reading the
old array will continue their operation, without losing eventual consistency.

The average case of an insertion (and removal) in such hashing schemes can still
be O(1) (in an amortized setting, that is, considering a sequence of operations), as we
shall show for our resizable monkey hashing. Our worst-case insertion was considered the
one where it fails, but we shall shift the focus to a worst-case insertion time. Such time
is clearly O(n), because any resize takes O(n) time. Without loss of generality, we focus
on the case of the first resize. Before it takes place, n = m/2 insertions of O(1) time are
inevitably performed. Under reasonable assumptions, allocating an array of size 2m takes
O(m) time. Obtaining new hash functions clearly takes O(1) time, and copying every key
to the newly allocated array takes m operations of O(1) time. Hence, the amortized cost
of an insertion is

O(m) +O(m) +O(1) +O(m)
m/2 = O(m)

m
= O(1).

In a similar way, removing an element takes O(1) expected time and O(n) worst-case
time in our resizable monkey hashing.

If memory is not a concern, we can always pre-allocate, as advocated previously in
this text, and enforce a O(1) worst-case insertion and removal time.
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6 EXPERIMENTS

6.1 CHPR Experiments
All experiments in this Section were conducted on a Linux Mint 20.3 64-bit machine,

with a multicore Intel(R) Core(TM) i3-2100 CPU with 4 cores of 3.10GHz, and with 3.7
GiB of RAM memory.

Both the Python code and the output data for the experiments in this Section are
available in https://github.com/judismar/chpr.

We designed an experiment that corroborated that the probability that a perfect
rehash is called for given that a previous perfect rehash has already been performed
remains the same regardless of whether we replace a single hash function or all hash
functions during the rehash (see Figure 22). For each value of the number of keys n, the
experiment was repeated 200 times in order to obtain the average number of insertions
between the first and the second rehash. The structure is first populated with n keys, then
the experiment begins and every insertion is preceded by the deletion of a random key so
the load factor is unchanged.

Figure 22 – The average number of insertions until the second rehash is called for, after
the first rehash has been performed.

We also designed experiments to complement the theoretical results summarized in
Table 3. In, Figure 23, the average time of a lookup and an insertion are in function of
x = log2 log2 n, where n is the number of elements in the scheme.

To get the average time of a lookup, we begin by inserting an uniform random
sample of size n from the universe of keys [107]. We then lookup 10,000 random keys,
obtained independently and uniformly from the universe, for every value of x. As for the
insertion amortized cost, we begin with empty tables. We sequentially insert n keys chosen
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Figure 23 – The average time of an insertion and a lookup of the cuckoo hashing with
perfect rehash in function of log log n, where n is the number of keys in the
scheme.

independently and uniformly at random from the universe, and divide the total time by n.
This is done independently 100 times to obtain the average of the amortized cost.

Figure 24 presents the results of the worst-case experiment.

Figure 24 – The time of the emulated worst-case insertion and the emulated worst-case
lookup of the cuckoo hashing with perfect rehash, in function of the number
of keys in the scheme.

To emulate the worst-case lookup, we simply perform it on a key that is not in the
structure. This is done 1000 times to obtain the average time of the worst case emulation.
To emulate the worst-case insertion, we modify the acyclic test of our perfect hashing
method so that it always fails. We start an arbitrary table with an uniform random sample
of m−1 keys. In every iteration, we insert the current evicted key in the same table; hence,
two keys evict one another until a perfect rehash is called for. We use a hash function that
always returns an arbitrary (occupied) index. This emulated worst-case insertion is done
independently 10 times to obtain the average time of the worst case emulation.
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For j ∈ {1, . . . , δ(n)}, our universal hash function hj was defined as

hj(k) =
(
(ajk

2 + bjk + cj) mod p
)

mod mj

for some aj, bj, cj ∈ {1, 2, . . . , p} chosen independently and uniformly at random, where
p = 107 + 19 is the smallest prime greater than the maximum possible key u = 107, and
mj is the size of the j-th table. Actually, that corresponds to the universal function class
template given in (51).

6.2 MH Experiments
We have conducted experiments to compare the proposed MH scheme against

existing, well-known solutions. All experiments in this Section were conducted on a Ubuntu
20.04.5 64-bit machine, with a multicore 11th Gen Intel(R) Core(TM) i5-1135G7 CPU
with 8 cores of 2.40GHz, and with 7.6 GiB of RAM memory. All the experiment’s source
code is found in https://github.com/judismar/monkey-hashing.

