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“Instead of fearing wrong

predictions, we look eagerly for

them; it is only when predictions

based on our present knowledge

fail that probability theory leads

us to fundamental new

knowledge.”

— E. T. Jaynes
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Resumo da Dissertao apresentada à EPQB/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

RECONSTRUÇÃO MOLECULAR DE FRAÇÕES PESADAS DE PETRÓLEO

Helton Siqueira Maciel

Setembro/2019

Orientadores: Frederico Wanderley Tavares

Charlles Rubber de Almeida Abreu

Programa: Engenharia Qumica

Apresenta-se, neste trabalho, uma metodologia para construir moléculas de

frações pesadas de petróleo com base em dados experimentais limitados. O al-

goritmo desenvolvido é dividido em três etapas. 1) O processo de geração molecular

é baseado no algoritmo de reconstrução estocástica. A estimação de parâmetros

de modelos de reconstrução estocástica é um desafio devido às suas verossimil-

hanças intratáveis. A inferência de parâmetros foi tratada a partir de uma perspec-

tiva Bayesiana usando a estrutura de otimização bayesiana para inferência livre de

verossimilhança. 2) Uma técnica de agrupamento não hierárquico foi desenvolvida

para escolher um subconjunto de moléculas representativas do conjunto molecular

inicial gerado a partir do algoritmo de reconstrução estocástica. 3) Para o cálculo da

composição, foi aplicada a reconstrução pelo método de maximização de entropia.

Aplicamos a nossa metologia a diferentes reśıduos de vácuo de diferentes origens.

O modelo foi capaz de representar os reśıduos de vácuo estudados neste trabalho.

Além de replicar os dados a partir dos quais foi treinado, o modelo também foi capaz

de prever efetivamente novas propriedades dessas misturas complexas.
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Abstract of Thesis presented to EPQB/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

MOLECULAR RECONSTRUCTION OF HEAVY PETROLEUM FRACTIONS

Helton Siqueira Maciel

September/2019

Advisors: Frederico Wanderley Tavares

Charlles Rubber de Almeida Abreu

Department: Chemical Engineering

In this work, we present a methodology to build molecules of heavy petroleum

fractions based on limited experimental data. Our algorithm is divided into three

steps. 1) The molecular generation process is based on the stochastic reconstruc-

tion algorithm. The parameter estimation of stochastic reconstruction models is a

challenge due to their intractable likelihoods. We evaluated the parameter infer-

ence from a Bayesian perspective using the Bayesian optimization framework for

likelihood-free inference. 2) We developed a non-hierarchical clustering technique

to choose a subset of representative molecules from the initial molecular ensemble

generated from the stochastic reconstruction algorithm. 3) For composition calcu-

lation, we applied the reconstruction by entropy maximization method. We applied

our methodology to different vacuum residues from different origins. The model was

able to represent the vacuum residues studied in this work. Besides replicating the

data from which it was trained, the model was also able to effectively predict new

properties of these complex mixtures.
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Chapter 1

Introduction

Petroleum and its derivatives still play a central role in the energy sector. The

advances of alternative energy sources in the past years motivated the oil industry

to be more efficient in its operations (VASSILIOU, 2018). Petroleum refining is a

central part of the oil chain of production. Most of the products used by the energy

sector are produced in refineries. A refinery is a complex industrial plant with many

process units (COKER, 2018).

The main goal of a refinery is to transform crude oil into more valuable prod-

ucts. That can be done by physical separation processes, such as distillation and

solvent extraction, or by chemical conversion processes, either thermal or catalytic

(SPEIGHT and OZUM, 2001). The profitability of a refinery is intimately connected

with its conversion capacity. In that sense, units responsible for the conversion of

the heavier fractions of petroleum, such as the fluid catalytic cracking and delayed

coking units, play a central role in the refinery margin (GRAY, 2003).

Optimal design and operation of such conversion units may greatly increase refin-

ery margin and profitability. For that, modeling and simulation of refining processes

is a powerful tool. More than that, representative models can guide the whole re-

finery or even a whole market to a better place in terms of oil allocation, process

operation and products marketing and distribution (COKER; GRAY; SPEIGHT;

SPEIGHT and OZUM; VASSILIOU, 2018; 1994; 2014; 2001; 2018).

To accurately model a refining unit, one should be able to characterize the

petroleum fractions involved in that operation. Due to its chemical complexity,

the characterization of petroleum fractions has been a challenge since the early days

of the industry. The first approach in this matter was to use oil physical properties,

such as boiling point, molecular weight, specific gravity and solubility, and then

translate that information in terms of pseudo components (RIAZI, 2005).

Although the pseudo component approach was very successful in the represen-

tation of separation processes, its application to the conversion processes showed

severe limitations. The lack of molecular detail restricted the use of such models to

1



the data used in its development. Besides that, any major change in the process,

for instance, the catalyst type, required a complete reparametrization of the model

(ANCHEYTA et al.; DE OLIVEIRA, LUÍS P. et al.; DENIZ et al.; WEI et al., 2005;

2016; 2017b; 2008).

To overcome those limitations, a molecular-based approach in the development of

petroleum conversion processes models is necessary. However, despite the advances

in the field of analytical chemistry, only a broad perspective of the chemical struc-

ture of oil fractions is attainable (MCKENNA et al.; MCKENNA et al.; MCKENNA

et al.; MCKENNA et al.; PODGORSKI et al., 2010a; 2010b; 2013a; 2013b; 2013).

For that, methods designed to mimic the molecular composition of petroleum frac-

tions based on general experimental information and prior chemical knowledge have

been developed. We shall refer to these methods as molecular reconstruction tech-

niques.

In a first attempt, QUANN and JAFFE (1992) proposed a method called

structure-oriented lumping. This technique consisted of a vector representation of

petroleum molecules using a predefined set of molecular attributes, such as the num-

ber of benzenes or cyclopentane. TRAUTH et al. (1994) proposed a model based

on the representation of chemical attributes by probability density functions. Those

probability density functions can then be sampled by a Monte Carlo procedure.

When coupled with an optimization loop for the parameters of the distributions, the

stochastic reconstruction method arises. Inspired by the structure-oriented lumping

method, PENG (1999) developed a molecular reconstruction technique called molec-

ular type homologous series. HUDEBINE et al. (2002) included a second step in the

stochastic reconstruction algorithm called reconstruction by entropy maximization.

In this work, we developed a novel molecular reconstruction algorithm to be ap-

plied to heavy petroleum fractions. Our method combines the structure-oriented

lumping, stochastic reconstruction and reconstruction by entropy maximization

methods. Furthermore, we included a third step in the algorithm, in which we

use a non-hierarchical clustering technique to choose the best molecular candidates

from the entire molecular ensemble.

The chapters of this thesis are divided as follows: In Chapter 2, we present the

objectives of this work. In Chapter 3 a literature review of the relevant work for

the scope of this thesis. In Chapter 4, we describe the molecular reconstruction

algorithm developed here. In Chapter 5, we describe the parameter inference pro-

cedure. In chapter 6, we present the results of the application of the algorithm to

the reconstruction of different vacuum residues. At last, in chapter 7, we give our

final remarks on the work.
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Chapter 2

Objectives

The main goal of this work is to develop a methodology to mimic the molecular com-

position of heavy petroleum fractions based on general (and limited) experimental

information.

• For the molecular generation, we developed a model based on the stochastic

reconstruction algorithm (TRAUTH et al., 1994). Such algorithms are based

on the modeling of chemical attributes using probability density functions.

• We combined the flexibility of the stochastic reconstruction algorithm with

the convenient framework of the structure-oriented lumping for molecular rep-

resentation.

• We proposed an extension of the structure-oriented lumping vector to improve

molecular diversity.

• We analyzed the parameter inference of the stochastic reconstruction model

from a bayesian perspective.

• We developed a non-hierarchical clustering technique to select a subset of

representative molecules from the initial molecular ensemble.

• We calculated the molecular composition using the reconstruction by entropy

maximization method proposed by HUDEBINE et al. (2002).
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Chapter 3

Literature Review

In this chapter, we discuss the relevant literature for the scope of this work. The

chapter is divided into three topics. First, we pass through the analytical develop-

ments in the realm of heavy petroleum fractions characterization. The molecular

reconstruction algorithms heavily rely on a general knowledge of petroleum chem-

istry, which serves as a base for the model of construction. Second, we review the

works focused on the molecular reconstruction itself. Then, we talk about a major

part of the reconstruction algorithms, the estimation of the model parameters. We

finish this chapter outlining the contributions of this thesis to the literature.

3.1 Chemistry of Heavy Petroleum Fractions

The interest in developing analytical techniques to characterize petroleum fractions,

especially the heavy ones, is due to its utility in the design and optimization of

refining processes. For this work, these results give a broad perspective of the

molecular families, structures and functional groups, which serve as prior knowledge

in the model building process. The petroleum fractions, in its molecular level, are

usually called hydrocarbons due to the predominant content of carbon and hydrogen

atoms. However, these fractions also contain a small but relevant quantity of the

so-called heteroatoms: sulfur, nitrogen, and oxygen which can play a major role in

the performance of the refining processes.

Focusing on identifying the different chemical families in the heavy petroleum

fractions, LUMPKIN (1956) proposed a method to identify saturated hydrocarbons

in heavy fractions using the mass spectrometer. They divided the fraction into

specific classes: paraffins, noncondensed naphthenes, and condensed naphthenes.

MEAD (1968) used a field ionization mass spectrometer to analyze paraffin waxes

in the boiling range of 300 ◦C to 550 ◦C identifying normal paraffins, isoparaffins

and alkylbenzenes. Besides that, they were able to quantify the carbon number,

which ranged from 20 to 40 carbons.
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SAWATZKY et al. (1976) proposed a method for the separation of heavy

petroleum hydrocarbons into structural types - saturates, monoaromatics, diaro-

matics, and polyaromatics. Since it goes beyond classification, it gives an insight

into the relative quantities of these groups. TRESTIANU et al. (1985) described

a method to perform a simulated distillation of heavy petroleum fractions up to

800 ◦C. In its results, we can see the overall shape of the distribution of boiling

points in these heavy fractions which in turn can be extended to the shape of the

carbon number distribution.

Entering into the heteroatom characterization, ROSE and FRANCISCO (1987)

proposed a method to identify acid heteroatoms in heavy petroleum fractions. They

have tested two vacuum residua, a name given to the bottom product of the vacuum

distillation unit usually with boiling point starting at 550 ◦C, and the n-heptane in-

soluble fraction (asphaltenes) from one of these residua. Qualitatively, the main

acidic functional groups identified were the hydroxyl (-OH), the carboxylic acid

(-COOH), imino (=NH), and thiol (-SH). DUTRIEZ et al. (2010) measured the

composition of heavy petroleum fraction in terms of molecular groups using two-

dimensional gas chromatography. He divided the fractions into saturates, monoaro-

matics, diaromatics, triaromatics and tetraaromatics+. Besides composition, the

boiling point distributions of such families are reported.

In an attempt of giving a more detailed molecular description of heavy petroleum

fractions, Boduszynski and collaborators published a series of four papers. In the

first paper, BODUSZYNSKI (1987) studied the variation of molecular weight, hy-

drogen deficiency, and heteroatom concentrations as functions of the atmospheric

equivalent boiling point (AEBP). Besides sulfur, nitrogen, and oxygen, the author

also considers the most abundant metals in the heteroatom classification, such as

nickel, vanadium, and iron. The proposed methodology was applied to the atmo-

spheric residue fraction, which is the bottom product of the atmospheric distillation

unit with a boiling point starting at around 390 ◦C. BODUSZYNSKI (1987) con-

cludes that heavy petroleums, and residues in particular, are not composed mostly

of very high molecular weight components. The results reveal that most heavy

petroleum components do not exceed a molecular weight of approximately 2000.

He also concludes that the heteroatom concentrations and hydrogen deficiency in-

crease with increasing AEBP. Significant bimodal distribution patterns for nickel

and vanadium were observed.

In the second work, BODUSZYNSKI (1988) tried to describe the chemical com-

position as a function of the atmospheric equivalent boiling point. The molecular

types classification given by the author was heavily used here. He divides the heavy

fractions into three major types: alkanes (paraffins), cycloalkanes (naphthenes), and

aromatic hydrocarbons. Besides that, we have also considered the proposed nitro-

5



gen occurrence, mainly divided into basic nitrogen (pyridine) and pyrrolic nitrogen

BODUSZYNSKI (1988). The remaining two papers, ALTGELT and BODUSZYN-

SKI (1992) and BODUSZYNSKI and ALTGELT (1992), addressed a boiling point-

molecular weight correlation for distillable and non-distillable heavy fractions, re-

spectively, where the authors propose that crude oil is a continuum in molecular

weight, structure, and boiling point, even though they could not fully support this

hypothesis from experimental results.

ROUSSIS and PROULX (2002) obtained the molecular weight distribution for

heavy petroleum fractions using different methodologies. In the opposite direction

of what was suggested in BODUSZYNSKI (1987), molecules with molecular weights

up to 7000 were observed. In a different study, ROUSSIS and PROULX (2004) mea-

sured the molecular weight of non-boiling petroleum fractions detecting molecules

with molecular weights up to 20000. However, this time the authors attribute these

high molecular weights structures to an aggregation phenomenon, since the abun-

dance of such molecules reduces in experimental conditions that are favorable to

dissociation. QIAN et al. (2007) proposed different experimental methodologies to

measure the molecular weight of heavy petroleum fractions. They detected molecules

with molecular weight up to 5000, however, they also attribute these numbers to

molecular aggregation.

MCKENNA et al. (2010b) developed an experimental methodology to support

the Boduszynski model, confirming its validity to the heavy vacuum gas oil cut,

considered a middle distillate. In the second paper, MCKENNA et al. (2010a) ex-

tended the experimental analysis to temperatures beyond the middle distillate cut.

However, as stated by the authors, projection of distillable compositional space to

higher carbon number cannot accurately describe non- distillable due to incompat-

ibility with bulk asphaltene H:C ratios. The inescapable conclusion is that either

asphaltene (non-distillable) are not high molecular weight species, or the continuity

model does not apply to nondistillable materials. In the third paper, MCKENNA

et al. (2013a) discuss the asphaltenes aggregation, observing that most asphaltenes

are non-covalently aggregated. In the fourth paper, MCKENNA et al. (2013b) did

a more detailed evaluation of the asphaltenes compositional space, concluding that

asphaltenes (non-distillable) are not an extension of the distillable compositional

space to higher and higher carbon number but an extension to higher degrees of

aromaticity. Regarding the molecular weight of the heavier fractions, the results

indicate that values do not exceed 2000, in agreement with BODUSZYNSKI (1987).

For the identification of acids in heavy petroleum fractions, QIAN et al. (2001a)

proposed an experimental methodology based on mass spectrometry. Experimental

results show the main functional groups present in these acidic structures. In general,

they have the presence of oxygen and sulfur atoms in the form of carboxylic acids
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and thiophene structures, respectively. Continuing his work, QIAN et al. (2001b)

studied the nitrogen-containing aromatic compounds in heavy petroleum fractions.

In agreement with the work of BODUSZYNSKI (1988), the main forms of nitrogen

occurrence are the basic nitrogen (pyridine) and pyrrolic nitrogen. Also studying the

speciation of nitrogen compounds in heavy cuts, DUTRIEZ et al. (2011) proposed

a methodology base on a two-dimensional gas chromatography. The work sup-

ports main nitrogen occurrence classes: pyridinic and pyrrolic cores. Besides that,

the author suggests that the nitrogen-containing compounds in heavy petroleum

cuts are usually composed of highly alkylated polyaromatics structures, such as car-

bazoles, benzocarbazoles, dibenzocarbazoles (neutrals) and acridines, benzoacridines

or dibenzoacridines (basics).

Another approach one can take when trying to better characterize petroleum

fractions, including the heavy ones, is to study its reactivity. Since the mechanisms

are built from verified elementary steps, one can determine the general form of the

structure of the reactants based on product distribution. GRAY and MCCAFFREY

(2002) studied the chain reactions and olefin formation in cracking, hydroconver-

sion, and coking of petroleum and bitumen fractions. According to the author,

the residue fraction contains more than 60 % of the carbon in saturated chain and

ring structures. The author also states that as much as 40 % of the sulfur present

occurs as reactive thioethers and thiolanes in saturated structures. Regarding the

general molecular structure, the author states that an effective chemical model for

asphaltenes and other components in the residue fraction is a random copolymer of

aromatic cores joined by bridges and attached to pendant groups. GRAY (2003)

discuss the consistency of asphaltene chemical structures with pyrolysis and coking

behavior. Observing the nature of the products from mild and severe thermal crack-

ing, the most consistent general form of asphaltenes are aromatic groups joined by

bridges and substituted by aliphatic groups.

In this section, we reviewed the most relevant work, for this thesis, in terms

of heavy petroleum chemistry. The analytical results give a broad perspective on

the chemical families, functional groups, relative quantities, the general shape of

properties distributions among other crucial information. This chemical knowledge

should comprise the basic building blocks of any molecular reconstruction method,

as it is the case of this thesis.

3.2 Molecular Reconstruction Methods

In this work, we define molecular reconstruction as a technique that tries to mimic

the molecular composition of any petroleum fractions purely from general (bulk)

experimental results and prior chemical knowledge. It can estimate both molecular
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structures and composition. As shown in Section 3.1, although analytical procedures

are capable of giving a general perspective on the petroleum chemistry, they are

insufficient to fully characterize some fractions, especially the heavy ones. For that,

molecular reconstruction methods play a major role in the development of molecular-

level models for design, evaluation, and optimization of refining process, mainly the

ones that involve chemical reactions.

One of the first methodologies for molecular-based modeling and molecular re-

construction was described in QUANN and JAFFE (1992). The authors proposed

a method called Structure-oriented lumping (SOL). This technique represents in-

dividual hydrocarbon molecules as a vector of incremental structural features. In

this manner, a mixture of hydrocarbons is represented as a set of these vectors.

Structure-oriented lumping defines the basic building blocks of petroleum molecules.

However, no definitive methodology on how to combine these blocks are given. One

can see the methodology as a convenient framework for constructing molecular mix-

tures, calculate their properties and construct reaction networks. In QUANN and

JAFFE (1996) and QUANN (1998), the authors explore the use of the Structure-

oriented lumping framework to build molecular-based kinetic models. An extension

of the structure-oriented lumping method was proposed in JAFFE et al. (2005).

To better represent vacuum residues, the authors included metallic groups and a

methodology to represent multi-core molecules.

Since then, many researchers have used the structure-oriented lumping to build

kinetic models. CHRISTENSEN et al. (1999) used the structure-oriented lumping

to build molecular models for a fluid catalytic cracking unit. The authors used

more than 3000 molecules and over 60 reaction rules. YANG et al. (2008) used

the structure-oriented lumping to simulate the secondary reactions of fluid catalytic

cracking gasolines. TIAN et al. (2010) applied the methodology to build a steam

cracking model. In two papers, TIAN et al. (2012a) and TIAN et al. (2012b) de-

veloped a delayed coking model based on the structure-oriented framework. Most

researchers that use the SOL framework relies on prior chemical knowledge to build

representative molecular cores for the fractions in question. They also rely on the

concept of homologous series, a series of molecules of the same type with different

carbon numbers, to build the complete mixture. Although very convenient, the

structure-oriented lumping is limited when it comes to molecular diversity. The

fixed molecular attributes proposed to wind up limiting the configuration and func-

tional groups of the formed molecules. This can be problematic, especially for the

heavier fractions.

