UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Instituto de Matemática

Departamento de Métodos Matemáticos

Aspectos Teóricos e Numéricos Sobre a Equação de Benjamin-Bona-Mahony Viscosa

Mauro Rodrigues Clark

Dissertação submetida ao Corpo Docente do Instituto de Matemática da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários para a obtenção do grau de Mestre.

Orientador: Mauro Antônio Rincon

Rio de Janeiro Dezembro de 2008

Aspectos Teóricos e Numéricos Sobre a Equação de Benjamin-Bona-Mahony Viscosa

Mauro Rodrigues Clark

Dissertação submetida ao Corpo Docente do Instituto de Matemática da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários para a obtenção do grau de Mestre.

Área de concentração: Algoritmos, Métodos Numéricos e Robótica Aprovada por:

> Mauro Antônio Rincon, D.Sc. - IM/UFRJ (Orientador)

Luiz Adauto da Justa Medeiros, D.Sc. - $\mathrm{IM}/\mathrm{UFRJ}$

Marcelo Goulart Teixeira, D.Sc. - IM/UFRJ

Pablo Albuquerque Braz e Silva, D.Sc. - UFPE

Rio de Janeiro

Dezembro de 2008

Ficha Catalográfica

Clark, Mauro R.

Aspectos Teóricos e Numéricos Sobre a Equação de Benjamin-Bona-Mahony Viscosa

Mauro Rodrigues Clark

Rio de Janeiro

UFRJ/ IM, 2008 xi, 60.: il. 31cm;

Orientador: Mauro Antônio Rincon

Dissertação (mestrado) - UFRJ/ $\rm IM/$ Programa de Pós-graduação em

Informática, 2008

Referências Bibliográficas: f. 70-72.

1. Introdução

- 2. Resultados Básicos
- 3. Aspéctos Teóricos da BBM Viscosa
- 4. Aspéctos Numéricos da BBM Viscosa
- 5. Simulações Numéricas
- 6. Bibliografia

Dedicatória

Dedico essa dissertação ao meu pai (in memória), por ter sido em toda vida meu melhor amigo, a minha mãe pelos cuidados, a meu irmão Antônio Clark pela atenção. Dedico, também, com louvor ao alicerce, a paz e a felicidade de minha vida, minha esposa Simone e meus dois filhos Mauro Antônio e Marcus Vinícius.

Agradecimentos

Acima de tudo agradeço a DEUS por ser minha fé maior e ter me dado mais uma oportunidade de mudar a minha vida.

Aos meus irmãos e professores, Marcondes Clark -UFPI, Haroldo Clark - UFF e Newton Clark - UFPI por terem sido a base de tudo em minha vida e principalmente de minha formação acadêmica.

Ao meu orientador professor Mauro Antônio Rincon - UFRJ pela compreensão e orientação.

Ao professor Luis Adauto Medeiros - UFRJ pelo incentivo e encorajamento.

Ao professor Pablo Bráz e Silva - UFPE pela especialidade de sua amizade.

Ao professor Marcelo Teixeira - IME por me ajudar a dar os primeiros passos numéricos.

Ao professor Afonso Norberto - UESPI por me aconselhar e me preparar para essa empreitada.

Ao professor Alessandro Silva - CEFETQ - RJ por ser a célula fundamental no desenvolvimento numérico de meu trabalho.

À professora Luziane Mendonça - UFRJ pela amizade e atenção.

Aos colegas Alexandre Toman, Cristiane, Nilda, Rodolfo e Ronaldo pela boa convivência e amizade.

Aos funcionários do Instituto de Matemática da Universidade Federal do Rio de Janeiro que me recebeu para que galgasse mais uma fase em minha vida.

Resumo

Neste trabalho estudar-se-á a existência e unicidade de soluções globais, o comportamento assintótico da enrgia e a análise numérica de um sistema misto associado à equação de Benjamin-Bona-Mahony com viscosidade interna, isto é

$$u_t + u_x + uu_x - u_{xxt} - \beta u_{xx} = 0 \text{ em } Q,$$

onde Qé o retângulo $[0,L]\times [0,T[$ com $L>0,\,T>0$ arbitrário e $\beta>0$ uma constante real.

Abstract

In this work one studies the existence and uniqueness of global solutions, asymptotic behavior of energy and the numerical analysis of a mixed system associated with the Benjamin-Bona-Mahony equation with internal viscosity, namely

$$u_t + u_x + uu_x - u_{xxt} + \beta u_{xx} = 0 \quad \text{em } Q,$$

where Q is the rectangle $]0, L[\times [0, T[$ with L > 0, T > 0 arbitrary and $\beta > 0$ a real constant.

Conteúdo

1	Intr	odução	.0	1
	1.1	Propos	osta de Pesquisa	. 2
2	Res	ultado	os Básicos	3
	2.1	Espaço	o das Distribuições Escalares	. 3
	2.2	Conve	ergência em $C_0^{\infty}(\Omega)$. 3
	2.3	Conve	ergência e Derivação em $\mathcal{D}'(\Omega)$. 5
	2.4	Espaço	os de Sobolev	. 5
		2.4.1	Convergência em L^p e no dual de L^p	. 5
	2.5	Espaço	os $L^{p}(0,T;X)$ e Distribuições Vetoriais	. 7
	2.6	Outros	s Resultados Úteis	. 9
3	Asp	oéctos '	Teóricos da BBM Viscosa	13
	3.1	Existê	ència de Soluções Aproximadas	. 14
	3.2	Estima	ativas sobre as soluções aproximadas	. 16
		3.2.1	Primeira Estimativa	. 16
		3.2.2	Segunda Estimativa	. 18
	3.3	Limite	e nas soluções aproximadas	. 19
		3.3.1	Limite nas parcelas lineares de (3.8)	. 19
		3.3.2	Limite na parcela não linear de (3.8)	. 21
	3.4	Verific	cação dos dados iniciais	. 23
	3.5	Unicid	dade de soluções	. 24
	3.6	Estabi	ilidade assintótica da energia	. 25
4	\mathbf{Asp}	oéctos I	Numéricos da BBM Viscosa	27
	4.1	Métod	lo de Elementos Finitos	. 27
		4.1.1	Formulação Variacional	. 27

		4.1.2	Metódo de Faedo Galerkin	28
		4.1.3	Problema Aproximado	28
		4.1.4	Função de Interpolação	30
		4.1.5	Cálculo das Matrizes	32
		4.1.6	Calculando os elementos da matriz A_{ik} :	33
		4.1.7	Calculando os elementos da matriz B_{ik} :	35
		4.1.8	Calculando os elementos da matriz C_{ik} :	39
	4.2	Métod	o das Diferenças Finitas	42
		4.2.1	Notação	42
		4.2.2	Família de Métodos	43
		4.2.3	Linearizando o sistema (4.12)	43
		4.2.4	Calculando os elementos da Matriz \widetilde{B}_{ki} :	46
5	Sim	ulaçõe	s Numéricas	51
	5.1	Simula	ções Numéricas	51
		5.1.1	Exemplo 1	52
		5.1.2	Exemplo 2:	56

Capítulo 1

Introdução

A equação de *Benjamin-Bona-Mahony* (abreviada por BBM)

$$u_t + u_x + uu_x - u_{xxt} = 0$$

descreve aproximadamente a propagação unidimensional de ondas longas de água em determinados sistemas dispersivos não lineares.

Neste trabalho será investigado, uma versão alternativa da BBM, a saber, *a BBM* Viscosa. Em termos físicos, na BBM viscosa, agrega-se à ação de uma força externa atuando contrariamente à superfície da coluna da onda viajante. Assim, a equação a ser investigada é modelada por

$$u_t + u_x + uu_x - u_{xxt} - \beta u_{xx} = 0,$$

onde $\beta > 0$ é uma constante real. A parcela $-\beta u_{xx}$ representa um *amortecimento* da onda, e isto permite provar que o problema misto (1.1) tem solução global no tempo, isto é, uma solução de (1.1) é definida em [0, T[para T > 0 arbitrário. Além disso, o amortecimento possibilita mostrar que a energia total do sistema (1.1) decai exponencialmente com o passar do tempo.

A BBM foi introduzida em 1972 no trabalho de Benjamin-Bona-Mahony [1] como uma equação alternativa para descrever as ondas viajantes, até então, modelada pela equação de Korteweg-de Vries - KdV [6], dada por

$$u_t + u_x + uu_x + u_{xxx} = 0.$$

Há na literatura centenas de trabalhos, tanto teóricos quanto númericos, investigando aspéctos qualitativos sobre as soluções de diversos problemas relacionados com as equações BBM e KdV. Ao longo, desta dissertação, cita-se e comenta-se alguns desses importantes trabalhos.

1.1 Proposta de Pesquisa

Propõe-se investigar o seguinte problema misto

$$u_{t}(x,t) + u_{x}(x,t) + u(x,t)u_{x}(x,t) - u_{xxt}(x,t) - \beta u_{xx}(x,t) = 0 \quad \text{em} \quad Q$$

$$u(0,t) = u(L,t) = 0 \quad \text{para} \quad t \ge 0,$$

$$u(x,0) = u_{0}(x) \quad \text{com} \quad x \in [0,L],$$

(1.1)

onde Qé o retângulo]0, $L[\times [0,T[$ com L>0, T>0 arbitrário e $\beta>0$ uma constante real.

Como resultada do estudo do problema (1.1) será mostrado:

- Existência de soluções globais fracas;
- Unicidade das soluções;
- Análise do comportamento assintótico da energia associada;
- Análise numérica das soluções.

Capítulo 2

Resultados Básicos

Neste capítulo apresenta-se os pré-requisitos necessários para desenvolver os capítulos subseqüentes.

2.1 Espaço das Distribuições Escalares

Definição 2.1 Dada uma função contínua, $\varphi : \Omega \subset \mathbb{R}^N \to \mathbb{R}$, onde Ω é um aberto, denomina-se suporte de φ ao fecho em Ω do conjunto dos pontos x tais que $\varphi(x) \neq 0$. Simbolicamente

$$\operatorname{supp}\left(\varphi\right) = \overline{\left\{x \in \Omega; \varphi\left(x\right) \neq 0\right\}}^{\Omega}$$

Representa-se por $C_0^{\infty}(\Omega)$ o espaço vetorial das funções contínuas e infinitamente deriváveis em Ω , com suporte compacto em Ω .

2.2 Convergência em $C_0^{\infty}(\Omega)$

Dado Ω como acima, considere o espaço vetorial topológico $C_0^{\infty}(\Omega)$. Diz-se que uma seqüência $(\varphi_{\nu})_{\nu \in \mathbb{N}}$ de funções em $C_0^{\infty}(\Omega)$ converge para φ em $C_0^{\infty}(\Omega)$ quando forem satisfeitas as seguintes condições:

i) Existe um conjunto compacto $K \subset \Omega$ tal que

$$\operatorname{supp}(\varphi) \subset K \text{ e } \operatorname{supp}(\varphi_{\nu}) \subset K, \forall \nu \in \mathbb{N}$$

ii) $D^{\alpha}\varphi_{\nu} \longrightarrow D^{\alpha}\varphi$ uniformemente em K para todo multi-índice α .

O espaço vetorial $C_0^{\infty}(\Omega)$ munido da noção de convergência definida acima, será representada por $\mathcal{D}(\Omega)$ e denominado de *espaço das funções testes*.

Denomina-se distribuição escalar sobre Ω a toda forma linear $T : \mathcal{D}(\Omega) \longrightarrow \mathbb{R}$ contínua com respeito a topologia de $\mathcal{D}(\Omega)$. Isto significa que se uma seqüência $(\varphi_{\nu})_{\nu \in \mathbb{N}}$ convergir, em $\mathcal{D}(\Omega)$ para φ , então,

$$T(\varphi_{\nu}) \longrightarrow T(\varphi) \text{ em } \mathbb{R}.$$

O valor da distribuição T na função teste φ será representado por $\langle T, \varphi \rangle$.

O conjunto das distribuições escalares sobre Ω é um espaço vetorial real, denotado por $\mathcal{D}'(\Omega)$, denominado espaço das distribuições escalares sobre Ω .

Dado um aberto Ω do \mathbb{R}^N denota-se por $L^p(\Omega)$, $1 \leq p < \infty$, o espaço vetorial das (classes de) funções mensuráveis $u : \Omega \longrightarrow \mathbb{R}$ tais que $|u|^p$ é integrável no sentido de *Lebesgue* em Ω , equipado com a norma

$$\left\|u\right\|_{L^{p}(\Omega)} = \left(\int_{\Omega} \left|u\left(x\right)\right|^{p} dx\right)^{1/p}$$

No caso $p = \infty$ denota-se por $L^{\infty}(\Omega)$ o espaço vetorial das (classes de) funções mensuráveis a *Lebesgue* e essencialmente limitadas em Ω , isto é, existe uma constante C > 0tal que

$$|u(x)| \leq C$$
 quase sempre em Ω ,

onde quase sempre significa a menos de um conjunto de medida nula.

Neste espaço considera-se a seguinte norma

$$||u||_{L^{\infty}(\Omega)} = \sup \operatorname{ess} |u(x)| \quad \forall u \in L^{\infty}(\Omega).$$

O espaço $L^{p}(\Omega)$, $1 \leq p \leq \infty$, com sua respectiva norma, é um espaço de Banach. Em particular, quando p = 2, tem-se que $L^{2}(\Omega)$ é um espaço de Hilbert cuja norma e produto interno serão definidos e denotados, respectivamente por

$$|u|_{L^{2}(\Omega)} = \left(\int_{\Omega} |u(x)|^{2} dx\right)^{1/2} \quad e \quad (u, v)_{L^{2}(\Omega)} = \int_{\Omega} u(x) v(x) dx.$$

Lema 2.2.1 (Du Bois Raymond) Seja $u \in L^1_{loc}(\Omega)$. Então $T_u = 0$ se, e somente se, u = 0 quase sempre em Ω .

Demonstração: Ver [3].

2.3 Convergência e Derivação em $\mathcal{D}'(\Omega)$

A sequência de distribuições escalares $(T_{\nu})_{\nu \in \mathbb{N}}$ converge para a distribuição escalar Tem $\mathcal{D}'(\Omega)$ quando

$$\langle T_{\nu}, \varphi \rangle \longrightarrow \langle T, \varphi \rangle \text{ em } \mathbb{R}, \forall \varphi \in \mathcal{D}(\Omega).$$

Com esta noção de convergência, $\mathcal{D}'(\Omega)$ é um espaço vetorial topológico e tem-se as seguintes cadeias de imersões contínuas e densas

$$\mathcal{D}(\Omega) \hookrightarrow L^{p}(\Omega) \hookrightarrow L^{1}_{loc}(\Omega) \hookrightarrow \mathcal{D}'(\Omega) \text{ para } 1 \le p < \infty.$$

Dada uma distribuição T em $\mathcal{D}'(\Omega)$ e dado um multi-índice $\alpha \in \mathbb{N}^N$ define-se a derivada distribucional de ordem α de T como sendo a forma linear e contínua $D^{\alpha}T$: $\mathcal{D}(\Omega) \to \mathbb{R}$ dada por

$$\langle D^{\alpha}T,\varphi\rangle = (-1)^{|\alpha|} \langle T,D^{\alpha}\varphi\rangle$$
 para todo $\varphi \in \mathcal{D}(\Omega)$.

2.4 Espaços de Sobolev

2.4.1 Convergência em L^p e no dual de L^p

Diz-se que uma seqüência (φ_{ν}) converge para $\varphi \text{ em } L^p(\Omega)$ se $\|\varphi_{\nu} - \varphi\|_{L^p(\Omega)} \to 0$, para $1 \leq p \leq \infty$. Se $p \in q$ são índices conjugados, isto é, $\frac{1}{p} + \frac{1}{q} = 1 \text{ com } 1 \leq p < \infty$, então o dual topológico de $L^p(\Omega)$, que será de notado por $[L^p(\Omega)]'$, é o espaço $L^q(\Omega)$. No caso de $1 \leq p < \infty$ o espaço vetorial $L^p(\Omega)$ é separável e, para $1 , é reflexivo. Para demonstração destes e outros fatos relacionados aos espaços <math>L^p(\Omega)$ consulte Brezis [3].

Teorema 2.1 Sejam $(f_n)_{n \in \mathbb{N}} \subset L^p(\Omega)$ e $f \in L^p(\Omega)$, tais que

 $\|f_n - f\|_{L^p(\Omega)} \longrightarrow 0.$

Então existe uma subseqüência $(f_{n_k})_{k\in\mathbb{N}}$ de $(f_n)_{n\in\mathbb{N}}$ que converge quase sempre para f em Ω , e existe $h \in L^p(\Omega)$ tal que $|f_{n_k}(x)| \leq h(x), \forall k \in \mathbb{N}$ quase sempre em Ω .

Demonstração: Ver [3].

Definição 2.2 Seja H um espaço de Hilbert. Chama-se base Hilbertiana de H uma seqüência de elementos (ω_n) de H tais que

i) ||ω_n||_H = 1 ∀n, (ω_n, ω_m) = 0 ∀n, m, m ≠ n;
ii) O espaço gerado pela (ω_n)_{n∈ℕ} é denso em H.

I

Sejam m > 0, um número inteiro positivo e $1 \le p \le \infty$. O espaço de Sobolev de ordem m, modelado sobre $L^p(\Omega)$, aqui denotado por $W^{m,p}(\Omega)$, é por definição o espaço vetorial das (classes de) funções de $L^p(\Omega)$ para as quais suas derivadas até a ordem α , no sentido das distribuições, pertencem a $L^p(\Omega)$, para todo multi-índice α , com $|\alpha| \le m$. O espaço $W^{m,p}(\Omega)$ será equipado com norma

$$||u||_{W^{m,p}(\Omega)} = \Big(\sum_{|\alpha| \le m} ||D^{\alpha}u||_{L^{p}(\Omega)}^{p}\Big)^{1/p}, \ 1 \le p < \infty$$

e quando $p = \infty$, define-se

$$||u||_{W^{m,\infty}(\Omega)} = \sum_{|\alpha| \le m} ||D^{\alpha}u||_{L^{\infty}(\Omega)}.$$

Proposição 2.1 Os espaços lineares $W^{m,p}(\Omega)$ equipados das respectivas normas acima são espaços de Banach.

O espaço $W^{m,p}(\Omega)$ é um espaço reflexivo se $1 e separável se <math>1 \le p < \infty$. No caso particular em que p = 2, o espaço $W^{m,2}(\Omega)$ é um espaço de *Hilbert*, que é denotado por $H^m(\Omega)$. Simbolicamente

$$H^{m}\left(\Omega\right) = \left\{ u \in L^{2}\left(\Omega\right); D^{\alpha}u \in L^{2}\left(\Omega\right), \forall \alpha, |\alpha| \leq m \right\}$$

cuja norma e produto interno são dados respectivamente, por

$$||u||_{H^m(\Omega)} = \left(\sum_{|\alpha| \le m} ||D^{\alpha}u||^2_{L^2(\Omega)}\right)^{1/2} \quad \text{e} \quad ((u,v)) = \sum_{|\alpha| \le m} (D^{\alpha}u, D^{\alpha}v)_{L^2(\Omega)}$$

O espaço $H^{m}(\Omega)$ com a estrutura topológica acima, é um espaço de *Hilbert*, continuamente imerso em $L^{2}(\Omega)$.