First, we compared a MH implementation in Java against Java’s inbuilt thread-
safe hash map solution, the ConcurrentHashMap (CHM), and against Java’s Concur-
rentSkipListMap (CSLM), a non-hash-based map whose thread-safety is known to be very
well implemented, to the extent that it outperforms the CHM in scenarios with a big
number of threads and also Java’s TreeMap (a non-thread-safe red-black tree) in single-
threaded scenarios. Monkey hashing significantly outperformed CHM in all multi-thread
test scenarios. It also outperformed CSLM when the number of threads was the same or
lower as the number of CPU cores. Second, we compared a C++ implementation of MH
against Intel’s TBB concurrent_hash_map. Again, MH performed significantly better.

Figures 25 and 26 show the average running time of a sequence of read and write
operations as a function of the number of concurrent threads. Our MH significantly
outperforms Java’s CHM. It also outperforms the CSLM up to 12 threads in the first
experiment, and up to 13 threads in the second experiment. This is due to the fact that
we have a single writer thread, because the CSLM’s iterator runs a lot faster than that
of our hash maps. That is why its efficiency seems to be maintained as we increase the
number of threads: the writer thread is always the last one to finish.

Our scenario consists of a single writer thread and multiple reader threads. The
number of items inserted in the map is 25,000 in the experiment of Figure 25, and 100,000
in the experiment of Figure 26. The target load factor was 1/2 in all experiments. The
maximum capacity and the load factor are provided as constructor arguments to pre-
allocate the table size, thus avoiding resizes. This was done to MH and CHM schemes
all the same. The number of concurrent threads varied from 2 to 16 (always one writer,
several readers).
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Figure 25 – 25,000 inserted items. Figure 26 – 100,000 inserted items.

When we increase the number of threads, we also increase the total amount of
work, because each reading thread iterates through the entries 2,000 times. The writer
thread inserts 25,000 or 100,000 items and overwrites the values of all these items 1,000
times. This sequence of operations is repeated 4 times to obtain the average total running
time.

In Figures 27 and 28, we compare the monkey hashing against the Intel’s TBB
concurrent_hash_map in C++. They show the average running time of a sequence of read
and write operations in function of the number of concurrent threads. Our MH significantly
outperforms the TBB concurrent_hash_map in our experiments.

Figure 27 – 25,000 inserted items. Figure 28 – 100,000 inserted items.

In this scenario of a single writer thread and multiple reader threads, the number
of items inserted by the writer thread is 25,000 in the experiment of Figure 27 and 100,000
in the experiment of Figure 28. The intended load factor is 1/2. The maximum capacity
and the load factor are provided as constructor arguments of the monkey hashing to
pre-allocate the table size. Twice the maximum capacity is provided as the constructor
argument of the TBB concurrent_hash_map to pre-allocate the table size, thus avoiding
resizes. The number of threads running concurrently is varied from 2 to 16.

When we increase the number of threads, we also increase the total amount of
work, because each reading thread iterates through the entries 1,000 times. The writer
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thread inserts 25,000 or 100,000 items. This sequence of operations is repeated 5 times to
obtain the average total running time.

Figures 29 and 30 show the average running time of a sequence of read and write
operations in function of the number of concurrent threads in order to compare the monkey
hashing with the wait-free hash map in (45) in C++. The monkey hashing ties with the
Laborde et al.’s hash map.

Figure 29 – 25,000 inserted items. Figure 30 – 100,000 inserted items.

The scenario of the simulation in Figures 29 and 30 consists of a single writer thread
and multiple reader threads. In the experiment of Figure 29, the writer thread inserts
25,000 items, and each reader thread performs 25,000 get operations. In the experiment of
Figure 30, the writer thread inserts 100,000 items, and each reader thread performs 100,000
get operations. The intended load factor for the monkey hashing is 1/2, and the maximum
capacity and the load factor are provided as constructor arguments to pre-allocate its
table size. The number of threads running concurrently is varied from 2 to 16.