Another popular methodology is the molecular type homologous series matrix

(MTHS) described in PENG (1999). Different from the structure-oriented lumping,

MTHS defines chemical cores not only attributes. Moreover, it proposes that the
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petroleum mixtures are composed of homologous series of these chemical cores. In

a sense, the MTHS method defines all the structures that could be present in the

petroleum fractions, leaving the composition as a degree of freedom. The compo-

sition is often estimated through the definition of an objective function comparing

calculated and experimental data. It is clear that it also suffers from a lack of

molecular diversity.

HU et al. (2002) extended the MTHS application to refinery optimization, in-

troducing the concept of molecular management of refining operations. AYE and

ZHANG (2005) proposed a methodology based on the MTHS matrix. An automatic

method to translate the physical properties of a hydrocarbon stream to the molecu-

lar information of the matrix is developed and successfully applied for gasoline-range

fractions. GOMEZ-PRADO et al. (2008) proposed a modified MTHS matrix to rep-

resent any hydrocarbon stream. The fraction of each component in the stream is

computed by minimizing the discrepancies between bulk and calculated characteri-

zation parameters. Furthermore, the authors propose a methodology to transform

the information into a useful input for hydrocarbon lumped kinetic models. WU

and ZHANG (2010) developed a methodology based on the MTHS matrix to rep-

resent gasoline and diesel streams. Besides the modification of the matrix itself,

the authors considered that the composition and properties of molecular homolo-

gous series can be represented by probability distribution functions (PDF), changing

the way to transform experimental information into a molecular composition. PYL

et al. (2011) used the concept of homologous series of components to model crude

oil fractions. The authors imposed probability density functions on both the carbon

number distribution in each homologous series of components and on the struc-

tural attribute distributions. AHMAD et al. (2011) extended the use of the MTHS

method to heavier petroleum fractions. The main difference from other works is the

use of group contribution methods and mixing rules to calculate mixture properties.

The MTHS methodology poses an elegant way of representing molecules in

petroleum fractions. However, it suffers from the same problems as the structure-

oriented lumping technique, the lack of molecular diversity. Besides that, the orig-

inal method requires a direct estimation of the molecular composition, falling into

overfitting issues. This issue is partially solved by the use of probability density

functions. Nevertheless, these limitations tend to be critical, especially for heavier

fractions, the main subject of this thesis.

Another development in the field of molecular reconstruction methods was based

on the representation of complex mixtures properties and possibly chemical struc-

tures with probability density functions. The use of probability density functions to

represent molecular properties dates back to FLORY (1952), who showed that the

molecular weight distributions of polymers could be modeled as a gamma distribu-
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tion. The experimental development discussed in Section 3.1, specially the ones from

Boduszynski and McKenna (ALTGELT and BODUSZYNSKI; BODUSZYNSKI;

BODUSZYNSKI; BODUSZYNSKI and ALTGELT; MCKENNA et al.; MCKENNA

et al.; MCKENNA et al.; MCKENNA et al.; PODGORSKI et al., 1992; 1987; 1988;

1992; 2010a; 2010b; 2013a; 2013b; 2013), also provides experimental support for the

use of probability density functions to represent molecular weight, boiling point, and

carbon number distribution of petroleum fractions .

NEUROCK et al. (1990) extended the concept of probability density functions

from properties to chemical attributes, originating a class of molecular reconstruc-

tion methods known as stochastic reconstruction. By chemical attributes we mean

the basic building blocks of a molecule, such as number of cores, number of aro-

matic rings, ring configuration and so forth. Logically combining these probability

distributions, one can sample from their cumulative form using a Monte Carlo type

procedure. The Monte Carlo sampler is responsible for the stochastic nature of

the technique. NEUROCK et al. (1990) proposed a series of chemical attributes

probability distribution functions for the reconstruction of the n-heptane insoluble

fraction (asphaltenes). The distributions are as follows: Number of cores, num-

ber of aromatic rings, the configuration of aromatic cores, naphthenic rings, degree

of aliphatic substitution, length of aliphatic side chain, from which they sampled

10000+ molecules. However, the authors did not define the distributions shape,

parameters or how one can estimate that.

In NEUROCK et al. (1994), the authors describe the stochastic reconstruction

algorithm as a four-step procedure. The deduction of a chemical logical diagram, the

compilation of structural cumulative probability distributions, stochastic sampling

of each distribution and the construction of the molecular species. Regarding the

parameters of the probability density functions, the authors use the average molecu-

lar parameter concept together with correlations developed elsewhere (HIRSCH and

ALTGELT, 1970). In some sense, at the time being, the method is restricted to a

molecular generation procedure instead of a molecular reconstruction, since it did

not estimate the PDF’s parameters.

TRAUTH et al. (1994) coupled the Monte Carlo molecular generation with an

optimization step to find the best values for the PDF’s parameters. For that, a chi-

square objective function comparing calculated and experimental data were used.

The shape of most distribution functions are simplified by a chi-squared functional

form, a particular case of the gamma distribution. In this procedure, only average

(bulk) properties of the petroleum fractions are used in the objective function. The

authors used seven attributes to construct a residue: paraffin length, number of

naphthenic rings, number of side chains, side-chain length, number of aromatic

rings, number of naphthenic rings per aromatic molecule and asphaltene degree
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of polymerization. The stochastic reconstruction algorithm assumes an equimolar

mixture from the molecules generated.

HUDEBINE et al. (2002) developed an algorithm to calculate the composition

of a set of molecules based on average experimental information. The method was

called reconstruction by entropy maximization, since it uses the concept of entropy

of information proposed by SHANNON (1948). For that, one should portrait the

mixture composition as a probability distribution. Quoting JAYNES (1957) “Infor-

mation theory provides a constructive criterion for setting up probability distribu-

tions based on partial knowledge, and leads to a type of statistical inference which

is called the maximum-entropy estimate. It is the least biased estimate possible on

the given information; i.e., it is maximally noncommittal with regard to missing

information.” PRESSÉ et al. (2013) considers maximum entropy estimates as the

only consistent method regarding probability distributions inference.

Following this development, VERSTRAETE et al. (2004) proposed a two-step

procedure for the molecular reconstruction of vacuum gas oils. In the first step,

the stochastic reconstruction framework proposed in TRAUTH et al. (1994) is used.

Then, with the constructed set of molecules, the reconstruction by entropy maxi-

mization was used to calculate mixtures composition.

The development of molecular reconstruction algorithms focuses on the definition

of the building blocks of the molecules and the types of probability density func-

tions representing these chemical attributes. Since an optimization step is used, is

paramount that the proposed model and its parameters are intimately related to the

experimental information available. Then, it is clear that different models should

be developed or adapted according to the studied fraction and overall measured

properties.

HUDEBINE and VERSTRAETE (2004) proposed a stochastic reconstruction

model for light cycle oils, a product of the fluid catalytic cracking unit. The stochas-

tic reconstruction step is used to build a reference mixture. This set of molecules

is then used in the reconstruction by entropy maximization algorithm. The authors

state that for similar petroleum fractions, once the reference mixture is obtained,

only the second step is needed to rebuild different streams. VAN GEEM et al. (2007)

proposed a method to calculate compositions based on Shannon’s information cri-

teria (SHANNON, 1948).

VERSTRAETE et al. (2010) extended the two-step procedure proposed in VER-

STRAETE et al. (2004) to the reconstruction of vacuum residue fractions. The pro-

posed building diagram consisted of 19 distributions with a total of 29 parameters.

A genetic algorithm was used as the optimization method. CHARON-REVELLIN

et al. (2011) used the stochastic reconstruction approach to build a kinetic model for

vacuum gas oil hydrotreatment. HUDEBINE and VERSTRAETE (2011) applied
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the entropy maximization approach to the reconstruction of fluid catalytic cracking

gasolines. DE OLIVEIRA et al. (2012) describes a complete modeling methodol-

ogy based on Monte Carlo sampling for the simulation of the hydrotreating process.

DE OLIVEIRA et al. (2013) used the stochastic reconstruction algorithm to rep-

resent vacuum residues from different origins. The authors show that, if sufficient

molecules are built, the stochastic reconstruction step needs to be done only once.

Different streams can be represented using the molecular library and the maximum

entropy step. DENIZ et al. (2017a) used an artificial neural network to reduce

the computational demand of the optimization step on stochastic reconstruction

models. DENIZ et al. (2017b) proposed a building diagram for asphaltenes. They

based their choices on the results of compositional spaces reported by McKenna et.

al. (MCKENNA et al.; MCKENNA et al.; MCKENNA et al.; MCKENNA et al.;

PODGORSKI et al., 2010a; 2010b; 2013a; 2013b; 2013).

Molecular reconstruction methods are a powerful tool when it comes to build

molecular-based models in complex chemical systems, such as the petroleum refining

process. In this work, we combined the robustness and flexibility of the stochastic

reconstruction algorithm (TRAUTH et al., 1994) with the convenient framework of

the structure-oriented lumping method (QUANN and JAFFE, 1992)

3.3 Parameter Inference

As discussed in Section 3.2, one of the most important parts of the stochastic recon-

struction algorithms is the estimation of the probability distributions parameters.

The literature has been using an optimization approach, based on an objective func-

tion. However, the statistical implications of this procedure are neglected. Uncer-

tainty of parameters and predictions or objective function statistical interpretation

are not addressed. Moreover, due to the stochastic nature of the model, a procedure

that looks for an optimal set of parameters seems counter-intuitive.

Statistical inference can be defined as the task of making conclusions about

populations from data. We connect data to the populations using probabilistic

models, which in turn are represented by parameters. One popular approach of

inference is based on the likelihood principle. The likelihood principle states that all

information about the unknown parameters contained in data is represented in the

likelihood function (CASELLA and BERGER, 2002). A likelihood is a probabilistic

model with data fixed as a function of the unknown parameters. Likelihood ratios

measure relative evidences from one set of parameters to another (CASELLA and

BERGER; GELMAN et al., 2002; 2014).

Maximum likelihood estimators are a popular method of parameter estimation.

In some sense, the literature regarding stochastic reconstruction algorithms uses
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this method. Another form of estimation is to calculate the posterior distribution

of parameters. This method is known as the Bayesian approach to statistical infer-

ence (CASELLA and BERGER; GELMAN et al., 2002; 2014). Bayesian methods

transforms a prior distribution into the posterior in light of the observed data using

the likelihood function. For that, Bayes theorem is applied. A major advantage of

Bayesian methods, especially for complex models, is its natural way to propagate

uncertainty.

Stochastic models are a particular class of problems studied in the statistical

literature. We shall use the definition proposed in DUTTA et al. (2016), and refer

to stochastic models as simulator-based models. Simulator-based models are func-

tions that map the model parameters and some random variables to data (DUTTA

et al., 2016). Due to the presence of the random variables V, the outputs of the

simulator fluctuate randomly even when using the same values of the model param-

eters (DUTTA et al., 2016). This implies that the likelihood function is intractable,

which is a major drawback for maximum likelihood methods.

A specific technique was developed to deal with intractable likelihood problems,

namely Approximate Bayesian Computation (ABC). Different algorithms were pro-

posed to solve this problem (BEAUMONT; BEAUMONT et al.; BEAUMONT et al.;

BLUM and FRANÇOIS; BLUM et al.; CSILLÉRY et al.; DEL MORAL et al.;

FEARNHEAD and PRANGLE; HICKERSON et al.; ROBERT et al.; TONI et al.;

WEGMANN et al.; WILKINSON, 2010; 2002; 2009; 2010; 2013; 2010; 2012; 2012;

2006; 2011; 2009; 2009; 2013). For the purpose of this work, we are the first ones to

analyze the molecular stochastic reconstruction methods from a Bayesian perspec-

tive, estimating the uncertainty of both parameters and predictions.

3.4 Thesis contribution

In this work, we propose a molecular reconstruction algorithm based on both

stochastic reconstruction methods (HUDEBINE et al.; TRAUTH et al., 2002; 1994)

and the structure-oriented lumping method for molecular representation and manip-

ulation (JAFFE et al.; QUANN and JAFFE, 2005; 1992). Besides that, we used the

reconstruction by entropy maximization approach to calculate mixture composition

(HUDEBINE et al., 2002). Our contribution to the literature can be divided into

three major topics.

1. An algorithm that combines the robustness and flexibility of the stochastic re-

construction methods with the convenient framework of the structure-oriented

lumping molecular representation. We proposed an extension of the chemical

attributes of the original SOL method. This new vector of attributes brings
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to the structure-oriented lumping a molecular diversity compatible with the

stochastic reconstruction algorithms. Besides that, a matrix relating structure-

oriented lumping attributes to functional groups is designed.

2. We analyzed the stochastic reconstruction method from a Bayesian perspec-

tive. One could argue that approximate Bayesian computation is the most

statistical consistent method when it comes to intractable likelihood problems.

3. Stochastic reconstruction algorithms rely on Monte Carlo sample techniques.

For that, a large number of samples (molecules) is required to achieve a good

representation. Most of the literature on heavy petroleum fractions samples

5000+ molecules. That number may be impractical in some applications. In

that sense, we proposed an additional step on the molecular reconstruction al-

gorithms. A non-hierarchical clustering technique to select the best candidates

from the ensemble of sampled molecules is proposed. Our clustering method

is based on the constraints framework used in the reconstruction by entropy

maximization algorithm.
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Chapter 4

Molecular Reconstruction

Algorithm

In this chapter, we describe the molecular reconstruction algorithm developed in

this thesis. Our method is based on the stochastic reconstruction approach pro-

posed by TRAUTH et al. (1994) and HUDEBINE et al. (2002). Regarding the

molecular representation and properties calculation, we developed an extension of

the structure-oriented lumping vector proposed by QUANN and JAFFE (1992).

Our work is focused on the heavier fractions of petroleum, especially the vacuum

residue, which is the bottom product of the vacuum distillation unit. This fraction

is usually sent to a delayed coking unit, or a hydrocracking unit, or a deasphalting

unit or is sold as fuel oil (COKER; GRAY; VASSILIOU, 2018; 1994; 2018).

In the development of a molecular reconstruction algorithm, one must follow a

logical chain of thought. This chapter is divided in a way that mimics the steps

of the design of such algorithms. First, the available experimental data on the

considered fraction is defined. This definition serves as an input to the choice of

the chemical attributes to be modeled by probability density distributions and in

turn the parameters to be estimated. It is paramount that the parameters can be

corroborated, at least conceptually, by the experimental data.

Second, the functional forms of the probability density functions and the sam-

pling methodology are defined. Molecular representation, connectivity rules, and

properties calculation comes next. In Chapter 5, we discuss the coupling of the

stochastic reconstruction with a parameter estimation procedure, the molecular se-

lection by clustering analysis and the composition calculation by entropy maximiza-

tion.
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4.1 Experimental data

The data used to build and test the model came both from the literature and from

the database of vacuum residue characterization done at PETROBRAS’s research

and development center (CENPES).

Specific gravity and average molecular mass. The specif gravity is one

of the main properties used to classify oils. It can be seen as an indirect indicator

of oil aromaticity, since aromatics have a higher density when compared with satu-

rated molecules of the same molecular mass. In that sense, the relative amounts of

molecular types, such as paraffins, naphthenes and aromatics have a great influence

on the mixture specific gravity. Average molecular mass is a controversial property

for heavy petroleum fractions, mainly because of the aggregation phenomenon tak-

ing place in the heavier portion (BODUSZYNSKI; MCKENNA et al.; MCKENNA

et al., 1987; 2010a; 2010b). However, some of the literature uses this property as in-

put for molecular reconstruction algorithms (DE OLIVEIRA et al.; VERSTRAETE

et al., 2013; 2010). We used this property to guarantee the reproducibility of liter-

ature data.

Elemental analysis. The elemental analysis measures the mass percentage of

the main atoms present in a petroleum fraction. Carbon, hydrogen, sulfur, nitrogen,

and oxygen are the most common results. Similar to the specific gravity, carbon,

and hydrogen content is an indirect measure of the oil aromaticity. Besides that,

according to the continuity model proposed by ALTGELT and BODUSZYNSKI

(1992) and confirmed by MCKENNA et al. (2013b), the compositional molecular

space extends in terms of aromaticity or carbon-hydrogen ratio. For that, carbon

and hydrogen content gives valuable information about molecular types and general

molecular structures. Regarding the heteroatoms, the elemental analysis gives only

total quantities of this species, giving no information about its functional forms.

One should rely on prior chemical knowledge to specify that.

SARA fractions. SARA is an acronym for Saturate, Aromatics, Resins, and

Asphaltenes. The method divides the oil into four fractions of the same name. It is

based on solubility, so it is a measure of the components polarizability and polarity

(FAN et al., 2002). For that, SARA analysis gives information about molecular

types, chemical structure and even a general view on functional groups. SARA is

also associated with the molecular mass distribution.
13C nuclear magnetic resonance spectroscopy. This method detects a

variety of carbon types in the oil fraction analyzed. It is clear how valuable that

information is in terms of molecular structure and functional groups. The most

common results available for heavy petroleum fractions reports only saturated and

unsaturated carbons content. However, in some cases, we have a more detailed
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information. The main carbon types detected by NMR are as follows (HASAN

et al., 1983):

• Insaturated carbons

– Aromatic carbons substituted by an alkyl chain, except if the substituent

is a methyl radical.

C

(a)

C

CH3

(b)

Figure 4.1: Carbon types detected by NMR method. (a) Detectable as alkyl sub-
stituted aromatic carbon. (b) Detectable as insaturated carbon.

– Protonated aromatic carbons and internal condensed aromatic carbons.

C

H

(a)

C

(b)

Figure 4.2: Carbon types detected by NMR method. (a) Detectable as protonated
aromatic carbon. (b) Also detectable as protonated aromatic carbon.
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– Peripheral condensed aromatic carbons.

C

C

Figure 4.3: Carbon types detected by NMR method. Detectable as insaturated
carbons.

• Saturated carbons

– Alpha and beta carbons in a paraffinic chain.

R

C

CH3

(a)

R

C CH3

(b)

Figure 4.4: Carbon types detected by NMR method. (a) Detectable as α saturated
carbon. (b) Detectable as β saturated carbon.

– Gamma or higher carbons in a paraffinic chain, and naphthenic carbons.

R1

C R2

(a)

C

(b)

Figure 4.5: Carbon types detected by NMR method. (a) Detectable as γ saturated
carbon. (b) Detectable as saturated carbon.
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– Branched methyl carbon on a paraffinic chain and terminal methyl

carbon on a paraffinic chain.

R1

CH3

CH3

CH3

(a)

R1

CH3

(b)

Figure 4.6: Carbon types detected by NMR method. (a) Detectable as branched
methyl carbon. (b) Detectable as terminal methyl carbon.

Another useful measure obtained from the carbon nuclear magnetic resonance

is the molar percentage of linear alkanes. It is defined as the ratio between CH2

carbons and the total quantity of carbon atoms.
1H nuclear magnetic resonance spectroscopy. Similar to the carbon type

analysis, this method gives information about different types of hydrogen atoms.

One can go even further in detailing the molecular structures. The main types of

hydrogens detected by this method are as follows (HASAN et al., 1983):

• Insaturated hydrogens

– Aromatic hydrogens.

H

(a)

H

(b)

Figure 4.7: Hydrogen types detected by NMR method. (a) Detectable as aromatic
hydrogen. (b) Also detectable as aromatic hydrogen.
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– Olephinic hydrogens.

R1

H

H

R2

(a)

H

RH

(b)

Figure 4.8: Hydrogen types detected by NMR method. (a) Detectable as olephinic
hydrogen. (b) Also detectable as olephinic hydrogen.