O dual topológico do espaço $W_0^{m,p}(\Omega)$ é representado por $W^{-m,q}(\Omega)$ se $1 \leq p < \infty$ com $p \in q$ índices conjugados. Se $\varphi \in W^{-m,q}(\Omega)$ então $\varphi |_{\mathcal{D}(\Omega)}$ pertence a $\mathcal{D}'(\Omega)$. Quando $p = 2, W_0^{m,2}(\Omega)$ é denotado por $H_0^m(\Omega)$, cujo dual é o espaço denotado por $H^{-m}(\Omega)$. A caracterização de $W^{-m,p}(\Omega)$. é dada por:

Teorema 2.2 Seja $T \in \mathcal{D}'(\Omega)$. Então, $T \in W^{-m,p}(\Omega)$ se, e somente se, existem $g_{\alpha} \in L^{q}(\Omega)$ tais que $T = \sum_{|\alpha| \leq m} D^{\alpha}g_{\alpha}$.

Demonstração: Ver [3].

Lema 2.4.1 (Desigualdade de Poincaré) Seja $\Omega \subset \mathbb{R}^N$ um aberto limitado em alguma direção. Se $u \in H_0^1(\Omega)$, então existe uma constante C > 0 tal que

$$|u|_{L^{2}(\Omega)}^{2} \leq C |\nabla u|_{L^{2}(\Omega)}^{2}.$$

Demonstração: Ver [3].

Observação 2.1 Usando a desigualdade de Poincaré conclui-se que em $H_0^1(\Omega)$, as normas $\|u\|_{H^1(\Omega)} e |\nabla u|_{L^2(\Omega)}$ são equivalentes.

2.5 Espaços $L^{p}(0,T;X)$ e Distribuições Vetoriais

Sejam X um espaço de Banach real com a norma $\|\cdot\|_X$, T um número real positivo e χ_E a função característica do conjunto E. Uma função vetorial $\varphi : (0,T) \longrightarrow X$, é dita simples quando assume apenas um número finito de valores distintos. Dada uma função simples $\varphi : (0,T) \longrightarrow X$ com representação canônica

$$\varphi\left(t\right) = \sum_{i=1}^{k} \chi_{E_i} \varphi_i,$$

onde $E_i \subset (0,T)$ é mensurável, i = 1, 2, ..., k, dois a dois disjuntos, $m(E_i) < \infty$ e $\varphi_i \in X$, i = 1, 2, ..., k. Define-se a integral de φ como sendo o vetor de X dado por

$$\int_{0}^{T} \varphi(t) dt = \sum_{i=1}^{k} m(E_{i}) \varphi_{i}.$$

Diz-se que uma função vetorial $u : (0,T) \longrightarrow X$ é Bochner integrável (\mathcal{B} -integrável) se existir uma seqüência $(\varphi_{\nu})_{\nu \in \mathbb{N}}$ de funções simples tal que:

i) $\varphi_{\nu} \longrightarrow u \text{ em } X, \text{ q.s. em } (0,T);$

ii)
$$\lim_{k,m\to\infty}\int_0^T \|\varphi_k(t) - \varphi_m(t)\|_X dt = 0.$$

Uma função vetorial $u: (0,T) \subset \mathbb{R} \longrightarrow X$ é fracamente mensurável quando a função numérica $t \mapsto \langle \Phi, u(t) \rangle$ for mensurável, $\forall \Phi \in X'$, onde X' é o dual topológico de X. Dizse que u é fortemente mensurável quando u for limite quase sempre de uma seqüência $(\varphi_{\nu})_{\nu \in \mathbb{N}}$ de funções simples. Em particular, quando u for fortemente mensurável, então a aplicação $t \mapsto ||u(t)||_X$ é mensurável à Lebesgue.

Denota-se por $L^p(0,T;X)$, $1 \le p < \infty$, o espaço vetorial das (classes de) funções $u: (0,T) \longrightarrow X$ fortemente mensuráveis e tais que a função $t \mapsto ||u(t)||_X^p$ é integrável à *Lesbegue* em (0,T), munido da norma

$$\|u\|_{L^{p}(0,T;X)} = \left(\int_{0}^{T} \|u(t)\|_{X}^{p} dt\right)^{1/p}.$$

Quando p = 2 e X = H é um espaço de *Hilbert*, o espaço $L^2(0,T;H)$ é também um espaço de *Hilbert* cujo produto interno é dado por

$$(u,v)_{L^{2}(0,T;H)} = \int_{0}^{T} (u(s), v(s))_{H} ds.$$

Por $L^{\infty}(0,T;X)$ representa-se o espaço de *Banach* das (classes de) funções $u:(0,T) \subset \mathbb{R} \longrightarrow X$ que são fortemente mensuráveis e tais que $t \mapsto \|u(t)\|_X \in L^{\infty}(0,T)$. A norma em $L^{\infty}(0,T;X)$ é definida por

$$||u||_{L^{\infty}(0,T;X)} = \sup_{t \in (0,T)} \operatorname{ess} ||u(t)||_{X}.$$

Quando X é reflexivo e separável e $1 , então <math>L^p(0,T;X)$ é um espaço reflexivo e separável, cujo dual topológico se identifica ao espaço de *Banach* $L^{p'}(0,T;X')$, onde pe p' são índices conjugados, isto é, $\frac{1}{p} + \frac{1}{p'} = 1$. Mais precisamente, mostra-se que para cada $u \in [L^p(0,T;X)]'$, existe $\tilde{u} \in L^{p'}(0,T;X')$ tal que

$$\langle u, \varphi \rangle_{(L^{p}(0,T;X))' \times L^{p}(0,T;X)} = \int_{0}^{T} \langle \widetilde{u}(t), \varphi(t) \rangle_{X' \times X} dt$$

No caso, p = 1, o dual topológico do espaço $L^1(0,T;X)$ se identifica ao espaço $L^{\infty}(0,T;X')$.

O espaço das aplicações lineares e contínuas de $\mathcal{D}(0,T)$ em X é denominado espaço das distribuições vetoriais sobre (0,T) com valores em X, o qual será denotado por $\mathcal{D}'(0,T;X)$.

Definição 2.3 Seja $T \in \mathcal{D}'(0,T;X)$. A derivada de ordem n é definida como sendo a distribuição vetorial sobre (0,T) com valores em X dada por

$$\left\langle \frac{d^n T}{dt^n}, \varphi \right\rangle = (-1)^n \left\langle T, \frac{d^n \varphi}{dt^n} \right\rangle, \, \forall \varphi \in \mathcal{D}'(0, T).$$

Por $C^0([0,T];X)$, $0 < T < \infty$ representa-se o espaço de Banach das funções contínuas $u: [0,T] \longrightarrow X$ munido da norma da convergência uniforme

$$||u||_{C^{0}([0,T];X)} = \max_{t \in [0,T]} ||u(t)||_{X}.$$

Por $C_w^0([0,T];X)$ denota-se o espaço das funções $u:[0,T] \longrightarrow X$ fracamente contínuas, isto é, a aplicação $t \mapsto \langle v, u(t) \rangle_{X',X}$ é contínua em $[0,T], \forall v \in X'$.

Quando X = H é um espaço de *Hilbert*, a continuidade fraca de u é equivalente a continuidade da aplicação $t \mapsto (u(t), v)_H$ para $\forall v \in H$.

Teorema 2.3 (Aubin-Lions) Sejam B_0 , B, B_1 espaços de Banach, B_0 e B_1 reflexivos, a imersão de B_0 em B é compacta, B imerso continuamente em B_1 , $1 < p_0$, $p_1 < \infty$, e, W o espaço

$$W = \{ u \in L^{p_0}(0,T;B_0) ; u' \in L^{p_1}(0,T;B_1) \}$$

equipado da norma $\|u\|_W = \|u\|_{L^{p_0}(0,T;B_0)} + \|u'\|_{L^{p_1}(0,T;B_1)}$. Então W é um espaço de Banach, e a imersão de W em $L^{p_0}(0,T;B)$ é compacta.

Demonstração: Ver [7].

Observação 2.2 Uma conseqüência do Teorema de Aubin-Lions 2.3: se $(u_{\nu})_{\nu \in \mathbb{N}}$ é uma seqüência limitada em $L^2(0,T;B_0) e(u'_{\nu})_{\nu \in \mathbb{N}}$ é uma seqüência limitada em $L^2(0,T;B_1)$ então $(u_{\nu})_{\nu \in \mathbb{N}}$ é limitada em W. Daí, segue que existe uma subseqüência $(u_{\nu_k})_{k \in \mathbb{N}}$ de $(u_{\nu})_{\nu \in \mathbb{N}}$ tal que $u_{\nu_k} \longrightarrow u$ forte em $L^2(0,T;B)$.

Proposição 2.2 Sejam V e H espaços de Hilbert, V continuamente imerso em H, $u \in L^p(0,T;V)$ e $u' \in L^p(0,T;H)$, com $1 \le p < \infty$, então

 $u \in C^{0}([0,T]; H) \cap C_{w}^{0}([0,T]; V).$

2.6 Outros Resultados Úteis

Sejam $D\subset \mathbb{R}^{N+1}$
e $F:D\to \mathbb{R}^N.$ Diz-se que F satisfaz a
scondições de Carathéodory sobre D quando

- $F(t, \Upsilon)$ é mensurável em t, para cada Υ fixo;
- $F(t, \Upsilon)$ é contínua em Υ , para cada t fixo;
- Para cada compacto K em D, existe uma função real integrável $m_K(t)$ tal que $|F(t, \Upsilon)| \leq m_K(t)$, para todo $(t, \Upsilon) \in D$.

Definição 2.4 Uma solução no sentido estendido do problema de Cauchy

$$X' = F(t, X)$$
$$X(t_0) = X_0$$

é uma função $\Phi = \Phi(t)$ absolutamente contínua tal que, para algum β real, tenha-se

- i) $(t, \Phi(t)) \in \mathbb{R}, \forall t \in [t_0 \beta, t_0 + \beta];$
- *ii)* $\Phi'(t) = F(t, \Phi(t))$ para todo $t \in [t_0 \beta, t_0 + \beta]$, exceto em um conjunto de medida de Lebesgue zero.

Considere-se o retângulo $R = \{(t, \Upsilon) \in \mathbb{R}^{N+1}; |t - t_0| \le a, |\Upsilon - \Upsilon_0| \le b\}, \text{ com } a, b > 0$. Então tem-se os seguintes resultados:

Teorema 2.4 (Carathéodory) Seja $F : \mathbb{R} \to \mathbb{R}^N$ satisfazendo as condições de Carathéodory sobre R, então sobre algum intervalo $|t - t_0| \leq \beta$ ($\beta > 0$), existe uma solução no sentido estendido do problema de valor inicial

$$X' = F(t, X)$$
$$X(t_0) = \Upsilon_0.$$

Corolário 1 (Prolongamento de solução) Sejam $D = [0, \omega] \times B$, com $0 < \omega < \infty$ $e B = \{ \Upsilon \in \mathbb{R}^N; |\Upsilon| \le b \}, b > 0 e F$ nas condições de Carathéodory. Seja $\Phi(t)$ uma solução de

$$X' = F(t, X)$$
$$X(0) = X_0, \ |X_0| \le b$$

Suponha que em qualquer intervalo I onde $\Phi(t)$ está definida, se tenha, $|\Phi(t)| \leq M$, para todo $t \in I$, M independente de t e M < b. Então Φ tem um prolongamento até $[0, \omega]$.

Lema 2.6.1 (Lions) Sejam Q um aberto limitado do $\mathbb{R}^N_x \times \mathbb{R}_t$, g_m e g funções de $L^q(Q)$, $1 < q < +\infty$, tal que $||g_m||_{L^q(Q)} \leq C$, $g_m \to g$ quase sempre em Q. Então $g_m \rightharpoonup g$ na topologia fraca de $L^q(Q)$.

Demonstração: Ver [7].

Lema 2.6.2 (Desigualdade de Gronwall - Forma Diferencial) Seja $\eta(\cdot)$ uma função não negativa, absolutamente contínua em [0, T].

i) Se η satisfaz para t q.s. a desigualdade diferencial

$$\eta'(t) \le \psi(t) + \varphi(t) \eta(t), \qquad (2.1)$$

onde $\varphi(t) e \psi(t)$ são funções não negativas e integráveis em [0,T], então

$$\eta(t) \leq e^{\int_{0}^{t} \varphi(s)ds} \left[\eta(0) + \int_{0}^{t} \psi(s) e^{-\int_{0}^{s} \varphi(r)dr} ds \right]$$

$$\leq e^{\int_{0}^{t} \varphi(s)ds} \left[\eta(0) + \int_{0}^{t} \psi(s) ds \right]$$
(2.2)

para todo $0 \le t \le T$.

ii) Em particular, se $\eta' \leq \varphi \eta$ em [0,T] e $\eta(0) = 0$, então

$$\eta \equiv 0 \quad em \quad [0,T]$$

Demonstração: Multiplicando ambos os membros de (2.1) por $e^{-\int_0^s \varphi(r) dr}$ tem-se

$$\frac{d}{ds}\left(\eta\left(s\right)e^{-\int_{0}^{s}\varphi(r)dr}\right) = \left(\eta'\left(s\right) - \varphi\left(s\right)\eta\left(s\right)\right)e^{-\int_{0}^{s}\varphi(r)dr} \le \psi\left(s\right)e^{-\int_{0}^{s}\varphi(r)dr}$$

para $0 \le t \le T$ quase sempre.

Conseqüentemente, para cada $0 \leq t \leq T,$ conclui-se

$$\eta\left(t\right) = e^{\int_{0}^{s} \varphi(r)dr} \left[\eta\left(0\right) + \int_{0}^{t} e^{-\int_{0}^{s} \varphi(r)dr} \psi\left(s\right)ds\right] \le e^{\int_{0}^{s} \varphi(r)dr} \left[\eta\left(0\right) + \int_{0}^{t} \psi\left(s\right)ds\right]$$

para $0 \le t \le T$ quase sempre.

Lema 2.6.3 (Desigualdade de Gronwall - Forma Integral) Sejam u, φ, ψ funções reais não negativas em [0, T] satisfazendo

$$u(t) \le \varphi(t) + \int_0^t \psi(\sigma) u(\sigma) d\sigma$$
(2.3)

para todo $t \in [0, T]$. Então para todo $t \in [0, T]$ tem-se

$$u(t) \leq \varphi(t) + \int_0^t \psi(s) \varphi(s) e^{\int_s^t \psi(\tau) d\tau} ds.$$

Demonstração: Considerando o funcional auxiliar

$$\eta\left(t\right) = \int_{0}^{t} \psi\left(s\right) u\left(s\right) ds$$

Assim, de (2.3)

$$\eta'(t) = \psi(t) u(t) \le \psi(t) \left(\varphi(t) + \eta(t)\right).$$
(2.4)

Definindo

$$F(t) = \eta(t) e^{-\int_0^t \psi(\tau) d\tau}$$
(2.5)

obtém-se

$$F'(t) = -\psi(t) \eta(t) e^{-\int_0^t \psi(\tau) d\tau} + \eta'(t) e^{-\int_0^t \psi(\tau) d\tau}$$

portanto usando (2.4)

$$F'(t) \le \psi(t) \varphi(t) e^{-\int_0^t \psi(\tau) d\tau}.$$

Integrando ambos os membros,

$$F(t) \leq \int_{0}^{t} \psi(s) \varphi(s) e^{-\int_{0}^{s} \psi(\tau) d\tau} ds.$$

De (2.5) obtém-se

$$\eta\left(t\right) \leq \int_{0}^{t} \psi\left(s\right) \varphi\left(s\right) e^{\int_{s}^{t} \psi(\tau) d\tau} ds,$$

mas de (2.3) $u(t) - \varphi(t) \le \eta(t)$ e assim

$$u(t) \leq \varphi(t) + \int_{0}^{t} \psi(s) \varphi(s) e^{\int_{s}^{t} \psi(\tau) d\tau} ds$$

e obtém-se o resultado desejado.

Capítulo 3

Aspéctos Teóricos da BBM Viscosa

O objetivo deste capítulo é determinar existência e unicidade de soluções globais do seguinte problema de valores iniciais e de fronteira:

$$u_{t}(x,t) + u_{x}(x,t) + u(x,t) u_{x}(x,t) - u_{xxt}(x,t) - \beta u_{xx}(x,t) = 0 \quad \text{em} \quad]0, L[\times[0,\infty[, u(0,t) = u(L,t) = 0 \quad \text{para todo} \quad t \in [0,\infty], \\ u(x,0) = u_{0}(x) \quad \text{em} \quad]0, L[, \end{cases}$$
(3.1)

onde $L \in \beta$ são constantes reais positivas. Um problema de valor inicial e de valores de fronteira é chamado de *Problema Misto*.

A existência e unicidade de soluções globais, em t, para o problema misto (3.1) é estabelecida assumindo o dado inicial u_0 pertencente a $H_0^1(0, L)$.

O conceito de solução para o problema (3.1) é dado pela seguinte definição.

Definição 3.1 A função $u:]0, L[\times]0, \infty[\longrightarrow \mathbb{R}$ é solução fraca do problema misto (3.1) se

$$u \in L^{\infty}_{loc}(0,\infty; H^{1}_{0}(0,L)), \qquad u_{t} \in L^{\infty}_{loc}(0,\infty; H^{1}_{0}(0,L)), \qquad (3.2)$$

a função u satisfaz a identidade integral

$$\int_{0}^{T} (u_{t}(t), v) \,\theta(t)dt + \int_{0}^{T} (u_{x}(t), v) \,\theta(t)dt + \int_{0}^{T} (u_{x}(t), v) \,\theta(t)dt + \int_{0}^{T} (u_{x}(t), v_{x}) \,\theta(t)dt + \int_{0}^{T} (u_{x}(t), v_{x}) \,\theta(t)dt = 0,$$
(3.3)

para todo $v \in H_0^1(0,L)$ e $\theta \in L^1(0,T)$. Além disso, u satisfaz a condição inicial

$$u(x,0) = u_0(x) \text{ para todo } x \in]0, L[.$$
 (3.4)

Teorema 3.1 Se $u_0 \in H_0^1(0, L)$ então o problema misto (3.1) possui uma única solução no sentido da Definição 3.1. Além disso, a energia do sistema (3.1) dada por

$$E(t) = \frac{1}{2} \left\{ |u(t)|^2 + |u_x(t)|^2 \right\}$$
(3.5)

satisfaz a desigualdade

$$E(t) \le E(0) \exp\{-\Upsilon t\},\tag{3.6}$$

onde $\Upsilon = \min \left\{ \frac{\beta}{2L^3}, \frac{\beta}{2} \right\}$ é definida em (3.43).

A demonstração do Teorema 3.1 é baseada nos *métodos de Faedo-Galerkin; Energia e Lyapunov*, seguindo as seguintes etapas:

- *i*) Existência de soluções aproximadas;
- *ii)* Estimativas sobre as soluções aproximadas;
- *iii*) Limite nas soluções aproximadas;
- *iv*) Verificação dos dados iniciais;
- v) Unicidade de soluções;
- vi) Estabilidade assintótica da energia.

3.1 Existência de Soluções Aproximadas

A demonstração da existência de soluções do problema misto (3.1) será feita por meio do método Faedo-Galerkin. Assim, considera-se $(\varphi_j)_{j\in\mathbb{N}}$ uma base hilbertiana de $H_0^1(0, L)$ e para cada $m \in \mathbb{N}$ denota-se por $V^m = [\varphi_1, ..., \varphi_m]$ o sub-espaço de H_0^1 gerado pelos primeiros m vetores de $(\varphi_j)_{j\in\mathbb{N}}$.