When we increase the number of threads, we also increase the total amount of work,
because each reading thread runs 25,000 or 100,000 get operations. The writer thread
inserts 25,000 or 100,000 items. This sequence of operations is repeated 5 times to obtain
the average total running time.
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7 CONCLUSION

Our first contribution is a new cuckoo hashing variant, the Cuckoo Hashing With
Perfect Rehash (CHPR). With the perfect rehashing approach, all cuckoo hashing opera-
tions become predictable and finite. We showed that our variant improves some aspects of
the traditional cuckoo hashing, chained hashing and balanced binary search trees. While
the proposed CHPR scheme cannot be claimed to be an undisputed improvement over
those traditional data structures (and it surely has disadvantages as well as advantages
when compared to each one of them), it may suit well applications where a highly com-
petitive average-case performance for lookup and insertion operations is desired, without
prescinding from a predictable, polynomial bound for their worst-case behavior. We also
presented experiments that corroborate the theoretical time of the basic operations of
our variant. A natural open problem is to improve the O(n3/(log log n)3) bound for the
worst-case insertion time, but that would probably require better perfect hashing methods
with finite worst-case performance. Another open problem is to design a perfect rehash
execution that does not increase the size of the tables of the cuckoo tree, yielding better
worst-case insertion time than the time of the regular CHPR. Or, alternatively to prove
that it is not possible.

We also proposed a novel thread-safe hashing scheme that is simple to understand
and to implement. High concurrent performance is attained by dispensing with locks or
other forms of thread synchronization, for the price of a strictly positive probability of
failure during an insertion operation, a probability which can be made negligible for all
intents and purposes. In the scenario of a single writer and multiple readers, for which
our contribution is particularly well-suited, our scheme consistently outperforms well-
known, widely used solutions such as Java’s ConcurrentHashMap and C++ Intel’s TBB
concurrent_hash_map, while not presenting the drawbacks of previous works with roughly
the same objectives. An open problem for the monkey hashing is allowing multiple writers.
The optimistic cuckoo hashing (34), also designed for scenarios with a single writer and
multiple readers, allows only one writer at a time by locking the entire structure. It is a
solution for scenarios where read operations dominate1. While this could also be done with
the monkey hashing, it would still remain an open problem to augment its design to allow
multiple writers efficiently. However, such a change would inevitably require some sort
of thread synchronization2, a performance-hindering inconvenience that is purposefully
1 Anecdotal evidence suggests that, in most applications, lookup operations dominate in sets (9). Concrete

evidences that read operations dominate in key-value workloads was published in (52).
2 It looks possible to devise a variant of the monkey hash set (shown in Appendix B), which uses

an atomic synchronization instruction and allows multiple writers (while still purposefully ignoring
communication between threads).
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ignored by our monkey hashing for the sake of performance — because the very nature of
its operations permits it —, while still maintaining consistency.
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APPENDIX A – THE MATHEMATICAL
DEFINITION OF LINEARIZABILITY

Before presenting the mathematical definition of linearizability, we introduce the
mathematical model of a concurrent execution. All this formalization is found in (39)
and (9). The text in this Section is based in (39).

A.1 The Formal Model of a Concurrent Execution
A concurrent execution is modeled by a history, which is a finite sequence of

operation invocation and operation response events. A subhistory of a history H is a
subsequence of the events of H. An operation (function or method) invocation is denoted
as x op(args) A, where x is an object or data structure name, op is an operation name,
args denotes a sequence of argument values, and A is a thread name. The response to an
operation invocation is denoted as x term(res) A, where term is a termination condition
(e.g. ok, fail), and res is a sequence of results. A response matches an invocation if their
object (or data structures) names agree and their thread names agree. An invocation
is pending in a history if no matching response follows the invocation. If H is a history,
complete(H) is the maximal subsequence of H consisting only of invocations and matching
responses.

A history H is sequential if (1) the first event of H is an invocation, and (2) each
invocation, except possibly the last, is immediately followed by a matching response. Each
response is immediately followed by an invocation. A history that is not sequential if
concurrent.

A thread subhistory, H|T, of a history H is the subsequence of all events in H
whose thread names are T. An object subhistory H|x is similarly defined for an object x.
Two histories H and H’ are equivalent if for every thread T, H|T = H’|T. A history H is
well-formed if each thread subhistory H|T of H is sequential.