• Saturated hydrogens

– Hydrogen connected to a carbon in the alpha position of an alkyl

substitution in an aromatic ring.

C

H

H

R

Figure 4.9: Hydrogen types detected by NMR method. (a) Detectable as α hydrogen
atoms.

– Hydrogens connected to terminal or isolated methyl carbons.

R

CH3

CH3

Figure 4.10: Hydrogen types detected by NMR method. Detectable as γ hydrogen
atoms. The remaining saturated hydrogen atoms will be detected as β hydrogens.
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Although very useful, the detailed nuclear magnetic resonance is not easily avail-

able, especially on the refineries day by day operations. For that reason, in this work,

we only used the general carbon types results from the NMR, saturated and unsat-

urated carbon, in the parameter estimation step. However, when available, that

information was used to validate the model.

Simulated distillation. This method separates the molecules in terms of their

boiling point. The results are reported as the sample vaporized mass percentage for

a given temperature. As described by BODUSZYNSKI (1987), the boiling point

distribution is highly correlated with the carbon number distribution. In that sense,

this information can be used as an estimation of the paraffinc chain length and the

number of rings in aromatic cores.

In this section, we described the typical experimental data available for vacuum

residues and the relationship between this data and the molecular chemical structure.

In Table 4.1 we show a summary of the topics discussed.

Table 4.1: Summary of typical experimental data available and its relationship to
chemical structure

Experimental
data

Indirect chemical
strucuture information

Specific gravity
Aromaticity / Relative

amounts of molecular types

Elemental
analysis

Aromaticity / Functional
groups / Heteroatoms

abundance

SARA fractions

Relative amounts of
molecular types / Polarity

/ Functional groups /
Molecular mass

distribution

Carbon and
Hydrogen NMR

Functional groups /
Molecular structure

Simulated
distillation

Carbon number
distribution / Paraffinic

chain length / Number of
aromatic rings in an

aromatic core
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4.2 Chemical attributes

The basis of the stochastic reconstruction algorithm is the assumption that molecular

attributes can be modeled by probability density functions (HUDEBINE et al.;

KLEIN et al.; TRAUTH et al., 2002; 2005; 1994). By chemical attributes, we mean

a total number of rings, length of a paraffinic chain and so forth. After combining the

typical experimental data presented in Section 4.1 and our prior chemical knowledge,

we are able to propose the molecular attributes to be modeled by probability density

functions. In this section, we will discuss the models qualitatively. Details about

the probability density functions, parameters, and sampling protocols are addressed

in Section 4.3.

One common approach when it comes to molecular representation of petroleum

fractions is to separate the molecules by molecular types. This has been done both

in the analytical chemistry literature (BODUSZYNSKI; LUMPKIN; MEAD; TRES-

TIANU et al., 1987; 1956; 1968; 1985) and in the molecular reconstruction literature

(DE OLIVEIRA et al.; DE OLIVEIRA et al.; TRAUTH et al., 2013; 2012; 1994). In

that sense, the first chemical attribute to be modeled is the molecular type. We used

the same molecular types proposed by DE OLIVEIRA et al. (2013), which divides

the vacuum residue into paraffinics, naphthenics, aromatics, and multicore aromat-

ics. The probability distribution in question has four possible outcomes, matching

the molecular types, and its shape defines the relative amounts of such groups. Fig-

ure 4.11 is an illustration of the possible outcomes of the distribution. The main

advantage of this approach is that once the molecular type is decided, one could

treat each group individually according to its main characteristics.

Distribution 1

Molecular Type

AromaticsNaphtenicsParaffinics Multicore Aromatics

Figure 4.11: First distribution: molecular type.

4.2.1 Paraffinics

A paraffinic molecule contains only aliphatic carbons. Based on experimental evi-

dence, we decided to limit the heteroatoms occurrence to the aromatics and mul-

ticore aromatics molecules (GRAY and MCCAFFREY; QIAN et al.; QIAN et al.;

ROSE and FRANCISCO; WALDO et al., 2002; 2001a; 2001b; 1987; 1991). The

paraffinic molecule is then defined by the total number of carbons and the level
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of branching. These two chemical attributes were modeled by probability density

functions. Once is decided to build a paraffinc molecule, one should sample two

sequential distributions, the total number of carbons and the level of branching, re-

spectively. Differently from the first distribution, in this case, there is not a finite set

of possible outcomes. In Figure 4.12 we show the building diagram of the paraffinic

group and an example molecule.

Paraffinics

Distribution 2

Total number of

paraffinic carbons

Distribution 3

Level of branching of

the paraffinic chain

(a)

CH3

CH3

CH3

C15

(b)

Figure 4.12: Praffinic Molecules. (a) Building diagram. (b) Example molecule - 24
carbons with 2 branches.

4.2.2 Naphthenics

A naphthenic molecule contains at least one cycloparaffin in its structure. It is

defined by the following chemical attributes: total number of rings, ring configura-

tion, ring aliphatic substitution, side chain length, and side chain branching level.

Similar to the paraffinic molecules, we are not considering the occurrence of het-

eroatoms in this type of molecule. Once the outcome of the first distribution is

a naphthenic molecule, one should sample 5 additional distributions to completely

build the molecule. One important thing to notice is that the ring configuration

distribution heavily depends on the outcome of the preceding distribution, the total

number of rings. This dependence, or conditional probability, is due to the fact that

one should consider the available connections to sample the distribution. Also, we

model the paraffinic chain length and the side chain length with different distribu-

tions. We use the same distribution for the branching level for all types of molecules.

In Figure 4.13, we show the proposed building diagram for naphthenic molecules and

illustrate a hypothetical naphthenic molecule built with this diagram.
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Naphtenics

Distribution 4

Total number of rings

Distribution 5

Ring configuration

Distribution 6

Methyl ring

substitution

Distribution 7

Length of side chain

Distribution 3

Level of branching

of the side chain

(a)

H3C

CH3

C10

H3C

(b)

Figure 4.13: naphthenic Molecules. (a) Building diagram. (b) Example molecule
- 4 rings, ring configuration a, 3 aliphatic ring substitution, 14 carbons in the side
chain and 1 branche.

4.2.3 Aromatics

An aromatic molecule contains at least one benzene in its structure. The chemical

attributes of the hydrocarbon portion of an aromatic molecule is very similar to that

of a naphthenic molecule. For a monocore aromatic, one additional distribution to

model the number of benzene rings is included.

As mentioned, the heteroatoms occurrence is restricted to the aromatic

molecules. We shall define chemical attributes regarding those species. We divided

the heteroatoms into two classes: cyclic and aliphatic. The experimental data avail-

able reports only total quantities of these atoms, so we need to rely on prior chemical

knowledge to define its functional forms (GRAY and MCCAFFREY; QIAN et al.;

QIAN et al.; ROSE and FRANCISCO; WALDO et al., 2002; 2001a; 2001b; 1987;

1991).
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For the cyclic heteroatoms, we proposed a distribution to model the relative

amounts of four main groups: thiophene sulfur, pyrrol nitrogen, pyridine nitrogen

and furan oxygen. The considered distribution has five possible outcomes: no hete-

rocycle, 1 thiophene, 1 pyrrol, 1 pyridine or 1 furan. For the aliphatic heteroatoms,

we used the chemical attributes proposed by DE OLIVEIRA et al. (2013), which

consists of a distribution to model the probability of a sulfur substitution in an

aliphatic chain, a distribution to model the probability of occurrence of a second

heteroatom in the aliphatic chain, a distribution to choose between nitrogen and

oxygen for the second heteroatom and a distribution to choose the oxygenate func-

tion. The main difference with DE OLIVEIRA et al. (2013) is in the oxygenate

function. In DE OLIVEIRA et al. (2013) the choice is between ether and carbonyl

functions, in our work, it is between alcohol and aldehyde/ketone functions. In Fig-

ure 4.14, we show an example of an aromatic molecule and the aromatics building

diagram.

4.2.4 Multicore aromatics

A multicore aromatic molecule is just two or more aromatic cores connected by an

aliphatic chain. All the chemical attributes used to model an aromatic molecule are

used to build each core of a multicore aromatic molecule. Two additional chemical

attributes are necessary. The first one is the number of cores and the second one is

the connectivity between cores. Regarding the latter, the distribution decides how

many connections a core will make and the type of connection (aromatic-aromatic,

aromatic-naphthenic, naphthenic-naphthenic). The length of the aliphatic bridge

between two cores uses the same distribution used for side chain length. In Figure

4.15, we show the multicore building diagram and one example multicore aromatic

molecule.

25



Aromatics

Distribution 4

Total number of rings

Distribution 8

Number of aromatic rings

Distribution 5

Ring configuration

Distribution 6

Methyl ring substitution

Distribution 7

Length of side chain

Distribution 3

Level of branching

of the side chain

Distribution 9
Heterocycle

(None, Tiophene,

Pyridine, Pyrrol, Furan)

Distribution 10,11,12

Aliphatic hetero-

atom (S, N or O)

Distribution 13

Type of oxygen

(a)

H3C

H3C

S

CH3

S

H
N

C8

CH3

(b)

Figure 4.14: (a) Aromatic building diagram. (b) Example aromatic molecule: 7
total rings, 5 benzene rings, ring configuration b, 4 methyl rings substitution, 16
carbons on the side chain, 1 branche, 1 thiophene, 1 aliphatic sulfur, 1 aliphatic
nitrogen.
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Multicore aromatics

Distribution 14

Total number of cores

Aromatics buliding

diagram for each core

Distribution 15

Connection

between cores

Distribution 7

Length of the aliphatic

chain connecting cores

(a)

H3C

N

CH3

CH3

CH3

C5

OH

H3C

S

CH3

S

H
N

C8

CH3

(b)

Figure 4.15: (a) Multicore aromatics building diagram. (b) Example multicore aro-
matic molecule: 2 cores.
Core 1: 7 total rings, 5 benzene rings, ring configuration b, 4 methyl rings substi-
tution, 16 carbons on the side chain, 1 branche, 1 thiophene, 1 aliphatic sulfur, 1
aliphatic nitrogen.
Core 2: 4 total rings, 3 benzene rings, ring configuration c, 2 methyl rings sub-
stitution, 13 carbons on the side chain, 2 branches, 1 pyridine, 1 aliphatic oxygen
(alcohol).
Core connections: 5 carbons, connection type 1 (aromatic-aromatic).
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4.3 Probability density functions, parameters

and sampling protocol

In Section 4.2, we focused on the definition of the chemical attributes to be modeled

by probability density functions. This definition was based on both experimental

data and prior chemical knowledge. In this section, we define the functional forms

for the proposed distributions and the sampling protocol.

Probability density functions

When evaluated at some input value, a probability density function returns the prob-

ability of a random variable to assume that input value. In our case, the random vari-

ables are chemical attributes. Probability density functions can be discrete or con-

tinuous in terms of the random variable. Discrete probability density functions are

usually referred to as probability mass functions (CASELLA and BERGER, 2002).

To be a normalized PDF, a function p(x) must satisfy the following conditions:

p(x) > 0, (4.1)∫ +∞

−∞
p(x)dx = 1 (continuous), (4.2)

N∑
i=0

p(xi) = 1 (discrete). (4.3)

Cumulative density functions

When evaluated at some input value,xi, a cumulative density function returns the

probability of a random variable to be less or equal to that input value. When dealing

with continuous random variables, the probability density function can be obtained

as the derivative of the cumulative density function. The cumulative distribution

function can be represented as follows:

P (xi) =

∫ xi

−∞
p(x)dx (4.4)

Monte Carlo sampling

In order to build molecules in the stochastic reconstruction framework, one should

sample from the proposed probability distributions. After that, we can assemble

the outcomes in terms of chemical structure, as described in Section 4.2. The least

biased way to do that, is to generate random samples from those distributions using
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a Monte Carlo sampling protocol. For that, we use the concept of equivalent random

sequences, defined as follows:

∫ xi

−∞
p1(x)dx =

∫ yi

−∞
p2(y)dy. (4.5)

In Equation 4.5, one can see that equivalent random sequences are the ones

that generates the same cumulative probabilities for different distributions. By

generating uniformely distributed random numbers between 0 and 1, we are able to

transform that sequence into any distribution considered. A uniform distribution

between 0 and 1 has the following propertie:

∫ xi

−∞
p1(x)dx = xi. (4.6)

Equation 4.5 becomes:

xi =

∫ yi

−∞
p2(y)dy. (4.7)

To generate a sequence of random numbers yi from any distribution P2(y), we

only need to encounter the value yi that has the cumulative probability in the

considered distribution equivalent to the uniformly generated number xi.

Discretization, truncation and renormalization

Chemical attributes, when modeled by probability density functions, can be seen as

discrete random variables. A molecule can not have 10.5 carbons. Therefore, when

using common continuous distributions to model chemical attributes one should

discretize them first. The discretization can be done by considering ranges of cumu-

lative probabilities instead of absolute values. For instance, imagine a distribution

where the probability of a random variable to be less or equal 10 is 0.8 and the prob-

ability of the same variable to be less or equal 10.9 is 0.82. In this case, probabilities

ranging from 0.8 to 0.82 are associated with the value 10 of the random variable.

Besides being discrete values, chemical attributes are also finite. When using

probability density functions that covers all positive real numbers, one should con-

sider using a truncated form. In this work, we used the truncation criteria proposed

by TRAUTH et al. (1994). This criteria consists of truncating a distribution in the

value of the random variable xi+1 that contributes to the total cumulative probabil-

itiy with less then 0.1 % in a relative basis, as follows:
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∫ xi+1

−∞ p(x)dx−
∫ xi
−∞ p(x)dx∫ xi

−∞ p(x)dx
≤ 0.1 % (4.8)

Clearly, after truncation, one should normalize the function to guarantee that the

probabilities sum to one.

Conditional probability

One final important topic to be discussed is the conditional probability in the sam-

pling protocol. Some distributions heavily depend on the outcomes of the preceding

distributions, to the point that they need to be rebuilt at every sampling step. For

example, the number of benzenes can only be as high as the total number of rings.

The distribution modeling the number of benzenes has to be truncated in a different

point every time the preceding distribution is sampled. Another example is the ring

configuration. We use this distribution to choose between different points to connect

a ring. In Figure 4.16, we show the decision process in the construction of a 4 ring

aromatic core. One can see that every time the distribution is sampled it has to be

rebuilt, since the possible outcomes changes.

(a) (b)

(c) (d)

Figure 4.16: Example of ring connection decision process. Dashed blue lines repre-
sents possible entrance points for the next ring. The distribution needs to be rebuilt
in every step of the core construction. (a) Step 1 : 6 possible outcomes, (b) Step 2
: 6 possible outcomes, (c) Step 3 : 9 possible outcomes (d) Final molecule.
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After discussing the general concepts of probability density functions and sam-

pling methodologies, we are able to define the functional forms of the distributions

described in Section 4.2. Some of the distributions cannot be estimated by experi-

mental data. In such cases, we define the distributions prior to the observation of

experimental data.

Distribution 1 - Molecular type

The first distribution has only four possible outcomes: paraffins, naphthenes, aro-

matics and multicore aromatics. It is hard to model this kind of distribution with a

fixed functional form. One possible approach is to not define any standard shape.

For that, one should consider each probability associated with each of the possi-

ble outcomes to be an unknown parameter. Considering the available experimental

data, properties like specific gravity and SARA fractions are good measures of rel-

ative amounts of molecular types, as discussed in Section 4.1. In that sense, we

should be able to estimate those parameters. Since probabilities should sum up to

one, the number of parameters for this kind of distribution is the number of possible

outcomes minus one. We shall use the definition proposed by DE OLIVEIRA et al.

(2013) that calls this type of distribution by histogram. In Figure 4.17, we show an

example of this distribution.
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Figure 4.17: Example of a distribution for the molecular type
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Distribution 2 - Lenght of a paraffinic chain

Experimental evidence shows that the distribution of the number of carbons has a

similar shape when compared to the boiling point distribution. BODUSZYNSKI

(1987) proposed a gamma distribution to represent this attribute. Since we are

considering the simulated distillation as available experimental data, we should be

able to estimate the distribution parameters. The gamma distribution is very flexible

in its shape, depending on the values of the parameters it can be close to a normal

distribution or an exponential distribution. However, with the intention of reducing

the total number of parameters, we used a particular case of the gamma distribution:

the chi-squared distribution. It’s functional form can be seen in Equation 4.9

p(χ2, ν) =
1

2ν/2Γ(ν/2)
(χ2)[ν/2−1]e(−χ

2/2), (4.9)

where χ is the random variable or the chemical attribute in our case, ν is defined

as the degrees of freedom and the only parameter of the distribution and Γ is the

gamma function. In Figure 4.17, we show an example of such a distribution.
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Figure 4.18: Example of a distribution for the length of paraffinic chain

Distribution 3 - Level of branching in an aliphatic chain

The experimental data capable of defining this distribution is the quantity of

branched methyl carbons detected by nuclear magnetic resonance. However, as men-
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tioned in Section 4.1, we did not consider this data in the parameter estimation step.

The distribution was defined by means of pure chemical knowledge (ALTGELT and

BODUSZYNSKI; BODUSZYNSKI; BODUSZYNSKI; BODUSZYNSKI and ALT-

GELT; HIRSCH and ALTGELT; LUMPKIN; MCKENNA et al.; MCKENNA et al.;

MCKENNA et al.; MCKENNA et al.; PODGORSKI et al., 1992; 1987; 1988; 1992;

1970; 1956; 2010a; 2010b; 2013a; 2013b; 2013). We considered a maximum num-

ber of 4 branches per aliphatic chain. Since we do not have much information, we

chose a uniform distribution from 0 to 4 to model this attribute. All outcomes

of the distribution are equally probable. Some outcomes may have its probability

changed conditional to the preceding distribution. For instance, a 3 carbon paraffinic

molecule cannot have any branches. In this case, all the probabilities are zero.

Distribution 4 - Total number of rings

The total number of rings is related to the total number of carbons and in turn

to the boiling point distribution. We can also relate it to the carbon-hydrogen

ratio. Similar to the length of paraffinic chain distribution, we used the chi-squared

distributions to model this attribute. In Figure 4.19, we show an example of the

total number of rings distribution.
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Figure 4.19: Example of a distribution for the total number of rings
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Distribution 5 - Ring configuration

Ring configuration is more related to specific carbon types rather than general prop-

erties, such as specific gravity and carbon-hydrogen ratios. Specific carbon types can

be obtained by the detailed nuclear magnetic resonance spectroscopy described in

Section 4.1. However, we did not consider this type of data in the parameter estima-

tion. In that sense, we used a uniform distribution based on every possible outcomes

in terms of ring connection. In Figure 4.16, we illustrate the sampling steps to the

final ring configuration. In every step, every possible connection (dashed blue lines

in Figure 4.16) is equally probable.

Distribution 6 - Methyl ring substitution

Another distribution that requires detailed nuclear magnetic resonance spectroscopy

data. For this distribution, we used the same approach used for distribution 3,

branching level. An uniform distribution ranging from 0 to 4, 0 meaning no sub-

stitution. Once again, the probabilities may change depending on connections site

availability.