O Problema Aproximado associado a (3.1) consiste em encontrar $u^m \in V^m$ definida por

$$u^{m}(x,t) = \sum_{i=1}^{m} g_{im}(t)\varphi_{i}(x) \quad \text{com} \quad g_{im} \in C^{1}(]0,T[),$$
(3.7)

solução, para cada m, do problema

$$\begin{pmatrix}
(u_t^m(t), \varphi) + (u_x^m(t), \varphi) + (u^m(t) u_x^m(t), \varphi) \\
+ (u_{xt}^m(t), \varphi_x) + \beta (u_x^m(t), \varphi_x) = 0, \\
u^m(x, 0) = u_0^m(x),
\end{cases}$$
(3.8)

para todo $\varphi \in V^m$. A condição inicial do sistema (3.8) em V^m é definida a partir de (3.7) por

$$u^{m}(x,0) = u_{0}^{m}(x) = \sum_{i=1}^{m} g_{im}(0)\varphi_{i}(x)$$

onde as constantes $g_{im}(0)$ podem ser escolhidas por $g_{im}(0) = (u_0, \varphi_i)$. Logo,

$$u_0^m(x) = \sum_{i=1}^m (u_0, \varphi_i)\varphi_i(x).$$
 (3.9)

Note que (\cdot, \cdot) em (3.9) representa o produto intermo de $L^2(0, L)$. Como V^m é um subespaço denso em $H_0^1(0, L)$ e $u_0 \in H_0^1(0, L)$ tem-se

$$u_0^m \longrightarrow u_0$$
 forte em $H_0^1(0, L)$. (3.10)

As soluções aproximadas u^m do problema (3.8) são determinadas por meio do Teorema de Carathodory 2.4. De fato, mostrar que as funções u^m existem em $[0, L] \times [0, \infty[$, consiste em determinar a existência das funções g_{im} em $[0, \infty[$ dado que a função φ_i é, para cada *i*, conheida. Assim, substituindo (3.7) em (3.8) obtém-se

$$\sum_{i=1}^{m} g'_{im}(t) \left[\left[(\varphi_i, \varphi) + (\varphi_{ix}, \varphi_x) \right] + g_{im}(t) (\varphi_{ix}, \varphi) + \right]_{j=1}^{m} g_{im}(t) g_{jm}(t) (\varphi_i \varphi_{jx}, \varphi) + \beta g_{im}(t) (\varphi_{ix}, \varphi_x) \right] = 0.$$
(3.11)

No sistema acima as variáveis estão separadas. Portanto, a indicação de derivada subindexada siguinifica $\frac{d}{dx}$. Ou seja, $\varphi_x = \frac{d\varphi}{dx}$.

Tomando, em particular, $\varphi = \varphi_i$ em (3.11) resulta

$$g_{im}'(t) \left[(\varphi_i, \varphi_i) + (\varphi_{ix}, \varphi_{ix}) \right] + g_{im}(t) (\varphi_{ix}, \varphi_i) + \sum_{j=1}^m g_{im}(t) g_{jm}(t) (\varphi_i \varphi_{jx}, \varphi_i) + \beta g_{im}(t) (\varphi_{ix}, \varphi_{ix}) = 0, \qquad (3.12)$$

com i = 1, ..., m. Como $(\varphi_i)_{\nu \in \mathbb{N}}$ é uma seqüência ortonormal em $H_0^1(0, L)$ então

$$2g'_{im}(t) + [1+\beta]g_{im} + g^2_{im}(t) = 0$$

Daí, de (3.8) e (3.9) resulta

$$\begin{vmatrix} 2g'_{im}(t) + [1+\beta]g_{im} + g^2_{im}(t) = 0, \\ g_{im}(0) = (u_0, \varphi_i) \quad \text{para} \quad i = 1, ..., m. \end{cases}$$
(3.13)

Definindo

$$X_{m}(t) = [g_{1m}(t), g_{2m}(t), \dots, g_{mm}(t)]^{t}, \quad X_{0m} = [(u_{0}, \varphi_{1}), (u_{0}, \varphi_{2}), \dots, (u_{0}, \varphi_{m})]^{t},$$
$$F(X_{m}(t)) = \frac{1}{2} [[1 + \beta]g_{im}(t) + g_{im}^{2}(t)],$$

e substituindo-as em (3.13) tem-se, equivalentemente, o seguinte problema de Cauchy

$$\frac{d}{dt}X_m(t) + F(X_m(t)) = 0,$$

$$X_m(0) = X_{0m}.$$
(3.14)

A função F satisfaz as condições de Carathéodory, por ser independente do tempo, e por tratar-se de um polinômio na variável X_m . Aplicando o Teorema de Carathéodory 2.4, obtém-se uma solução local Φ_m do problema (3.14) no intervalo $[0, t_m)$, para algum $t_m \in (0, T]$ e para cada $m \in \mathbb{N}$.

As soluções Φ_m determinam as soluções aproximadas $u^m(x,t)$ sobre o intervalo $[0,t_m)$ definidas em (3.7).

3.2 Estimativas sobre as soluções aproximadas

As soluções aproximadas locais u^m serão estendidas a todo intervalo [0, T] por meio da Primeira Estimativa estabelecida a seguir.

3.2.1 Primeira Estimativa

Fazendo $\varphi = u^m \text{ em } (3.8)_1 \text{ tem-se}$

$$\begin{pmatrix} u_t^m(t), u^m(t) \end{pmatrix} + \begin{pmatrix} u_x^m(t), u^m(t) \end{pmatrix} + \\ \left(u^m u_x^m(t), u^m(t) \right) + \left(u_{xt}^m(t), u_x^m(t) \right) + \beta \left(u_x^m(t), u_x^m(t) \right) = 0.$$
(3.15)

Analisando cada parcela de (3.15) tem-se

$$\begin{aligned} \bullet \ \left(u_t^m\left(t\right), u^m\left(t\right)\right) &= \ \int_0^L u_t^m\left(x, t\right) u^m\left(x, t\right) dx = \frac{1}{2} \int_0^L \frac{\partial}{\partial t} |u^m\left(x, t\right)|_{\mathbb{R}}^2 dx \\ &= \ \frac{1}{2} \frac{d}{dt} \left(\int_0^L |u^m\left(x, t\right)|_{\mathbb{R}}^2 dx\right) = \frac{1}{2} \frac{d}{dt} |u^m(t)|^2; \\ \bullet \ \left(u_x^m\left(t\right), u^m\left(t\right)\right) &= \ \int_0^L u^m\left(x, t\right) u_x^m\left(x, t\right) dx = \frac{1}{2} \int_0^L \frac{\partial}{\partial x} |u^m\left(x, t\right)|_{\mathbb{R}}^2 dx; \\ &= \ \frac{1}{2} |u^m\left(x, t\right)|_{\mathbb{R}}^2 \Big|_0^L = 0; \\ \bullet \ \left(u_{xt}^m\left(t\right), u^m\left(t\right)\right) &= \ \int_0^L (u^m\left(x, t\right))^2 u_x^m\left(x, t\right) dx = \frac{1}{3} |u^m\left(x, t\right)|_{\mathbb{R}}^3 \Big|_0^L = 0; \\ \bullet \ \left(u_{xt}^m\left(t\right), u_x^m\left(t\right)\right) &= \ \int_0^L u_x^m\left(x, t\right) u_{xt}^m\left(x, t\right) dx \\ &= \ \frac{1}{2} \frac{d}{dt} \int_0^L |u_x^m\left(x, t\right)|_{\mathbb{R}}^2 dx = \frac{1}{2} \frac{d}{dt} |u_x^m(t)|^2; \\ \bullet \ \beta \left(u_x^m\left(t\right), u_x^m\left(t\right)\right) &= \ \beta |u_x^m(t)|^2. \end{aligned}$$

Substituindo as identidades precedentes em (3.15) resulta

$$\frac{1}{2}\frac{d}{dt}\left[\left|u^{m}(t)\right|^{2}+\left|u^{m}_{x}(t)\right|^{2}\right]+\beta\left|u^{m}_{x}(t)\right|^{2}=0.$$
(3.16)

Integrando (3.16) de 0 à $t \in [0, t_m)$ obtém-se

$$|u^{m}(t)|^{2} + |u^{m}_{x}(t)|^{2} + \beta \int_{0}^{t} |u^{m}_{x}(s)|^{2} ds = |u^{m}_{0}|^{2} + |u^{m}_{0x}|^{2}.$$

A convergência em (3.10) assegura que a seqüência $(u_0^m)_{m\in\mathbb{N}}$ é limitada em $H_0^1(0, L)$. Assim, existe uma constante real positiva C_0 independentemente de m tal que

$$|u^{m}(t)|^{2} + |u^{m}_{x}(t)|^{2} + \beta \int_{0}^{t} |u^{m}_{x}(s)|^{2} ds \leq C_{0} \quad \text{para todo} \quad t \in [0, t_{m})$$
(3.17)

Observação 3.1 A estimativa (3.17) é suficiente para o uso do Corolário 1, sobre Prolongamento de Soluções. De fato,

$$\begin{aligned} |u^{m}(t)|_{L^{2}(0,L)}^{2} &= \int_{0}^{L} (u^{m}(x,t))^{2} dx = \int_{0}^{L} \left(\sum_{i=1}^{m} g_{im}(t) \varphi_{i}(x) \right)^{2} dx \\ &= \sum_{i=1}^{m} \sum_{j=1}^{m} g_{im}(t) g_{jm}(t) \int_{0}^{L} \varphi_{i}(x) \varphi_{j}(x) dx = \sum_{i=1}^{m} g_{im}^{2}(t). \end{aligned}$$

De $(3.7)_2$ tem-se que $g_{im} \in C^0([0,T])$ para T > 0 arbitrário. Logo, a solução Φ_m de (3.12) satisfaz

$$|\Phi_m| \le |u^m(t)| \le C.$$

Daí obtém-se o prolongamento das soluções Φ_m ao intervalo [0,T] e portanto obtém-se, também, o prolongamento para as soluções aproximadas $u^m(x,t)$.

Da Observação (3.1) tem-se a existência das soluções aproximadas, para todo $m \in \mathbb{N}$, sobre o intervalo [0,T] para T > 0 arbitrário ou $[0,\infty[$. Logo, de (3.17) pode-se escrever

$$|u^{m}(t)|^{2} + |u^{m}_{x}(t)|^{2} + \beta \int_{0}^{\infty} |u^{m}_{x}(t)|^{2} dt \le C_{0}.$$
(3.18)

Daí a norma $\|u^m\|_{L^{\infty}\left(0,T;H^1_0(0,L)\right)} = \operatorname{ess\,sup}_{t\in]0,T[} |u^m_x\left(t\right)| < \infty.$ Ou seja,

 $(u^{m})_{m\in\mathbb{N}} \quad \text{\'e} \text{ limitada em } \quad L^{\infty}_{loc}\left(0,\infty;H^{1}_{0}\left(0,L\right)\right) \cap L^{2}_{loc}\left(0,\infty;H^{1}_{0}\left(0,L\right)\right).$ (3.19)

3.2.2 Segunda Estimativa

Fazendo $\varphi = u_t^m(t)$ em $(3.8)_1$ tem-se

$$\begin{pmatrix} u_t^m(t), u_t^m(t) \end{pmatrix} + \begin{pmatrix} u_x^m(t), u_t^m(t) \end{pmatrix} + \\ \left(u^m(t) u_x^m(t), u_t^m(t) \right) + \left(u_{xt}^m(t), u_{xt}^m(t) \right) + \beta \left(u_x^m(t), u_{xt}^m(t) \right) = 0.$$

Integrando por partes a segunda e a terceira parcelas da identidade acima e usando as condições de fronteiras tem-se

$$\begin{pmatrix} u_x^m(t), u_t^m(t) \end{pmatrix} = -\left(u^m(t), u_{xt}^m(t) \right); \left(u^m(t) u_x^m(t), u_t^m(t) \right) = -\frac{1}{2} \left(\left(u^m(t)\right)^2, u_{xt}^m(t) \right).$$

Portanto,

$$|u_t^m(t)|^2 + |u_{xt}^m(t)|^2 = -\beta \left(u_x^m(t), u_{xt}^m(t) \right) + \left(u^m(t), u_{xt}^m(t) \right) + \frac{1}{2} \left(\left(u^m(t) \right)^2, u_{xt}^m(t) \right).$$

Obtém-se, agora, estimativas superiores para as parcelas do lado direito da identidade precedente. De fato, usando a desigualdade de Poincaré $|v|_{L^2(0,L)}^2 \leq L^3 |v_x|_{L^2(0,L)}^2$, a qual é válida para todo $v \in H_0^1(0,L)$, e as desigualdades de Cauchy-Schwartz e Young com

p = p' = 2, resulta

$$\begin{aligned} \left| -\beta \left(u_x^m(t), u_{xt}^m(t) \right) \right|_{\mathbb{R}} &\leq \beta |u_x^m(t)| |u_{xt}^m(t)| = \sqrt{2}\beta |u_x^m(t)| \frac{1}{\sqrt{2}} |u_{xt}^m(t)| \\ &\leq \beta^2 |u_x^m(t)|^2 + \frac{1}{4} |u_{xt}^m(t)|^2; \\ \left| \left(u^m(t), u_{xt}^m(t) \right) \right|_{\mathbb{R}} &\leq |u^m(t)|^2 + \frac{1}{4} |u_{xt}^m(t)|^2 \leq L^3 |u_x^m(t)|^2 + \frac{1}{4} |u_{xt}^m(t)|^2; \\ \left| \frac{1}{2} \left((u^m(t))^2, u_{xt}^m(t) \right) \right|_{\mathbb{R}} &\leq \frac{1}{4} |u_{xt}^m(t)|^2 + \frac{1}{4} \left| [u^m(t)]^2 \right|^2. \end{aligned}$$

Substituindo estas três últimas desigualdades na identidade precedente, tem-se

$$|u_t^m(t)|^2 + \frac{1}{4} |u_{xt}^m(t)|^2 \le \left(\beta^2 + L^3\right) |u_x^m(t)|^2 + \frac{1}{4} \left| \left[u^m(t)\right]^2 \right|^2.$$

Note que $|[u^m(t)]^2|^2 = ||u^m(t)||^4_{L^4(0,L)}$ e como $H^1_0(0,L)$ está imerso continuamente em $L^4(0,L)$, existe uma constante $C_1 > 0$ tal que

$$||v||_{L^{4}(0,L)} \leq C_{1} |v_{x}|$$
 para todo $v \in H^{1}_{0}(0,L)$

Em particular, para $u^{m}(t)$. Substituindo este resultado na desigualdade acima tem-se

$$|u_t^m(t)|^2 + \frac{1}{4} |u_{xt}^m(t)|^2 \le \left(\beta^2 + L^3\right) |u_x^m(t)|^2 + \frac{1}{4}C_1^4 |u_x^m(t)|^4.$$

Daí e de (3.18) tem-se que o segundo membro é limitado. Assim, existe uma constante real $C_2 > 0$ independente de m e de t tal que

$$|u_t^m(t)|^2 + \frac{1}{4} |u_{xt}^m(t)|^2 \le C_2.$$

Daí, $||u_t^m||_{L^{\infty}(0,T;H_0^1(0,L))} = \operatorname{ess\,sup}_{t\in]0,T[} |u_{xt}^m(t)| < \infty.$ Logo,
 $(u_t^m)_{m\in\mathbb{N}}$ é limitada em $L_{loc}^{\infty}(0,\infty;H_0^1(0,L)).$ (3.20)

3.3 Limite nas soluções aproximadas

As estimativas (3.19) e (3.20) são suficientes para a passagem ao limite, quando $m \longrightarrow \infty$, no sistema aproximado (3.6).

3.3.1 Limite nas parcelas lineares de (3.8)

De fato, Do Teorema 2.1 e estimativa (3.19) existe uma subseqüência de $(u^m)_{m\in\mathbb{N}}$, a qual será também denotada por $(u^m)_{m\in\mathbb{N}}$, que converge na topologia fraco estrela de $L^{\infty}(0,T; H^1_0(0,L))$ para u, isto é,

$$u^m \stackrel{*}{\rightharpoonup} u \quad \text{em} \quad L^{\infty}\left(0, T; H^1_0\left(0, L\right)\right) \quad \text{quando} \quad m \longrightarrow \infty.$$
 (3.21)

Também, do Teorema 2.1 e estimativa (3.20) existe uma subseqüência de $(u_t^m)_{m\in\mathbb{N}}$, a qual será também denotada por $(u_t^m)_{m\in\mathbb{N}}$, que converge na topologia fraco estrela de $L^\infty\left(0,T;H^1_0\left(0,L\right)\right)$ para ξ , ou seja,

$$u_t^m \stackrel{*}{\rightharpoonup} \xi \quad \text{em} \quad L^{\infty}\left(0, T; H_0^1\left(0, L\right)\right) \quad \text{quando} \quad m \longrightarrow \infty.$$
 (3.22)

Interpretação das convergências (3.21) e (3.22): A convergência em (3.21) significa

$$\langle u^m, \varphi \rangle_{L^{\infty}\left(0,T; H^1_0(0,L)\right) \times L^1(0,T; H^{-1}(0,L))} \longrightarrow \langle u, \varphi \rangle_{L^{\infty}\left(0,T; H^1_0(0,L)\right) \times L^1(0,T; H^{-1}(0,L))},$$

para todo $\varphi \in L^1(0,T; H^{-1}(0,L))$. Em particular, para $\varphi(x,t) = v(x) \theta(t) \mod \theta \in \mathcal{D}(0,T) \subset L^2(0,T) \subset L^1(0,T)$ e $v \in H^1_0(0,L) \subset H^{-1}(0,L)$, resulta

$$\int_0^T \langle u^m\left(t\right), v \rangle_{H_0^1(0,L) \times H^{-1}(0,L)} \theta\left(t\right) dt \longrightarrow \int_0^T \langle u\left(t\right), v \rangle_{H_0^1(0,L) \times H^{-1}(0,L)} \theta\left(t\right) dt.$$

Sendo $u^m, v \in H_0^1(0, L)$ tém-se pelo teorema da Representação de Riesz que

$$\langle u^{m}(t), v \rangle_{H_{0}^{1}(0,L) \times H^{-1}(0,L)} = (u_{x}^{m}(t), v_{x})$$

Valendo resultado análogo para $\langle u(t), v \rangle_{H_0^1(0,L) \times H^{-1}(0,L)}$. Daí, pode-se escrever

$$\int_0^T \left(u_x^m(t), v_x \right) \theta(t) \, dt \longrightarrow \int_0^T \left(u_x(t), v_x \right) \theta(t) \, dt. \tag{3.23}$$

que significa $(u_x^m(t), v_x) \longrightarrow (u_x(t), v_x) \text{ em } \mathcal{D}'(0, T)$ para todo $v \in H^1_0(0, L)$. Assim, sendo o operador diferencial é contínuo no espaço das distribuições, tem-se

$$\frac{d}{dt}\left(u_{x}^{m}\left(t\right),v_{x}\right)\longrightarrow\frac{d}{dt}\left(u_{x}\left(t\right),v_{x}\right) \text{ para todo } v_{x}\in L^{2}\left(0,L\right).$$