An operation e in a history is a pair consisting of an invocation, inv(e), and the
next matching response, res(e). We denote an operation by [x inv/res A], where x is an
object and A is a thread name. An operation e0 lies within another operation e1 in H if
inv(e1) precedes inv(e0) and res(e0) precedes res(e1) in H. Object and thread names are
omitted when they are clear from the context.

An example of a concurrent execution of a FIFO queue q is seen in Figure 31,
adapted from (39).
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Figure 31 – A graphical representation of a concurrent execution of a FIFO queue. A and
B are threads, and the return value of the dequeue operation is given after
the colon.

The history H of Figure 31 is the following well-formed history for q, where enq()
is its enqueue operation and deq() is its dequeue operation.

q enq(x) A

q enq(y) B

q ok() B

q ok() A

q deq() B

q ok(x) B

q deq() A

q ok(y) A

q enq(z) A

The first event in H is an invocation of enq with argument x by thread A, and the
fourth event is the matching response with termination condition ok and no results. The
[q enq(y)/ok() B] operation lies within the [q enq(x)/ok() A] operation. The subhistory,
complete(H), is H with the last (pending) invocation of enq removed. Notice that reordering
the first two events yields one of many histories equivalent to H, and that we could have
omitted the object name q from H for simplicity.

A sequential specification for an object is a set of sequential histories for the object.
In order to define a sequential specification, we write axioms that gives the pre-conditions
and post-conditions on the operations of the object (we use the notation of (39)). The
axiom for the enq() operation is

{true}

enq(x) / ok()

{q′ = ins(q, x)},

where ins(q, x) denotes the queue q after the insertion of item x. Notice that the
pre-condition is always true, which means that an enqueue can be performed regardless of
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the state of our queue. We denote such state as the value of the queue. The post-condition
is a queue value after the insertion of x.

The axiom for the deq() operation is

{q 6= []}

deq() / ok(x)

{q′ = rest(q) ∧ x = first(q)}.

The pre-condition for the deq() operation is that the queue is not empty. The
post-condition is a queue value rest(q), that is, the queue q without x, and the return of
first(q), which is the item x that was in the head of the queue. In our axiom, the operation
is left undefined for empty queues.

A sequential history H is legal if each object subhistory H|x belongs to the sequential
specification for x.

A.2 The Formal Definition of Linearizability
A history H induces an irreflexive partial order <H on operations:

e0 <H e1 if res(e0) precedes inv(e1) in H.

Informally, <H captures the real-time precedence ordering of operations in H.
Operations unrelated by <H are said to be concurrent. If H is sequential, <H is a total
order.

A history H is linearizable if it can be extended (by appending zero or more response
events) to some history H’ such that:

1. complete(H’) is equivalent to some legal sequential history S, and

2. <H⊆<S.

Informally, extending H to H’ captures the notion that some pending invocations
may have taken effect even though their responses have not yet been returned to the caller
(e.g. the pending enq(z) in Figure 31). Restricting attention to complete(H’) captures the
notion that the remaining pending invocations have not yet had an effect. Item 1 states
that threads act as if they were interleaved at the granularity of complete operations.
Item 2 states that this apparent sequential interleaving respects the real-time precedence
ordering of operations.
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We call S a linearization of H. For each H, there may be more than one extension
H’ satisfying items 1 and 2, and for each extension H’, there may be more than one
linearization S. A linearizable object is one whose concurrent histories are linearizable with
respect to some sequential specification.

A.3 Examples
The history H corresponding to the concurrent computation shown in Figure 31 is

linearizable. If we append q ok() A to it, the resulting history is equivalent to the following
sequential history:

enq(x) A

ok() A

enq(y) B

ok() B

deq() B

ok(x) B

deq() A

ok(y) A

enq(z) A

ok() A.

Figure 32, adapted from (39), shows another concurrent computation with a queue.

Figure 32 – A graphical representation of a concurrent execution of a FIFO queue. A and
B are threads, and the return value of the dequeue operation is given after
the colon.

Its corresponding history H2 is

enq(x) A

ok() A

enq(y) B

deq() A

ok() B
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ok(y) A.

H2 is not linearizable because the complete enq(x) operation precedes enq(y), but
y is dequeued before x.