Distribution 7 - Lenght of the side chain

One can think about the side chain as an increment to the total number of rings in

terms of carbon numbers. In that sense, this chemical attribute greatly influences

the heavier portion of the boiling point distribution curve. Based on the work of

BODUSZYNSKI (1987), the boiling pointing curve extends exponentially towards

the heavier portions. To model this attribute, we choose the exponential function,

defined as follows:

p(t, β) =
exp

(
−t
β

)
β

, (4.10)

where t is the random variable associated with the exponential distribution and θ

is the parameter defining its shape. In Figure 4.20, we show an example of the

exponential representation of the side chain length.
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Figure 4.20: Example of a distribution for the length of the side chain

Distribution 8 - Number of benzenes

This chemical attribute greatly influences the carbon to hydrogen ratio, specific

gravity and SARA fractions relative amounts. Similar to the side chain length, this

is an incremental attribute with a greater influence in the heavier portion of the

carbon number distribution. For that, we used the exponential function defined

in Equation 4.10 as the distribution functional form. In Figure 4.21, we show an

example of distribution for this chemical attribute.

Distribution 9 - Type of heterocycle

Experimental data only report total amounts of heteroatoms. The definition of

their functional forms was based on pure chemical knowledge (GRAY and MCCAF-

FREY; QIAN et al.; QIAN et al.; ROSE and FRANCISCO; WALDO et al., 2002;

2001a; 2001b; 1987; 1991). This distribution has only five possible outcomes: no

heterocycle, 1 thiophene, 1 pyrrol, 1 pyridine or 1 furan. Similar to the molecular

type distribution we decided to use a histogram (free-shaped distribution) as the

probability density function. One important observation is that, since we measure

only total amounts, we can not differentiate between pyrrolic and pyridinic nitrogen.

In that sense, we estimate one parameter that controls the amounts of the sum of

both functional forms, each one being equally probable. In Figure 4.22, we show an

example of this type of distribution.
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Figure 4.21: Example of a distribution for the number of benzenes
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Figure 4.22: Example of a distribution for the type of heterocycle
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Distributions 10,11,12 and 13 - Aliphatic heteroatoms and

oxygenate function

We used the same framework proposed by DE OLIVEIRA et al. (2013) to model

these chemical attributes. It consists of three distributions, each one with two

possible outcomes. The first one decides for a sulfur, the second one for a second

heteroatom and the third one chooses between nitrogen and oxygen. Based on the

low number of possible outcomes, we used a histogram type distribution. Since we

only have total amounts of heteroatoms as experimental data, chances are that these

parameters are correlated to those of distribution 9. Nevertheless, we kept them in

the parameter estimation step. Regarding the oxygenate function, we considered

both options equally probable.

Distribution 14 - Number of cores

Similar to the length of the side chain, this chemical attribute is related to the heavier

portion of the boiling point distribution. As previously discussed, the exponential

function defined in Equation 4.10 is suitable to model these types of attributes. In

Figure 4.23, we show an example for this distribution.
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Figure 4.23: Example of a distribution for the number of cores
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Distribution 15 - Connection between cores

To fully estimate this distribution, one would need detailed nuclear magnetic

resonance. Similar to distributions 3, 5 and 6, we used a uniform distribution

to model both the number of connections and type of connection. For the first,

we considered a maximum of 4 connections per core, each outcome being equally

probable. The same thinking was applied to the connections type distribution.

In this section, we discussed the general concepts regarding modeling chemical

attributes with probability density functions. Besides that, we defined the functional

forms of the distributions and whether or not the parameters can be estimated

by experimental data. For dealing with distributions with no experimental data

available, we used the uniform functional form. By doing that, we preserve our

prior chemical knowledge in the least biased way. In Table 4.2, we show a summary

of the distributions defined in this section.

Table 4.2: Summary of distributions functional forms, chemical attributes and pa-
rameters to be estimated

Chemical attribute Functional form Available data? Parameters

Molecular type Histogram yes 3
Lenght of a paraffinic chain Chi-squared yes 1

Level of branching Uniform no -
Total number of rings Chi-squared yes 1

Ring configuration Uniform no -
Methyl ring substitution Uniform no -
Lenght of the side chain Exponential yes 1

Number of benzenes Exponential yes 1
Type of heterocycle Histogram yes 3

Aliphatic sulfur Histogram yes 1
Another aliphatic heteroatom Histogram yes 1
Aliphatic nitrogen or oxygen Histogram yes 1

Aliphatic oxygen function Uniform no -
Number of cores Exponential yes 1

Connection between cores Uniform no -
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4.4 Molecular representation

In Section 4.3, we described the sampling methodology and the functional forms

of the distributions representing the chemical attributes. For each sample of the

building diagram, one molecule is built. The stochastic reconstruction algorithm

consists of taking N samples from the building diagram. These samples represent

the molecules in the hypothetical mixture. At this point, we consider that every

molecule has the same mole fraction in the mixture, equal to 1/N .

In this section, we describe the methodology used to represent and storage the

molecules generated by the Monte Carlo sampling procedure.

Structure-oriented lumping - monocore molecules

The structure-oriented lumping method, as proposed by QUANN and JAFFE

(1992), represents individual hydrocarbons molecules as vectors of 22 structural

increments. These structural increments are shown in Figure 4.24.[
A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

]
Figure 4.24: Structural increment attributes of the structure-oriented lumping
method (QUANN and JAFFE, 1992)

A mixture of molecules is then represented by a matrix. Each row repre-

sents one molecule, and the columns are the structural attributes shown in Figure

4.24. The nature of the structural increments are defined as follows (QUANN and

JAFFE, 1992):

• A6: A six carbon aromatic ring.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• A4: A four carbon aromatic ring increment. It has to be attached to either

an A6 or another A4.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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• A2: A two carbon aromatic ring increment. Results in a pericondensed mul-

tiring structure as in pyrene.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• N6 and N5: Six and five carbon naphthenic rings. Similar to the A6 incre-

ment, they can exist independently as cyclohexane and cyclopentane.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• N4, N3, N2, and N1: Four three two and one carbon naphthenic ring that

must be attached to other naphthenic or aromatic ring structure.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

• R: Carbon number of the total alkyl substitution in a ring structure or the

carbon number of aliphatic molecules. the R increment adds −CH2− groups.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 1 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0

• IH: Incremental hydrogen to specify the degree of unsaturation of molecules.

It adds two hydrogen atoms to the stoichiometry of a molecule. If no rings are

present, IH = 1 for paraffins, IH= 0 for monoolefins, and IH = -1 for diolefins.

If there are naphthenic rings present, IH=-1 indicates a cycloolefin.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 0 0 0 0 0

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
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• br: Indicates the number of branch points on the alkyl side chain R or on

a paraffin or olefin. The br group contributes no hydrogen or carbon to the

stoichiometry of the molecule.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 1 0 0 0 0 0 0 0 10 2 0 0 0 0 0 0 0 0 0 0 0

• me: Specifies the number of carbons of the total alkyl structure R which

are attached as methyl groups to the carbon atoms on aromatic or naphthenic

rings of a molecule. The group me also does not contribute carbon or hydrogen

to the stoichiometry of the molecule.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 1 0 0 0 0 0 0 0 10 0 4 0 0 0 0 0 0 0 0 0 0

• AA: The biphenyl bridge between any two nonincremental rings (A6, N6, or

N5). AA contributes no carbon to the structure but eliminates two hydrogen

atoms to form the bridge between rings.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

• NS, NN, and NO: A sulfur, nitrogen, or oxygen located in a naphthenic

ring or paraffin and bound to two carbon atoms. NS, NN, or NO replaces a

CH2 methylene unit with an S atom, an N −H group, or an oxygen atom in

the structure, respectively.
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S

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

O

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

N
H

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

• RS, RN, and RO: A sulfur atom, nitrogen -NH- group, or oxygen atom

inserted between a carbon and hydrogen atom to form a mercaptan, amine,

or alcohol group, respectively.

HS

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

0 0 0 0 0 0 0 0 0 10 0 0 1 0 0 1 0 0 0 0 0 0

H2N

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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• AN: A nitrogen group substitution for carbon in an aromatic ring as in pyri-

dine.

N

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

• KO: A ketone or aldehyde group where a −CH2− is replaced by > C = 0.

O

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Structure-oriented lumping - multicore molecules

In JAFFE et al. (2005), an extension of the structure-oriented lumping method was

proposed. A new vector of structural attributes was proposed to better represent

vacuum residues. Moreover, a methodology to represent multicore molecules was

presented. In this work, we used a methodology based on JAFFE et al. (2005)

original proposition to represent multicore molecules.

First of all, the molecular matrix needs another dimension. Now, each row

represents a core of a molecule, the columns still represent the structural attributes

and the third dimension represents the different cores of the molecule. We added

two additional attributes to the structure vector, as shown in Figure 4.25.

[
A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO Cn Nc

]
Figure 4.25: Augmented vector of structural attributes to represent multicore mole-
cues. The additional Cn and Nc attributes are used to represent multicore molecules.

The additional attributes are defined as follows:

• Cn: Connectivity between cores. As described in Section 4.3, we considered

a maximum of four connection per core and three types of connections. This

attribute is a code consisting of eight digits. The first four digits defines to

which cores the current core connects. The last four digits define the type of

connection.
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• Nc: Number of cores. Defines the number of cores of the molecule.

• R: For taking into account individual aliphatic chains and bridges between

cores, this attribute requires some changes. For multicore molecules, it assumes

a code of ten digits. The first two digits of each core represents the carbon

number of its own aliphatic side chain. The remaining eight digits represent

the carbon number of each possible core connection.

In Figure 4.26, we show an example of a multicore molecule represented by the

structure-oriented lumping methodology.

H3C

N

CH3

CH3

CH3

C5

OH

H3C

S

CH3

S

H
N

C8

CH3

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO Cn Nc

1 3 1 0 0 2 0 0 1 1605000000 1 3 0 1 2 0 0 1 0 0 0 0 20001000 2

1 2 0 0 0 0 0 1 0 1405000000 1 1 0 0 0 0 1 0 0 0 1 0 10001000 0

Figure 4.26: Example of a multicore molecule and its representation by the structure-
oriented lumping vector
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QUANN and JAFFE (1992), designed a stoichiometric matrix to be used in

conjuction with the structure vectors. This matrix defines the total number of each

atom type for each of the structural attributes. In Figure 4.27, we show the proposed

matrix.

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

Carbon 6 4 2 6 5 4 3 2 1 1 0 0 0 0 −1 0 −1 −1 0 −1 0 0

Hydrogen 6 2 0 12 10 6 4 2 1 2 0 0 2 −2 −2 0 −1 −1 1 −2 0 0

Sulfur 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Nitrogen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Oxygen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Figure 4.27: Stoichiometry matrix for the structure-oriented lumping method
(QUANN and JAFFE, 1992)

Using the matrix shown in Figure 4.27, one can calculate the total number of

atoms for each molecule.:

MA = M× Sᵀ (4.11)

Where M is the molecular matrix based on the structural attributes in Figure 4.25,

and S is the stoichiometry matrix shown in Figure 4.27.

The resulting matrix, MA, contains the number of rows corresponding to the

number of molecules, and five columns representing each atom type. Each element

of the matrix represents the total number of an atom type of the corresponding

molecule. Since we are interested in the total number of atoms, when dealing with

multicore molecules one can sum all the structural attributes of each core and put

that information in a single row.

Extension of the structure-oriented lumping vector

Inspired by the stoichiometry matrix shown in Figure 4.27, we designed a functional

group matrix related to the structure-oriented lumping vectors. However, in order

to work with many functional groups as possible, an extension of the original vector

proposed by QUANN and JAFFE (1992) was necessary. In Figure 4.28, we show

the proposed extended structure-oriented lumping vector.

A6 A4 A2 N6 N5 N4a N4b N3 N2n N2a N2m N2f N1a N1m N1n Rp Rm Rn

Ra br me1 me2 IHo IHn AA1 AA2 AA3 NS RS AN NN RN NO RO KO


Figure 4.28: Extended version of the structure-oriented lumping vector
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The additional attributes proposed are defined as follows:

• N4a and N4n: A four carbon incremental naphthenic ring connected to

aromatic ring and a naphthenic ring, respectively.

• N2n, N2a, N2m, and N2f: A two carbon incremental naphthenic ring con-

nected to three naphthenic rings, to three aromatic rings, to two naphthenics

and one aromatic rings, and to one naphthenic and two aromatic rings, re-

spectively.

• N1a, N1m, and N1n: One carbon incremental naphthenic ring connected to

two aromatic rings, one aromatic and one naphthenic ring and two naphthenic

rings, respectively.

• Rp, Rm, Rn, and Ra: An aliphatic terminal carbon, an aliphatic carbon

in the middle of a chain, an aliphatic carbon connected to a naphthenic ring,

and an aliphatic carbon connected to an aromatic ring, respectively.
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CH3

CH2

CH2 CH2

• me1, and me2: A methyl substitution to a naphthenic, and an aromatic

ring, respectively.

CH3 CH3

• IHo, and IHn: Degree of unsaturation in an aliphatic chain, and in a naph-

thenic ring, respectively.

• AA1, AA2, and AA3: A biphenyl bridge connecting two aromatic rings, one

aromatic ring and one naphthenic ring, and two naphthenic rings, respectively.

With these new attributes, we were able to design a functional groups matrix

similar to the stoichiometry matrix presented in Figure 4.27. In this work, we

considered the following functional groups:

• −CH3 − nr,−CH2 − nr, and > CH− nr: Aliphatic primary, secondary and

tertiary carbons, respectively.

CH3 CH2

CH
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• > CH2 − r, > CH− r1, and > CH− r2: Naphthenic carbon, condensed

naphthenic carbon and substituted naphthenic carbon, respectively.

CH CH

CH2

• = CH− nr, and = CH− r: Aliphatic olefinic carbons and cyclic olefinic car-

bons, respectively.

CH

CH

• CH, C1, C2, and = C < r: Aromatic carbon, peripheral condensed aromatic

carbon, internal condensed aromatic carbon, and substituted aromatic carbon,

respectively.

C

CCCH

• −S− r, and SH− nr: Tiophenic sulfur, and aliphatic mercaptan sulfur, re-

spectively.

S

SH

• = N− r, −NH− r and −NH2 − nr: Pyridinic nitrogen, pyrrolic nitrogen,

and aliphatic amine nitrogen, respectively.

NH

H2N
N
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• −O− r, OH and > C = O− nr: Furanic oxygen, aliphatic alcohol oxygen,

and aliphatic carbonyl oxygen, respectively.

O
O

OH

In Figure 4.30, we show the proposed matrix. It has the functional groups on

the rows and the structural attributes on the columns. With this matrix, one can

calculate the quantities of each functional group in each of the molecules:

MF = Mex × Fᵀ (4.12)

Where Mex is the molecular matrix based on the extended structural attributes in

Figure 4.28, and F is the functional groups matrix shown in Figure 4.30.

The resulting matrix, MF, has the molecules in the rows and the functional

groups in the columns. Each element contains the quantities of the corresponding

functional group in the corresponding molecule. In Figure 4.29, we show an example

molecule and its representation by the matrices M, Mex, MA, and MF.

N

M =

A6 A4 A2 N6 N5 N4 N3 N2 N1 R br me IH AA NS RS AN NN RN NO RO KO

1 1 0 0 0 2 0 0 0 15 3 0 0 0 0 0 1 0 0 0 0 0



Mex =


A6 A4 A2 N6 N5 N4a N4b N3 N2n N2a N2m N2f N1a N1m N1n Rp Rm Rn

1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 14 0

Ra br me1 me2 IHo IHn AA1 AA2 AA3 NS RS AN NN RN NO RO KO

1 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



MA=

[
Carbon Hydrogen Sulfur Nitrogen Oxygen

36 51 0 1 0

]

MF =


−CH3 − nr −CH2 − nr > CH2 − r > CH− nr > CH− r1 > CH− r2 = CH− nr = CH− r CH C1

4 8 6 3 2 0 0 0 4 4

C2 = C < −S− r SH− nr = N− r −NH− r −NH2 − nr −O− r −OH > C = O− nr

0 1 0 0 1 0 0 0 0 0



Figure 4.29: An example molecule and its matrix representation: Structure-oriented
lumping, extended structure-oriented lumping, stoichiometry and functional groups.
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A6 A4 A2 N6 N5 N4a N4b N3 N2n N2a N2m N2f N1a N1m N1n Rp Rm Rn

−CH3 − nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

−CH2 − nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

> CH2 − r 0 0 0 6 5 4 2 1 0 2 1 1 1 0 −1 0 0 −1

> CH− nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> CH− r1 0 0 0 0 0 0 2 2 2 0 1 1 0 1 2 0 0 0

> CH− r2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= CH− nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= CH− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH 6 2 0 0 0 −2 0 0 0 −2 −1 −1 −2 −1 0 0 0 0

C1 0 2 0 0 0 2 0 0 0 0 0 −1 2 1 0 0 0 0

C2 0 0 2 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0

= C < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−S− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SH− nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= N− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−NH− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−NH2 − nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−O− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−OH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> C = O− nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a)

Ra br me1 me2 IHo IHn AA1 AA2 AA3 NS RS NA NN RN NO RO KO

−CH3 − nr 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−CH2 − nr 0 −2 −1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 −1

> CH2 − r 0 0 −1 0 0 0 0 −1 −2 −1 0 0 −1 0 −1 0 0

> CH− nr 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> CH− r1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0

> CH− r2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= CH− nr 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

= CH− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH −1 0 0 −1 0 0 −2 −1 0 0 0 −1 0 0 0 0 0

C1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= C < 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−S− r 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

SH− nr 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

= N− r 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

−NH− r 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−NH2 − nr 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

−O− r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

−OH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

> C = O− nr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(b)

Figure 4.30: Functional groups versus structural attributes matrix. (a) columns 1
to 18. (b) columns 19 to 35
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4.5 Properties calculation

In Section 4.3, we described the sampling methodology used in the stochastic recon-

struction algorithm. Then, in Section 4.4, we presented a methodology to storage

the probability density functions outputs in terms of molecular structures using the

structure-oriented lumping vector created by QUANN and JAFFE (1992). We also

proposed an extension of the structure-oriented lumping vector. After sampling

from the probability density functions, the built molecules are represented in terms

of four different matrices: M, MA, Mex, and MF (refer to Section 4.4).

In this section, we describe the methods used to calculate properties both for

the individual molecules and for the hypothetical mixture. The building diagrams

presented in Section 4.2 are sampled N times generating N molecules. In that sense,

matrices M, MA, Mex, and MF also have N rows. At this point, we consider an

equimolar mixture based on the N molecules created.

By combining the calculated properties with the experimental data, we are able

to calculate likelihood functions (or at least an approximation of it). These likeli-

hoods are used to estimate the probability density function parameters controlling

the sampling step.

Pure molecules properties

Each molecule has its own set of physical and chemical properties. In this work, we

used a basic set of properties to represent each molecule and its contribution to the

mixture.

• Molecular mass. In Section 4.4, we defined the matrix MA. This matrix

has molecules in each row and quantities of each atom type in each column.

Defining VMW as the matrix of each atom type molecular mass:

VMW =

Carbon Hydrogen Sulfur Nitrogen Oxygen

12 1 32 14 16



The multiplication of vector VMW by the transpose of matrix MA, results

in a vector of molecular masses, MMW, as follows:

MMW = VMW ×MAᵀ (4.13)

• Specific gravity and normal boiling points. In order to calculte specific

gravity and normal boiling points, we a used the group contribution method
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described by DE OLIVEIRA et al. (2013). The normal boiling point is calcu-

lated as follows:

exp

(
Tb

307.63

)
=
∑
i

(ni∆Tb,i) + FTb (4.14)

∆Tb,i is the contribution of group i and ni is the number of groups of type i.