Ou ainda,

$$(u_{xt}^{m}(t), v_{x}) \longrightarrow (u_{xt}(t), v_{x})$$
 para todo $v_{x} \in L^{2}(0, L)$,

pois $u_{t}^{m}~$ e $u\in L^{2}\left(0,T;H_{0}^{1}\left(0,L\right)\right).$ Analogamente, conclui-se usando (3.22) que

$$(u_{xt}^{m}(t), v_{x}) \longrightarrow (\xi_{x}(t), v_{x}) \text{ para todo } v_{x} \in L^{2}(0, L).$$

Da unicidade do limite obtém-se que $\xi = u_t$, e assim

$$u_t^m \stackrel{*}{\rightharpoonup} u_t \quad \text{em} \quad L^{\infty}\left(0, T; H_0^1\left(0, L\right)\right) \quad \text{quando} \quad m \longrightarrow \infty.$$
 (3.24)

Portanto, tem-se em particular, para $\theta\in\mathcal{D}\left(0,T\right)~$ e $~v\in H_{0}^{1}\left(0,L\right)$ que

$$\int_{0}^{T} \left(u_{xt}^{m}\left(t\right), v_{x}\right) \theta\left(t\right) dt \longrightarrow \int_{0}^{T} \left(u_{xt}\left(t\right), v_{x}\right) \theta\left(t\right) dt; \\
\int_{0}^{T} \left(u_{t}^{m}\left(t\right), v\right) \theta\left(t\right) dt \longrightarrow \int_{0}^{T} \left(u_{t}\left(t\right), v\right) \theta\left(t\right) dt,$$
(3.25)

quando $m \longrightarrow \infty$. Finalmente, de modo análogo tem-se de (3.23) que

$$\int_0^T \left(u_x^m(t), v \right) \theta(t) \, dt \quad \longrightarrow \quad \int_0^T \left(u_x(t), v \right) \theta(t) \, dt. \tag{3.26}$$

3.3.2 Limite na parcela não linear de (3.8).

De (3.21) e (3.24) obtém-se, em particular, que

$$\begin{array}{ll}
 u^m \rightharpoonup u & \text{frace em} & L^2(0,T;H_0^1(0,L)) & \text{quando} & m \longrightarrow \infty, \\
 u_t^m \rightharpoonup u_t & \text{frace em} & L^2(0,T;L^2(0,L)) & \text{quando} & m \longrightarrow \infty,
\end{array}$$
(3.27)

respectivamente. Pelo teorema de Rellich-Kondrachoff tem-se que imersão de $H_0^1(0, L)$ em $L^2(0, L)$ é compacta. Fazendo $B_0 = H_0^1(0, L), B = L^2(0, L)$ e $B_1 = L^2(0, L)$ com $p_0 = p_1 = 2$ e aplicando o Teorema de Aubin-Lions 2.3 conclui-se que a imersão de

$$W = \left\{ v \; ; \; v \in L^2\left(0, T; H^1_0(0, L)\right) \quad \text{e} \quad v_t \in L^2\left(0, T; L^2(0, L)\right) \right\}$$

em $L^{2}(0,T; L^{2}(0,L)) = L^{2}(Q)$ é, também, compacta. Portanto, convergência na topologia fraca de W é transformada em convergência forte em $L^{2}(Q)$. Assim,

$$u^m \longrightarrow u$$
 forte em $L^2(Q)$ quando $m \longrightarrow \infty$. (3.28)

A parcela não linear de (3.8) pode ser reescrita por

$$(u^{m}(t) u_{x}^{m}(t), \varphi) = (u_{x}^{m}(t), u^{m}(t) \varphi) = (u_{x}^{m}(t), [u^{m}(t) - u(t)] \varphi) + (u_{x}^{m}(t), u(t)\varphi).$$

Fazendo, em particular, $\varphi(x,t) = v(x) \theta(t) \operatorname{com} \theta \in \mathcal{D}(0,T), v \in H_0^1(0,L)$ e integrando de 0 a T, resulta

$$\int_{0}^{T} (u^{m}(t) u_{x}^{m}(t), v) \theta(t) dt = \int_{0}^{T} (u_{x}^{m}(t), [u^{m}(t) - u(t)] v) \theta(t) dt + \int_{0}^{T} (u_{x}^{m}(t), u(t)v) \theta(t) dt.$$
(3.29)

Mostra-se agora que as integrais do lado direito de (3.28) são convergentes. De fato, a primeira é limitada superiormente, usando a desigualdade de Cauchy-Schwartz, como segue

$$\begin{split} \left| \int_{0}^{T} \left(u_{x}^{m}(t), \left[u^{m}(t) - u(t) \right] v \right) \theta(t) dt \right|_{\mathbb{R}} &\leq \int_{0}^{T} |u_{x}^{m}(t)| \left| v \right|_{L^{\infty}(0,L)} |u^{m}(t) - u(t)| \left| \theta(t) \right|_{\mathbb{R}} dt \leq \\ C \sup_{t \in [0,T]} |\theta(t)|_{\mathbb{R}} \int_{0}^{T} |u_{x}^{m}(t)| \left| v \right|_{H_{0}^{1}(0,L)} |u^{m}(t) - u(t)| dt \leq \\ C_{1} |v|_{L^{\infty}\left(0,T;H_{0}^{1}(0,L)\right)} |u_{x}^{m}|_{L^{2}(0,T;L^{2}(0,L))} |u^{m} - u|_{L^{2}(0,T;L^{2}(0,L))} , \end{split}$$

onde C é a constante definida pela imersão contínua de $H_0^1(0, L)$ em $L^{\infty}(0, L)$ e $C_1 = C \sup_{t \in [0,T]} |\theta(t)|_{\mathbb{R}}$. Daí, usando (3.27)₁ e (3.28) obtém-se

$$\int_0^T \left(u_x^m(t), \left[u^m(t) - u(t) \right] v \right) \theta(t) dt \longrightarrow 0 \quad \text{quando} \quad m \longrightarrow \infty.$$
 (3.30)

A segunda integral do lado direito de (3.29) converge porquê de $(3.27)_1$ tem-se

$$u_x^m \rightharpoonup u_x$$
 frace em $L^2(0,T;L^2(0,L))$ quando $m \longrightarrow \infty$,

e além disso, $uv\theta \in L^2(0,T;L^2(0,L))$. Assim,

$$\int_0^T \left(u_x^m(t), u(t) v \right) \theta(t) dt \longrightarrow \int_0^T \left(u_x(t), u(t) v \right) \theta(t) dt,$$
(3.31)

quando $m \longrightarrow \infty$. Substituindo (3.31) e (3.28) em (3.29) resulta

$$\int_{0}^{T} \left(u^{m}\left(t\right) u_{x}^{m}\left(t\right), v \right) \theta(t) dt \longrightarrow \int_{0}^{T} \left(u\left(t\right) u_{x}\left(t\right), v \right) \theta(t) dt.$$
(3.32)

Passagem ao limite no sistema (3.8)₁. Se, em particular, $\varphi(x, t) = v(x) \theta(t)$ com $\theta \in \mathcal{D}(0, T), v \in H_0^1(0, L)$ em (3.8)₁ e integrando de 0 a *T*, então

$$\int_{0}^{T} \left[\left(u_{t}^{m}(t), v \right) + \left(u_{x}^{m}(t), v \right) + \left(u_{x}^{m}(t) u(t), v \right) + \left(u_{xt}^{m}(t), v_{x} \right) + \beta \left(u_{xt}^{m}(t), v_{x} \right) \right] \theta(t) dt.$$

Fazendo $m \longrightarrow \infty$ nesta identidade integral e usando (3.25), (3.26) e (3.32) obtém-se

$$\int_{0}^{T} \left[\left(u_{t}(t), v \right) + \left(u_{x}(t), v \right) + \left(u_{x}(t) u(t), v \right) + \left(u_{xt}(t), v_{x} \right) + \beta \left(u_{x}(t), v_{x} \right) \right] \theta(t) dt.$$
(3.33)

para todo $\theta \in \mathcal{D}(0,T)$ e para todo $v \in H_0^1(0,L)$. Como $\mathcal{D}(0,T)$ é denso em $L^1(0,T)$, tem-se que (3.33) é válida para todo $\theta \in L^1(0,T)$ e para todo $v \in H_0^1(0,L)$. Isto prova a identidade integral (3.3)

A afirmação (3.2) é uma conseqüência de (3.19) e (3.20). De fato, usando (3.19) e (3.21) resulta que $u \in L^{\infty}_{loc}(0,\infty; H^1_0(0,L)) \cap L^2_{loc}(0,\infty; L^2(0,L))$ e de (3.24) tem-se $u_t \in L^{\infty}_{loc}(0,\infty; H^1_0(0,L))$

Observação 3.2 Do Teorema 2.2 tem-se que (3.33) significa que

$$(u_t(t), v) + (u_x(t), v) + (u(t) u_x(t), v) + (u_{xt}(t), v_x) + \beta (u_x(t), v_x) = 0, \quad (3.34)$$

em $\mathcal{D}'(0,T)$ para $v \in H_0^1(0,L)$. Ou ainda, usando a densidade de $\mathcal{D}(0,T)$ em $L^1(0,T)$ pode-se afirmar que a identidade (3.34) é verificada em $L^{\infty}(0,T)$ para todo $v \in H_0^1(0,L)$. Observa-se, ainda, que para cada $t \in (0,T)$ tem-se de (3.24) que $u_{xt}(t) \in L^2(0,L)$. Daí obtém-se que $-u_{xxt} \in H^{-1}(0,L)$ pelo teorema 2.2. De modo similar $-u_{xx} \in H^{-1}(0,L)$. Usando este fato, conclui-se de (3.34) que

$$u_t + u_x + uu_x - u_{xxt} - \beta u_{xx} = 0$$

no sentido de $L^{\infty}(0,T;H^{-1}(0,L))$

3.4 Verificação dos dados iniciais

A convergência (3.21) assegura, em particular, que $u^m \stackrel{*}{\rightharpoonup} u$ em $L^{\infty}(0,T; L^2(0,L))$. Isto significa para todo $\varphi \in L^1(0,T; L^2(0,L))$ que

$$\int_{0}^{T} \left(u^{m}\left(t \right), \varphi \right) dt \to \int_{0}^{T} \left(u\left(t \right), \varphi \right) dt.$$
(3.35)

A convergência (3.35) vale, em particular, para toda função $\varphi(x,t) = v(x) \theta'(t)$ sendo $v \in L^2(0,L)$, $\theta \in C^1(0,T) \mod \theta(0) = 1$ e $\theta(T) = 0$. Assim, substituindo esta função em (3.35) e integrando por partes ambas integrais resulta

$$-(u^{m}(0), v) - \int_{0}^{T} (u_{t}^{m}(t), v) \theta(t) dt \to -(u(0), v) - \int_{0}^{T} (u_{t}(t), v) \theta(t) dt \qquad (3.36)$$

De (3.24) tem-se, em particular, que $u_t^m \stackrel{*}{\rightharpoonup} u_t$ em $L^{\infty}(0,T; L^2(0,L))$. Isto significa para todo $\varphi \in L^1(0,T; L^2(0,L))$ que

$$\int_{0}^{T} \left(u_{t}^{m}\left(t \right), \varphi \right) dt \to \int_{0}^{T} \left(u_{t}\left(t \right), \varphi \right) dt.$$
(3.37)

A convergência (3.37) vale, em particular, para toda função $\varphi(x,t) = v(x) \theta(t)$ sendo $v \in L^2(0,L), \ \theta \in C^1(0,T) \text{ com } \theta(0) = 1 \text{ e } \theta(T) = 0.$ Assim, tem-se

$$\int_{0}^{T} \left(u_{t}^{m}\left(t\right), v \right) \theta\left(t\right) dt \to \int_{0}^{T} \left(u_{t}\left(t\right), v \right) \theta\left(t\right) dt.$$
(3.38)

Adicionando (3.36) e (3.38) obtém-se

$$(u^{m}(0), v) \rightarrow (u(0), v)$$
 para todo $v \in L^{2}(0, L)$.

Portanto, significando que $u^{m}(0) \rightharpoonup u(0)$ em $L^{2}(0, L)$.

Por outro lado, de (3.10) tem-se $u^m(0) \to u_0$ forte em $H^1_0(0, L)$. Em particular $u^m(0) \to u_0$ em $L^2(0, L)$, e como o limite fraco é único, conclui-se que $u(0) = u_0$.

3.5 Unicidade de soluções

Sejam $u \in v$ duas soluções do problema (3.1) no sentido da Definição 3.1. Denotando w = u - v, tem-se que w satisfaz o problema

$$w_t + w_x + (uu_x - vv_x) - w_{xxt} - \beta w_{xx} = 0 \quad \text{em} \quad L^{\infty} (0, T; H^{-1}(0, L))$$

$$w (x, 0) = 0.$$
 (3.39)

De (3.1)₁ tem-se $w \in H_0^1(0, L)$. Daí, e de (3.39)₁ a dualidade

$$\langle w_t(t) + w_x(t) + (uu_x - vv_x)(t) - w_{xxt}(t) - \beta w_{xx}(t), w(t) \rangle_{H^{-1}(0,L) \times H^1_0(0,L)} = 0$$

está bem definida. E como conseqüência do teorema da Representação de Riesz tem-se $\langle v, \omega \rangle_{H^{-1}(0,L) \times H^1_0(0,L)} = (v, \omega)_{L^2(0,L)}$. Portanto, pode-se escrever

$$(w_t(t), w(t)) + (w_x(t), w(t)) + (w_{xt}(t), w_x(t)) + \beta |w_x(t)|^2$$

= $-([uu_x - vv_x](t), w(t)) = -\frac{1}{2} \left(\frac{\partial}{\partial x} [u^2(t) - v^2(t)], w(t) \right).$ (3.40)

Usando as condições de fronteiras $(3.1)_2$ tem-se

$$(w_x(t), w(t)) = \frac{1}{2} \int_0^L \frac{\partial}{\partial x} [w(x, t)]^2 dx = \frac{1}{2} [w(\cdot, t)]^2 \Big|_0^L = 0.$$

Além disso, integrando por partes a parcela do lado direito de (3.40) resulta

$$\frac{d}{dt} \left[|w(t)|^2 + |w_x(t)|^2 \right] + \beta |w_x(t)|^2 = \left(\left[u^2 - v^2 \right](t), w_x(t) \right).$$
(3.41)

O lado direito de (3.41) é limitado superiomente como segue

$$\begin{aligned} |([u^{2} - v^{2}](t), w_{x}(t))|_{\mathbb{R}} &= |([u(t) + v(t)]w(t), w_{x}(t))|_{\mathbb{R}} \leq \\ &\leq \int_{0}^{L} |u(x, t) + v(x, t)|_{\mathbb{R}} |w_{x}(x, t)|_{\mathbb{R}} |w(x, t)|_{\mathbb{R}} dx \\ &\leq \left[|u(t)|_{L^{\infty}(0,L)} + |v(t)|_{L^{\infty}(0,L)} \right] |w(t)| |w_{x}(t)| \\ &\leq C \left[|u(t)|_{H^{1}_{0}(0,L)} + |v(t)|_{H^{1}_{0}(0,L)} \right] |w(t)| |w_{x}(t)| \\ &\leq \widetilde{C} \left[||u||_{L^{\infty}(0,T;H^{1}_{0}(0,L))} + ||v||_{L^{\infty}(0,T;H^{1}_{0}(0,L))} \right] |w(t)| |w_{x}(t)| \,. \end{aligned}$$

De (3.2)₁ tem-se que $||u||_{L^{\infty}(0,T;H^{1}_{0}(0,L))} + ||v||_{L^{\infty}(0,T;H^{1}_{0}(0,L))} < \infty$. Substituindo em (3.41) e usando que $\beta |w_{x}(t)|^{2} \geq 0$ obtém-se

$$\frac{d}{dt} \left[|w(t)|^2 + |w_x(t)|^2 \right] \leq C_1 |w(t)| |w_x(t)| \\ \leq \frac{C_1}{2} \left[|w(t)|^2 + |w_x(t)|^2 \right]$$

Aplicando a Desigualdade de Gronwall 2.6.2 obtém-se

$$|w(t)|^{2} + |w_{x}(t)|^{2} \le e^{(C_{1}/2)t} [|w(0)|^{2} + |w_{x}(0)|^{2}] = 0,$$

pois sendo w(x,0) = 0 tem-se que $w_x(x,0) = 0$. Logo, w(x,t) = 0 em]0, $L[\times[0,T]$ para T > 0 arbitrário

3.6 Estabilidade assintótica da energia

Como observado na Sessão 2.5 a dualidade

$$\langle u_t(t) + u_x(t) + uu_x(t) - u_{xxt}(t) - \beta u_{xx}(t), u(t) \rangle_{H^{-1}(0,L) \times H^1_0(0,L)} = 0$$

faz sentido. Usando o teorema da Representação de Riesz tem-se

$$(u_t(t), u(t)) + (u_x(t), u(t)) + (u_x(t), u(t)) - (u_{xxt}(t), u(t)) - \beta(u_{xx}(t), u(t)) = 0.$$

Modificando cada integral acima e usando as condições de fronteira $(3.1)_1$, resulta

$$\begin{aligned} (u_t(t), u(t)) &= \frac{1}{2} \int_0^L \frac{\partial}{\partial t} |u(x, t)|_{\mathbb{R}}^2 \, dx = \frac{1}{2} \frac{d}{dt} |u(t)|^2; \\ (u_x(t), u(t)) &= \frac{1}{2} \int_0^L \frac{\partial}{\partial x} |u(x, t)|_{\mathbb{R}}^2 \, dx = \frac{1}{2} |u(\cdot, t)|_{\mathbb{R}}^2 \Big|_0^L = 0; \\ (u(t) \, u_x(t), u(t)) &= \int_0^L (u(x, t))^2 \, u_x(x, t) \, dx = \frac{1}{3} |u(\cdot, t)|_{\mathbb{R}}^3 \Big|_0^L = 0; \\ - (u_{xxt}(t), u_x(t)) &= \frac{1}{2} \frac{d}{dt} |u_x(t)|^2; \\ -\beta (u_{xx}(t), u(t)) &= \beta |u_x(t)|^2. \end{aligned}$$

Portanto,

$$\frac{d}{dt}\left[|u(t)|^{2} + |u_{x}(t)|^{2}\right] + \beta |u_{x}(t)|^{2} = 0.$$
(3.42)

Note que

$$\beta |u_x(t)|^2 = \frac{\beta}{2} |u_x(t)|^2 + \frac{\beta}{2} |u_x(t)|^2 \ge \frac{\beta}{2L^3} |u(t)|^2 + \frac{\beta}{2} |u_x(t)|^2 \ge \Upsilon \left\{ |u(t)|^2 + |u_x(t)|^2 \right\},$$

na primeira desigualdade imediatamente acima usou-se a desigualdade de Poincaré $|v|_{L^2(0,L)}^2 \leq L^3 |v_x|_{L^2(0,L)}^2$, a qual é válida para todo $v \in H_0^1(0,L)$, e $\Upsilon = \min\left\{\frac{\beta}{2L^3}, \frac{\beta}{2}\right\}$. Daí de (3.5) e (3.42) resulta

$$\frac{d}{dt}E(t) + \Upsilon E(t) \le 0 \quad \text{para todo} \quad t \ge 0.$$
(3.43)

Daí, tem-se

$$\frac{d}{dt} \left\{ E(t) e^{\Upsilon t} \right\} \le 0 \quad \text{para todo} \quad t \ge 0.$$

Integrando de 0 a tobtém-se, finalmente, (3.6) e a demonstração do Teorema $\ref{eq:teorema}$ está concluida \blacksquare

Capítulo 4

Aspéctos Numéricos da BBM Viscosa

Neste capítulo será desenvolvido o estudo numérico do problema misto (1.1) por meio dos Métodos de Elementos Finitos na variável espacial e Diferenças Finitas na variável temporal.