Notice that linearizability does not rule out histories such as

enq(x) A

deq() B

ok(x) B,

in which an operation “takes effect” before its response event occurs. We can extend
this history by appending q ok() A, which is equivalent to

enq(x) A

ok() A

deq() B

ok(x) B.
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APPENDIX B – MONKEY HASH SET
VARIANT THAT SUPPORTS MULTIPLE

WRITER THREADS

Our monkey hash set variant, which allows multiple writers, requires not only that
single-word read and write operations are atomic, but also that the computing system
supports the compare-and-swap (CAS) synchronization instruction.

B.1 The CAS Instruction
The CAS instruction is the most common technique for implementing non-blocking

concurrent algorithms (9). In fact, it is used by Java’s ConcurrentHashMap (as seen in the
code found in http://hg.openjdk.java.net/jdk8/jdk8), by C++ Intel’s TBB library (53)
and by the wait-free hash map by Laborde et al. (45), to name a few.

CAS is an atomic instruction that compares the current value in a memory location
(memory address) with a given expected value and, if they are the same, it changes the
contents of the memory location with a given update value and returns true. If the compared
values are not the same, it does not update the contents of the memory location and
returns false. We denote this operation in our pseudo-code as CAS, and it takes a memory
address, the expected value and the update value as arguments. For example, consider the
call

CAS(&x, a, b),

where &x denotes the address of the variable x, a is the expected value and b is
the update value. If x = a, b is thus stored in &x and the call returns true. Otherwise (if
x 6= a), x is not updated and the call returns false. Let x = 3, a = 3 and b = 5. Because
the operation is atomic, if another thread is reading x at about the same time that the
CAS instruction is in process, it will either read 3 (if the reading is done before the CAS),
or it will read 5 (if CAS is done before the reading).

B.2 The Variant
Our monkey hash set variant is very similar to the original monkey hashing,

although it is even simpler in therms of algorithms. It consists of a single hash table and
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k ≥ 1 hash functions that may be obtained from a universal class. It is also required that
one knows beforehand the table’s maximum capacity to pre-allocate memory, in order to
enforce the intended load factor without the need of rehashes.

Because it is a set, its basic operations are three: lookup, insert and remove. The
operation that iterates through the collection of keys is implemented as in the original
MH, and it is also eventual consistent. Our variant is consistent if we consider only the
three basic operations — and thus eventual consistent, by definition.

This variant allows multiple writer threads. In fact, any thread is allowed to perform
read operations and write operations, without getting to a case of inconsistency. This is
guaranteed by its eventual consistency, which will be demonstrated.

B.2.1 The Lookup Algorithm

The lookup algorithm of our variant is found in Figure B.1. Notice that we no
longer use the number of hash functions that were actually called for during insertions.

SetLookup(x)
1. for i = 1, 2, . . . , k
2. p← hi(x)
3. if T [p] = x
4. return true
5. return false

Algorithm B.1 – The monkey hash set lookup algorithm.

The lookup algorithm is linearizable, hence it is also eventual consistent. The
linearization point for successful lookups is line 3: after we read T [p] atomically, concurrent
removals and insertions are unable to change the return of true — regardless of how much
time it takes for the rest of the instruction to finish. For failed lookups, the linearization
point is line 5.

B.2.2 The Insert Algorithm

The insert algorithm of our variant is found in Figure B.2.

The insertion algorithm is linearizable. In the case of a successful insertion, its
linearization point is line 5: its effect would depend on comparing and setting, which is
done atomically by the CAS instruction. In the case x is already found within T , its
linearization point is line 3 of the lookup algorithm. In the case of a failed insertion, its
linearization point is line 7.
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SetInsert(x)
1. if SetLookup(x)
2. return
3. for i = 1, 2, . . . , k
4. p← hi(x)
5. if CAS(&T [p],⊥, x)
6. return
7. fail

Algorithm B.2 – The monkey hash set insertion algorithm.

B.2.3 The Remove Algorithm

The remove algorithm of our variant is found in Figure B.3.

SetRemove(x)
1. for i = 1, 2, . . . , k
2. p← hi(x)
3. if CAS(&T [p], x,⊥)
4. return
5. return

Algorithm B.3 – The monkey hash set removal algorithm.

The removal algorithm is linearizable. In the case of a successful removal, its
linearization point is line 3: much like in the insertion algorithm, its effect would depend on
comparing and setting, which is done atomically. In the case x is not found, its linearization
point is line 5.