FTb is a correction term based on the total number of rings, NR, calculated as

follows:

FTb = 0.2285N2
R + 0.4678NR (4.15)

For the specific gravity, which considers the molecule in a liquid state at 20 ◦C,

we used the following equation:

d =
MW∑

i ni∆Vm,i + FVm
(4.16)

∆Vm,i is the contribution of group i and ni is the number of groups of type

i. MW is the molecular mass of the molecule and FVm is a correction term

based on the total number of rings, NR, calculated as follows:

FVm = 25NR (4.17)

In Figure 4.31, we show the matrix FGP. This matrix contains the values

of ∆Tb,i and ∆Vm,i for the functional groups considered in this work (refer to

Figure 4.29). The terms
∑

i ni∆Tb,i and
∑

i ni∆Vm,i from Equations 4.14 and

4.16 can be easily calculted by:

MPM = MF× FGP (4.18)

The resulting matrix, MPM, has the molecules in the rows and two columns.

The columns represent the molecule structural contribution to the boiling point

and specific gravity, respectively. NR can be calculated for each molecule i by:
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NRi
=

j=9∑
j=1

Mi,j (4.19)

where M is the molecular matrix defined in Section 4.4. In matrix form,

Equations 4.14 and 4.16 becomes, for each molecule i:

exp

(
Tbi

307.63

)
= MPMi,1 + 0.2285 (NRi

)2 + 0.4678NRi
(4.20)

di =
MMWi

MPMi,2 + 25NRi

(4.21)

FGP =



∆Tb,i ∆Vm,i

−CH3 − nr 32.14 0.8758

−CH2 − nr 16.38 0.3101

> CH2 − r 13.93 0.3852

> CH− nr −0.93 −0.3343

> CH− r1 −3.98 −0.1343

> CH− r2 −1.16 −0.2519

= CH− nr 13.55 0.3232

= CH− r 10.97 0.3702

CH 11.22 0.3814

C1 −7.74 0.0067

C2 −10.97 −0.3995

= C < −6.15 −0.1494

−S− r 12.34 0.8741

SH− nr 12.53 0.9281

= N− r −2.30 0.6455

−NH− r −1.12 1.1069

−NH2 − nr 8.58 0.5954

−O− r 14.63 0.2540

−OH 5.61 0.3232

> C = O− nr 10.09 1.0150


Figure 4.31: Functional groups contributions to specific gravity and normal boiling
points calculation.
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Mixture properties

In order to estimate the properties for the hypothetical mixture, we need to make

some assumptions. First, we considered that the mixture is ideal. This means

that we excluded the effect of molecular interactions in the calculations. This is

specifically important to the average molecular mass, specific gravity and boiling

point curve. Second, the same importance is given to every molecule built from the

building diagrams presented in Section 4.2. In that sense, every molecule has the

same mole fraction given by:

xi =
1

N
(4.22)

where N is the total number of molecules.

• Average molecular mass: The average molecular mass, MWavg, is simply

the sum of the individual molecular masses weighted by the mole fraction.

Defining X as the mole fraction vector:

MWavg = MMW ×X (4.23)

• Mass fractions: After calculating the average molecular mass, one can cal-

culate the mass fraction of each molecule, wi, by:

wi =
Xi ×MMWi

MWavg

(4.24)

• Mixture specific gravity: Considering an ideal mixture, the inverse of the

specific gravity is additive in a mass basis. The mixture specific gravity, Sgmix
,

is simply the sum of the inverse of the individual specific gravities weighted

by the mass fraction:

Sgmix
= 1/

∑
i

wi
di

(4.25)

• Volume fractions: After calculating the mixture specific gravity, one can

calculate the volume fraction of each molecule, vi, by:
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vi =
wiSgmix

di
(4.26)

• Boiling point curve: This analysis reports the boiling point associated with

a certain amount of sample vaporization. This amount of vaporization can be

reported in a mass or volumetric basis. For instance, some vacuum residue

can have a 10% vaporization temperature of 550 ◦C. We used the following

procedure to calculate this property:

– First we arrange the molecules in a crescent order of boiling points.

– Then, we calculate the cumulative mass (cwi) or volume (cvi) percentages

of each molecule. For example, consider that molecule 1 has a mass

fraction of 5% and molecule 2 has a mass fraction of 8%. The cumulative

mass percentage for molecule 2 is 13%.

– Finally, to calculate the boiling point associated with a k% vaporization,

we look for the molecules with a cumulative mass fraction immediately

below and above k%. Then, the boiling point is a linear interpolation

between the boiling points of the two individual molecules:

Tb,k% = Tbi<k%
+

(k%− cwi<k%)(Tbi>k%
− Tbi<k%

)

cwi>k% − cwi<k%
(4.27)

• SARA fractions: This method separates petroleum fractions into four

groups: saturates, aromatics, resins, and asphaltenes. The results are just

the mass factions of each class. However, because separation based on solubil-

ity is hard to classify, here, we used the criteria proposed by DE OLIVEIRA

et al. (2013), which separates the molecules based on the mass percentage of

hydrogen and molecular mass. The criteria are as follows:

if %Hi ≤ 14− 11300

MMWi + 800
= Asphaltene (4.28)

if %Hi ≤ 14− 4000

MMWi + 160
= Resin (4.29)

if %Hi ≤ 14− 3000

MMWi + 1300
= aromatics (4.30)
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the molecule hydrogen mass percentage can be easily calculated by:

%Hi = 100× MAi,2 ×VMW1,2∑
j MAi,j ×VMW1,j

(4.31)

• Elemental analysis: This analysis measures the mass percentage of each

of the main atom types in the mixture (Carbon, Hydrogen, Sulfur, Nitrogen,

and Oxygen). The mass percentage of an atom type k in the mixture is the

sum of each molecule mass percentage of the same atom weighted by the mass

fraction

wkmix
=

N∑
i=1

(
xi ×MAi,k ×VMW1,k∑N

i=1 xi ×MMWi

)
, (4.32)

• Nuclear magnetic resonance: Similar to the elemental analysis, this

method measures the molar percentage of certain carbon (or hydrogen) type

relative to the total quantity of carbons (or hydrogen). This atom types are

described in Section 4.1, and are directly related to the functional groups in

matrix MF (refer to Section 4.4). The molar percentage of certain atom type

k is then

xkmix
=

(∑
i MFi,k ×Xi∑
i MAi,k ×Xi

)
(4.33)

In this chapter, we described the stochastic reconstruction algorithm developed in

this thesis. Using the experimental data available, we defined the chemical attributes

to be modeled by probability density functions. The sampling protocol, functional

forms and parameters of the probability density functions were defined based on

prior chemical knowledge, experimental evidence and available data. We finished

the chapter describing the methodology for molecular representation and properties

calculation. The probability density functions parameters control the molecular

generation properties. In that sense, they should be estimated to better match the

experimental data available. We can define the stochastic reconstruction method as

a generative model for simulated data. This simulated data can then be used in a

parameter inference methodology, as described in Chapter 5.
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Chapter 5

Statistical inference

In this chapter, we describe the methodology used to estimate the parameters of

the molecular reconstruction algorithm. We also describe the clustering technique

used to select the best molecules candidates and composition calculation by entropy

maximization. As described in Chapter 4, the molecular reconstruction algorithm

can be seen as a parametrized stochastic data generating mechanism. DUTTA et al.

(2016) defined this type of data generating process as simulator-based models. In

practical terms, it is a computer program that takes a value θ and a state of the

random number generator as input and returns data yθ as output (GUTMANN and

CORANDER, 2016).

5.1 The likelihood principle

In statistical inference, one uses the information in a data sample Y1, . . . , Ym

to make inferences about an unknown parameter θ. In this thesis, we used the

likelihood principle as the data reduction device to find suitable estimators for the

unknown parameters. This principle is based on an important statistic called the

likelihood function.

Let p(y|θ) denote the joint probability density function of a data sample Y =

(Y1, . . . Yn). Then, given that Y = y is observed, the function of θ defined by

L(θ|y) = p(y|θ) (5.1)

is called the likelihood function (CASELLA and BERGER, 2002).

If Y is a discrete random variable, then L(θ|y) = Pθ(Y = y). If we compare the
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likelihood function at two parameter points and find that

Pθ1(Y = y) = L(θ1|y) > Pθ2(Y = y) = L(θ2|y), (5.2)

then the sample we actually observed is more likely to have occurred if θ = θ1 then

if θ = θ2, which can be interpreted as saying that θ1 is a more plausible value for

the true value of θ than is θ2 (CASELLA and BERGER, 2002).

The likelihood principle can then be defined as follows: if x and y are two sample

points such that L(θ|x) is proportional to L(θ|y), that is, there exists a constant

C(x, y) such that

L(θ|x) = C(x, y)L(θ|y), (5.3)

then the conclusions drawn from x and y should be identical (CASELLA and

BERGER, 2002).

Maximum likelihood estimators

The likelihood principle and the interpretation of likelihood values led to one of

the most popular techniques for deriving estimators. If Y1, . . . , Yn are an indepen-

dent and identically distributed sample from a population with probability den-

sity function f(y|θ1, . . . , θk), the likelihood function is defined by (CASELLA and

BERGER, 2002)

L(θ|y) = L(θ1, . . . , θk|y1, . . . , yn) =
n∏
i=1

f(yi|θ1, . . . , θk). (5.4)

For each sample point y, let θ̂(y) be a parameter value at which L(θ|y) attains

its maximum as a function of θ, with y held fixed. A maximum likelihood estimator

of the parameter θ based on a sample Y is θ̂(Y ) (CASELLA and BERGER, 2002).

Bayes estimators

In statistical inference there exist fundamentally different approaches regarding the

estimation of unknown parameters. In the classical approach the parameter, θ, is

thought to be an unknown, but fixed, quantity (CASELLA and BERGER, 2002). By

fixed, we mean that it can not be considered a random variable. A random sample

Y1, . . . , Yn is drawn from a population indexed by θ and, based on the observed

values in the sample, knowledge about the value θ is obtained (CASELLA and

BERGER, 2002). For that, one can use the likelihood principle and maximum

likelihood estimators.
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In the Bayesian approach, θ is considered to be a quantity whose variation can

be described by a probability distribution, called the prior distribution. This dis-

tribution is inherently subjective, since it is based on the experimenters’ belief and

defined before any data is observed. In a similar way, after some random sample

from a distribution indexed by θ is observed, one can update the prior distribution

of θ using Bayes rule. The updated distribution is called the posterior distribution.

If we denote the prior distribution by π(θ) and the sampling distribution by

f(y|θ), then the posterior distribution, the conditional distribution of θ given the

sample, y, is

π(θ|y) = f(y|θ)π(θ)/m(y), (5.5)

where m(y) is the marginal distribution of Y , that is,

m(x) =

∫
f(y|θ)π(θ)dθ. (5.6)

The likelihood principle is a valid data reduction device for either one of the

approaches, and as shown in Equation 5.5, one uses the likelihood function to up-

date the prior distributions. The posterior distribution contains all the information

regarding the parameter θ. The mean of this distribution can be considered a point

estimator for θ.

In a nutshell, classical methods of inference portrait the parameter as a fixed

and unknown quantity and the observed data as random. In contrast, Bayesian

methods portrait the parameter as the random quantity and the observed data as

fixed. In some sense, classical methods draw conclusions about what might have

been observed and Bayesian methods about what was actually observed.

In this work, we chose the Bayesian approach to statistical inference. As we will

discuss later, our model has an intractable likelihood function. For such complex

models, the Bayesian approach is more suitable, especially for estimating parameter

uncertainty.

5.2 Approximate Bayesian computation

In Chapter 4, we described the stochastic reconstruction algorithm. It models chem-

ical attributes using probability density functions. These functions have parameters

that control their shape and, in turn, the data generated by the model. The data

generation process follows a Monte Carlo type procedure, by taking random samples
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from the probability density functions. The raw data generated by the model are

the chemical attributes for each sample, which can be translated into molecules.

In that sense, stochastic reconstruction algorithms are functions M that map the

model parameters θ and some random variables V to data y (DUTTA et al., 2016).

The presence of the random variables V causes the outputs of the model to

randomly fluctuate even when the parameters θ are held fixed. To discuss the prop-

erties of simulator-based models, such as the stochastic reconstruction algorithm,

we will follow the definitions described in DUTTA et al. (2016). Due to the random

fluctuations caused by the variables V the simulator defines a random variable Yθ

with a distribution implicitly determined by the distribution of V for a given θ.

As described in DUTTA et al. (2016), for a fixed value of θ, the probability that

Yθ takes values in an ε neighborhood Bε(y0) around the observed data y0 is equal to

the probability to draw values of V that are mapped to that neighborhood,

Pr(Yθ ∈ Bε(y0)) = Pr(M(θ, V ) ∈ Bε(y0)). (5.7)

Computing this probability analytically is impossible for complex models

(DUTTA et al., 2016). However, it is clear that one can obtain some particular data

from the simulator, yθ, and test if it ends up in the neighborhood of the observed

data, y0. Equation 5.7 can be used to define a likelihood function as ε approaches

zero,

L(θ|y0) = lim
ε→0

cεPr(Yθ ∈ Bε(y0)). (5.8)

However, neither the probability in Equation 5.7 nor the likelihood function in

Equation 5.8 are available analytically. Considering Yθ a discrete random variable,

the likelihood function can be written as

L(θ) = Pr(Yθ = y0). (5.9)

From Equation 5.9, one can see that for discrete random variables the likelihood

is either 0 or 1. For simulator-based models, even with intractable likelihoods, one

can simulate from the model and check if the generated data matches the observed

data. In order to sample from the posterior distribution showed in Equation 5.5,

the following algorithm can be used: samples are taken from the prior distribution

of parameters θ ∼ π(θ) and the generated data are compared to the observed data.

If Yθ = y0, the samples are valid posterior samples. This algorithm is known as
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the rejection sampling method and it returns an exact posterior distribution of

parameters. The procedure is shown in Algorithm 5.1

Algorithm 5.1 Rejection sampling applied to simulator-based models to produce
N independent samples from the posterior distribution

1: for i = 1 to N do

2: repeat

3: Generate θ from the prior π(θ)

4: Generate yθ from the model

5: until yθ = y0

6: θ(i) ← θ

7: end for

In practical terms, Yθ can assume an uncountable number of values turning the

probability in Equation 5.9 negligibly small. For instance, that is the case if Yθ is

a continuous random variable. In such cases, an already very inefficient algorithm

becomes unfeasible.

To overcome this issue, one can replace the acceptance criteria in Algorithm 5.1

by

d(yθ, y0) ≤ ε, (5.10)

where d(yθ, y0) is a distance function and ε is a threshold defined by the modeler.

The distance function is here to measure the discrepancy between simulated and

experimental data and is usually applied to summary statistics of the data. For

stochastic reconstruction algorithms, the use of summary statistics is a require-

ment. The model generates chemical attributes as simulated data. Clearly, one can

only measure overall properties. By calculating overall properties, we are in fact

calculating summary statistics of the generated data.

This new criteria leads to Algorithm 5.2, known as the approximate Bayesian

computation rejection algorithm.

Algorithm 5.2 Approximate Bayesian computation rejection sampling

1: for i = 1 to N do

2: repeat

3: Generate θ from the prior π(θ)

4: Generate yθ from the model

5: until d(yθ, y0) ≤ ε

6: θ(i) ← θ

7: end for

62



Algorithm 5.2 does not generate samples from the posterior distribution in Equa-

tion 5.5. Instead, it produces an approximate posterior distribution conditional on

d(yθ, y0) ≤ ε. For that, it approximates the likelihood function L(θ) by Ld,ε(θ)abc,

as follows:

Ld,ε(θ)abc ∝ Pr(d(Yθ, y0) ≤ ε). (5.11)

Clearly, the approximation is highly dependent on the choice of the distance

function, the summary statistics and the threshold. The choice of sufficient summary

statistics should be ideal for these kinds of problems. However, this is not an easy

task. For the purpose of this work, the choice of summary statistics is limited to

the available experimental data. The threshold is a trade-off parameter. Higher its

value worst the approximation. In contrast, as it goes lower, the computational cost

rises rapidly, due to the low probabilities of matching the d(yθ, y0) ≤ ε criteria. This

is even more important when running the simulator by itself is costly, as it is the

case for stochastic reconstruction algorithms.

Different algorithms have been designed to improve the rejection sampling al-

gorithm efficiency. The most popular examples are based on Markov Chain Monte

Carlo Methods (MARJORAM et al., 2003) and the sequential Monte Carlo frame-

work (BEAUMONT et al., 2002). In a nutshell, these methods avoid parameters

propositions drawn directly from the prior distribution, by iteratively morphing the

prior into the posterior with some added noise. However, the rejection step is still

present. In order to effectively sample from the posterior, millions of simulations

are necessary especially for low values of the threshold.

For computationally costly simulators, such as the stochastic reconstruction al-

gorithm, the required number of simulations turns inference unfeasible. In this

work, we used the proposition from GUTMANN and CORANDER (2016) for im-

proving computational efficiency. The methodology is called Bayesian optimization

for likelihood-free inference and it is described in Section 5.3

5.3 Bayesian optimization for likelihood-free in-

ference

In Section 5.2, we discussed the basic fundamentals of approximate Bayesian com-

putation algorithms. These methods are used to estimate posterior distributions

of parameters for models with intractable likelihoods. They are based on the es-

timation of a computable likelihood function, hence the approximation. For that,

most methods rely on a rejection step: d(yθ, y0) ≤ ε. The rejection step is the main
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cause of the high computational cost. We are usually interested in regions where the

discrepancy d(yθ, y0) is small. Those regions have a small acceptance probability,

requiring millions of simulations to accurately estimate the posterior distribution.

Add to that a computationally costly simulator and inference becomes unfeasible.

In GUTMANN and CORANDER (2016), a likelihood approximation based on

regression is proposed. A probabilistic model relating the discrepancy d(yθ, y0) to

the parameters θ is built. Bayesian optimization is then used to actively choose

the training set of the model. Once trained, we can use this model as an approxi-

mation of the likelihood function, as we will see later. Two main improvements in

computational efficiency are clear at this point. First, we are actively searching in

regions of interest. Second, once the model is trained, no further simulations from

the simulator are necessary.

Bayesian optimization and Gaussian processes

Bayesian optimization can be regarded as a method to finding the extrema of black-

box functions(BROCHU et al.; GUTMANN and CORANDER, 2010; 2016). By

black-box, we mean functions of unknown analitycal form and derivatives. That is

the case for the simulator-based model described in this thesis. We assume that the

discrepancy can be modeled by a gaussian distribution,

d(yθ, y0) ∼ N (f(θ), σ2
n). (5.12)

Once again, we rely on the fact that we can generate values of the discrepancy

d(yθ, y0) for a given set of parameters θ from the simulator.

In Bayesian optimization, we use Bayes rule to infer the posterior distribu-

tion over possible functions given the observed data. Then, one chooses the next

point to evaluate the simulator by optmization of an acquisition function over

the posterior distribution of functions. The method can be divided in two steps:

first a surrogate function is estimated based on evidence. The evidence is a set

E1:t = {[d(yθ1 , y0), θ1], . . . [d(yθt , y0), θt]} obtained from the simulator. Second, opti-

mization of an acquisition function gives some points θt+1 for gathering more evi-

dence and update the surrogate function. This process continues untill convergence

is attained.

The function f(θ) is often modeled as a Gaussian process (GUTMANN and

CORANDER, 2016). In this work, we used this consideration. A Gaussian process

is an extension of the multivariate Gaussian distribution to an infinite-dimension

stochastic process for which any finite combination of dimensions will be a Gaussian

distribution (BROCHU et al., 2010). One can consider a Gaussian process as a
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function, but instead of returning a scalar f(θ) for an arbitrary θ, it returns the mean

and variance of a normal distribution over the possible values of f at θ (BROCHU

et al., 2010).