4.1 Método de Elementos Finitos

Nesta sessão analisa-se numericamente o problema misto (1.1) na variável espacial.

4.1.1 Formulação Variacional

No problema (3.1) a equação (3.1)₁ é homogênea, isto é, o segundo membro é uma função $f \equiv 0$. Por conveniência numérica será considerada f uma função regular não identicamente nula, a saber

$$u_{t}(x,t) + u_{x}(x,t) + u(x,t) u_{x}(x,t) - u_{xxt}(x,t) - \beta u_{xx}(x,t) = f(x,t) \text{ em }]0, L[\times[0,\infty[, (4.1) u(0,t) = u(L,t) = 0 \text{ para todo } t \in [0,\infty], (4.1) u(x,0) = u_{0}(x) \text{ em }]0, L[.$$

Portanto, multiplicando $(4.1)_1$ por w e integrando de 0 a L, obtém-se a formulação variacional dada por

$$\left(\frac{\partial u}{\partial t}, w\right) + \left(\frac{\partial u}{\partial x}, w\right) + \left(u\frac{\partial u}{\partial x}, w\right) - \left(\frac{\partial^3 u}{\partial x^2 \partial t}, w\right) - \beta \left(\frac{\partial^2 u}{\partial x^2} u, w\right) = \left(f(t), w\right), \quad \forall \quad w \in H_0^1(\Omega),$$

$$(4.2)$$

onde (\cdot, \cdot) é o produto interno de $L^2(0, L)$.

4.1.2 Metódo de Faedo Galerkin

Denota-se por $(\varphi_i)_{i\in\mathbb{N}}$ uma base hilbertiana de $H_0^1(0, L)$ formada pelas funções de interpolação definidas pelas splines cúbicas. Seja $V_m = [\varphi_1, \varphi_2, \dots, \varphi_m]$, um subespaço gerado pelos *m* primeiros vetores da base $(\varphi_i)_{i\in\mathbb{N}}$. O Problema aproximado associado a (4.1) consiste em encontrar soluções

$$u_h(x,t) := u^m(x,t) = \sum_{i=1}^m d_i(t)\varphi_i(x) \text{ em } V^m,$$
 (4.3)

onde $d_i(t)$ são incógnitas a serem determinadas, isto é, os nós são pontos discretos do intervalo [0, L]. Tomando m divisões em [0, L] define-se $h = h_i = x_{i+1} - x_i$ para $i = 1, \ldots, m$, com h = 1/m.

4.1.3 Problema Aproximado

O problema aproximado associado a (3.1) é definido por (4.2) em V^m . Ou seja,

$$\begin{cases}
\left(\frac{\partial u_h}{\partial t}, w\right) + \left(\frac{\partial u_h}{\partial x}, w\right) + \left(u_h \frac{\partial u_h}{\partial x}, w\right) - \\
\left(\frac{\partial^3 u_h}{\partial x^2 \partial t}, w\right) - \beta \left(\frac{\partial^2 u_h}{\partial x^2}, w\right) = \left(f(t), w\right) \quad \text{em} \quad Q, \\
u_h(0, t) = u_h(L, t) = 0 \quad \text{para todo} \quad t \ge 0, \\
u_h(x, 0) = u_{h0}(x) \quad \text{em} \quad (0, L).
\end{cases}$$
(4.4)

Tomando em particular $w = \varphi_k$ em (4.4) tem-se:

$$\left(\frac{\partial u_h(t)}{\partial t},\varphi_k\right) + \left(\frac{\partial u_h(t)}{\partial x},\varphi_k\right) + \left(u_h(t)\frac{\partial u_h(t)}{\partial x},\varphi_k\right) - \left(\frac{\partial^3 u_h(t)}{\partial x^2 \partial t},\varphi_k\right) - \beta\left(\frac{\partial^2 u_h}{\partial x^2},\varphi_k\right) = \left(f(t),\varphi_k\right).$$
(4.5)

Usando a definição de u^m citada em (4.3) na equação (4.5) e resolvendo as integrais de cada parcela separadamente, obtém-se:

$$\left(\frac{\partial u_h(t)}{\partial t},\varphi_k\right) = \int_0^L \frac{\partial}{\partial t} \left(\sum_{i=1}^m d_i(t)\varphi_i(x)\right)\varphi_k(x)dx$$

$$= \int_0^L \sum_{i=1}^m d'_i(t)\varphi_i(x)\varphi_k(x)dx$$

$$= \sum_{i=1}^m d'_i(t) \int_0^L \varphi_i(x)\varphi_k(x)dx$$

$$= \sum_{i=1}^m d'_i(t) (\varphi_i,\varphi_k) \quad \forall k = 1,...,m.$$

(4.6)

$$\left(\frac{\partial u_h(t)}{\partial x}, \varphi_k \right) = \int_0^L \frac{\partial}{\partial x} \left(\sum_{i=1}^m d_i(t) \varphi_i(x) \right) \varphi_k(x) dx$$

$$= \sum_{i=1}^m d_i(t) \left((\varphi_i)_x, \varphi_k \right) \quad \forall k = 1, ..., m.$$

$$(4.7)$$

$$\begin{pmatrix} u_h(t)\frac{\partial u_h(t)}{\partial x},\varphi_k \end{pmatrix} = \int_0^L \left(\sum_{i=1}^m d_i(t)\varphi_i(x)\right) \left[\frac{\partial}{\partial x} \left(\sum_{j=1}^m d_j(t)\varphi_j(x)\right)\right] \varphi_k(x) dx$$

$$= \int_0^L \left(\sum_{i=1}^m d_i(t)\varphi_i(x)\right) \left(\sum_{j=1}^m d_j(t)(\varphi_j)_x\right) \varphi_k(x) dx$$

$$= \sum_{i=1}^m d_i(t) d_j(t) \int_0^L \varphi_i(x)(\varphi_j)_x(x) \varphi_k(x) dx$$

$$= \sum_{i=1}^m d_i(t) d_j(t) \left(\varphi_i(\varphi_j)_x,\varphi_k\right) \quad \forall j,k = 1,...,m.$$

$$(4.8)$$

$$-\left(\frac{\partial^{3}u_{h}(t)}{\partial x^{2}\partial t},\varphi_{k}\right) = -\int_{0}^{L}\frac{\partial}{\partial x}\left[\frac{\partial^{2}}{\partial x\partial t}\left(\sum_{i=1}^{m}d_{i}(t)\varphi_{i}(x)\right)\right]\varphi_{k}(x)dx$$

$$= -\frac{\partial^{2}}{\partial x\partial t}\left(\sum_{i=1}^{m}d_{i}(t)\varphi_{i}(x)\right)\varphi_{k}(x)\Big|_{0}^{L}$$

$$+ \int_{0}^{L}\frac{\partial^{2}}{\partial x\partial t}\left(\sum_{i=1}^{m}d_{i}(t)\varphi_{i}(x)\right)(\varphi_{k})_{x}(x)dx$$

$$= \int_{0}^{L}\sum_{i=1}^{m}d_{i}'(t)(\varphi_{i})_{x}(x)(\varphi_{k})_{x}(x)dx$$

$$= \sum_{i=1}^{m}d_{i}'(t)((\varphi_{i})_{x},(\varphi_{k})_{x}) \quad \forall j,k = 1,...,m.$$
(4.9)

$$-\beta \left(\frac{\partial^2 u_h}{\partial x^2}, \varphi_k\right) = -\beta \int_0^L \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(\sum_{i=1}^m d_i(t)\varphi_i(x)\right)\right] \varphi_k(x) dx$$

$$= \beta \sum_{i=1}^m d_i(t) \left((\varphi_i)_x, (\varphi_k)_x\right) \quad \forall k = 1, ..., m.$$
(4.10)

Substituindo (4.6)-(4.10) em (4.5), obtém-se:

$$\sum_{i=1}^{m} d'_{i}(t) (\varphi_{i}, \varphi_{k}) + \sum_{i=1}^{m} d_{i}(t) ((\varphi_{i})_{x}, \varphi_{k}) + \sum_{i=1}^{m} d_{i}(t) d_{j}(t) (\varphi_{i} (\varphi_{j})_{x}, \varphi_{k}) + \sum_{i=1}^{m} d'_{i}(t) ((\varphi_{i})_{x}, (\varphi_{k})_{x}) + \beta \sum_{i=1}^{m} d_{i}(t) ((\varphi_{i})_{x}, (\varphi_{k})_{x}) = (f(t), \varphi_{k}) \quad \forall j, k = 1, ..., m.$$
(4.11)

Daí, define-se:

$$A_{ik} = (\varphi_i, \varphi_k); \qquad B_{ik} = ((\varphi_i)_x, \varphi_k);$$
$$\widehat{B}_{ijk} = (\varphi_i (\varphi_j)_x, \varphi_k); \quad C_{ik} = ((\varphi_i)_x, (\varphi_k)_x)$$

Note que A_{ik} , B_{ik} e C_{ik} são matrizes quadradas de ordem m e $\widehat{B}ijk$ é um tensor de 3^a ordem. Assim, obtém-se de (4.11) o seguinte sistema não linear de equações diferenciais ordinárias na variável temporal t dado por:

$$\begin{cases} (A_{ik} + C_{ik}) d'(t) + (B_{ik} + \beta C_{ik}) d(t) + \widehat{B}_{ijk} d^2(t) = F_k(t) \\ d(0) = d_0 \end{cases}$$
(4.12)

onde $d(t) = [d_1(t), ..., (d_m(t)]^t$ é o vetor incógnita e $F_k = (f(t), \varphi_k)^t$ é um vetor de ordem $m \times 1$ denominado vetor força global.

O sistema de equações diferenciais ordinárias (4.12) será resolvido pelo Metódo das Diferenças Finitas, após um processo de linearização.

4.1.4 Função de Interpolação

A matriz global para ser calculada, precisa-se definir explicitamente as funções φ_i base do subespaço V_m do espaço $H_0^1(0, 1)$. A escolha de φ_i é essencial para a otimização do sistema não linear. No ajustamento e interpolação de funções, a aproximação por polinômios é muito conveniente, já que os polinômios possuem a propriedade de função analítica, que nos torna possível calcular as derivadas de qualquer ordem. As funções splines são polinômios de grau k com continuidade da derivada de ordem k - 1 nos nós comuns entre segmentos. Uma Spline Cúbica, é uma função polinomial contínua por partes, onde cada parte é um polinômio de grau 3 no intervalo $[x_{i-1}, x_i]$ com i variando em $\{2, 3, ..., m - 1\}$, com primeira e segunda derivadas contínuas. Assim, as curvas não têm picos e nem trocam abruptamente de curvatura nos nós. Desde que os elementos da matriz são funções deriváveis, escolhe-se as $\varphi'_i s$ como sendo funções trigonométricas ou polinomiais, para as quais as condições de fronteira são satisfeitas. O objetivo principal na escolha da φ é fazer com que a matriz seja uma matriz especial com muitos elementos nulos obedecendo uma certa ordem. Esse tipo de matriz é denominada matriz esparsa e o sistema resultante, em geral é bem condicionado. Em razão da formulação variacional possuir um termo de grau 3, as funções base φ_i que serão tomadas nesse problema são polinômios cúbicos por partes, também conhecidos como B-spline definidas a seguir. Considera-se as funções base φ_i do subespaço V^m do espaço $H_0^1(0, 1)$. Introduzido no Método de Faedo Galerkin, as funções de interpolação cúbica são dadas por:

$$B_{i}(x) = \begin{cases} \frac{(x - x_{i-2})^{3}}{4h^{3}} & \text{se} \quad x \in [x_{i-2}, x_{i-1}]; \\ \frac{1}{4} + \frac{3(x - x_{i-1})}{4h} + \frac{3(x - x_{i-1})^{2}}{4h^{2}} - \frac{3(x - x_{i-1})^{3}}{4h^{3}} & \text{se} \quad x \in [x_{i-1}, x_{i}]; \\ \frac{1}{4} + \frac{3(x_{i+1} - x)}{4h} + \frac{3(x_{i+1} - x)^{2}}{4h^{2}} - \frac{3(x_{i+1} - x)^{3}}{4h^{3}} & \text{se} \quad x \in [x_{i}, x_{i+1}]; \\ \frac{(x_{i+2} - x)^{3}}{4h^{3}} & \text{se} \quad x \in [x_{i+1}, x_{i+2}]; \\ 0 & \text{se} \quad x \notin [x_{i-2}, x_{i+2}]. \end{cases}$$

Assume-se que os pontos discretos do intervalo [0,L] estão igualmente espaçados, ou seja, tem-se uma malha uniforme de comprimento $h = x_{i+1} - x_i$, com $x_1 = 0$ e $x_m = 1$ para todo i = 1, 2, ...m. cuja derivada :

$$\frac{\partial B_i}{\partial x}(x) = \begin{cases} \frac{3(x-x_{i-2})^2}{4h^3} & \text{se} \quad x \in [x_{i-2}, x_{i-1}];\\ \frac{3}{4h} + \frac{3(x-x_{i-1})}{2h^2} - \frac{9(x-x_{i-1})^2}{4h^3} & \text{se} \quad x \in [x_{i-1}, x_i];\\ -\frac{3}{4h} - \frac{3(x_{i+1}-x)}{2h^2} + \frac{9(x_{i+1}-x)^2}{4h^3} & \text{se} \quad x \in [x_i, x_{i+1}];\\ -\frac{3(x_{i+2}-x)^2}{4h^3} & \text{se} \quad x \in [x_{i+1}, x_{i+2}];\\ 0 & \text{se} \quad x \notin [x_{i-2}, x_{i+2}]. \end{cases}$$

Mostrar-se que $B_i(x)$ de fato é uma base para os splines cúbicos, ou seja, toda spline cúbica pode ser escrita como combinação linear das B-Splines. Nota-se que para as funções B_0 , B_1 , B_2 , B_m e B_{m+1} , precisa-se introduzir os pontos nodais auxiliares: x_{-2} , x_{-1} , x_0 , x_{m+1} , x_{m+2} e x_{m+3} , que dependem dos valores na fronteira. Considerase o intervalo (0, L) com $x_1 = 0$ e $x_m = L$ com os valores de fronteira nulos. As funções B_3, \ldots, B_{m-2} se anulam nas fronteiras de cada intervalo que as definem, mas as funções B_1 , B_2 , B_{m-1} e B_m não satisfazem. Com esse objetivo, considere:

$$\varphi_{i}(x) = B_{i}(x), \qquad i = 3, ..., m - 2,
\varphi_{1}(x) = B_{1}(x) - 4B_{0}(x), \qquad \varphi_{2}(x) = B_{2}(x) - B_{0}(x),
\varphi_{m-1}(x) = B_{m-1}(x) - B_{m+1}(x), \qquad \varphi_{m}(x) = B_{m}(x) - 4B_{m+1}(x).$$
(4.13)

Tem-se que $B_i(x_i) = 1$ e $B_i(x_{i-1}) = B_i(x_{i+1}) = 1/4$, então é fácil de verificar que $\varphi_1(0) = \varphi_2(0) = \varphi_{m-1}(L) = \varphi_m(L) = 0$ e portanto satisfazem os valores de fronteira. Dessa forma a solução aproximada é um polinômio cúbico tal que $u^m(0) = u^m(L) = 0$. Onde V^m é o subespaço gerado por $V^m = [\varphi_1, \varphi_2, \dots \varphi_m]$, dado por :

$$u^{m}(x,t) = \sum_{i=1}^{m} d_{i}(t)\varphi_{i}(x) \quad \text{com} \quad \varphi_{i} \in V^{m}.$$

As funções B_i podem ser representadas geometricamente como mostrado na figura

Figura 4.1: Função base local: spline cúbico

4.1.5 Cálculo das Matrizes

Para o calculo das matrizes A_{ik} , B_{ik} e C_{ik} usa-se as funções base splines cúbicas definidas anteriormente. Cada matriz do sistema é uma matriz heptagonal e portanto tem-se que calcular genericamente todos os elementos para todas as matrizes a_{ij} com $|i - j| \leq 3$ e $a_{ij} = 0$ para |i - j| > 3.

4.1.6 Calculando os elementos da matriz A_{ik} :

$$A_{ik} = \int_0^L \varphi_i(x) \varphi_k(x) dx.$$

A matriz $A_{ik} = (a_{ik})_{\mathbb{N}}$ é simétrica, logo $a_{i,i+1} = a_{i+1,i}, a_{i,i+2} = a_{i+2,i}$ e $a_{i,i+3} = a_{i+3,i}$ para todo i = 3, ..., m - 2, tem-se:

$$a_{ii} = \int_0^L \varphi_i(x)\varphi_j(x)dx = \int_0^L \varphi_i(x)^2 dx = \int_{x_{i-2}}^{x_{i+2}} \varphi_i(x)^2 dx$$
$$= \int_{x_{i-2}}^{x_{i-1}} \varphi_i(x)^2 dx + \int_{x_{i-1}}^{x_i} \varphi_i(x)^2 dx + \int_{x_i}^{x_{i+1}} \varphi_i(x)^2 dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x)^2 dx$$
$$= \frac{h}{112} + \frac{297h}{560} + \frac{297h}{560} + \frac{h}{112} = \frac{151h}{140}.$$

• Para o elemento $a_{i,i+1}$ tem-se:

$$\begin{aligned} a_{i,i+1} &= a_{i+1,i} &= \int_0^L \varphi_i(x)\varphi_{i+1}(x)dx = \int_{x_{i-1}}^{x_{i+2}} \varphi_i(x)\varphi_{i+1}(x)dx \\ &= \int_{x_{i-1}}^{x_i} \varphi_i(x)\varphi_{i+1}(x)dx + \int_{x_i}^{x_{i+1}} \varphi_i(x)\varphi_{i+1}(x)dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x)\varphi_{i+1}(x)dx \\ &= \frac{129h}{2240} + \frac{933h}{2240} + \frac{129h}{2240} = \frac{1191h}{2240}. \end{aligned}$$

• Para o elemento $a_{i,i+2}$ tem-se:

$$a_{i,i+2} = a_{i+2,i} = \int_0^L \varphi_i(x)\varphi_{i+2}(x)dx = \int_{x_i}^{x_{i+2}} \varphi_i(x)\varphi_{i+2}(x)dx$$
$$= \int_{x_i}^{x_{i+1}} \varphi_i(x)\varphi_{i+2}(x)dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x)\varphi_{i+2}(x)dx$$
$$= \frac{3h}{112} + \frac{3h}{112} = \frac{3h}{56}.$$

• Para o elemento $a_{i,i+3}$ tem-se:

$$a_{i,i+3} = a_{i+3,i} = \int_0^L \varphi_i(x)\varphi_{i+3}(x)dx = \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x)\varphi_{i+3}(x)dx$$
$$= \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x)\varphi_{i+3}(x)dx = \frac{h}{2240}.$$

Os elementos da matriz A_{ik} próximos da fronteira, isto é, x = 0 e x = L são calculados das seguintes formas:

• Para o elemento a_{11} tem-se:

$$a_{11} = \int_0^L \varphi_1(x)\varphi_1(x)dx = \int_0^L \varphi_1(x)^2 dx = \int_{x_1}^{x_2} \varphi_1(x)^2 dx + \int_{x_2}^{x_3} \varphi_1(x)^2 dx$$
$$= \frac{17h}{80} + \frac{h}{112} = \frac{31h}{140}.$$

• Para o elemento a_{12} tem-se:

$$a_{12} = a_{21} = \int_0^L \varphi_1(x)\varphi_2(x)dx = \int_{x_1}^{x_2} \varphi_1(x)\varphi_2(x)dx + \int_{x_2}^{x_3} \varphi_1(x)\varphi_2(x)dx$$
$$= \frac{23h}{80} + \frac{129h}{2240} = \frac{773h}{2240}.$$

• Para o elemento a_{13} tem-se:

$$a_{13} = a_{31} = \int_0^L \varphi_1(x)\varphi_3(x)dx = \int_{x_1}^{x_2} \varphi_1(x)\varphi_3(x)dx + \int_{x_2}^{x_3} \varphi_1(x)\varphi_3(x)dx$$
$$= \frac{h}{40} + \frac{3h}{112} = \frac{29h}{560}.$$

• Para o elemento a_{22} tem-se:

$$a_{22} = \int_0^L \varphi_2(x)\varphi_2(x)dx = \int_{x_1}^{x_2} \varphi_2(x)^2 dx + \int_{x_2}^{x_3} \varphi_2(x)^2 dx + \int_{x_3}^{x_4} \varphi_2(x)^2 dx$$
$$= \frac{17h}{15} + \frac{297h}{560} + \frac{h}{112} = \frac{41h}{40}.$$

• Para o elemento $a_{m-1,m-1}$ tem-se:

$$a_{m-1,m-1} = \int_0^L \varphi_{m-1}(x)\varphi_{m-1}(y)dx = \int_0^L \varphi_{m-1}(x)^2 dx$$

= $\int_{x_{m-3}}^{x_{m-2}} \varphi_{m-1}(x)^2 dx + \int_{x_{m-2}}^{x_{m-1}} \varphi_{m-1}(x)^2 dx + \int_{x_{m-1}}^{x_m} \varphi_{m-1}(x)^2 dx$
= $\frac{h}{112} + \frac{297h}{560} + \frac{17h}{15} = \frac{41h}{40}.$

• Para o elemento $a_{m,m}$ tem-se:

$$a_{m,m} = \int_0^L \varphi_m(x)\varphi_m(x)dx = \int_{x_{m-2}}^{x_{m-1}} \varphi_m(x)^2 dx + \int_{x_{m-1}}^{x_m} \varphi_m(x)^2 dx$$
$$= \frac{h}{112} + \frac{17h}{80} = \frac{31h}{140}.$$

• Para o elemento $a_{m,m-1}$ tem-se:

$$a_{m,m-1} = a_{m-1,m} = \int_0^L \varphi_m(x)\varphi_{m-1}(x)dx$$

= $\int_{x_{m-2}}^{x_{m-1}} \varphi_m(x)\varphi_{m-1}(x)dx + \int_{x_{m-1}}^{x_m} \varphi_m(x)\varphi_{m-1}(x)dx$
= $\frac{23h}{80} + \frac{129h}{2240} = \frac{773h}{2240}.$

• Para o elemento $a_{m,m-2}$ tem-se:

$$a_{m,m-2} = a_{m-2,m} = \int_0^L \varphi_m(x)\varphi_{m-2}(x)dx$$

= $\int_{x_{m-2}}^{x_{m-1}} \varphi_m(x)\varphi_{m-2}(x)dx + \int_{x_{m-1}}^{x_m} \varphi_m(x)\varphi_{m-2}(x)dx$
= $\frac{h}{40} + \frac{h}{112} = \frac{29h}{560}.$

Agora, na forma matricial a matriz $A_{m\times m}$ é dada por:

$$A_{ik} = \begin{bmatrix} \frac{31h}{140} & \frac{773h}{2240} & \frac{29h}{560} & \frac{h}{2240} & 0 & \dots & 0 \\ \frac{773h}{2240} & \frac{41h}{40} & \frac{1191h}{2240} & \frac{3h}{56} & \frac{h}{2240} & \ddots & \vdots \\ \frac{29h}{560} & \frac{1191h}{2240} & \frac{151h}{140} & \frac{1191h}{2240} & \ddots & \ddots & 0 \\ \frac{h}{2240} & \frac{3h}{56} & \frac{1191h}{2240} & \ddots & \ddots & \frac{3h}{56} & \frac{h}{2240} \\ 0 & \frac{h}{2240} & \ddots & \ddots & \frac{151h}{140} & \frac{1191h}{2240} & \frac{29h}{560} \\ \vdots & \ddots & \ddots & \frac{3h}{56} & \frac{1191h}{2240} & \frac{1191h}{140} & \frac{29h}{2240} \\ 0 & \dots & 0 & \frac{h}{2240} & \frac{29h}{560} & \frac{773h}{2240} & \frac{31h}{140} \end{bmatrix}$$

4.1.7 Calculando os elementos da matriz B_{ik} :

$$B_{ik} = \int_0^L \varphi_i(x) \left(\varphi_k\right)_x(x) dx$$

Sendo $B_{ik} = (b_{ik})_{\mathbb{N}}$ tem-se:

$$b_{ii} = \int_0^L \varphi_i(x) \left(\varphi_i\right)_x(x) dx = \int_{x_{i-2}}^{x_{i+2}} \varphi_i(x) \left(\varphi_i\right)_x(x) dx$$
$$= \int_{x_{i-2}}^{x_{i-1}} \varphi_i(x) \left(\varphi_i\right)_x(x) dx + \int_{x_{i-1}}^{x_i} \varphi_i(x) \left(\varphi_i\right)_x(x) dx$$
$$+ \int_{x_i}^{x_{i+1}} \varphi_i(x) \left(\varphi_i\right)_x(x) dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x) \left(\varphi_i\right)_x(x) dx$$
$$= 0.$$

• Para o elemento $b_{i,i+1}$ tem-se:

$$b_{i,i+1} = \int_0^L \varphi_i(x) \left(\varphi_{i+1}\right)_x(x) dx = \int_{x_{i-1}}^{x_{i+2}} \varphi_i(x) \left(\varphi_{i+1}\right)_x(x) dx$$

= $\int_{x_{i-1}}^{x_i} \varphi_i(x) \left(\varphi_{i+1}\right)_x(x) dx + \int_{x_i}^{x_{i+1}} \varphi_i(x) \left(\varphi_{i+1}\right)_x(x) dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x) \left(\varphi_{i+1}\right)_x(x) dx$
= $\frac{49}{64}$.

• Para o elemento $b_{i+1,i}$ tem-se:

$$b_{i+1,i} = \int_0^L \varphi_{i+1}(x) \left(\varphi_i\right)_x (x) dx = \int_{x_{i-1}}^{x_{i+2}} \varphi_{i+1}(x) \left(\varphi_i\right)_x (x) dx$$

= $\int_{x_{i-1}}^{x_i} \varphi_{i+1}(x) \left(\varphi_i\right)_x (x) dx + \int_{x_i}^{x_{i+1}} \varphi_{i+1}(x) \left(\varphi_i\right)_x (x) dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_{i+1}(x) \left(\varphi_i\right)_x (x) dx$
= $-\frac{49}{64}$.

• Para o elemento $b_{i,i+2}$ tem-se:

$$b_{i,i+2} = \int_0^L \varphi_i(x) (\varphi_{i+2})_x (x) dx = \int_{x_i}^{x_{i+2}} \varphi_i(x) (\varphi_{i+2})_x (x) dx$$
$$= \int_{x_i}^{x_{i+1}} \varphi_i(x) (\varphi_{i+2})_x (x) dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x) (\varphi_{i+2})_x (x) dx$$
$$= \frac{7}{40}.$$

• Para o elemento $b_{i+2,i}$ tem-se:

$$b_{i+2,i} = \int_{0}^{L} \varphi_{i+2}(x) (\varphi_{i})_{x} (x) dx = \int_{x_{i}}^{x_{i+2}} \varphi_{i+2}(x) (\varphi_{i})_{x} (x) dx$$

= $\int_{x_{i}}^{x_{i+1}} \varphi_{i+2}(x) (\varphi_{i})_{x} (x) dx + \int_{x_{i+1}}^{x_{i+2}} \varphi_{i+2}(x) (\varphi_{i})_{x} (x) dx$
= $-\frac{7}{40}$.

• Para o elemento $b_{i,i+3}$ tem-se:

$$b_{i,i+3} = \int_0^L \varphi_i(x) \left(\varphi_{i+3}\right)_x(x) dx = \int_{x_{i+1}}^{x_{i+2}} \varphi_i(x) \left(\varphi_{i+3}\right)_x(x) dx = \frac{1}{320}.$$

• Para o elemento $b_{i+3,i}$ tem-se:

$$b_{i+3,i} = \int_0^L \varphi_{i+3}(x) (\varphi_i)_x (x) dx = \int_{x_{i+1}}^{x_{i+2}} \varphi_{i+3}(x) (\varphi_{i+3})_x (x) \varphi_i(x) dx$$

= $\int_{x_{i+1}}^{x_{i+2}} \varphi_{i+3}(x) (\varphi_i)_x (x) dx$
= $-\frac{1}{320}$.

• Para o elemento b_{11} tem-se:

$$b_{11} = \int_0^L \varphi_1(x) \left(\varphi_1\right)_x(x) dx = \int_{x_1}^{x_2} \varphi_1(x) \left(\varphi_1\right)_x(x) dx + \int_{x_2}^{x_3} \varphi_1(x) \left(\varphi_1\right)_x(x) dx = 0.$$

• Para o elemento b_{12} tem-se:

$$b_{12} = \int_0^L \varphi_1(x) (\varphi_2)_x (x) dx = \int_{x_1}^{x_2} \varphi_1(x) (\varphi_2)_x (x) dx + \int_{x_2}^{x_3} \varphi_1(x) (\varphi_2)_x (x) dx$$
$$= \frac{133}{320}.$$

• Para o elemento b_{21} tem-se:

$$b_{21} = \int_0^L \varphi_2(x) (\varphi_1)_x (x) dx = \int_{x_1}^{x_2} (\varphi_2)_x (x) \varphi_1(x) dx + \int_{x_2}^{x_3} (\varphi_2)_x (x) \varphi_1(x) dx$$
$$= -\frac{133}{320}.$$

• Para o elemento b_{22} tem-se:

$$b_{22} = \int_0^L \varphi_2(x) (\varphi_2)_x (x) dx$$

= $\int_{x_1}^{x_2} \varphi_2(x) (\varphi_2)_x (x) dx + \int_{x_2}^{x_3} \varphi_2(x) (\varphi_2)_x (x) dx + \int_{x_3}^{x_4} \varphi_2(x) (\varphi_2)_x (x) dx$
= 0.

• Para o elemento b_{13} tem-se:

$$b_{13} = \int_0^L \varphi_1(x)\varphi_3(x)dx = \int_{x_1}^{x_2} \varphi_1(x)\varphi_3(x)dx + \int_{x_2}^{x_3} \varphi_1(x)\varphi_3(x)dx$$
$$= \frac{13}{80}.$$

• Para o elemento b_{31} tem-se:

$$b_{31} = \int_0^L \varphi_3(x)\varphi_1(x)dx = \int_{x_1}^{x_2} \varphi_3(x)\varphi_1(x)dx + \int_{x_2}^{x_3} \varphi_3(x)\varphi_1(x)dx$$
$$= -\frac{13}{80}.$$

• Para o elemento $b_{m,m-2}$, tem-se:

$$b_{m,m-2} = \int_0^L \varphi_m(x)\varphi_{m-2}(x)dx = \int_{x_{m-2}}^{x_{m-1}} \varphi_m(x)\varphi_{m-2}(x)dx + \int_{x_{m-1}}^{x_m} \varphi_m(x)\varphi_{m-2}(x)dx$$
$$= -\frac{13}{80}.$$

• Para o elemento $b_{m-2,m}$ tem-se:

$$b_{m-2,m} = \int_0^L \varphi_{m-2}(x)\varphi_m(x)dx = \int_{x_{m-2}}^{x_{m-1}} \varphi_{m-2}(x)\varphi_m(x)dx + \int_{x_{m-1}}^{x_m} \varphi_{m-2}(x)\varphi_m(x)dx$$
$$= \frac{13}{80}.$$

• Para o elemento $b_{m-1,m-1}$ tem-se:

$$b_{m-1,m-1} = \int_0^L \varphi_{m-1}(x) (\varphi_{m-1})_x (x) dx$$

= $\int_{x_{m-3}}^{x_{m-2}} \varphi_{m-1}(x) (\varphi_{m-1})_x (x) dx + \int_{x_{m-2}}^{x_{m-1}} \varphi_{m-1}(x) (\varphi_{m-1})_x (x) dx$
+ $\int_{x_{m-1}}^{x_m} \varphi_{m-1}(x) (\varphi_{m-1})_x (x) dx$
= 0.

• Para o elemento $b_{m,m}$ tem-se:

$$b_{m,m} = \int_0^L \varphi_m(x) \left(\varphi_m\right)_x(x) dx = \int_{x_{m-2}}^{x_{m-1}} \varphi_m(x) \left(\varphi_m\right)_x(x) dx + \int_{x_{m-1}}^{x_m} \varphi_m(x) \left(\varphi_m\right)_x(x) dx$$
$$= 0.$$

• Para o elemento $b_{m,m-1}$ tem-se:

$$b_{m,m-1} = \int_0^L \varphi_m(x) (\varphi_{m-1})_x (x) dx$$

= $\int_{x_{m-2}}^{x_{m-1}} \varphi_m(x) (\varphi_{m-1})_x (x) dx + \int_{x_{m-1}}^{x_m} \varphi_m(x) (\varphi_{m-1})_x (x) dx$
= $-\frac{133}{320}.$

• Para o elemento $b_{m-1,m}$ tem-se:

$$b_{m-1,m} = \int_0^L \varphi_{m-1}(x) \left(\varphi_m\right)_x(x) dx$$

= $\int_{x_{m-2}}^{x_{m-1}} \varphi_{m-1}(x) \left(\varphi_m\right)_x(x) dx + \int_{x_{m-1}}^{x_m} \varphi_{m-1}(x) \left(\varphi_m\right)_x(x) dx$
= $\frac{133}{320}$.

Agora, na forma matricial a matriz $B_{m \times m}$ é dada por:

$$B_{ik} = \begin{bmatrix} 0 & \frac{133}{320} & \frac{13}{80} & \frac{1}{320} & 0 & \dots & 0 \\ -\frac{133}{320} & \ddots & \frac{61}{80} & \frac{7}{40} & \frac{1}{320} & \ddots & \vdots \\ -\frac{13}{80} & -\frac{61}{80} & \ddots & \frac{49}{64} & \ddots & \ddots & 0 \\ -\frac{1}{320} & -\frac{7}{40} & -\frac{49}{64} & \ddots & \ddots & \frac{7}{40} & \frac{1}{320} \\ 0 & -\frac{1}{320} & \ddots & \ddots & \ddots & \frac{49}{64} & \frac{13}{80} \\ \vdots & \ddots & \ddots & -\frac{7}{40} & -\frac{49}{64} & \ddots & \frac{133}{320} \\ 0 & \dots & 0 & -\frac{1}{320} & -\frac{13}{80} & -\frac{133}{320} & 0 \end{bmatrix}$$

4.1.8 Calculando os elementos da matriz C_{ik} :

$$C_{ik} = \int_0^L \varphi_i(x)_x \left(\varphi_k\right)_x (x) dx.$$

A matriz $C_{ik} = (c_{ik})_{\mathbb{N}}$ é simétrica , ou seja, $C_{ik} = C_{ki}$. Deste modo,

$$c_{ii} = \int_{0}^{L} (\varphi_{i})_{x} (x) (\varphi_{i})_{x} (x) dx = \int_{x_{i-2}}^{x_{i+2}} (\varphi_{i})_{x} (x) (\varphi_{i})_{x} (x) dx$$

$$= \int_{x_{i-2}}^{x_{i-1}} (\varphi_{i})_{x} (x) (\varphi_{i})_{x} (x) dx + \int_{x_{i-1}}^{x_{i}} (\varphi_{i})_{x} (x) (\varphi_{i})_{x} (x) dx$$

$$+ \int_{x_{i}}^{x_{i+1}} (\varphi_{i})_{x} (x) (\varphi_{i})_{x} (x) dx + \int_{x_{i+1}}^{x_{i+2}} (\varphi_{i})_{x} (x) (\varphi_{i})_{x} (x) dx$$

$$= \frac{9}{80h} + \frac{51}{80h} + \frac{51}{80h} + \frac{9}{80h} = \frac{3}{2h}.$$

• Para o elemento $c_{i,i+1} = c_{i+1,i}$ tem-se:

$$c_{i,i+1} = \int_0^L (\varphi_i)_x (x) (\varphi_{i+1})_x (x) dx = \int_{x_{i-1}}^{x_{i+2}} (\varphi_i)_x (x) (\varphi_{i+1})_x (x) dx$$
$$= \int_{x_{i-1}}^{x_i} (\varphi_i)_x (x) (\varphi_{i+1})_x (x) dx + \int_{x_{i+1}}^{x_{i+2}} (\varphi_i)_x (x) (\varphi_{i+1})_x (x) dx$$
$$= \frac{21}{160h} - \frac{87}{160h} + \frac{21}{160h} = -\frac{9}{32h}.$$

• Para o elemento $c_{i,i+2} = c_{i+2,i}$ tem-se:

$$c_{i,i+2} = \int_0^L (\varphi_i)_x (x) (\varphi_{i+2})_x (x) dx = \int_{x_i}^{x_{i+2}} (\varphi_i)_x (x) (\varphi_{i+2})_x (x) dx$$

= $\int_{x_i}^{x_{i+1}} (\varphi_i)_x (x) (\varphi_{i+2})_x (x) dx + \int_{x_{i+1}}^{x_{i+2}} (\varphi_i)_x (x) (\varphi_{i+2})_x (x) dx$
= $-\frac{9}{40h} - \frac{9}{40h} = -\frac{9}{20h}.$

• Para o elemento $c_{i,i+3} = c_{i+3,i}$ tem-se:

$$c_{i,i+3} = \int_0^L (\varphi_i)_x (x) (\varphi_{i+3})_x (x) dx = \int_{x_{i+1}}^{x_{i+2}} (\varphi_i)_x (x) (\varphi_{i+3})_x (x) dx$$
$$= \int_{x_{i+1}}^{x_{i+2}} (\varphi_i)_x (x) (\varphi_{i+3})_x (x) dx = -\frac{3}{160h}.$$

• Para o elemento c_{11} tem-se:

$$c_{11} = \int_0^L (\varphi_1)_x (x) (\varphi_1)_x (x) dx$$

= $\int_{x_1}^{x_2} (\varphi_1)_x (x) (\varphi_1)_x (x) dx + \int_{x_2}^{x_3} (\varphi_1)_x (x) (\varphi_1)_x (x) dx$
= $\frac{111}{80h} + \frac{9}{80h} = \frac{3}{2h}.$

• Para o elemento $c_{12} = c_{21}$ tem-se:

$$c_{12} = \int_0^L (\varphi_1)_x (x) (\varphi_2)_x (x) dx$$

= $\int_{x_1}^{x_2} (\varphi_1)_x (x) (\varphi_2)_x (x) dx + \int_{x_2}^{x_3} (\varphi_1)_x (x) (\varphi_2)_x (x) dx$
= $\frac{21}{16h} + \frac{33}{80h} = \frac{69}{40h}.$