Placing a Gaussian process prior on f(θ)

f(θ) ∼ GP(µ(θ), k(θ, θ′)). (5.13)

We chose µ(θ) = 0 , and as described in GUTMANN and CORANDER (2016),

k(θ, θ′) was considered a squared exponential covariance function,

k(θ, θ′) = σ2
f exp

(∑
j

1

l2j
(θj − θ′j)2

)
(5.14)

Given evidence E1:t = {[d(yθ1 , y0), θ1], . . . [d(yθt , y0), θt]}, the posterior probabil-

ity density function of f at a point θ is Gaussian with posterir mean m1:t(θ) and

posterior variance ν21:t(θ) (JÄRVENPÄÄ et al., 2019),

f(θ)|E1:t ∼ N (m1:t(θ), ν
2
1:t(θ))), (5.15)

where,

m1:t(θ) = k(θ, θ1:t)K(θ1:t)
−1d(yθ, y0)1:t, (5.16)

ν21:t(θ) = k(θ, θ)− k(θ, θ1:t)K(θ1:t)
−1k(θ1:t, θ), (5.17)

d(yθ, y0)1:t = (d(yθ, y0)1, . . . d(yθ, y0)t)
ᵀ, (5.18)

k(θ, θ1:t) = (k(θ, θ1), . . . , k(θ, θt))
ᵀ, (5.19)

K(θ1:t) = k(θ1:t, θ1:t) + σ2
nI, (5.20)

k(θ1:t, θ1:t)ij = k(θi, θj) for i, j = 1, . . . , t (5.21)

At this point, we have a probabilistic model for the discrepancies d(yθ, y0) as

a function of the parameters θ. Since the discrepancies are always positive, we

modeled the logarithm of the discrepancies instead. With this model, we can ap-

proximate the likelihood function as follows (for more details refer to GUTMANN

and CORANDER, 2016).
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Ld,ε(θ)abc ∝ F

(
log ε−m1:t(θ)√
ν21:t(θ) + σ2

n

)
, (5.22)

where ε is the threshold, defined to be the 0.01th quantile of the realized discrep-

ancies, and F is the cumulative distribution function of a standard normal random

variable defined by

F (x) =

∫ x

−∞

1√
2π

exp

(
−1

2
t2
)
dt. (5.23)

The last point to discuss in the Bayesian optimization framework is the opti-

mization step itself. The optimization step is designed to actively choose the next

point θt+1 to be evaluated by the model and augment the evidence set. This is usu-

ally done by means of an acquisition function (BROCHU et al.; GUTMANN and

CORANDER; JÄRVENPÄÄ et al., 2010; 2016; 2019). Clearly, one has to set an

objective for the optimizer. One possible choice is to search for regions with small

discrepancies, as done in GUTMANN and CORANDER (2016).

JÄRVENPÄÄ et al. (2019) proposed efficient acquisition rules specifically de-

signed for approximate Bayesian computation. Instead of looking for regions with

small discrepancies, their method chooses the next evaluation point based on the ex-

pected uncertainty of the posterior distribution. Under the Gaussian process model,

the point estimate for the expected value and variance of the unnormalized approx-

imate posterior distribution πABC(θ|E1:t) is given by (JÄRVENPÄÄ et al., 2019)

E(πABC(θ|E1:t)) = π(θ)F

(
log ε−m1:t(θ)√
ν21:t(θ) + σ2

n

)
, (5.24)

V(πABC(θ|E1:t)) = π2(θ)

[
F

(
log ε−m1:t(θ)√
ν21:t(θ) + σ2

n

)
F

(
log ε−m1:t(θ)√
ν21:t(θ) + σ2

n

)
(5.25)

−2T

(
log ε−m1:t(θ)√
ν21:t(θ) + σ2

n

,
σn√

2ν21:t(θ) + σ2
n

)]
,

where T (h, a) is Owen’s t-function defined as

T (h, a) =
1

2π

∫ a

0

e−h
2(1+x2)/2

1 + x2
dx. (5.26)
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We then choose the next point of evaluation θt+1 by taking random samples from

the variance surface πq(θ) ∝ V(πABC(θ|E1:t)). In that sense, θt+1 ∼ πq(θ). For that,

we used the methods described in Section 5.4.

The likelihood function in Equation 5.22 is tractable. More than that, it is

cheap to evaluate since no further runs of the simulator are necessary. Conventional

methods for Bayesian inference can be used as we will discuss in Section 5.4. In

Algorithm 5.3, we summarize the Bayesian optimization procedure.

Algorithm 5.3 Bayesian optimization for likelihood-free inference algorithm. Es-
timation of the likelihood function based on a evidence set of N data points for the
log d(yθ, y0) as a function of θ

1: for i = 1 to t do

2: Generate θ from the prior π(θ)

3: Generate initial evidence set E1:t from the simulator

4: Calculate the posterior distribution of the Gaussion process for the

log d(yθ, y0) as a function of θ

5: end for

6: for i = t to N do

7: Find θi by sampling from the distribution πq(θ) ∝ V(πABC(θ|E1:t))
8: Generate new evidence E1:(t+i) from the simulator

9: Augment the evidence set and update the Gaussian process

10: end for

5.4 Markov chain simulation

In Section 5.3, we discussed the approximation of the likelihood function using re-

gression. The regression function models the relation between the discrepancy and

the parameters using a Gaussian process. We can then use the likelihood function

in Equation 5.22 to infer the posterior distribution of θ using Bayes rule (Equation

5.5). The methods discussed so far are designed for intractable likelihood problems,

however, the marginal distribution in Equation 5.5 is also impossible (or not com-

putationally efficient) to compute. In this section, we discuss the methods used to

effectively sample from the posterior distribution.

As described in GELMAN et al. (2014), Markov chain simulation is a general

method based on drawing values of θ from approximate distributions and then cor-

recting those draws to better approximate the posterior target distribution, p(θ|y).

In practical terms, one just needs to calculate p(θ|y) up to a normalizing constant,

avoiding the computation of the marginal distribution in Equation 5.5. The sam-

pling is done sequentially, with the distribution of the sampled draws depending
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only on the last value drawn; hence, the draws from a Markov chain (GELMAN

et al., 2014).

Metropolis algorithm

To illustrate the use of Markov chain simulation in Bayesian computation, we will

describe the Metropolis algorithm. Our description is based on GELMAN et al.

(2014). The procedure is shown in Algorithm 5.4.

Algorithm 5.4 Metropolis algorithm applied to Bayesian computation.

1: Generate a start point θ0 from the prior π(θ)

2: for t = 1 to T do

3: Sample a proposal θ∗ from a proposal distribution Jt(θ
∗|θt−1)

4: Calculate the ratio of densities r = p(θ∗|y)
p(θt−1|y)

5: θt = θ∗ with probability min(r, 1)

6: end for

The Algorithm 5.4 can be described as a random walk with an accep-

tance/rejection rule to converge to the specified target distribution. Since we are

only concerned with densities ratios, we eliminate the normalizing constant from

Equation 5.5. The random walk behavior of the Metropolis algorithm makes con-

vergence very slow, especially for high dimensional cases. In this work, we used the

Hamiltonian Monte Carlo algorithm to sample both from the variance surface and

from the approximate posterior distribution.

Hamiltonian Monte Carlo

The main characteristic of the Hamiltonian Monte Carlo algorithm is the substi-

tution of the random walk behavior for a movement pattern analogous to physical

dynamics. For that, for each component θj in the parameter space, we add a mo-

mentum variable φj. We can look at this algorithm as a variant of the Metropolis

algorithm, in which the proposal distribution for θ is basically determined by φ.

For that, Hamiltonian Monte Carlo augments the posterior density by an in-

dependent distribution p(φ) on the momenta, thus defining a joint distribution,

p(θ, φ|y) = p(φ)p(θ|y) (GELMAN et al., 2014). The augmented posterior density

acts like a sort of potential energy controlling the trajectories in the parameter space.

In that sense, Hamiltonian Monte Carlo requires gradients of the posterior density.

This gradient represents the forces acting in the momentum distribution.

It is usual to give φ a multivariate normal distribution with mean 0 and covari-

ance set to a prespecified mass matrix M (GELMAN et al., 2014). It is common
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to consider the mass matrix diagonal. More than that, usually the identity matrix

is used as the mass matrix. The steps of a typical Hamiltonian Monte Carlo are

shown in Algorithm 5.5.

Algorithm 5.5 Hamiltonian Monte Carlo algorithm applied to Bayesian computa-
tion.

1: for t = 1 to T do

2: Draw φ from its distribution φ ∼ N(0,M).

3: for l = 1 to L do

4: φ← φ+ 1
2
εd log p(θ|y)

dθ

5: θ ← θ + εM−1φ

6: φ← φ+ 1
2
εd log p(θ|y)

dθ

7: end for

8: At this point, we have momentum and parameter values at the start of the

9: updating process φt−1, θt−1 and after the updating process φ∗, θ∗.

10: Calculate the ratio of densities r = p(θ∗|y)p(φ∗)
p(θt−1|y)p(φt−1)

11: θt = θ∗ with probability min(r, 1)

12: end for

In Algorithm 5.5, the proposal distribution follows a trajectory in the parameter

space for L steps, where the position of the parameters θ and its momentum φ are

updated by a step size of ε. One may recognize the updating phase as the leapfrog

algorithm from physics dynamics (the reader should refer to BETANCOURT, 2017

for a conceptual discussion regarding the Hamiltonian Monte Carlo method). After

that, an acceptance/rejection rule is used to define the new set of parameters. Two

new parameters are defined: L representing the number of leapfrog steps, and ε

representing the step size. In order to avoid hand-tunning these parameters, we

used a variant of the Hamiltonian Monte Carlo Algorithm called No-U-Turn Sampler

(HOFFMAN and GELMAN, 2014). As described in GELMAN et al. (2014), instead

of running for a fixed number of steps, L, the trajectory in each iteration continues

until it turns around.

Convergence

In order to access convergence of the Markov chain we used the following strategy:

first, we simulate at least two different sequences with overdispersed starting points.

This allows us to check if each sequence converges to the same values of the estimands

(by estimands, we mean all the parameters in the model and any other quantities

of interest). Second, we discard the first half of the simulations. This first half is

usually called the warmup steps.
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The approach used to diagnose convergence is by checking mixing and station-

arity (GELMAN et al., 2014). After discarding the first half of the simulations, we

split the remaining points, from each sequence, into two different sequences. For ex-

ample, if we simulate 3 chains we end up, after splitting, with 6 chains. As described

by GELMAN et al. (2014), this allows us to simultaneously test mixing (if all the

chains have mixed well, the separate parts of the different chains should also mix)

and stationarity (at stationarity, the first and second half of each sequence should

be traversing the same distribution).

Let m be the number of chains after splitting and n be the lenght of the respective

chain. For each parameter θ, we label the simulations as θij(i = 1, . . . , n; j =

1, . . . ,m), and we compute B and W , the between- and within-sequence variances

(GELMAN et al., 2014)

B =
n

m− 1

m∑
j=1

(θ̄.j − θ̄..)2, where θ̄.j =
1

n

n∑
i=1

θij, θ̄.. =
1

m

m∑
j=1

θ̄.j (5.27)

W =
1

m

m∑
j=1

s2j , where s2j =
1

n− 1

n∑
i=1

(θij − θ̄.j)2. (5.28)

The marginal posterior variance of the parameter can then be estimated by

var(θ|y) =
n− 1

n
W +

1

n
B. (5.29)

To monitor convergence, one can calculate a potential scale reduction, which

declines to 1 as n→∞

R̂ =

√
var(θ|y)

W
. (5.30)

If the potential scale reduction is high, then we have reason to believe that

proceeding with further simulations may improve our inference about the target

distribution of the associated parameter (GELMAN et al., 2014).

Another important diagnosis parameter for Markov chain simulations is the num-

ber of effective samples. In some sense, it measures the amount of correlation be-

tween individual samples. Higher values indicate a low correlation between samples,

which is something we are looking for. The number of effective samples can be

calculated by (GELMAN et al., 2014)
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n̂eff =
mn

1 + 2
∑T

t=1 ρ̂t
, where ρ̂t = 1− Vt

2var
, Vt =

1

m(n− t)
m∑
j=1

n∑
i=t+1

(θi,j − θi−t,j)2.

(5.31)

5.5 Application to the stochastic reconstruction

algorithm

In the previous sections, we described the statistical methods used in this work to de-

rive estimators for the parameters of simulator-based models. As already mentioned,

the stochastic reconstruction algorithm falls into this category. In this section, we

intend to connect the described methods with our algorithm and define the main

quantities such as the number of parameters, summary statistics and so forth.

Parameters

In Chapter 4, we defined the probability density functions used to model chemical

attributes. We also introduced their functional forms and number of parameters.

Here, we will take the discussion further. For distributions with the histogram

functional (refer to Section 4.3), the parameters represent cumulative probabilities of

the respective distribution. The cumulative probability is related to each parameter

by

p1 = θj (5.32)

p(1<i<n) = θi(1− pi−1) + pi−1 (5.33)

pn = 1 (5.34)

where θj represents the first parameter of the distribution, p1 represents the first

possible outcome and pn the last possible outcome. The number of parameters for

these distributions is the number of possible outcomes minus one. It is clear that

the parameters of the histograms are bounded to be between 0 and 1. In contrast,

the distributions with known functional forms (chi-squared and exponential) have

parameters controlling their overall shape. These parameters are bounded to be

positive.

In Table 4.2, we showed a summary of the distributions’ functional forms and

the total number of parameters. As one can see, we defined a total of 14 parame-

ters. However, based on the expected parameter identifiability we considered a few

simplifications.
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Distribution 9 (number of heterocycles) models the probability of the occurrence

of heteroatoms. That is exactly what distributions 10, 11, and 12 models. The

difference is in the functional forms of the heteroatoms. Distribution 9 models the

cyclic form of heteroatoms and distributions 10, 11, and 12 models the aliphatic

form of heteroatoms. However, experimental data reports only total amounts of

heteroatoms. In that sense, we considered that distribution 9 and distributions 10,

11, and 12 share the same parameters. We have also considered that distribution 2

(length of a paraffinic chain) has the same parameter as distribution 7 (length of the

side chain). In Table 5.1, we show the distributions and the parameters associated

with each one. We have a total of 9 parameters to be estimated. Our framework has

substantially fewer parameters than most works in the literature. In DE OLIVEIRA

et al. (2013), the proposed model had a total of 24 parameters.

Table 5.1: Distributions and parameters labels and relationships

Chemical attribute Functional form Available data? Parameters

Molecular type Histogram yes θ1, θ2, θ3
Lenght of a paraffinic chain Chi-squared yes θ4

Level of branching Uniform no -
Total number of rings Chi-squared yes θ5

Ring configuration Uniform no -
Methyl ring substitution Uniform no -
Lenght of the side chain Exponential yes θ4

Number of benzenes Exponential yes θ6
Type of heterocycle Histogram yes θ7, 1− θ7, θ8

Aliphatic sulfur Histogram yes θ7
Another aliphatic heteroatom Histogram yes 1− ((1− θ7)(1− θ7) + θ7)
Aliphatic nitrogen or oxygen Histogram yes θ8

Aliphatic oxygen function Uniform no -
Number of cores Exponential yes θ9

Connection between cores Uniform no -

Summary statistics

The stochastic reconstruction algorithm generates chemical attributes as simulated

data. As discussed in Section 5.2, it is common to use summary statistics to represent

data in approximate Bayesian computation algorithms. In our case, the use of

summary statistics is necessary. The calculated properties from the hypothetical

mixture is a form of summary statistics. Overall properties are the only form of

observed data available. In that sense, we choose the summary statistics according

to the available experimental data.
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Discrepancy

Besides the definition of summary statistics, one of the main parts of the approxi-

mate Bayesian computation algorithms is the definition of the discrepancy function.

This function measures the similarity between simulated and observed data. In this

work, we chose the Mahalanobis discrepancy measure, defined by

d(yθ, y0) =
[
(S(yθ)− S(y0))

ᵀ V −1s (S(yθ)− S(y0))
]1/2

(5.35)

where S() represents the summary statistics from simulated (and observed) data,

and Vs represents a covariance matrix associated with the summary statistics.

Model reparametrization

Working with bounded parameters might cause convergence problems to the Hamil-

tonian Monte Carlo algorithm. All of our parameters are bounded. Part of them

are bounded between 0 and 1, and part of them are bounded to be positive. In

order to avoid convergence problems, we reparametrized our model. We used a new

set of parameters ϕ, to be used in the estimation procedure. Those parameters are

then rescaled within the model. For parameters bounded between 0 and 1 we used

the logit function, and for parameters bounded to be positive we used the logarithm

function, defined as follows

θi =
1

1 + exp(ϕi)
, for θi = {0, 1}, (5.36)

θi = exp(ϕi) for θi > 0. (5.37)

In this section, we defined the total number of parameters to be estimated by the

statistical methods presented in Sections 5.3 and 5.4. We also defined the summary

statistics and the discrepancy function. The reparametrization of the model is used

to improve convergence. In that sense, the estimation procedure is done on the

modified parameter set ϕ. This concludes the first part of the algorithm, estima-

tion of the probability density functions parameters. In the next Sections, we will

describe the methods applied to composition calculation by entropy maximization

and molecular selection by clustering analysis.
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5.6 Reconstruction by entropy maximization

In the previous sections, we described the methods used to estimate the parameters

of the probability density distributions of the stochastic reconstruction algorithm.

As showed in Section 4.5, in the stochastic reconstruction algorithm we consid-

ered that every built molecule has the same importance in the mixture. In other

words, we considered an equimolar mixture. After estimating the parameters for the

stochastic reconstruction algorithm, one can generate molecules and then calculate

their composition based on available experimental data. In this work, we used the

method developed by HUDEBINE and VERSTRAETE (2011), called reconstruc-

tion by entropy maximization.

Reconstruction by entropy maximization is based on the concept of information

entropy, as proposed by SHANNON (1948). The entropy of a probability distribu-

tion is given by

E = −
N∑
i=1

pi log pi, (5.38)

where N is the number of points in the discrete probability distribution p. One can

see the molecular composition x as a discrete probability distribution. In terms of

molecular composition, the entropy Equation becomes

H = −
N∑
i=1

xi log xi, (5.39)

in this case, N represents the number of molecules and xi each individual mole

fraction.

The challenge of estimating the composition, or any probability distribution,

is the lack of degrees of freedom. The number of points in the distribution N is

usually much higher than the number of available experimental information. As a

consequence, there are a number of different distributions that satisfies the observed

data. Among the possible probability distributions, the least biased one is the one

with maximum entropy (JAYNES; PRESSÉ et al.; SHANNON, 1957; 2013; 1948).

Without any observed data, we expect the least biased distribution to be uniform.

To prove that concept, we will apply the maximum entropy criteria directly to

Equation 5.39. The only constraint is that the composition should sum to 1.

In order to maximize Equation 5.39, we need to add the constraint that all

composition should sum to 1. The constrained entropy Equation becomes
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H = −
N∑
i=1

xi log xi + τ(1−
N∑
i=1

xi), (5.40)

where τ represents a Lagrangian multiplier associated with the imposed constraint.