• Para o elemento $c_{13} = c_{31}$ tem-se:

$$c_{13} = \int_{0}^{L} (\varphi_{1})_{x} (x) (\varphi_{3})_{x} (x) dx$$

= $\int_{x_{1}}^{x_{2}} (\varphi_{1})_{x} (x) (\varphi_{3})_{x} (x) dx + \int_{x_{2}}^{x_{3}} (\varphi_{1})_{x} (x) (\varphi_{3})_{x} (x) dx$
= $-\frac{3}{20h} - \frac{40}{9h} = -\frac{3}{8h}.$

• Para o elemento c_{22} tem-se:

$$c_{22} = \int_{0}^{L} (x) (\varphi_{2})_{x} (x) dx = \int_{x_{1}}^{x_{2}} (\varphi_{2})_{x} (x) (\varphi_{2})_{x} (x) dx + \int_{x_{2}}^{x_{3}} (\varphi_{2})_{x} (x) (\varphi_{2})_{x} (x) dx + \int_{x_{3}}^{x_{4}} (\varphi_{2})_{x} (x) (\varphi_{2})_{x} (x) dx = \frac{243}{16h} + \frac{741}{80h} + \frac{9}{5h} = \frac{105}{4h}.$$

• Para o elemento $c_{m-1,m-1}$ tem-se:

$$c_{m-1,m-1} = \int_0^L (\varphi_{m-1})_x (x) (\varphi_{m-1})_x dx$$

= $\int_{x_{m-3}}^{x_{m-2}} (\varphi_{m-1})_x (x) (\varphi_{m-1})_x (x) + \int_{x_{m-2}}^{x_{m-1}} (\varphi_{m-1})_x (x) (\varphi_{m-1})_x (x)$
+ $\int_{x_{m-1}}^{x_m} (\varphi_{m-1})_x (x) (\varphi_{m-1})_x (x) = \frac{9}{5h} + \frac{741}{80h} + \frac{243}{16h} = \frac{105}{4h}.$

• Para o elemento $c_{m,m}$ tem-se:

$$c_{m,m} = \int_{0}^{L} (\varphi_{m})_{x} (x) (\varphi_{m})_{x} (x) dx$$

= $\int_{x_{m-2}}^{x_{m-1}} (\varphi_{m})_{x} (x) (\varphi_{m})_{x} (x) dx + \int_{x_{m-1}}^{x_{m}} (\varphi_{m})_{x} (x) (\varphi_{m})_{x} (x) dx$
= $\frac{9}{80h} + \frac{111}{80h} = \frac{3}{2h}.$

• Para o elemento $c_{m,m-1} = c_{m-1,m}$ tem-se:

$$c_{m,m-1} = \int_0^L (\varphi_m)_x (x) \varphi_{m-1}(x) dx$$

= $\int_{x_{m-2}}^{x_{m-1}} (\varphi_m)_x (x) \varphi_{m-1}(x) dx + \int_{x_{m-1}}^{x_m} (\varphi_m)_x (x) \varphi_{m-1}(x) dx$
= $\frac{33}{80h} + \frac{21}{16h} = \frac{69}{40h}.$

Agora, na forma matricial a matriz $C_{m\times m}$ é dada por:

	$-\frac{3}{2h}$	$\frac{69}{40h}$	$-\frac{3}{8h}$	$-\frac{3}{160h}$	0		0
	$\frac{69}{40h}$	$\frac{41h}{40}$	$-\frac{9}{32h}$	$-\frac{9}{20h}$	·	·	:
	$-\frac{3}{8h}$	$-\frac{9}{32h}$	$\frac{3}{2h}$	$-\frac{9}{32h}$	·	·	0
$C_{ik} =$	$-\frac{3}{160h}$	$-\frac{9}{20h}$	·	·	·	$-\frac{9}{20h}$	$-rac{3}{160h}$
	0	·	·	·	·	$-\frac{9}{32h}$	$-\frac{3}{8h}$
	:	·	··.	$-rac{9}{20h}$	$-\frac{9}{32h}$	·	$\frac{69}{40h}$
	0		0	$-rac{3}{160h}$	$-\frac{3}{8h}$	$\frac{69}{40h}$	$\frac{3}{2h}$ -

4.2 Método das Diferenças Finitas

Neste sessão será desenvolvido o estudo numérico do problema misto (1.1) por meio do Metódo de Diferenças Finitas na variável temporal.

Considere $d \in C^{n+1}(0,T)$, onde d(t) é o vetor incógnita definido no Capítulo 4. Do teorema de Taylor pode-se expandir a função d(t) da seguinte forma:

$$f(t + \Delta t) = f(t) + \Delta t f'(t) + \frac{(\Delta t)^2}{2!} f''(t) + \frac{(\Delta t)^3}{3!} f'''(t) + \dots$$
(4.14)

Despreza-se os termos de potência maior ou iguais a 2 de Δt em (4.14). Então a aproximação para primeira derivada é dada por

$$d'(t) = \frac{d(t + \Delta t) - d(t)}{\Delta t}$$
(4.15)

A aproximação acima é conhecida como sendo uma Diferença Adiantada e possui erro de aproximação de ordem $\mathcal{O}(\Delta t)$.

4.2.1 Notação

Supõe-se d(t) uma função da variável independente $t \in [0, T]$ e seja a seguinte discretização uniforme: $0 = t_0 < t_1 < t_2 < ... < t_m = T$, sendo $h = x_{i+1} - x_i$ e $\Delta t = t_{n+1} - t_n$ que são denominados passos. Assim, $\Delta t = T/N$ e cada elemento discreto obtém-se da seguinte maneira:

$$t_n = t_0 + n\Delta t, \ n = 1, 2, \dots, N.$$

Denota-se a função d(t) nos pontos discretos (t_n) da seguinte forma:

$$d(t_n) = d(n\Delta t) = d_i^n = d^n.$$

Daí, a diferença adiantada (4.15) é reescrita por

$$\left(\frac{\partial d}{\partial t}\right)_{t=t_n} \simeq \frac{1}{\Delta t} \left(d^{n+1} - d^n \right) = \left(\frac{d^{n+1} - d^n}{\Delta t}\right) \quad \text{com erro} \quad \mathcal{O}(\Delta t). \tag{4.16}$$

Logo,

$$d'(t_n) = \left(\frac{d^{n+1} - d^n}{\Delta t}\right) \quad \text{com erro} \quad \mathcal{O}(\Delta t). \tag{4.17}$$

Por abuso de notação, usa-se de agora em diante o símbolo = no lugar de \simeq . Note que, ao ser aplicado o Método dos Elementos Finitos no espaço no sistema (4.12), este torna-se um sistema de EDO's com variável temporal. Esse novo sistema será resolvido pelo Método das Diferenças Finitas no tempo. Considere então o sistema de m equações diferenciais ordinárias nos tempos discretos t_n , onde $t_n = n\Delta t$ e $n = 0, 1, \ldots, N$.

4.2.2 Família de Métodos

Considere a seguinte notação

$$d(t) = d(t_n) = d^n$$
 onde $d^n = \theta d^{n+1} + (1-\theta)d^n$, com $0 \le \theta \le 1$.

Em particular tem-se:

- (i) O Esquema de Euler, para $\theta = 0$;
- (ii) O Esquema de Crank-Nicolson, quando $\theta = 1/2$.

Nsse trabalho, será usado apenas o Método de Crank-Nicolson.

4.2.3 Linearizando o sistema (4.12)

Os sistemas não lineares do ponto de vista numérico não apresentam bons resultados e são de difícil resolução. Para facilitar a solucionar esse problema, adota-se os seguintes procedimentos, visando a linearização do último termo do sistema não-linear (4.12). **Procedimento 1. Linearizando o termo** u **do produto** uu_x - Faz-se a seguinte linearização no tempo $t = t_n$.

$$\frac{1}{2}\overline{B}_{kj}^{n}\left(d_{j}^{n}+d_{j}^{n+1}\right) = \frac{1}{2}\overline{B}_{kj}^{n}(t)d_{j}^{n} + \frac{1}{2}\overline{B}_{kj}^{n}(t)d_{j}^{n+1}$$
(4.18)

onde $\overline{B}_{kj}^n = \left(\widehat{B}_{ijk}d_i^n\right)$ é uma matriz de ordem $m \times m$. Como $d'_j(t) = (d_j^{n+1} - d_j^n)/\Delta t$ para o tempo $t = t_n$ tem-se substituindo as duas aproximações no sistema não linear (4.12) que

$$\begin{cases} \left(A_{kj}+C_{kj}\right)\left(\frac{d_j^{n+1}-d_j^n}{\Delta t}\right) + \left(B_{kj}+\beta C_{kj}\right)\left(\frac{d_j^{n+1}+d_j^n}{2}\right) + \\ \left(\overline{B}_{kj}\right)\left(\frac{d_j^{n+1}+d_j^n}{2}\right) = F^n, \\ d(0) = d_0, \end{cases}$$

$$(4.19)$$

onde $F^n = F(t_n)$. Como a solução é conhecida no tempo t_n , então os termos d^n são conhecidos e dessa forma multiplica-se a equação (4.19) por Δt e obtém-se:

$$\left(A_{kj}+C_{kj}\right)\left(d_j^{n+1}-d_j^n\right)+\left(B_{kj}+\beta C_{kj}+\overline{B}_{kj}\right)\left(\frac{d_j^{n+1}+d_j^n}{2}\right)\Delta t=\Delta tF^n,\qquad(4.20)$$

para k = 1, 2, ..., m. Daí, sendo o sistema (4.20) linear tem-se

$$\left(\left(A_{kj} + C_{kj} \right) + \left(B_{kj} + \beta C_{kj} + \overline{B}_{kj} \right) \frac{\Delta t}{2} \right) d^{n+1} = \Delta t F^n + \left(\left(A_{kj} + C_{kj} \right) - \left(B_{kj} + \beta C_{kj} + \overline{B}_{kj} \right) \frac{\Delta t}{2} \right) d^n.$$

$$(4.21)$$

Procedimento 2. Linearizando o termo u_x **do produto** uu_x -Considere $\widetilde{B}_{ki}(t) = (\widehat{B}_{ijk}d_j(t))$. Logo, \widetilde{B}_{ki} é uma matriz quadrada de ordem m. Assim, os sistema (4.12), em $t = t_n$, torna-se

$$\frac{1}{2}\widetilde{B}_{ki}^{n}\left(d_{i}^{n}+d_{i}^{n+1}\right) = \frac{1}{2}\widetilde{B}_{ki}^{n}d_{i}^{n} + \frac{1}{2}\widetilde{B}_{ki}^{n}d_{i}^{n+1},\tag{4.22}$$

onde $\widetilde{B}_{ki}^n = \left(\widehat{B}_{ijk}d_j^n\right)$. Como $d'_i(t) = (d_i^{n+1} - d_i^n)/\Delta t$, em $t = t_n$, então substituindo as duas aproximações no sistema não linear (4.12) resulta

$$\begin{cases}
\left(A_{ki}+C_{ki}\right)\left(\frac{d_{i}^{n+1}-d_{i}^{n}}{\Delta t}\right)+\left(B_{ki}+\beta C_{ki}\right)\left(\frac{d_{i}^{n+1}+d_{i}^{n}}{2}\right)+\\
\left(\widetilde{B}_{ki}\right)\left(\frac{d_{i}^{n+1}+d_{i}^{n}}{2}\right)=F^{n},\\
d(0)=d_{0}.
\end{cases}$$
(4.23)

Organizando os termos do sistema linear (4.23) relação ao vetor incógnita d tem-se

$$\left(\left(A_{ki} + C_{ki} \right) + \left(B_{ki} + \beta C_{ki} + \widetilde{B}_{ki} \right) \frac{\Delta t}{2} \right) d^{n+1} = \Delta t F^n + \left(\left(A_{ki} + C_{ki} \right) - \left(B_{ki} + \beta C_{ki} + \widetilde{B}_{ki} \right) \frac{\Delta t}{2} \right) d^n.$$

$$(4.24)$$

Observação: É importante ressaltar que as matrizes $\overline{B}_{kj} \in \widetilde{B}_{ki}$ são, em geral, diferentes.

Procedimento 3. Tornando o Tensor Simétrico - A simetrização é feita da seguinte forma:

$$B_{ijk} = \frac{1}{2} \left(\left(\varphi_i(x) \frac{\partial \varphi_j(x)}{\partial x}, \varphi_k \right) + \left(\varphi_j(x) \frac{\partial \varphi_i(x)}{\partial x}, \varphi_k \right) \right) = B_{jik}, \tag{4.25}$$

Note agora que

$$\overline{B}_{kj} = B_{ijk}d_i = B_{ijk}d_j = \widetilde{B}_{ki}$$

De maneira análoga ao procedimento 1, pode-se definir $\overline{B}_{kj}^n = B_{ijk}d_i^n$. Substituindo no sistema não linear (4.12), obtém-se o seguinte sistema linear:

$$\left(\left(A_{ik} + C_{ik} \right) + \left(B_{ik} + \beta C_{ik} + \overline{B}_{kj} \right) \frac{\Delta t}{2} \right) d^{n+1} =$$

$$\Delta t F^n + \left(\left(A_{ik} + C_{ik} \right) - \left(B_{ik} + \beta C_{ik} + \overline{B}_{kj} \right) \frac{\Delta t}{2} \right) d^n.$$

$$(4.26)$$

Pelo fato de apresentar um melhor resultado computacional, o procedimento 2 será utilizado. Assim, o sistema (4.24) ou, equivalentemente, o sistema (4.26) serão resolvidos pelo Método de Crank-Nicolson.

Faz-se n = 0 em (4.24) para a inicialização do método iterativo, isto é

$$\left(\left(A_{ik} + C_{ik} \right) + \left(B_{ik} + \beta C_{ik} + \widetilde{B}_{ki} \right) \frac{\Delta t}{2} \right) d^{1} = \Delta t F^{0} + \left(\left(A_{ik} + C_{ik} \right) - \left(B_{ik} + \beta C_{ik} + \widetilde{B}_{ki} \right) \frac{\Delta t}{2} \right) d^{0}.$$

$$(4.27)$$

As matrizes A_{ik} , B_{ik} , $C_{ik} \in \widetilde{B}_{ki}$ são conhecidas, o passo de tempo Δt é dado e d^0 é a posição inicial da onda, a qual é, também, conhecida.

Como as matrizes são não-singulares então o sistema linear de m equações tem uma única solução $d^1 = (d_1^1, d_2^1, ..., d_m^1)$.

Para calcular as soluções nos tempos n = 1, 2, ..., N. Basta resolver o sistema (4.27) para cada n.

4.2.4 Calculando os elementos da Matriz \widetilde{B}_{ki} :

Note que a matriz $\widetilde{B}_{ki} = (\widetilde{b}_{ki})$ é quadrada, heptagonal e de ordem m. Esta matriz provém da linearização do Tensor de 3^a ordem

$$\widehat{B}_{ijk} = \left(\varphi_i(y) \frac{\partial \varphi_j(y)}{\partial x}, \, \varphi_k\right).$$

A seguir será calculado os elementos da matriz $\widetilde{B}_{ki}.$ De fato,

•
$$\tilde{b}_{i,i} = \sum_{j=1}^{m} b_{iji}d_j$$
, para $i = 1, 2, ..., m$ fixo,
• $\tilde{b}_{i,i+1} = \sum_{j=1}^{m} b_{iji+1}d_j$, para $i = 1, 2, ..., m-1$ fixo,
• $\tilde{b}_{i,i+2} = \sum_{j=1}^{m} b_{iji+2}d_j$, para $i = 1, 2, ..., m-2$ fixo,
• $\tilde{b}_{i,i+3} = \sum_{j=1}^{m} b_{iji+3}d_j$, para $i = 1, 2, ..., m-3$ fixo,
• $\tilde{b}_{i+1,i} = \sum_{j=1}^{m} b_{i+1ji}d_j$, para $i = 1, 2, ..., m-1$ fixo,
• $\tilde{b}_{i+2,i} = \sum_{j=1}^{m} b_{i+2ji}d_j$, para $i = 1, 2, ..., m-2$ fixo,
• $\tilde{b}_{i+3,i} = \sum_{j=1}^{m} b_{i+3ji}d_j$, para $i = 1, 2, ..., m-3$ fixo.

Com os resultados acima definidos, pode-se calcular cada elemento da matriz \widetilde{B}_{ki} . Com efeito, • Para o elemento $\widetilde{b}_{i,i}$ tem-se:

$$\begin{split} \widetilde{b}_{i,i} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-3}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{i-3} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-2}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{i-2} + \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-1}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{i-1} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+1}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{i+1} + \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-2}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{i+2} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+3}\right)_{x}(x) \varphi_{i}(x) dx \right) d_{i+3} \\ &= -\frac{1}{5376} d_{i-3} - \frac{81}{1120} d_{i-2} - \frac{5947}{8960} d_{i-1} + \frac{5947}{8960} d_{i+1} + \frac{81}{1120} d_{i+2} + \frac{1}{5376} d_{i+3}. \\ & \text{para } i = 4, 5, \dots, m-3. \end{split}$$

• Para o elemento $\widetilde{b}_{i,i+1} = \widetilde{b}_{i+1,i}$ tem-se:

$$\begin{split} \widetilde{b}_{i,i+1} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-2}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{i-2} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-1}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{i-1} + \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{i} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+1}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{i+1} + \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+2}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{i+2} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+3}\right)_{x}(x) \varphi_{i+1}(x) dx \right) d_{i+3} = \\ &+ \frac{43}{17920} d_{i-2} - \frac{271}{1792} d_{i-1} - \frac{5947}{17920} d_{i} + \frac{5947}{17920} d_{i+1} + \frac{271}{1792} d_{i+2} + \frac{43}{17920} d_{i+3}. \\ &\text{ para } i = 3, 5, ..., m - 3. \end{split}$$

• Para o elemento $\tilde{b}_{i,i+2} = \tilde{b}_{i+2,i}$, tem-se:

$$\begin{split} \widetilde{b}_{i,i+2} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{i+2}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i-1}\right)_{x}(x) \varphi_{i+2}(x) dx \right) d_{i-1} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i}\right)_{x}(x) \varphi_{i+2}(x) dx \right) d_{i} + \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+2}\right)_{x}(x) \varphi_{i+2}(x) dx \right) d_{i+2} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+3}\right)_{x}(x) \varphi_{i+2}(x) dx \right) d_{i+3} \\ &= -\frac{9}{4480} d_{i-1} - \frac{81}{2240} d_{i} + \frac{81}{2240} d_{i+2} - \frac{9}{4480} d_{i+3}. \\ &\text{para } i = 2, 5, ..., m - 3. \end{split}$$

• Para o elemento $\widetilde{b}_{i,i+3} = \widetilde{b}_{i+3,i}$ tem-se:

$$\begin{split} \widetilde{b}_{i,i+3} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{j}\right)_{x} \left(x\right) \varphi_{i+3}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i}\right)_{x} \left(x\right) \varphi_{i+3}(x) dx \right) d_{i} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+1}\right)_{x} \left(x\right) \varphi_{i+3}(x) dx \right) d_{i+1} + \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+2}\right)_{x} \left(x\right) \varphi_{i+3}(x) dx \right) d_{i+2} \\ &+ \left(\int_{0}^{L} \varphi_{i}(x) \left(\varphi_{i+3}\right)_{x} \left(x\right) \varphi_{i+3}(x) dx \right) d_{i+3} \\ &= -\frac{1}{10752} d_{i} - \frac{1}{2560} d_{i+1} + \frac{1}{2560} d_{i+2} + \frac{1}{10752} d_{i+3}. \end{split}$$

para i = 1, 2, ..., m.

• Para o elemento \tilde{b}_{11} tem-se:

$$\widetilde{b}_{11} = \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{j}\right)_{x} \left(x\right) \varphi_{1}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{2}\right)_{x} \left(x\right) \varphi_{1}(x) dx \right) d_{2} + \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{3}\right)_{x} \left(x\right) \varphi_{1}(x) dx \right) d_{3} + \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{4}\right)_{x} \left(x\right) \varphi_{1}(x) dx \right) d_{4} \\ = \frac{5897}{26880} d_{2} + \frac{377}{6720} d_{3} - \frac{37}{1792} d_{4}.$$

• Para o elemento $\tilde{b}_{12} = \tilde{b}_{21}$ tem-se:

$$\begin{split} \widetilde{b}_{12} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{1}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{1} \\ &+ \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{2}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{2} + \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{3}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{3} \\ &+ \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{4}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{4} \\ &= -\frac{5897}{53760} d_{1} + \frac{12223}{53760} d_{2} + \frac{1087}{7680} d_{3} + \frac{43}{17920} d_{4}. \end{split}$$

• Para o elemento \tilde{b}_{22} tem-se:

$$\begin{split} \widetilde{b}_{22} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{1}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{1}(x) dx \right) d_{j} = \left(\int_{0}^{L} \varphi_{2}(x) \left(\varphi_{1}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{1} \\ &+ \left(\int_{0}^{L} \varphi_{2}(x) \left(\varphi_{3}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{3} + \left(\int_{0}^{L} \varphi_{2}(x) \left(\varphi_{4}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{4} \\ &+ \left(\int_{0}^{L} \varphi_{2}(x) \left(\varphi_{5}\right)_{x}(x) \varphi_{2}(x) dx \right) d_{5} \\ &= -\frac{12223}{26880} d_{1} + \frac{1267}{1920} d_{3} - \frac{81}{1120} d_{4} + \frac{1}{5376} d_{5}. \end{split}$$

• Para o elemento $\tilde{b}_{m-1,m-1}$ tem-se:

$$\begin{split} \widetilde{b}_{m-1,m-1} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{m-1}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{j} \\ &= \left(\int_{0}^{L} \varphi_{m-1}(x) \left(\varphi_{m-4}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m-4} \\ &= \left(\int_{0}^{L} \varphi_{m-1}(x) \left(\varphi_{m-3}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m-3} \\ &+ \left(\int_{0}^{L} \varphi_{m-1}(x) \left(\varphi_{m-2}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m-2} \\ &+ \left(\int_{0}^{L} \varphi_{m-1}(x) \left(\varphi_{m}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m} \\ &= \frac{1}{5376} d_{m-4} + \frac{81}{1120} d_{m-3} - \frac{1267}{1920} d_{m-2} - \frac{12223}{26880} d_{m}. \end{split}$$

• Para o elemento $\widetilde{b}_{m,m}$ tem-se:

$$\begin{split} \widetilde{b}_{m,m} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{m}(x) dx \right) d_{j} \\ &= \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m-3}\right)_{x}(x) \varphi_{m}(x) dx \right) d_{m-3} + \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m-2}\right)_{x}(x) \varphi_{m}(x) dx \right) d_{m-2} \\ &= \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m-1}\right)_{x}(x) \varphi_{m}(x) dx \right) d_{m-1} = \frac{37}{1792} d_{m-3} \frac{377}{6720} d_{m-2} - \frac{5897}{26880} d_{m-1}. \end{split}$$

• Para o elemento $\tilde{b}_{m,m-1} = \tilde{b}_{m-1,m}$ tem-se:

$$\begin{split} \widetilde{b}_{m,m-1} &= \sum_{j=1}^{m} \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{j}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{j} \\ &= \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m-3}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m-3} \\ &+ \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m-2}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m-2} \\ &+ \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m-1}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m-1} \\ &+ \left(\int_{0}^{L} \varphi_{m}(x) \left(\varphi_{m}\right)_{x}(x) \varphi_{m-1}(x) dx \right) d_{m} \\ &= \frac{43}{17920} d_{m-3} + \frac{1087}{7680} d_{m-2} + \frac{12223}{53760} d_{m-1} - \frac{5897}{53760} d_{4}. \end{split}$$

Capítulo 5

Simulações Numéricas

Neste capítulo será mostrado algumas simulações numéricas para uma melhor visualização e caracterização do problema misto associado a equação BBM Viscosa.

5.1 Simulações Numéricas

Inicialmente observa-se que, se $u(x,0) = u_0(x) = 0$ então o problema (3.1) tem uma única solução $u(x,t) \equiv 0$, pois as condições de contorno são nulas e a equação (3.1)₁ é homogênea. Neste caso, não há interesse numérico. De fato, sendo $u_0(x) = 0$ tem-se no processo iterativo $d^0 = 0$. Assim, de (4.27) teria-se

$$\left(\left(A_{ik} + C_{ik} \right) + \left(B_{ik} + \beta C_{ik} + \widetilde{B}_{ki} \right) \frac{\Delta t}{2} \right) d^1 = 0,$$

e como as matrizes acima são não-singulares, obtém-se $d^1 = 0$. Portanto,

$$d = (d^0, d^1, \dots, d^n) = 0$$
 para todo t.

A força externa atuando no sistema (3.1) é nula. Todavia, para constatar que a solução aproximada está sendo obtida corretamente, será analisado dois exemplos com a força não nula. Assim, considera-se o sistema (4.1). Para determinar-se a força externa f de (4.1), basta substituir uma solução exata, escolhida previamente, na equação (4.1). A solução aproximada será denotada por u_h e a exata por u. Após os cálculos dessas soluções e à constatação de que a medida do erro entre elas é pequeno, retorna-se ao problema original (3.1).

Além do exposto acima, será analisado nesta secção o comportamento do erro da solução aproximada para o problema (3.1). Portanto, será usado o Método de Crank-Nicolson, por ser o mais preciso e depois constrói-se as tabelas de erro. Para isso, fixa-se os passos de tempo $\Delta t = 0.01$ e $\Delta t = 0.001$ respectivamente, e faz-se variar o espaçamento h = 1/(m-1), para m = 11, 21, 51, 101, 501 e 1001, onde m é o número de nós do intervalo [0,1]. E os valores correspondentes de h para os números de nós m dados, são respectivamentes h = 0, 1; 0, 05; 0, 02; 0, 01; 0, 002; 0, 001.

O erro na norma discretizada de $L^{\infty}(0,T;L^2(0,L))$ é denotado e definido por

$$E_{\infty} =: \|u_{i,n} - u_{i,n}^{m}\|_{L^{\infty}(0,T;L^{2}(0,L))} = \underset{t_{n} \in [0,T]}{\operatorname{ess \,sup}} |u_{i}(t_{n}) - u_{i}^{m}(t_{n})|_{L^{2}(0,L)}$$
$$= \underset{t_{n} \in [0,T]}{\operatorname{ess \,sup}} \left(\int_{0}^{L} |u(x_{i},t_{n}) - u^{m}(x_{i},t_{n})|_{\mathbb{R}}^{2} dx \right)^{1/2},$$

para todo i = 1, ..., m e n = 1, ..., N, onde $u^m(x_i, t_n)$ é a solução aproximada do problema (4.1).

5.1.1 Exemplo 1.

Neste exemplo considera-se a solução exata u(x, t) para (3.1) dada por

$$u(x,t) = (x^4 - x^2) \exp(-t^2)$$
(5.1)

com posição inicial da onda dada por

$$u(x,0) = x^4 - x^2 \tag{5.2}$$

e os valores de fronteira

$$u(0,t) = u(1,t) = 0$$
(5.3)

As soluções exatas e aproximadas estão próximas e bem representadas na figura 5.4 com os seguintes dados, no ponto x = 0.5, $\Delta t = 0.1$, h = 0.1 para $t \in [0, 1]$. Nesta figura, os valores de Δt e h foram aumentados e os valores de m = 11 e N = 11 foram assim definidos para uma melhor visualização da representação gráfica entre as soluções exata e aproximada.

Figura 1: Representa a u(0.5, t) e a solução aproximada $u^m(x, t)$ A proximidade das soluções deve-se ao fato do erro ser muito pequeno, ou seja

$$E_{L^{\infty}(0,T;L^{2}(\Omega_{t}))} = 0.000054$$

É evidente a eficiência do método numérico utilizado, já que é seguro a constatação de que a solução do problema (3.1) está sendo calculada de maneira correta.

Convergência Numérica. Analiza-se agora o comportamento do erro da solução aproximada para o problema (3.1) com $\Delta t = 0.01$ e $\Delta t = 0.001$, respectivamente.

Δt	h	$E_{L^{\infty}(0,T;L^2(0,L))}$	Δt	h	$E_{L^{\infty}(0,T;L^2(0,L))}$
0.01	0.1	0.000546	0.001	0.1	0.000522
0.01	0.05	0.000255	0.001	0.05	0.000256
0.01	0.02	0.000097	0.001	0.02	0.000105
0.01	0.01	0.000046	0.001	0.01	0.000054
0.01	0.002	0.0000027	0.001	0.002	0.000011
0.01	0.001	0.000006	0.001	0.001	0.000006

Conclui-se que o Método Numérico empregado é eficiente e seguro para se encontrar a solução aproximada do problema (3.1), pois quanto mais divide-se a malha o erro diminui de valor cada vez mais.

O termo $-\beta u_{xx}$ atuando internamente na BBM, funciona como uma viscosidade no fluido. Além de possibilitar o cálculo do decaimento da energia em um intervalo de tempo infinito. Portanto, graças a viscosidade tem-se soluções globais. Usando as tabelas de convergência acima calculadas, observa-se que para o valor de $\Delta t = 1/1000$ e para h = 1/1000, encontra-se o menor erro. De posse desses resultados fixados, faz-se variar o β para {1, 1/10, 1/100, 1/1000}, posteriormente calcula-se o erro $E_{L^{\infty}(0,T;L^{2}(0,L))}$ para verificar o que ocorre com os valores do erro.

Δt	h	β	$E_{L^{\infty}(0,T;L^2(0,L))}$
0.001	0.001	1.0	0.000006
0.001	0.001	0.1	0.000009
0.001	0.001	0.01	0.000009
0.001	0.001	0.001	0.000009

Constata-se para $\beta = 1.0$ que o erro é menor, pois os demais valores de β devido as aproximações décimais do programa continuam maiores, consequentemente para esse valor de $\beta = 1.0$ tem-se um melhor resultado.

Figura 2: Representa a função u(x,t), posição da onda ao longo do tempo.

Figura 3: Representa a solução aproximada para os tempos: t = 0.0, t = 0.2, t = 0.53, t = 0.77 e t = 1.0

Decaimento da Energia. Já definida no início desse trabalho, o decaimento contínuo da energia para o problema (3.1) é dado por

$$E(t) = \frac{1}{2} \left\{ |u(t)|^2 + |u_x(t)|^2 \right\} = \frac{1}{2} \int_0^L |u(x,t)|_{\mathbb{R}}^2 dx + \frac{1}{2} \int_0^L |u_x(x,t)|_{\mathbb{R}}^2 dx$$

Obtido o resultado acima, escreve-se agora o decaimento discreto da energia, que terá apenas a solução aproximada que por sua vez será calculada pontualmente, discretizando assim o valor da energia em cada tempo. Como a força é nula, usa-se o Método do Trapézio para calcular a integral da energia, como segue:

$$E(t_n) = \frac{1}{2} \int_0^L |u(x_i, t_n)|_{\mathbb{R}}^2 dx + \frac{1}{2} \int_0^L |u_x(x_i, t_n)|_{\mathbb{R}}^2 dx = \frac{h}{4} \Big[\Big(|u(x_1, t_n)|^2 + 2\sum_{i=2}^{m-1} |u(x_i, t_n)|^2 + |u(x_m, t_n)|^2 \Big) \Big] + \frac{1}{2h} \Big[\sum_{i=1}^{m-1} \Big(u(x_{i+1}, t_n) - u(x_i, t_n) \Big)^2 \Big]$$

Com o resultado desse decaimento discreto, encontra-se a energia para todo tempo t_n e a representação gráfica do decaimento exponencial é dada por

Figura 4: Decaimento exponencial da energia

5.1.2 Exemplo 2:

Considera-se a solução exata u(x,t) para (3.1) dada por:

$$u(x,t) = \frac{\operatorname{sen}(\pi x) \cos(\pi t)}{\pi^2}$$
(5.4)

com posição inicial da onda dada por

$$u(x,0) = \frac{\operatorname{sen}(\pi x)}{\pi^2}$$
 (5.5)

e valores de fronteira

$$u(0,t) = u(1,t) = 0 \tag{5.6}$$

As soluções exatas e aproximadas estão próximas e bem representadas na figura 5, abaixo, com os seguintes dados: x = 0.5, $\Delta t = 0.05$, h = 0.05 para $t \in [0, 1]$. Nessa figura os valores de Δt e h foram aumentados por uma questão de conveniência e melhor visualização do gráfico.

Figura 5: Representa a u(0.5, t) e a solução aproximada $u^m(x, t)$ A proximidade das soluções deve-se ao fato do erro ser muito pequeno, isto é

$$E_{L^{\infty}(0,T;L^{2}(\Omega_{t}))} = 0.000016$$

Comprova-se mais uma vez a eficiência do método numérico utilizado, já que é seguro a constatação de que a solução do problema (3.1) está sendo calculada de maneira correta.

Convergência Numérica. Analiza-se o comportamento do erro da solução aproximada para o problema (3.1) com $\Delta t = 0.01$ e $\Delta t = 0.001$ respectivamente e encontra-se:

Δt	h	$E_{L^{\infty}(0,T;L^2(0,L))}$] [Δt	h	$E_{L^{\infty}(0,T;L^2(0,L))}$
0.01	0.1	0.001912		0.001	0.1	0.001949
0.01	0.05	0.000474		0.001	0.05	0.000508
0.01	0.02	0.000053		0.001	0.02	0.000077
0.01	0.01	0.000050		0.001	0.01	0.000016
0.01	0.002	0.000050		0.001	0.002	0.000001
0.01	0.001	0.000050		0.001	0.001	0.000001

De maneira análoga ao exemplo anterior constata-se mais uma vez que o método utilizado é eficiente e seguro, pois o erro é inversamnete proporcional as divisões das malhas.

Agora, faz-se variar o β para encontrar o melhor erro $E_{L^{\infty}(0,T;L^{2}(0,L))}$. Veja a tabela abaixo.

Δt	h	β	$E_{L^{\infty}(0,T;L^2(0,L))}$
0.001	0.001	1.0	0.000001
0.001	0.001	0.1	0.0225685
0.001	0.001	0.01	0.028985
0.001	0.001	0.001	0.029324

Constata-se que para o valor de $\beta = 1.0$, tem-se um melhor resultado.

Figura 6: Representa a função u(x,t), posição da onda ao longo do tempo

Figura 7: Representa a solução aproximada para os tempos: t = 0.00, t = 0.20, t = 0.53, t = 0.77 e t = 1.00.

Decaimento da Energia. Para este exemplo o gráfico do decaimento da energia associada ao problema (3.1) é estabelecido por

Figura 8: Decaimento exponencial da energia.

Bibliografia

- BENJAMIN, T. B., BONA, J. L. & MAHONY, J. J., Model equations for long waves in nonlinear dispersion system, Philosophical Transactions of the Royal Society of London, Vol. 272, N° 1220, pp 47 - 78 (1972)
- [2] BENJAMIN, T. B. and LIGHTHIL, F. R. S., On Cnoidal Waves and Bores, Proc. Royal Soc. of London, Vol. A224 pp 488 - 460 (1954)
- [3] BRÉZIS, Haïm. Analise Fonctionnelle. Théorie et applications. DUNOD, Paris (1999).
- [4] CODDINGTON, E. A. & LEVINSON, N., Theory of Ordinary Differential Equations. Tata McGraw-Hill Publishing Co. Ltd., Bombay - New Delhi (1955)
- [5] HILLE, E., PHILLIPS, R. S., Functional Analysis and Semi-Groups, American Mathematical Society, Colloquium Publications, Vol. XXXI (1957)
- [6] Korteweg, D. J., & G. de Vries, On the change of the form of long waves advancing in a rectangular channel and on a new type of long stationary wave, Phil. Mag., 39 (1895), pp. 422-443
- [7] LIONS, J. L., Quelques Méthodes de Résolutions des Problèmes aux Limites non Linéaires. Dunod Gauthier-Villars, Paris, 1969.
- [8] LOPES-FILHO, M. C., LOPES, H. J. N., ZHENG, Y., Weak Solutions for the Equations of Incompressible and Inviscid Fluid Dynamics. 22° Colóquio Brasileiro de Matemática, IMPA 1999.
- JEFFREY, A. & KAKUTANI, T., Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation, SIAM Review, Vol. 14 N° 4 pp 582
 - 643 (1972).

- [10] LIU, I-SHI; RINCON, M. A.; Introdução ao Método dos Elementos Finitos Análise e Aplicações, Editora IM/UFRJ (2001)
- [11] MEDEIROS, L. A. & MILLA, M. M. A., Weak Solutions for a Nonlinear Dispersive Equation. Journal of Mathematical Analysis and Applications, Vol 59, N° 3, pp 432
 - 441 (1977).
- [12] MEDEIROS, L. A. & MILLA, M. M. A., Introdução aos Espaços de Sobolev e às Equações Diferenciais Parciais. Textos de Métodos Matemáticos, N° 25 IM-UFRJ, Rio de Janeiro (1993).
- [13] MEDEIROS, L. A. & MILLA, M. M. A., Espaços de Sobolev (Iniciação aos Problemas Elíticos não Homogêneos). Instituto de Matemática - UFRJ, Rio de Janeiro (2000).
- [14] MEDEIROS, L. A. & MENZALA, G. P., Existence and Uniqueness for Periodic Solutions of the Benjamin-Bona-Mahony Equation, SIAM J. Math. Anal., Vol. 8, N° 5 (1977)
- [15] MILLA, M. M. A., Weak Solutions of a Modified KdV Equation, Bol. Soc. Bras. Mat., N° 6, pp 57 - 63 (1975)
- [16] NUSSENZVEIG, H. M., Causality and Dispersion Relations. Mathematics in Science and Engineeging, Vol. 95, Academic Press, New York and London (1972)
- [17] PEREGRINE, D. H., Calculations of the Development of an Undular Bore, Journal of Fluid Mechanics, Vol. 25 part 2 pp 321 - 330 (1966)
- [18] PHILLIPS, R. S., On Weakly Compact Subsets of a Banach Space, American Journal of Mathematics, Vol. 65 pp 108 - 136 (1943)
- [19] STOKER, J. J., Water Waves: The Mathematical Theory with Applications, Interscience Publishers, New York (1957)
- [20] SU, C. H. and GARDNER, C. S., Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-de Vries Equation and Burgers Equation, Journal of Mathematical Physics, Vol. 10 N° 3 pp 536 - 539 (1969)
- [21] WHITHAM, G. B., Non-linear Dispersive Waves, Proc. Royal Soc. of London, Vol. A283 pp 238 - 261 (1965)

- [22] WLOKA, J. T., Partial Differential Equations, Cambridge University (1987)
- [23] ZAUDERER, Erich, Partial Differential Equations of Applied Mathematics 2nd ed. Pure and Applied Mathematics, John Wiley & Sons (1988)