Taking the first and second derivatives in relation to xi

∂H

∂xi
= −1− log xi − τ, (5.41)

∂2H

∂x2i
=
−1

xi
. (5.42)

Since xi is always positive, by Equation 5.42, Equation 5.40 has an inflection point

at its maximum. At the inflection point, we can solve Equation 5.41 for xi,

xi =
1

e1+τ
, (5.43)

Equation 5.43 can be rewriteen as

N∑
i=1

xi =
N∑
i=1

1

e1+τ
, (5.44)

solving for e1+τ and substituing into Equation 5.43 yields

e1+τ = N, (5.45)

xi =
1

N
. (5.46)

As expected, when no constraints are imposed, the distribution that maximizes

the entropy is uniform. At this point, we need to discuss the type of constraints that

we can use to deviate from the uniform distribution. In this work, we considered

only exact linear constraints to the entropy Equation. These constraints have the

following form

gj =
N∑
i=1

xigij, (5.47)
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where gj is an observed value for constraint j and gij is the contribution of molecule

i to constraint j. For example, if gj is the observed average molecular mass, gij is

the molecular mass for each molecule i. By adding J constraints, corresponding to

J observed data, Equation 5.40 becomes

H = −
N∑
i=1

xi log xi + τ(1−
N∑
i=1

xi) +
J∑
j=1

λj(gj −
N∑
i=1

xigij), (5.48)

where λj is a Lagrangian multiplier associated with constraint j, and J is the total

number of constraints. By assuming that the constraints are linear, we are actually

saying that gij is independent of xi. The first derivative in relation to xi is then

∂H

∂xi
= −1− log xi − τ −

J∑
j=1

λjgij, (5.49)

in the inflection point, we can solve Equation 5.49 for xi

0 = −1− log xi − τ −
J∑
j=1

λjgij, (5.50)

e1+τe(log xi) = e(−
∑J

j=1 λjgij), (5.51)

xi =
e(−

∑J
j=1 λjgij)

e1+τ
, (5.52)

rearranging Equation 5.52, we can solve for e1+τ ,

N∑
i=1

xi =
1

e1+τ

N∑
i=1

e(−
∑J

j=1 λjgij), (5.53)

e1+τ =
N∑
i=1

e(−
∑J

j=1 λjgij), (5.54)

xi =
e(−

∑J
j=1 λjgij)

Z
, (5.55)

Z =
N∑
i=1

e(−
∑J

j=1 λjgij), (5.56)
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substituing Equation 5.55 into Equation 5.48,

H = −
N∑
i=1

xi

[
log
(
e(−

∑J
j=1 λjgij)

)
− logZ

]
+

J∑
j=1

λj(gj −
N∑
i=1

xigij), (5.57)

H = logZ +
J∑
j=1

λjgj. (5.58)

From Equation 5.55, we see that the probability distribution, or in this case

composition, that maximizes the entropy depends only on the Lagrangian multipliers

λj for each constraint j. We can estimate λj by finding the extrema of Equation

5.58 in relation to λj.

In order to estimate molecular composition by the entropy maximization method

we need to define the quantities gij and gj. Clearly, the number of constraints j

matches the number of observed data. Let gij be an element of a matrix g, where

each row represents a molecule and each column an observed experimental data

(overall properties). When deriving Equations 5.55 and 5.58, we assumed that gij is

independent of xi. This is not always the case for the properties considered in this

work.

To overcome this issue, we used the framework proposed in HUDEBINE and

VERSTRAETE (2011). First, we consider gj to be zero. In that sense, gij becomes

a deviation between the observed value and the calculated value for constraint j.

For example, for the average molecular mass we have that

gij = MW obs
avg −MMWi, (5.59)

where MW obs
avg is the observed value of the average molecular mass and MMWi is

the molecular mass of molecule i (refer to Section 4.5). Combining Equations 5.47

and 5.59 leads to

0 =
N∑
i=1

xi
(
MW obs

avg −MMWi

)
, (5.60)

MW obs
avg =

N∑
i=1

xiMMWi, (5.61)

which is exactly the type of constraint that we are looking for: the observed value

matches the calculated value. In Equation 5.61, we can see that gij should be a
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quantity that when multiplied by xi and then
∑N

i=1 results in the desired constraint.

In that sense, we will derive gij for every available data considered in this work.

The methodology for the calculation of the overall properties from the hypothetical

mixture was already described in Section 4.5.

Elemental analysis: For an atom type k, this property can be calculated as

wkmix
=

N∑
i=1

(
xiMAi,kVMW1,k∑N

i=1 xiMMWi

)
, (5.62)

the constraint associated to gij is then calculated by

0 =
N∑
i=1

xi

(
wobskmix

− MAi,kVMW1,k∑N
i=1 xiMMWi

)
, (5.63)

0 =
N∑
i=1

xi

(
wobskmix

MMWi −MAi,kVMW1,k∑N
i=1 xiMMWi

)
. (5.64)

In Equation 5.64, we can see that the term gij is dependent of xi. However, the

limiting case where the calculated value matches with the observed value will occur

if, and only if, the difference in the numerator reaches 0. In that sense, we can

rewrite Equation 5.64 independent of xi as

0 =
N∑
i=1

xi
(
wobskmix

MMWi −MAi,kVMW1,k

)
, (5.65)

gij = wobskmix
MMWi −MAi,kVMW1,k. (5.66)

Nuclear magnetic resonance: For a functional group of type k, its mole

fraction in the mixture is given by

xkmix
=

(∑
i xiMFi,k∑
i xiMAi,k

)
, (5.67)
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the constraint and the associated gij are then calculated as

0 =
N∑
i=1

xi
(
xobskmix

MAi,k −MFi,k

)
, (5.68)

gij = xobskmix
MAi,k −MFi,k. (5.69)

SARA fractions: The total mass fraction of a group p in the mixture is the

sum of the mass fractions of all molecules i that belongs to group p.

0 =
N∑
i=1

xi

(
wobspmix

− MMWi∑N
i=1 xiMMWi

)
, (5.70)

0 =
N∑
i=1

xi

(
MMWi

(
wobspmix

− 1
)∑N

i=1 xiMMWi

)
, (5.71)

0 =
N∑
i=1

xi
(
MMWi

(
wobspmix

− 1
))
, (5.72)

gij =

MMWi

(
wobspmix

− 1
)
, if i belongs to p

MMWi

(
wobspmix

)
, otherwise

(5.73)

Distillation curve: consider an observed boiling point temperature T obsbk
, associ-

ated with a cumulative mass percent vaporization cwobsk . The calculated cumulative

mass percent vaporization is the sum of the mass percentages of the molecules i that

satisfies Tb,i < T obsbk
.

0 =
N∑
i=1

xi

(
MMWi∑N

i=1 xiMMWi

− cwobsk

)
, (5.74)

0 =
N∑
i=1

xi

(
MMWi

(
1− cwobsk

)∑N
i=1 xiMMWi

)
, (5.75)

0 =
N∑
i=1

xi
(
MMWi

(
1− cwobsk

))
, (5.76)

gij =

MMWi

(
1− cwobsk

)
, if Tb,i < T obsbk

−MMWi

(
cwobsk

)
, otherwise

(5.77)
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Specific gravity: Given an observed specific gravity Sobsgmix
, the associated con-

straint and gij is given by

0 =
N∑
i=1

xi

(
MMWi∑N

i=1 xiMMWi

1

di
− 1

Sobsgmix

)
, (5.78)

0 =
N∑
i=1

xi

MMWi

(
1
di
− 1

Sobs
gmix

)
∑N

i=1 xiMMWi

 , (5.79)

0 =
N∑
i=1

xi

(
MMWi

(
1

di
− 1

Sobsgmix

))
, (5.80)

gij = MMWi

(
1

di
− 1

Sobsgmix

)
. (5.81)

In this section, we described the maximum entropy method applied to molec-

ular composition calculation. We used the method proposed by HUDEBINE and

VERSTRAETE (2011). One important result is the definition of the matrix g, the

constraint matrix used in Equation 5.58. As will be discussed in the next section,

we used this matrix as the input for our clustering algorithm.

5.7 Partitioning around medoids

As described in Section 4.3, the stochastic reconstruction algorithm is performed by

a Monte Carlo type sampling technique. For that reason, a large number of samples

is necessary. In this work, we used a total of 5000 samples. Nothing guarantees that

each sample forms a different molecule. The number of molecules can be limiting

for certain types of applications. In that sense, we proposed a non-hierarchical

clustering technique to select the best representative molecules from the overall

molecular ensemble.

In this work, we used the algorithm proposed by PARK and JUN (2009). Con-

sider N molecules each one having J variables. We intend to group them into

c (c < N) clusters, for a given c. We considered that the variables representing the

molecules are the elements of the constraint matrix g defined in Section 5.6. In

that sense, the jth variable of the molecule i is gij. A dissimilarity measure between

molecules needs to be defined. In this work, we used the Euclidean distance to

measure dissimilarity between molecule i and molecule i′, as follows
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di,i′ =

[
J∑
j=1

(gij − gi′j)2
]1/2

. (5.82)

With this method, we intend to find c medoids representing c clusters. As for

any clustering algorithm, we expect that molecules within a cluster are similar but

are dissimilar to molecules in other clusters (PARK and JUN, 2009). The algorithm

used is described as follows (PARK and JUN, 2009):

• Selection of initial medoids

– Calculate the distance between every pair of molecules.

– Calculate the quantity ui′ for molecule i′ as follows

ui′ =
N∑
i=1

di,i′∑N
i=1 di,i′

, (5.83)

– Select c molecules with the smallest values of uj.

– Obtain initial cluster by assigning each molecule to the nearest medoid.

– Calculate the sum of distances from all objects to their medoids.

• Update medoids

– Find a new medoid for each cluster by minimizing the total distance to

other molecules in its cluster.

• Assign molecules to medoids

– Assign each molecule to the nearest medoid.

– Calculate the sum of distances from all objects to their medoids.

– If the sum is equal to the previous one, stop the algorithm. Update

medoids otherwise.

In this chapter, we described the statistical methods used in this work. First,

we described the properties of simulator-based models and their consequences to

parameter inference. We used the Bayesian optimization framework for approximate

Bayesian computation. Second, we described the maximum entropy methodology

for composition calculation. This methodology required the definition of a constraint

matrix g. At last, we used the constraint matrix g as an input for a non-hierarchical

clustering technique. This technique is used to select c representative molecules

called medoids. In the next chapter, we will discuss the applications of the proposed

methodology.
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Chapter 6

Results and discussions

In Chapter 4, we described the stochastic reconstruction algorithm developed in this

work. Then, in Chapter 5, we discussed the statistical techniques used for parameter

inference. The inference is divided into three steps. First, the probability density

distributions parameters inference using Bayesian optimization is performed. Sec-

ond, a clustering technique is applied to the built molecular ensemble to select c

candidates representative of the mixture. Finally, the composition of the hypothet-

ical mixture is calculated by entropy maximization.

The stochastic reconstruction model, the clustering technique and the recon-

struction by entropy maximization method, were all implemented in this work. We

used the C++ programming language with an object-oriented paradigm. For the

Bayesian optimization framework, we used a Python package called ELFI (Engine

for Likelihood-Free Inference) as described by JÄRVENPÄÄ et al. (2019).

In this chapter, we will describe the applications and results of the methods

developed in this thesis. We applied our algorithm both to vacuum residues reported

in the literature and for vacuum residues characterized at PETROBRAS research

and development center.

6.1 Stochastic reconstruction

The first step of the algorithm is to estimate the parameters of the probability density

functions controlling the molecular generation process. As described in Section 5.3,

we used the Bayesian optimization framework for that purpose.

6.1.1 Model validation

One common practice of model validation in the approximate Bayesian computation

is to fix the parameters and generate some data. Since the simulator intends to

mimic the data generation process, we can use this simulated data as a pseudo
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observation and then try to estimate the parameters previously fixed. In Table 6.1,

we show the values for the fixed parameters, in the original and modified scale, and

the summary statistics associated with the generated data. We choose this set of

summary statistics based on the typical overall properties used in the literature. For

the data generation process, we considered a total of 5000 samples (molecules). We

performed 50 simulations with different seeds. Then, we calculated the mean and

covariance matrix for the summary statistics. For sampling the variance surface,

we used the Hamiltonian Monte Carlo algorithm with 50 iterations. For posterior

sampling, we used the same algorithm with 4 chains for 1000 iterations each chain.

Table 6.1: Parameters and associated summary statistics for the model validation
case.

Parameters

(Original scale)

Parameters

(Rescaled)

Summary statistics

(Pseudo-observed)

θ1 0.1 ϑ1 2.2 MW obs
avg (g/mol) 640

θ2 0.3 ϑ2 0.85 Elemental Analysis

θ3 0.7 ϑ3 -0.85 Carbon content (% w/w) 85.7

θ4 10 ϑ4 2.3 Hydrogen content (% w/w) 10.5

θ5 5 ϑ5 1.6 Sulfur content (% w/w) 1.6

θ6 5 ϑ6 1.6 Nitrogen content (% w/w) 0.61

θ7 0.7 ϑ7 -0.85 SARA fractions

θ8 0.3 ϑ8 0.85 Saturates content (% w/w) 20.3

θ9 2 ϑ9 0.69 Aromatics content (% w/w) 28.1

Resins content(% w/w) 35.2

Nuclear magnetic resonance

Saturated carbon content (% m/m) 74.2

Simulated distillation

Cummulative mass vaporization (%) Temperature (◦C)

10 413

20 541

30 651

In Figure 6.1, we show the posterior densities of the parameters for the validation

case. We also show their prior densities and true values. All the parameters of the

model are identifiable for the chosen set of summary statistics. In Table 6.2, we show

the posterior mean and the 90% credible intervals of the parameters. We also show

the convergence diagnosis quantities. The 100(1 − α)% highest posterior density

interval is the set of values that contains 100(1 − α)% of the posterior probability

and also has the characteristic that the density within the region is never lower than

that outside (GELMAN et al., 2014). All credible intervals contain the true values

of the parameters.
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Table 6.2: Posterior mean, credible intervals and convergence diagnosis of the pa-
rameters - Validation case

Parameters
Posterior

mean
Low 90%

credible interval
High 90%

credible interval
n̂eff R̂

ϑ1 2.08 1.59 2.66 3517.9 0.9999
ϑ2 0.74 0.18 1.24 3827.7 0.9995
ϑ3 -0.81 -1.49 -0.19 3524.2 1.0006
ϑ4 2.12 1.76 2.48 4000 0.9999
ϑ5 1.57 1.35 1.79 4000 0.9999
ϑ6 1.22 0.27 2.11 1561.2 1.0016
ϑ7 -0.82 -1.48 -0.11 2420.9 1.0005
ϑ8 0.77 0.18 1.31 3088.5 1.0005
ϑ9 0.76 0.19 1.3 3538.2 0.9996
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Figure 6.1: Prior and posterior densities, and true values of the parameters. Each
graph represents a different parameter. The same prior was used to all parameters.
True value of the parameters as shown in Table 6.1 - Validation case

With the posterior density of the parameters, one can estimate the posterior

predictive distribution of a new observation ỹ conditioned on the observed data y0

p(ỹ|y0) =

∫
p(ỹ|θ)p(θ|y0)dθ. (6.1)

In practice, we take samples from the posterior distributions of parameters and

run the simulator. The outputs of the simulator are samples of the posterior pre-

dictive distribution for any quantity of interest. For the validation case, we used

the posterior predictive distribution to check if the model can replicate the observed

summary statistics considered. In Figure 6.2, we show the posterior predictive dis-

tribution and observed value for the summary statistics considered. In Table 6.3, we

show the posterior predictive mean and credible intervals. The model can replicate

the observed summary statistics. All credible intervals contain the observed value

and the posterior mean is a good estimator for the observed summary statistics. In

that sense, we considered the model validated.
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Figure 6.2: Posterior predictive distribution for the summary statistics (overall prop-
erties) used in the discrepancy function. Each graph represents a different propertie.
The observed value is included for comparison - Validation case

Table 6.3: Posterior predictive distribution mean and credible intervals - Validation
case.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

MWavg (g/mol) 640 610 464 742

Elemental Analysis

Carbon content (% w/w) 85.7 85.6 84.8 86.4

Hydrogen content (% w/w) 10.5 10.7 10.2 11.2

Sulfur content (% w/w) 1.6 1.6 0.8 2.4

Nitrogen content (% w/w) 0.61 0.62 0.36 0.86

SARA fractions

Saturates content (% w/w) 20.3 22.7 13.8 30.5

Aromatics content (% w/w) 28.1 28.6 18.6 37.9

Resins content(% w/w) 35.2 33.1 25 41.1

Nuclear magnetic resonance

Saturated carbon content (% m/m) 74.2 76.1 70.7 81.3

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 413 389 326 457

20 541 522 429 620

30 651 638 507 733
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6.1.2 Application to vacuum residues from different origins

In this work, we applied our model to four different vacuum residues from different

origins. Two from DE OLIVEIRA et al. (2013) and two characterized at PETRO-

BRAS research and development center. In Table 6.4, we show the overall properties

(summary statistics) for the considered vacuum residues. In Table 6.5, we show ad-

ditional properties for the two vacuum residues from PETROBRAS research and

development center, which are results from a hydrogen nuclear magnetic resonance

and some additional carbon types from carbon nuclear magnetic resonance. These

properties were not included in the parameter estimation step. The comparison be-

tween the calculated and experimental values for the additional properties is another

form of model validation.

Table 6.4: Summary statistics for two different vacuum residues from DE OLIVEIRA
et al. (2013) and two characterized at PETROBRAS research and development
center

Summary statistics Ural Maya
Vacuum

Residue A

Vacuum

Residue B

MWavg (g/mol) 727 764 718 751

Elemental Analysis

Carbon content (% w/w) 85.5 85.2 86.7 86.5

Hydrogen content (% w/w) 10.6 10.1 11.4 11.0

Sulfur content (% w/w) 2.7 3.5 0.6 0.7

Nitrogen content (% w/w) 0.58 0.58 1.0 0.9

SARA fractions

Saturates content (% w/w) 11.7 12.9 19.0 12.0

Aromatics content (% w/w) 46.1 38.7 40.0 45.0

Resins content(% w/w) 37.6 34.2 34.0 33.0

Nuclear magnetic resonance

Saturated carbon content (% m/m) 72.8 69.5 77.6 75.1

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 520 520 525 526

20 550 558 555 561

30 574 585 576 585
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Table 6.5: Additional properties for the two vacuum residues characterized in
PETROBRAS research and development center used for validation purposes.

Summary statistics
Vacuum

Residue A

Vacuum

Residue B

Nuclear magnetic resonance

Aromatic hydrogen content (% m/m) 4.8 5.6

α - hydrogen content (% m/m) 8.5 9.8

β - hydrogen content (% m/m) 64.9 63.9

γ - hydrogen content (% m/m) 20.6 18.5

CH3/paraffinic CH2 0.3 0.32

Branched CH3/paraffinic CH2 0.2 0.22

In Tables 6.6 to 6.9, we show the estimated parameters for the vacuum residues

considered in this work. The posterior distribution is represented in terms of the

posterior mean and the 90% credible intervals. We also show the quantities for con-

vergence diagnosis. Overall, the main differences are in the parameters controlling

the molecular types and heteroatoms quantities. The parameters controlling the

number of rings and length of the paraffinic chain are relatively close between the

vacuum residues. Vacuum residues A and B have a higher paraffinics and naphthen-

ics content compared to Ural and Maya. This is consistent with the experimental

data, since vacuum residues A and B have higher hydrogen and saturated carbon

content.

Table 6.6: Posterior mean, credible intervals and convergence diagnosis of the pa-
rameters - Ural

Parameters
Posterior

mean

Low 90%

credible interval

High 90%

credible interval
........n̂eff ........ ........R̂........

ϑ1 1.55 1.1 2.04 3176.2 1.0005

ϑ2 3.35 2.75 3.94 2140.2 0.9998

ϑ3 -3.14 -3.87 -2.38 1663.8 1.0007

ϑ4 4.25 3.87 4.61 3234.4 1.0002

ϑ5 2.04 1.88 2.2 3247.5 1.0001

ϑ6 2.62 2.07 3.34 2222.9 1.0005

ϑ7 0.53 -0.04 1.02 2207.3 1.0014

ϑ8 -0.09 -0.72 0.49 2459.7 1.0001

ϑ9 -0.33 -1.28 0.73 1236.5 1.003
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Table 6.7: Posterior mean, credible intervals and convergence diagnosis of the pa-
rameters - Maya

Parameters
Posterior

mean

Low 90%

credible interval

High 90%

credible interval
........ n̂eff ........ ........R̂........

ϑ1 2.11 1.58 2.66 2372.3 1.0005

ϑ2 1.88 1.44 2.3 3383.2 1.0002

ϑ3 -2.55 -3.19 -1.93 1857.8 1.0007

ϑ4 3.58 3.27 3.9 3714.3 0.9997

ϑ5 2.00 1.85 2.16 3084.9 1.0005

ϑ6 3.31 2.56 4.04 1361.9 0.9994

ϑ7 0.99 0.51 1.42 2805.3 1.0006

ϑ8 0.04 -0.39 0.46 2969.2 1.0007

ϑ9 0.08 -1.01 1.36 775.1 1.0064

Table 6.8: Posterior mean, credible intervals and convergence diagnosis of the pa-
rameters - Vacuum residue A

Parameters
Posterior

mean

Low 90%

credible interval

High 90%

credible interval
........n̂eff ........ ........R̂ ........

ϑ1 0.83 0.50 1.14 4000 0.9994

ϑ2 1.85 1.41 2.25 3601.6 0.9994

ϑ3 -1.55 -2.0 -1.01 3174.9 1.0002

ϑ4 3.69 3.37 4.01 3401.5 1.0001

ϑ5 1.86 1.67 2.04 3171.9 1.0000

ϑ6 2.61 2.01 3.32 1674.2 1.0002

ϑ7 -1.41 -1.89 -0.83 2909.1 1.0000

ϑ8 -1.11 -1.79 -0.50 1663 1.0006

ϑ9 -0.41 -1.05 0.15 1818.6 1.0001

Table 6.9: Posterior mean, credible intervals and convergence diagnosis of the pa-
rameters -Vacuum residue B

Parameters
Posterior

mean

Low 90%

credible interval

High 90%

credible interval
........n̂eff ........ ........R̂........

ϑ1 1.14 0.67 1.59 3524.5 1.0001

ϑ2 2.66 2.1 3.23 3854.2 1.0004

ϑ3 -1.81 -2.52 -1.11 3042.9 0.9996

ϑ4 3.41 2.96 3.94 2586.9 0.9998

ϑ5 1.91 1.7 2.1 3985.5 0.9993

ϑ6 2.06 1.21 2.89 1785.5 1.0003

ϑ7 -1.71 -2.49 -1.00 2698.4 1.0005

ϑ8 -0.03 -0.63 0.56 1236.7 0.9992

ϑ9 0.21 -0.76 1.22 1975.6 1.0007
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With the posterior distribution of parameters, we calculated the posterior pre-

dictive distribution for the overall properties for each vacuum residue. We used all

posterior samples of the parameters to generate the posterior predictive distribu-

tion. We divided the properties between the constrained (used in the discrepancy

function for parameter estimation) and unconstrained. The use of unconstrained

properties is another form of model validation.

In Tables 6.10 to 6.13, we show the posterior mean and 90% credible intervals

for the summary statistics (properties) used in the parameter estimation step. The

model was able to replicate most of the observed summary statistics (properties).

However, for all vacuum residues, the distillation curve is not well replicated. This

can be due to the ideal mixture consideration and/or the group contribution method

for boiling point calculation. Nevertheless, the entropy maximization step corrects

this discrepancy, as we will show in the next section.

In Tables 6.14 and 6.15, we show the posterior mean and 90% credible intervals

for the unconstrained properties for vacuum residues A and B. As already men-

tioned, these properties were not used in the discrepancy function for the parameter

estimation step. We can see a good agreement between prediction and observed val-

ues. This shows the model’s ability to predict different properties from the generated

molecular ensemble.

In Figures 6.3 to 6.8, we show a graphical representation of the posterior predic-

tive distribution for the vacuum residues studied in this work. Besides the replicated

summary statistics, we also show the additional predicted properties for vacuum

residues A and B. Similarly to what is shown in Tables 6.10 to 6.15, the model can

replicate the observed data, except for the distillation curve.

Overall, the model can represent the different vacuum residues studied in this

work. Both constrained and unconstrained observed properties are contained within

the posterior predictive distribution credible intervals. Besides that, the posterior

predictive mean is a good estimator for the observed properties.

The Bayesian optimization framework is very effective in estimating the poste-

rior distribution of the parameters. The use of the Bayesian statistics paradigm

turns uncertainty propagation a natural process. Besides that, the use of prior

distributions tends to avoid superparametrization issues.
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Table 6.10: Posterior predictive distribution mean and credible intervals - Ural.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

MWavg (g/mol) 727 752 670 832

Elemental Analysis

Carbon content (% w/w) 85.5 85 84,4 85,7

Hydrogen content (% w/w) 10.6 10,6 10,2 10,9

Sulfur content (% w/w) 2.7 2,78 2,18 3,36

Nitrogen content (% w/w) 0.58 0,81 0,55 1,04

SARA fractions

Saturates content (% w/w) 11.7 12,1 8,3 15,8

Aromatics content (% w/w) 46.1 45,6 38,3 53,2

Resins content(% w/w) 37.6 36,8 30,2 43,8

Nuclear magnetic resonance

Saturated carbon content (% m/m) 72.8 73.6 70.7 76.6

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 520 560 460 656

20 550 683 629 729

30 574 744 696 795

Table 6.11: Posterior predictive distribution mean and credible intervals - Maya.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

MWavg (g/mol) 764 742 634 832

Elemental Analysis

Carbon content (% w/w) 85.2 84,7 84,1 85,3

Hydrogen content (% w/w) 10.1 10,1 9,8 10,4

Sulfur content (% w/w) 3.5 3,47 2,89 3,95

Nitrogen content (% w/w) 0.58 0,83 0,66 1,03

SARA fractions

Saturates content (% w/w) 12.9 16,1 11,1 20,6

Aromatics content (% w/w) 38.7 35,8 28,9 41,8

Resins content(% w/w) 34.2 36,4 30,2 42,3

Nuclear magnetic resonance

Saturated carbon content (% m/m) 69.5 70,7 67,9 73,3

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 520 566 506 637

20 528 667 610 719

30 585 731 682 789

92



Table 6.12: Posterior predictive distribution mean and credible intervals - Vacuum
residue A.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

MWavg (g/mol) 718 656 578 735

Elemental Analysis

Carbon content (% w/w) 86.7 86.2 85.7 86.6

Hydrogen content (% w/w) 11.4 11.5 11.2 11.9

Sulfur content (% w/w) 0.6 0.83 0.49 1.19

Nitrogen content (% w/w) 1.0 1.07 0.86 1.28

SARA fractions

Saturates content (% w/w) 19.0 21.4 16.3 25.8

Aromatics content (% w/w) 40.0 44.4 35.6 53.1

Resins content(% w/w) 34.0 31.9 24.1 40.1

Nuclear magnetic resonance

Saturated carbon content (% m/m) 77.6 79.7 77 82.7

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 525 369 329 403

20 555 572 500 652

30 576 669 604 730

Table 6.13: Posterior predictive distribution mean and credible intervals - Vacuum
residue B.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

MWavg (g/mol) 751 699 521 834

Elemental Analysis

Carbon content (% w/w) 86.5 86,4 85,8 87

Hydrogen content (% w/w) 11.0 11 10,6 11,6

Sulfur content (% w/w) 0.7 0,77 0,31 1,22

Nitrogen content (% w/w) 0.9 0,86 0,6 1,12

SARA fractions

Saturates content (% w/w) 12.0 16,5 10,8 21,5

Aromatics content (% w/w) 45.0 42,5 32 54,2

Resins content(% w/w) 33.0 33 24,2 41,3

Nuclear magnetic resonance

Saturated carbon content (% m/m) 75.1 75,9 71,6 80,3

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 526 425 330 525

20 561 599 508 691

30 585 690 603 774
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Table 6.14: Posterior predictive distribution mean and credible intervals for the
unconstrained properties - Vacuum residue A.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

Nuclear magnetic resonance

Aromatic hydrogen content (% m/m) 4.8 5.7 4.6 6.9

α - hydrogen content (% m/m) 8.5 7.6 6.4 8.6

β - hydrogen content (% m/m) 64.9 65.3 63.3 67.7

γ - hydrogen content (% m/m) 20.6 21.4 19.5 23.2

CH3/paraffinic CH2 0.30 0.35 0.32 0.38

Branched CH3/paraffinic CH2 0.20 0.21 0.19 0.23

Table 6.15: Posterior predictive distribution mean and credible intervals for the
unconstrained properties - Vacuum residue B.

Summary statistics Observed
Posterior

mean

Low 90%

credible interval

High 90%

credible interval

Nuclear magnetic resonance

Aromatic hydrogen content (% m/m) 5.6 6.7 5.0 8.6

α - hydrogen content (% m/m) 9.8 8.6 7.0 10.5

β - hydrogen content (% m/m) 63.9 64.3 60.1 68.6

γ - hydrogen content (% m/m) 18.5 20.3 18.1 23.2

CH3/paraffinic CH2 0.32 0.36 0.30 0.41

Branched CH3/paraffinic CH2 0.22 0.21 0.18 0.24
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Figure 6.3: Posterior predictive distribution for the summary statistics (overall prop-
erties) used in the discrepancy function. Each graph represents a different property.
The observed value is included for comparison. The model can replicate most of the
observed data. An exception to the distillation curve - Vacuum residue Ural.
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Figure 6.4: Posterior predictive distribution for the summary statistics (overall prop-
erties) used in the discrepancy function. Each graph represents a different property.
The observed value is included for comparison. The model can replicate most of the
observed data. An exception to the distillation curve - Vacuum residue Maya.
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Figure 6.5: Posterior predictive distribution for the summary statistics (overall prop-
erties) used in the discrepancy function. Each graph represents a different property.
The observed value is included for comparison. The model can replicate most of the
observed data. An exception to the distillation curve - Vacuum residue A.
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Figure 6.6: Posterior predictive distribution for the unconstrained properties. Each
graph represents a different property. The observed value is included for comparison.
The model can predict the new observed data. This shows the model ability to
represent the molecular structures - Vacuum residue A.
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Figure 6.7: Posterior predictive distribution for the summary statistics (overall prop-
erties) used in the discrepancy function. Each graph represents a different property.
The observed value is included for comparison. The model can replicate most of the
observed data. An exception to the distillation curve - Vacuum residue B.
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Figure 6.8: Posterior predictive distribution for the unconstrained properties. Each
graph represents a different property. The observed value is included for comparison.
The model can predict the new observed data. This shows the model ability to
represent the molecular structures - Vacuum residue B.

6.2 Partioning around medoids and Reconstruc-

tion by entropy maximization

In the previous section, we showed the results from the stochastic reconstruction

step in the algorithm developed here. The posterior distributions of the parameters

controlling the molecular generation process were calculated for each of the vacuum

residues studied. In this section, we will use these results to generate a molecular

ensemble. We then choose a subset of representative molecules from the molecular

ensemble using the partitioning around medoids algorithm. At last, we calculate the

mixture composition using the reconstruction by entropy maximization algorithm.

To generate the initial molecular ensemble, we used the posterior mean as an

estimator for the model parameters. We then ran the simulator to generate 5000

samples (molecules). With the generated molecules we can calculate the constraint

matrix g, described in Section 5.6. We chose a total of 100 clusters (molecules) to

represent the molecular ensemble.

In Tables 6.16 to 6.19, we show the predicted properties at each step of the

algorithm. We can see that the proposed clustering technique is very effective in

selecting the best representative molecules from the initial molecular ensemble. The

predicted properties using the 100 clusters (molecules) are very close to the original

mixture. The maximum entropy step brings the predicted properties to almost an

exact match. Moreover, it corrects the discrepancies in the distillation curve.
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Table 6.16: Observed and calculated properties after each step of the algorithm.
Stochastic reconstruction (SR), Partitioning around medoids (PAM) and Recon-
struction by entropy maximization (REM). Vacuum residue Ural.

Summary statistics Observed
After

........SR........

After

........PAM........

After

........ REM........

MWavg (g/mol) 727 755 756 727

Elemental Analysis

Carbon content (% w/w) 85.5 85.1 85.2 85.5

Hydrogen content (% w/w) 10.6 10.7 10.5 10.6

Sulfur content (% w/w) 2.72 2.67 2.91 2.72

Nitrogen content (% w/w) 0.58 0.75 0.88 0.58

SARA fractions

Saturates content (% w/w) 11.7 9.2 9.2 11.7

Aromatics content (% w/w) 46.1 48.0 48.0 46.1

Resins content(% w/w) 37.6 38.5 38.4 37.6

Nuclear magnetic resonance

Saturated carbon content (% m/m) 72.8 73.2 70.8 72.8

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 520 581 576 518

20 550 686 709 565

30 574 746 754 578

Table 6.17: Observed and calculated properties after each step of the algorithm.
Stochastic reconstruction (SR), Partitioning around medoids (PAM) and Recon-
struction by entropy maximization (REM). Vacuum residue Maya.

Summary statistics Observed
After

........SR........

After

........PAM........

Afte

........REM........

MWavg (g/mol) 764 742 746 764

Elemental Analysis

Carbon content (% w/w) 85.2 84.7 84.4 85.2

Hydrogen content (% w/w) 10.1 10.4 10.3 10.1

Sulfur content (% w/w) 3.5 3.27 3.72 3.5

Nitrogen content (% w/w) 0.58 0.77 0.63 0.58

SARA fractions

Saturates content (% w/w) 12.9 14.1 14.4 12.9

Aromatics content (% w/w) 38.7 37.9 37.9 38.7

Resins content(% w/w) 34.2 36.7 36.5 34.2

Nuclear magnetic resonance

Saturated carbon content (% m/m) 69.5 70.5 69.7 69.5

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 520 570 567 520

20 550 668 674 554

30 574 732 752 574
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Table 6.18: Observed and calculated properties after each step of the algorithm.
Stochastic reconstruction (SR), Partitioning around medoids (PAM) and Recon-
struction by entropy maximization (REM). Vacuum residue A.

Summary statistics Observed
After

........SR........

After

........PAM........

Afte

........REM........

MWavg (g/mol) 718 676 675 718

Elemental Analysis

Carbon content (% w/w) 86.7 86.2 86.4 86.7

Hydrogen content (% w/w) 11.4 11.4 11.2 11.4

Sulfur content (% w/w) 0.6 0.82 0.7 0.6

Nitrogen content (% w/w) 1.0 1.12 1.13 1.0

SARA fractions

Saturates content (% w/w) 19.0 19.7 19.7 19.0

Aromatics content (% w/w) 40.0 43.7 43.7 40.0

Resins content(% w/w) 34.0 34.7 34.7 34.0

Nuclear magnetic resonance

Saturated carbon content (% m/m) 77.6 79 80.4 77.6

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 525 368 478 518

20 555 593 619 553

30 576 683 700 601

Table 6.19: Observed and calculated properties after each step of the algorithm.
Stochastic reconstruction (SR), Partitioning around medoids (PAM) and Recon-
struction by entropy maximization (REM). Vacuum residue B.

Summary statistics Observed
After

........SR........

After

........PAM........

Afte

........REM........

MWavg (g/mol) 751 681 683 751

Elemental Analysis

Carbon content (% w/w) 86.5 86.4 86.6 86.5

Hydrogen content (% w/w) 11.0 11.1 11.2 11.0

Sulfur content (% w/w) 0.7 0.71 0.34 0.7

Nitrogen content (% w/w) 0.9 0.85 0.64 0.9

SARA fractions

Saturates content (% w/w) 12.0 13.4 13.4 12.0

Aromatics content (% w/w) 45.0 47.5 47.5 45.0

Resins content(% w/w) 33.0 33.5 33.4 33.0

Nuclear magnetic resonance

Saturated carbon content (% m/m) 75.1 75.9 78.1 75.1

Simulated distillation

Temperature (◦C) at

cumulative mass vaporization (%)

10 526 412 403 524

20 561 600 585 566

30 585 684 672 586
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Chapter 7

Conclusions

In this work, we developed a methodology to build molecules for heavy petroleum

fractions based on limited experimental data. We called this methodology by molec-

ular reconstruction. The algorithm is divided in three steps: stochastic reconstruc-

tion, partitioning around medoids and reconstruction by entropy maximization.

7.1 Stochastic reconstruction

We developed a novel algorithm combining the stochastic reconstruction method-

ologies and the structure-oriented lumping method for molecular representation and

manipulation. We proposed an extension of the structure-oriented lumping method

to increase molecular diversity.

We evaluated the stochastic reconstruction algorithm from a Bayesian perspec-

tive. The model can be classified as a simulator-based model. This allowed for a

natural calculation of the uncertainty, both for the parameters and predictions.

The model was able to represent the vacuum residues studied in this work. Be-

sides replicating the data from which it was trained, the model was also able to

effectively predict new data.

7.2 Partitioning around medoids

The stochastic reconstruction algorithm can be seen as a Monte Carlo type proce-

dure. For that, a large number of samples (molecules) is required to achieve a good

representation of the population in question. That large number of molecules can

be impeditive to some applications. Based on that, we developed a non-hierarchical

clustering technique to select a subset of representative molecules from the initial

molecular ensemble. Our method is based on the constraint matrix g. Based on the

calculated properties, the method was effective in choosing the most representative
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molecules.

7.3 Reconstruction by entropy maximization

The stochastic reconstruction algorithm considers every built molecule to have the

same importance in the mixture. In other words, it considers the mixture to be

equimolar. Calculating mixture composition is a difficult task due to the lack of

degrees of freedom. For that, we implemented a method called reconstruction by

entropy maximization. The reconstruction by entropy maximization brings the cal-

culated properties of the hypothetical mixtures to almost an exact match. Fur-

thermore, it is able to correct the discrepancies in the distillation curve prediction

observed in the previous steps.

7.4 Future work

• Evaluation of an optimal (or minimal) number of samples (molecules) to be

taken from the stochastic reconstruction model. In this work, we used a fixed

number of 5000. A systematic study of this variable would reduce the compu-

tational cost both for the parameter estimation step and for the subsequential

uses of the generated molecular ensemble.

• Evaluation of an optimal number of clusters in the partitioning around medoids

step of the algorithm. In this work, we used a fixed number of 100. Similar to

the number of initial molecules, this study can potentially reduce even further

the number of representative molecules. However, one may also conclude that

the minimum number of clusters is higher than what was proposed here.

• Developing a methodology for uncertainty propagation from the stochastic

reconstruction algorithm to the next steps. The usage of the Bayesian frame-

work for parameter inference allowed a natural way to propagate uncertainty

in the stochastic reconstruction step. However, in the reconstruction by en-

tropy maximization step we only used the posterior distribution mean as an

estimator of the parameters. Developing a methodology to handle uncertain-

ties in the REM step is important for calculating prediction errors for the final

models.

• Application of the generated molecular ensemble in modeling and simulation

of refining processes. The main purpose of a detailed molecular characteriza-

tion is a better representation of the refining processes, which might improve

prediction and optimization of plant operations.
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